1
|
Lejeune N, Rouxel E, Monfort C, Tillaut H, Rouget F, Costet N, Giton F, Gaudreau É, Lainé F, Garlantézec R, Cordier S, Chevrier C, Warembourg C. Associations between prenatal exposure to PFAS and cardiometabolic health in preadolescents. ENVIRONMENTAL RESEARCH 2024; 266:120607. [PMID: 39672492 DOI: 10.1016/j.envres.2024.120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION While a number of studies have examined the effects of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on childhood obesity, the results reported have been inconsistent and few studies have integrated biological markers. The aim of this study was to investigate the associations between prenatal exposure to PFAS and cardiometabolic health parameters at age 12, taking pubertal stage into consideration. METHOD This study included 394 mother-child pairs enrolled in the PELAGIE mother-child cohort (France). Nine PFAS were measured in umbilical cord blood, and the children attended a clinical examination at age 12. Anthropometry, blood metabolic markers, and blood pressure were measured and used to build an internal cardiometabolic score. Linear regression and Quantile G-computation models were used to evaluate individual and mixture PFAS effects, adjusting for confounders and stratifying by sex and pubertal stage. RESULTS No statistically significant association was observed between prenatal exposure to PFAS and cardiometabolic score at age 12. In post-menarche girls, perfluorohexane sulfonate (PFHxS) and perfluorodecanoic acid (PFDA) were statistically significantly associated with a decrease in a number of adiposity parameters (e.g., Body mass index z-score: beta [95%CI] = -0.37 [-0.67; -0.07]), as well as a decrease in low-density lipoproteins (LDL) and leptin levels. Similar results were observed with PFAS mixture, with statistically significantly decreased tricipital skinfolds (beta [95%CI] = -1.30 [(-2.54;-0.06)]). Isolated associations, including higher systolic blood pressure, changes in cholesterol levels, and lower adiponectin levels were observed in specific subgroups. CONCLUSION There is no clear evidence of an association between prenatal exposure to PFAS and the cardiometabolic health at earlier stage of pubertal development. However, inverse associations between PFAS and anthropometric measures have been observed in post-menarche girls. While the literature on this topic is scarce in pre-adolescents, these results suggest the importance of considering sex and pubertal stage in these associations.
Collapse
Affiliation(s)
- Naomi Lejeune
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Elke Rouxel
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Christine Monfort
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Hélène Tillaut
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Florence Rouget
- Université de Rennes, CHU Rennes, Inserm UMR S 1085, Irset, France
| | - Nathalie Costet
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Frank Giton
- AP-HP, Pôle Biologie-Pathologie Henri Mondor, Inserm, IMRB, 1 rue Gustave Eiffel, 94000, Créteil, France
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Av. Wolfe, G1V 5B3, Québec, QC, Canada
| | - Fabrice Lainé
- Centre d'Investigation Clinique CHU-Rennes (CIC 1414), CHU Rennes, Institut National de la Santé et de la Recherche Médicale, Inserm, 2 rue Henri Le Guilloux 35033, Rennes, France
| | | | - Sylvaine Cordier
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Cécile Chevrier
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Charline Warembourg
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France.
| |
Collapse
|
2
|
Liu Y, Chen H, Yang G, Feng F. Metabolomics and serum pharmacochemistry combined with network pharmacology uncover the potential effective ingredients and mechanisms of Yin-Chen-Si-Ni Decoction treating ANIT-induced cholestatic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118713. [PMID: 39163894 DOI: 10.1016/j.jep.2024.118713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/22/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yin-Chen-Si-Ni Decoction is a classical traditional Chinese medicine (TCM) prescription that is used clinically for treating cholestatic liver injury (CLI) and other hepatic diseases. However, the material basis and underlying mechanisms of YCSND are not clear. AIM OF THE STUDY To investigate effective components and mechanisms of YCSND in the treatment of CLI using serum pharmacochemistry, metabolomics, and network pharmacology. MATERIALS AND METHODS Biochemical indicators, liver index, and histopathology analysis were adopted to evaluate the protective effect of YCSND on ANIT-induced CLI rats. Then, a UPLC-Q-Exactive Orbitrap MS/MS analysis of the migrant components in serum and liver including prototype and metabolic components was performed in YCSND. In addition, a study of the endogenous metabolites using serum and liver metabolomics was performed to discover potential biomarkers, metabolic pathways, and associated mechanisms. Further, the network pharmacology oriented by in vivo migrant components was also used to pinpoint the active ingredients, core targets, and signaling pathways of YCSND. Finally, molecular docking and molecular dynamics simulation (MDS) were used to predict the binding ability between components and core targets, and a real-time qPCR (RT-qPCR) experiment was used to measure the mRNA expression of the core target genes. RESULTS Pharmacodynamic studies suggest that YCSND could exert obvious hepatoprotective effects on CLI rats. Furthermore, 68 compounds, comprising 32 prototype components and 36 metabolic components from YCSND, were found by serum pharmacochemistry analysis. Network pharmacology combining molecular docking and MDS showed that apigenin, naringenin, 18β-glycyrrhetinic acid, and isoformononetin have better binding ability to 6 core targets (EGFR, AKT1, IL6, MMP9, CASP3, PPARG). Additionally, PI3K, TNF-α, MAPK3, and six core target genes in liver tissues were validated with RT-qPCR. Metabolomics revealed the anti-CLI effects of YCSND by regulating four metabolic pathways of primary bile acid and biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and arachidonic acid metabolism. Integrating metabolomics and network pharmacology identified four pathways related to CLI, including the PI3K-Akt, HIF-1, MAPK, and TNF signaling pathway, which revealed multiple mechanisms of YCSND against CLI that might involve anti-inflammatory and apoptosis. CONCLUSION The research based on serum pharmacochemistry, network pharmacology, and metabolomics demonstrates the beneficial hepatoprotective effects of YCSND on CLI rats by regulating multiple components, multiple targets, and multiple pathways, and provides a potent means of illuminating the material basis and mechanisms of TCM prescriptions.
Collapse
Affiliation(s)
- Yanru Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hui Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fang Feng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Gautam R, Maan P, Patel AK, Vasudevan S, Arora T. Unveiling the complex interplay between gut microbiota and polycystic ovary syndrome: A narrative review. Clin Nutr 2024; 43:199-208. [PMID: 39481287 DOI: 10.1016/j.clnu.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND & AIM Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder that affects women throughout their reproductive age and characterised via polycystic ovaries, hyperandrogenism, and irregular menstruation. There is rising evidence that the pathophysiology of PCOS is significantly affected via the gut microbiota and its metabolic products. METHODS This narrative review synthesizes current literature exploring the relationship between gut microbiota and PCOS. A comprehensive search of electronic databases was conducted to identify relevant studies. Further this review also analysed therapeutic options of probiotics, prebiotics, Fecal Microbiota Transplant (FMT), high fiber and poly phenol rich diet and novel therapeutic agents in treatment of PCOS. RESULTS Emerging evidence suggests alterations in the composition and diversity of gut microbiota in women with PCOS. The current literature showed a complex relationship of gut microbiota, short chain fatty acids (SCFAs) metabolism, intestinal permeability and LPS (Lipid Polysaccharide) metabolism, gut-brain axis and bile acid (BA) pathway within etiology and pathophysiology of PCOS. Additionally, the factors such as diet, lifestyle, genetics, and environmental influences may all contribute to alterations in gut microbiota that could potentially exacerbate or mitigate PCOS symptoms. CONCLUSION The review provides valuable insights into the intricate interplay between the gut and female reproductive health. The present evidence suggested that alterations in diversity and function of the gut microbiota may lead to specific pathogenic changes that lead to development of PCOS. A comprehensive understanding of these microbial dynamics may lead to new therapeutic approaches that target the gut micro biome.
Collapse
Affiliation(s)
- Rohit Gautam
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research, New Delhi, India
| | - Pratibha Maan
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research, New Delhi, India
| | - Arbind Kumar Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudharsan Vasudevan
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research, New Delhi, India
| | - Taruna Arora
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research, New Delhi, India.
| |
Collapse
|
4
|
Shearn CT, Anderson AL, Devereaux MW, Koch SD, Larsen LD, Spencer LA, Orlicky DJ, Colgan SP, Steiner CA, Sokol RJ. Overexpression of TNFα in TNF∆ARE+/- mice increases hepatic periportal inflammation and alters bile acid signaling in mice. Hepatol Commun 2024; 8:e0589. [PMID: 39585296 PMCID: PMC11596574 DOI: 10.1097/hc9.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Intestinal inflammation is a common factor in ~70% of patients diagnosed with primary sclerosing cholangitis. The TNF∆ARE+/- mouse overexpresses TNFα and spontaneously develops ileitis after weaning. The aim of this study was to examine the influence of ileitis and TNFα overexpression on hepatic injury, fibrosis, inflammation, and bile acid homeostasis. METHODS Using serum, hepatic, and ileal tissue isolated from 24- to 26-week-old C57BL/6 and TNF∆ARE+/- mice, hepatic injury and fibrosis, inflammation, ductal proliferation, and regulation of bile acid synthesis were assessed by immunohistochemical and quantitative PCR methods. RESULTS Compared to age-matched C57BL/6 mice, TNF∆ARE+/- mice exhibited increased serum AST, ALT, and serum bile acids, which corresponded to increased hepatic picrosirius red staining, and an increase in hepatic mRNA expression of Tgfb, Timp1, Col1a1, and MMP9 supporting induction of fibrosis. Examining inflammation, immunohistochemical staining revealed a significant periportal increase in MPO+ neutrophils, CD3+ lymphocytes, and a panlobular increase in F4/80+ macrophages. Importantly, periportal inflammation corresponded to significantly increased proinflammatory chemokines as well as hepatic cytokeratin 7 staining supporting increased ductular proliferation. In the liver, increased mRNA expression of bile acid transporters was associated with suppression of classical but not alternative bile acid synthesis. In the ileum, increased inflammation correlated with suppression of Nr1h4 and increased Fgf15 and Nr0b2 mRNA expression. CONCLUSIONS Increased TNFα expression is sufficient to promote both intestinal and hepatobiliary inflammation and fibrotic injury and contributes to hepatic dysregulation of FXR signaling and bile acid homeostasis. Overall, these results suggest that the TNF∆ARE+/- mouse may be a useful model for studying chronic hepatic inflammation.
Collapse
Affiliation(s)
- Colin T. Shearn
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- The Digestive Health Institute, Aurora, Colorado, USA
| | - Aimee L. Anderson
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael W. Devereaux
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Samuel D. Koch
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Leigha D. Larsen
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lisa A. Spencer
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Calen A. Steiner
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ronald J. Sokol
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- The Digestive Health Institute, Aurora, Colorado, USA
- Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
5
|
Chang S, Lei X, Xu W, Guan F, Ge J, Nian F. Preparation and characterization of Tobacco polysaccharides and its modulation on hyperlipidemia in high-fat-diet-induced mice. Sci Rep 2024; 14:26860. [PMID: 39500936 PMCID: PMC11538525 DOI: 10.1038/s41598-024-77514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
This study aimed to investigate the structural properties of tobacco polysaccharide (TP) and its mechanism of modulating hyperlipidemia in high-fat diet-induced mice. The structural properties of TP were characterized by FT-IR, 1HNMR, SEM, AFM and thermogravimetric analysis. And the regulatory mechanism of TP on lipid metabolism was investigated in hyperlipidemia mice. These results showed that TP had a high composition of reducing monosaccharide and the glycosidic bond type was α-glycosidic bond. The intervention by TP resulted in a significant reduction of body weight and improvement in lipid accumulation. And the modulation mechanism by which TP ameliorated the abnormalities of lipid metabolism was associated with the expression levels of lipid metabolism-related genes and serum exosomes miRNA-128-3p, as well as the modulation of structure and abundance of the gut microbiota in mice. In addition, TP treatment significantly increased the content of short-chain fatty acids (SCFAs) in mice feces. The results of molecular docking and dual-luciferase assay exhibited a good interaction between propionic acid and PPAR-α, and it was hypothesized that the interaction might further ameliorate the hyperlipidemia. Therefore, TP can regulate the expression levels of lipid metabolism-related genes through miRNAs from serum exosomes and SCFAs from gut microbiota.
Collapse
Affiliation(s)
- Shuaishuai Chang
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Xuanhao Lei
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Weijia Xu
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Feng Guan
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Jian Ge
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China.
| | - Fuzhao Nian
- Yunnan Agricultural University School of Tobacco Science, Kunming, 650201, China
| |
Collapse
|
6
|
Li T, Chen X, Tong W. Bridging organ transcriptomics for advancing multiple organ toxicity assessment with a generative AI approach. NPJ Digit Med 2024; 7:310. [PMID: 39501092 PMCID: PMC11538515 DOI: 10.1038/s41746-024-01317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Translational research in toxicology has significantly benefited from transcriptomic profiling, particularly in drug safety. However, its application has predominantly focused on limited organs, notably the liver, due to resource constraints. This paper presents TransTox, an innovative AI model using a generative adversarial network (GAN) method to facilitate the bidirectional translation of transcriptomic profiles between the liver and kidney under drug treatment. TransTox demonstrates robust performance, validated across independent datasets and laboratories. First, the concordance between real experimental data and synthetic data generated by TransTox was demonstrated in characterizing toxicity mechanisms compared to real experimental settings. Second, TransTox proved valuable in gene expression predictive models, where synthetic data could be used to develop gene expression predictive models or serve as "digital twins" for diagnostic applications. The TransTox approach holds the potential for multi-organ toxicity assessment with AI and advancing the field of precision toxicology.
Collapse
Affiliation(s)
- Ting Li
- FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Xi Chen
- FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Weida Tong
- FDA National Center for Toxicological Research, Jefferson, AR, USA.
| |
Collapse
|
7
|
Yang NV, Chao JY, Garton KA, Tran T, King SM, Orr J, Oei JH, Crawford A, Kang M, Zalpuri R, Jorgens DM, Konchadi P, Chorba JS, Theusch E, Krauss RM. TOMM40 regulates hepatocellular and plasma lipid metabolism via an LXR-dependent pathway. Mol Metab 2024; 90:102056. [PMID: 39489289 PMCID: PMC11600064 DOI: 10.1016/j.molmet.2024.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE The gene encoding TOMM40 (Transporter of Outer Mitochondrial Membrane 40) is adjacent to that encoding APOE, which has a central role in lipid and lipoprotein metabolism. While human genetic variants near APOE and TOMM40 have been shown to be strongly associated with plasma lipid levels, a specific role for TOMM40 in lipid metabolism has not been established, and the present study was aimed at assessing this possibility. METHODS TOMM40 was knocked down by siRNA in human hepatoma HepG2 cells, and effects on mitochondrial function, lipid phenotypes, and crosstalk between mitochondria, ER, and lipid droplets were examined. Additionally, hepatic and plasma lipid levels were measured in mice following shRNA-induced knockdown of Tomm40 shRNA. RESULTS In HepG2 cells, TOMM40 knockdown upregulated expression of APOE and LDLR in part via activation of LXRB (NR1H2) by oxysterols, with consequent increased uptake of VLDL and LDL. This is in part due to disruption of mitochondria-endoplasmic reticulum contact sites, with resulting accrual of reactive oxygen species and non-enzymatically derived oxysterols. With TOMM40 knockdown, cellular triglyceride and lipid droplet content were increased, effects attributable in part to receptor-mediated VLDL uptake, since lipid staining was significantly reduced by concomitant suppression of either LDLR or APOE. In contrast, cellular cholesterol content was reduced due to LXRB-mediated upregulation of the ABCA1 transporter as well as increased production and secretion of oxysterol-derived cholic acid. Consistent with the findings in hepatoma cells, in vivo knockdown of TOMM40 in mice resulted in significant reductions of plasma triglyceride and cholesterol concentrations, reduced hepatic cholesterol and increased triglyceride content, and accumulation of lipid droplets leading to development of steatosis. CONCLUSIONS These findings demonstrate a role for TOMM40 in regulating hepatic lipid and plasma lipoprotein levels and identify mechanisms linking mitochondrial function with lipid metabolism.
Collapse
Affiliation(s)
- Neil V Yang
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Justin Y Chao
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Kelly A Garton
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Tommy Tran
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Sarah M King
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Joseph Orr
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jacob H Oei
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Alexandra Crawford
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Misun Kang
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Danielle M Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Pranav Konchadi
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John S Chorba
- Department of Medicine, University of California, San Francisco, CA, USA; Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Ronald M Krauss
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
8
|
Kim J, Spears I, Erice C, Kim HYH, Porter NA, Tressler C, Tucker EW. Spatially heterogeneous lipid dysregulation in tuberculous meningitis. Neurobiol Dis 2024; 202:106721. [PMID: 39489454 DOI: 10.1016/j.nbd.2024.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Tuberculous (TB) meningitis is the deadliest form of extrapulmonary TB which disproportionately affects children and immunocompromised individuals. Studies in pulmonary TB have shown that Mycobacterium tuberculosis can alter host lipid metabolism to evade the immune system. Cholesterol lowering drugs (i.e., statins) reduce the risk of infection, making them a promising host-directed therapy in pulmonary TB. However, the effect of M. tuberculosis infection on the young or adult brain lipidome has not been studied. The brain is the second-most lipid-rich organ, after adipose tissue, with a temporally and spatially heterogeneous lipidome that changes from infancy to adulthood. The young, developing brain in children may be uniquely vulnerable to alterations in lipid composition and homeostasis, as perturbations in cholesterol metabolism can cause developmental disorders leading to intellectual disabilities. To begin to understand the alterations to the brain lipidome in pediatric TB meningitis, we utilized our previously published young rabbit model of TB meningitis and applied mass spectrometry (MS) techniques to elucidate spatial differences. We used matrix assisted laser desorption/ionization-MS imaging (MALDI-MSI) and complemented it with region-specific liquid chromatography (LC)-MS/MS developed to identify and quantify sterols and oxysterols difficult to identify by MALDI-MSI. MALDI-MSI revealed several sphingolipids, glycerolipids and glycerophospholipids that were downregulated in brain lesions. LC-MS/MS revealed the downregulation of cholesterol, several sterol intermediates along the cholesterol biosynthesis pathway and enzymatically produced oxysterols as a direct result of M. tuberculosis infection. However, oxysterols produced by oxidative stress were increased in brain lesions. Together, these results demonstrate significant spatially regulated brain lipidome dysregulation in pediatric TB meningitis.
Collapse
Affiliation(s)
- John Kim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ian Spears
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Clara Erice
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hye-Young H Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Caitlin Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer, Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Elizabeth W Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
9
|
Bendi A, Vashisth C, Yadav S, Pundeer R, Raghav N. Recent advances in the synthesis of cholesterol-based triazoles and their biological applications. Steroids 2024; 211:109499. [PMID: 39155033 DOI: 10.1016/j.steroids.2024.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Double-headed warheads focusing on the pharmacological aspects as well as membrane permeability can contribute a lot to medicinal chemistry. Over the past few decades, a lot of research has been conducted on steroid-heterocycle conjugates as possible therapeutic agents against a variety of disorders. In the second half of the 20th century, successful research was conducted on cholesterol-based heterocyclic moieties. Keeping in view the biological significance of various triazoles, research on fusion with cholesterol has emerged. This review has been designed to explore the chemistry of cholesterol-based triazoles for the duration from 2010 to 2023 and their significance in medicinal chemistry.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, Bangalore 560064, Karnataka, India
| | - Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119 India.
| | - Sidhant Yadav
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari 122502, Haryana, India
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari 122502, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119 India.
| |
Collapse
|
10
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
11
|
Yamane T, Okumoto T, Tamura T, Oishi Y. Acute ultraviolet B irradiation increases cholesterol and decreases Cyp7a1 expression in the liver of female mice. Lipids 2024; 59:181-191. [PMID: 38958246 DOI: 10.1002/lipd.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Recent studies have demonstrated that ultraviolet B (UVB) irradiation impacts both skin and hepatic functions. In this study, we investigated the effects of UVB irradiation on cholesterol metabolism in the liver. Hairless mice were exposed to UVB (1.6 J/cm2) irradiation. Dorsal skin and liver samples were collected 24 h after exposure. Total RNA was extracted from the skin and liver tissues, and used for DNA microarray analysis and real-time polymerase chain reaction (PCR). Hepatic mRNA expression of Cyp7a1 revealed a 4.4-fold decrease in the UVB (+) group compared to that in the UVB (-) group. No differences were observed in the expression of the other genes related to cholesterol metabolism. Additionally, the level of hepatic total cholesterol in the UVB (+) group was significantly higher than in the UVB (-) group. These findings suggest that acute UVB irradiation increases total cholesterol levels and decreases Cyp7a1 expression in the liver.
Collapse
Affiliation(s)
- Takumi Yamane
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takahiro Okumoto
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomoko Tamura
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuichi Oishi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
12
|
Rapacciuolo P, Finamore C, Giorgio CD, Fiorillo B, Massa C, Urbani G, Marchianò S, Bordoni M, Cassiano C, Morretta E, Spinelli L, Lupia A, Moraca F, Biagioli M, Sepe V, Monti MC, Catalanotti B, Fiorucci S, Zampella A. Design, Synthesis, and Pharmacological Evaluation of Dual FXR-LIFR Modulators for the Treatment of Liver Fibrosis. J Med Chem 2024; 67:18334-18355. [PMID: 39382988 DOI: 10.1021/acs.jmedchem.4c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Although multiple approaches have been suggested, treating mild-to-severe fibrosis in the context of metabolic dysfunction associated with liver disease (MASLD) remains a challenging area in drug discovery. Pathogenesis of liver fibrosis is multifactorial, and pathogenic mechanisms are deeply intertwined; thus, it is well accepted that future treatment requires the development of multitarget modulators. Harnessing the 3,4,5-trisubstituted isoxazole scaffold, previously described as a key moiety in Farnesoid X receptor (FXR) agonism, herein we report the discovery of a novel class of hybrid molecules endowed with dual activity toward FXR and the leukemia inhibitory factor receptor (LIFR). Up to 27 new derivatives were designed and synthesized. The pharmacological characterization of this series resulted in the identification of 3a as a potent FXR agonist and LIFR antagonist with excellent ADME properties. In vitro and in vivo characterization identified compound 3a as the first-in-class hybrid LIFR inhibitor and FXR agonist that protects against the development of acute liver fibrosis and inflammation.
Collapse
Affiliation(s)
- Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Cristina Di Giorgio
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Lucio Spinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Via Università, 40, Cagliari 09124, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| |
Collapse
|
13
|
Liu X, Xia N, Yu Q, Jin M, Wang Z, Fan X, Zhao W, Li A, Jiang Z, Zhang L. Silybin Meglumine Mitigates CCl 4-Induced Liver Fibrosis and Bile Acid Metabolism Alterations. Metabolites 2024; 14:556. [PMID: 39452937 PMCID: PMC11509150 DOI: 10.3390/metabo14100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Altered patterns of bile acids (BAs) are frequently present in liver fibrosis, and BAs function as signaling molecules to initiate inflammatory responses. Silybin meglumine (SLB-M) is widely used in treating various liver diseases including liver fibrosis. However, research on its effects on bile acid (BA) metabolism is limited. This study investigated the therapeutic effects of SLB-M on liver fibrosis and BA metabolism in a CCl4-induced murine model. METHODS A murine liver fibrosis model was induced by CCl4. Fibrosis was evaluated using HE, picrosirius red, and Masson's trichrome staining. Liver function was assessed by serum and hepatic biochemical markers. Bile acid (BA) metabolism was analyzed using LC-MS/MS. Bioinformatics analyses, including PPI network, GO, and KEGG pathway analyses, were employed to explore molecular mechanisms. Gene expression alterations in liver tissue were examined via qRT-PCR. RESULTS SLB-M treatment resulted in significant histological improvements in liver tissue, reducing collagen deposition and restoring liver architecture. Biochemically, SLB-M not only normalized serum liver enzyme levels (ALT, AST, TBA, and GGT) but also mitigated disruptions in both systemic and hepatic BA metabolism by increased unconjugated BAs like cholic acid and chenodeoxycholic acid but decreased conjugated BAs including taurocholic acid and taurodeoxycholic acid, compared to that in CCl4-induced murine model. Notably, SLB-M efficiently improved the imbalance of BA homeostasis in liver caused by CCl4 via activating Farnesoid X receptor. CONCLUSIONS These findings underscore SLB-M decreased inflammatory response, reconstructed BA homeostasis possibly by regulating key pathways, and gene expressions in BA metabolism.
Collapse
Affiliation(s)
- Xiaoxin Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Ninglin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Zifan Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Xue Fan
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Wen Zhao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Anqin Li
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
14
|
Mokgalaboni K, Phoswa WN, Mokgalabone TT, Dlamini S, Ndhlala AR, Modjadji P, Lebelo SL. Effect of Abelmoschus esculentus L. (Okra) on Dyslipidemia: Systematic Review and Meta-Analysis of Clinical Studies. Int J Mol Sci 2024; 25:10922. [PMID: 39456704 PMCID: PMC11507881 DOI: 10.3390/ijms252010922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The global prevalence of cardiovascular diseases (CVDs), including dyslipidemia and atherosclerosis, is rising. While pharmacological treatments for dyslipidemia and associated CVDs exist, not all individuals can afford them, and those who do often experience adverse side effects. Preclinical studies have indicated the potential benefits of Abelmoschus esculentus and its active phytochemicals in addressing dyslipidemia in rodent models of diabetes. However, there is limited clinical evidence on lipid parameters. Thus, this study aimed to assess the potential impact of Abelmoschus esculentus on dyslipidemia. A literature search was performed on PubMed, Scopus, and Cochrane Library for relevant trials published from inception until 11 August 2024. Data analysis was performed using Jamovi software version 2.4.8 and Review Manager (version 5.4), with effect estimates reported as standardized mean differences (SMDs) and 95% confidence intervals (CI). The evidence from eight studies with nine treatment arms showed that Abelmoschus esculentus reduces total cholesterol (TC), SMD = -0.53 (95% CI: -1.00 to -0.07), p = 0.025), compared to placebo. Additionally, triglyceride (TG) was reduced in Abelmoschus esculentus compared to placebo, SMD = -0.24 (95% CI: -0.46 to -0.02), p = 0.035. Furthermore, low-density lipoprotein (LDL) was also reduced, SMD = -0.35 (95% CI: -0.59 to -0.11), p = 0.004 in Abelmoschus esculentus versus placebo. This remedy substantially increased high-density lipoprotein (HDL), SMD = 0.34 (95% CI: 0.07 to 0.61), p = 0.014). Abelmoschus esculentus substantially improved lipid profile in prediabetes, T2D, obesity, and diabetic nephropathy. While the evidence confirms the potential benefits of Abelmoschus esculentus in reducing dyslipidemia, it is important for future clinical studies to standardize the effective dosage for more reliable results. Therefore, future trials should focus on these markers in well-designed trials with sufficient sample sizes. Furthermore, Abelmoschus esculentus can be supplemented to the diet of the relevant populations to alleviate dyslipidemia.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
| | - Wendy N. Phoswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
| | - Tyson T. Mokgalabone
- Green Biotechnologies Research Centre of Excellence, Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | - Sanele Dlamini
- School of Chemicals and Physical Sciences, Faculty of Agriculture and Natural Science, University of Mpumalanga, Mbombela 1200, South Africa;
| | - Ashwell R. Ndhlala
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
- Green Biotechnologies Research Centre of Excellence, Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | - Perpetua Modjadji
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Sogolo L. Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
| |
Collapse
|
15
|
Di Ciaula A, Khalil M, Baffy G, Portincasa P. Advances in the pathophysiology, diagnosis and management of chronic diarrhoea from bile acid malabsorption: a systematic review. Eur J Intern Med 2024; 128:10-19. [PMID: 39069430 DOI: 10.1016/j.ejim.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Bile acid malabsorption (BAM) is an important disorder of digestive pathophysiology as it generates chronic diarrhoea. This condition originates from intricate pathways involving bile acid synthesis and metabolism in the liver and gut, the composition of gut microbiota, enterohepatic circulation and key receptors as farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and the G-protein bile acid receptor-1 (GPBAR-1). Although symptoms can resemble those related to disorders of gut brain interaction, accurate diagnosis of BAM may greatly benefit the patient. The empiric diagnosis of BAM is primarily based on the clinical response to bile acid sequestrants. Specific tests including the 48-hour fecal bile acid test, serum levels of 7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19), and the 75Selenium HomotauroCholic Acid Test (SeHCAT) are not widely available. Nevertheless, lack of diagnostic standardization of BAM may account for poor recognition and delayed management. Beyond bile acid sequestrants, therapeutic approaches include the use of FXR agonists, FGF19 analogues, glucagon-like peptide-1 (GLP-1) receptor agonists, and microbiota modulation. These novel agents can best make their foray into the therapeutic armamentarium if BAM does not remain a diagnosis of exclusion. Ignoring BAM as a specific condition may continue to contribute to increased healthcare costs and reduced quality of life. Here, we aim to provide a comprehensive review of the pathophysiology, diagnosis, and management of BAM.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Medical School, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Medical School, Bari, Italy.
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Medical School, Bari, Italy.
| |
Collapse
|
16
|
Liu J, Xu F, Guo M, Song Y. Triclosan exposure causes abnormal bile acid metabolism through IL-1β-NF-κB-Fxr signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116989. [PMID: 39260212 DOI: 10.1016/j.ecoenv.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Triclosan (TCS) is an eminent antibacterial agent. However, extensive usage causes potential health risks like hepatotoxicity, intestinal damage, kidney injury, etc. Existing studies suggested that TCS would disrupt bile acid (BA) enterohepatic circulation, but its toxic mechanism remains unclear. Hence, the current study established an 8-week TCS exposure model to explore its potential toxic mechanism. The results discovered 8 weeks consecutive administration of TCS induced distinct programmed cell death, inflammatory cell activation and recruitment, and excessive BA accumulation in liver. Furthermore, the expression of BA synthesis and transport associated genes were significantly dysregulated upon TCS treatment. Additional mechanism exploration revealed that Fxr inhibition induced by TCS would be the leading cause for unusual BA biosynthesis and transport. Subsequent Fxr up-stream investigation uncovered TCS exposure caused pyroptosis and its associated IL-1β would be the reason for Fxr reduction mediated by NF-κB. NF-κB blocking by dimethylaminoparthenolide ameliorated TCS induced BA disorder which confirmed the contribution of NF-κB in Fxr repression. To sum up, our findings conclud TCS-caused BA disorder is attributed to Fxr inhibition, which is regulated by the IL-1β-NF-κB signaling pathway. Hence, we suggest Fxr would be a potential target for abnormal BA stimulated by TCS and its analogs.
Collapse
Affiliation(s)
- Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fang Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Mingzhu Guo
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
17
|
Sun K, Zhu NL, Huang SL, Qu H, Gu YP, Qin L, Liu J, Leng Y. A new mechanism of thyroid hormone receptor β agonists ameliorating nonalcoholic steatohepatitis by inhibiting intestinal lipid absorption via remodeling bile acid profiles. Acta Pharmacol Sin 2024; 45:2134-2148. [PMID: 38789494 PMCID: PMC11420233 DOI: 10.1038/s41401-024-01303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Excessive dietary calories lead to systemic metabolic disorders, disturb hepatic lipid metabolism, and aggravate nonalcoholic steatohepatitis (NASH). Bile acids (BAs) play key roles in regulating nutrition absorption and systemic energy homeostasis. Resmetirom is a selective thyroid hormone receptor β (THRβ) agonist and the first approved drug for NASH treatment. It is well known that the THRβ activation could promote intrahepatic lipid catabolism and improve mitochondrial function, however, its effects on intestinal lipid absorption and BA compositions remain unknown. In the present study, the choline-deficient, L-amino acid defined, high-fat diet (CDAHFD) and high-fat diet plus CCl4 (HFD+CCl4)-induced NASH mice were used to evaluate the effects of resmetirom on lipid and BA composition. We showed that resmetirom administration (10 mg·kg-1·d-1, i.g.) significantly altered hepatic lipid composition, especially reduced the C18:2 fatty acyl chain-containing triglyceride (TG) and phosphatidylcholine (PC) in the two NASH mouse models, suggesting that THRβ activation inhibited intestinal lipid absorption since C18:2 fatty acid could be obtained only from diet. Targeted analysis of BAs showed that resmetirom treatment markedly reduced the hepatic and intestinal 12-OH to non-12-OH BAs ratio by suppressing cytochrome P450 8B1 (CYP8B1) expression in both NASH mouse models. The direct inhibition by resmetirom on intestinal lipid absorption was further verified by the BODIPY gavage and the oral fat tolerance test. In addition, disturbance of the altered BA profiles by exogenous cholic acid (CA) supplementation abolished the inhibitory effects of resmetirom on intestinal lipid absorption in both normal and CDAHFD-fed mice, suggesting that resmetirom inhibited intestinal lipid absorption by reducing 12-OH BAs content. In conclusion, we discovered a novel mechanism of THRβ agonists on NASH treatment by inhibiting intestinal lipid absorption through remodeling BAs composition, which highlights the multiple regulation of THRβ activation on lipid metabolism and extends the current knowledge on the action mechanisms of THRβ agonists in NASH treatment.
Collapse
Affiliation(s)
- Kai Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan-Lin Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Pei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Wang W, Xu M, Diao H, Long Q, Gan F, Mao Y. Effects of grape seed proanthocyanidin extract on cholesterol metabolism and antioxidant status in finishing pigs. Sci Rep 2024; 14:21117. [PMID: 39256553 PMCID: PMC11387843 DOI: 10.1038/s41598-024-72075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Grape seed proanthocyanidin extract (GSPE) is a natural polyphenolic compound, which plays an important role in anti-inflammatory and antioxidant. The present study aimed to investigate the effects of GSPE supplementation on the cholesterol metabolism and antioxidant status of finishing pigs. In longissimus dorse (LD) muscle, the data showed that GSPE significantly decreased the contents of total cholesterol (T-CHO) and triglyceride (TG), and decreased the mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR) and Fatty acid synthase (FAS), while increased the mRNA expression of carnitine palmitoyl transferase-1b (CPT1b), peroxisome proliferator-activated receptors (PPARα) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). GSPE also reduced the enzyme activities of HMG-CoAR and FAS, and meanwhile amplified the activity of CPT1b in LD muscle of finishing pigs. Furthermore, dietary GSPE supplementation increased the serum catalase (CAT) and total antioxidant capacity (T-AOC), serum and liver total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) levels, while reduced serum and liver malondialdehyde (MDA) level in finishing pigs. In the liver, Superoxide Dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 1 (GPX1), Nuclear Factor erythroid 2-Related Factor 2 (NRF2) mRNA levels were increased by GSPE. In conclusion, this study showed that GSPE might be an effective dietary supplement for improving cholesterol metabolism and antioxidant status in finishing pigs.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Meng Xu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| | - Hui Diao
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co. Ltd, Chengdu, 610066, China
| | - Qingtao Long
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Fang Gan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Yi Mao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| |
Collapse
|
19
|
Carvalho MBD, Jorge GMCP, Zanardo LW, Hamada LM, Izabel LDS, Santoro S, Magdalon J. The role of FGF19 in metabolic regulation: insights from preclinical models to clinical trials. Am J Physiol Endocrinol Metab 2024; 327:E279-E289. [PMID: 39017679 DOI: 10.1152/ajpendo.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Fibroblast growth factor 19 (FGF19) is a hormone synthesized in enterocytes in response to bile acids. This review explores the pivotal role of FGF19 in metabolism, addressing the urgent global health concern of obesity and its associated pathologies, notably type 2 diabetes. The intriguing inverse correlation between FGF19 and body mass or visceral adiposity, as well as its rapid increase following bariatric surgery, emphasizes its potential as a therapeutic target. This article meticulously examines the impact of FGF19 on metabolism by gathering evidence primarily derived from studies conducted in animal models or cell lines, using both FGF19 treatment and genetic modifications. Overall, these studies demonstrate that FGF19 has antidiabetic and antiobesogenic effects. A thorough examination across metabolic tissues, including the liver, adipose tissue, skeletal muscle, and the central nervous system, is conducted, unraveling the intricate interplay of FGF19 across diverse organs. Moreover, we provide a comprehensive overview of clinical trials involving an FGF19 analog called aldafermin, emphasizing promising results in diseases such as nonalcoholic steatohepatitis and diabetes. Therefore, we aim to foster a deeper understanding of FGF19 role and encourage further exploration of its clinical applications, thereby advancing the field and offering innovative approaches to address the escalating global health challenge of obesity and related metabolic conditions.
Collapse
Affiliation(s)
- Marcela Botelho de Carvalho
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Luiza Wolf Zanardo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Leticia Miho Hamada
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Larissa Dos Santos Izabel
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Juliana Magdalon
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
20
|
Zhang X, Xu J, Dong X, Tang J, Xie Y, Yang J, Zou L, Wu L, Fan J. Bifidobacterium longumBL-19 inhibits oxidative stress and inflammatory damage in the liver of mice with NAFLD by regulating the production of butyrate in the intestine. Food Sci Nutr 2024; 12:6442-6460. [PMID: 39554323 PMCID: PMC11561819 DOI: 10.1002/fsn3.4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 11/19/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease, but there is currently no effective treatment method. Probiotics have been used as an adjunct therapy for NAFLD, but the mechanism is not clear. This study used Bifidobacterium longum BL19 (BL-19) to treat the NAFLD mice induced by a high-fat diet, and explored the treatment mechanism through gut microbiota and serum metabolomics techniques. We found that BL-19 effectively prevented rapid weight gain in NAFLD mice and reduced their overall food and energy intake, decreased liver inflammatory factors expressions, and increased the bile acid synthetase enzyme CYP7A1 and superoxide dismutase. After BL-19 treatment, the abundances of butyric acid bacteria (Oscillospira and Coprococcus) in the feces of mice increased significantly, and the concentration of butyric acid also increased significantly. We believe that BL-19 promotes the production of butyrate in the intestines, which in turn regulates the activity of CYP7A1 in the liver and bile acid synthesis, ultimately treating liver inflammation and lipid accumulation in NAFLD mice. Serum metabolomics results indicated that BL-19 affected multiple pathways related to inflammation and lipid metabolism in NAFLD mice. These findings suggest that BL-19 shows promise as an adjunct therapy for NAFLD, as it can significantly improve oxidative stress, reduce inflammation in the liver, and decrease lipid accumulation.
Collapse
Affiliation(s)
- Xiajun Zhang
- Department of Laboratory MedicineThe People's Hospital of DanyangZhenjiangJiangsuChina
| | - Jingwen Xu
- Department of Cardiology, Jurong HospitalAffiliated to Jiangsu UniversityZhenjiangJiangsuChina
| | - Xueyun Dong
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Jiajun Tang
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Yan Xie
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Jie Yang
- Department of Laboratory MedicineThe People's Hospital of DanyangZhenjiangJiangsuChina
| | - Limin Zou
- Department of Laboratory MedicineThe People's Hospital of DanyangZhenjiangJiangsuChina
| | - Liang Wu
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuChina
| | - Jilong Fan
- Hepatobiliary SurgeryLianyungang Second People's Hospital Affiliated to Jiangsu UniversityLianyungangChina
| |
Collapse
|
21
|
Aguchem RN, Okagu IU, Okorigwe EM, Uzoechina JO, Nnemolisa SC, Ezeorba TPC. Role of CETP, PCSK-9, and CYP7-alpha in cholesterol metabolism: Potential targets for natural products in managing hypercholesterolemia. Life Sci 2024; 351:122823. [PMID: 38866219 DOI: 10.1016/j.lfs.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, primarily affecting the heart and blood vessels, with atherosclerosis being a major contributing factor to their onset. Epidemiological and clinical studies have linked high levels of low-density lipoprotein (LDL) emanating from distorted cholesterol homeostasis as its major predisposing factor. Cholesterol homeostasis, which involves maintaining the balance in body cholesterol level, is mediated by several proteins or receptors, transcription factors, and even genes, regulating cholesterol influx (through dietary intake or de novo synthesis) and efflux (by their conversion to bile acids). Previous knowledge about CVDs management has evolved around modulating these receptors' activities through synthetic small molecules/antibodies, with limited interest in natural products. The central roles of the cholesteryl ester transfer protein (CETP), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cytochrome P450 family 7 subfamily A member 1 (CYP7A1), among other proteins or receptors, have fostered growing scientific interests in understanding more on their regulatory activities and potential as drug targets. We present up-to-date knowledge on the contributions of CETP, PCSK9, and CYP7A1 toward CVDs, highlighting the clinical successes and failures of small molecules/antibodies to modulate their activities. In recommendation for a new direction to improve cardiovascular health, we have presented recent findings on natural products (including functional food, plant extracts, phytochemicals, bioactive peptides, and therapeutic carbohydrates) that also modulate the activities of CETP, PCSK-9, and CYP7A1, and emphasized the need for more research efforts redirected toward unraveling more on natural products potentials even at clinical trial level for CVD management.
Collapse
Affiliation(s)
- Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Chemistry and Biochemistry, College of Sciences, University of Notre Dame, 46556 Notre Dame, IN, United States
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Biochemistry and Molecular Biology, Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
22
|
Song Q, Kobayashi S, Kataoka Y, Oda H. Direct Molecular Action of Taurine on Hepatic Gene Expression Associated with the Amelioration of Hypercholesterolemia in Rats. Antioxidants (Basel) 2024; 13:990. [PMID: 39199235 PMCID: PMC11351134 DOI: 10.3390/antiox13080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Taurine can ameliorate hypercholesterolemia by facilitating cholesterol efflux and increasing cytochrome P450 7A1 (CYP7A1) without clear underlying molecular mechanisms. This study aims to elucidate the molecular action of taurine in diet-induced hypercholesterolemia. Male Wistar rats were fed a high cholesterol diet containing 5% taurine for 14 days. Three-dimensional primary hepatocytes from rats were exposed to 10 mM taurine for 24 h. Transcriptome analyses of both the liver and hepatocytes were performed using DNA microarray. Taurine significantly decreased serum cholesterol levels and increased hepatic CYP7A1 mRNA levels and transcription rates in rats. Taurine altered the expression of seventy-seven genes in the liver, involving lipid, drug, amino acid metabolism, and gluconeogenesis pathways. The small heterodimer partner (SHP), a transcription factor regulated by taurine, was suppressed. "Network analysis" revealed a negative correlation between the SHP and induction of CYP7A1 and cytochrome P450 8B1 (CYP8B1). However, CYP7A1 and CYP8B1 levels were not altered by taurine in 3D-primary hepatocytes. Venn diagram analyses of the transcriptomes in both hepatocytes and the liver indicated a consistent upregulation of organic anion transporting polypeptide 2 (OATP2) and betaine homocysteine methyltransferase (BHMT). Taurine ameliorated hypercholesterolemia in rats fed a high cholesterol diet by directly enhancing the hepatic expression of BHMT and OATP2, which modulated the SHP and induced CYP7A1 and CYP8B1, thereby promoting cholesterol catabolism and lowering blood cholesterol levels.
Collapse
Affiliation(s)
| | | | | | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
23
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [PMID: 38663779 DOI: 10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.
Collapse
Affiliation(s)
- Yingkun Sheng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guibing Meng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaopeng Chen
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
24
|
Lee K, Kim HJ, Kim JY, Shim JJ, Lee JH. A Mixture of Lactobacillus HY7601 and KY1032 Regulates Energy Metabolism in Adipose Tissue and Improves Cholesterol Disposal in High-Fat-Diet-Fed Mice. Nutrients 2024; 16:2570. [PMID: 39125449 PMCID: PMC11314552 DOI: 10.3390/nu16152570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
We aimed to characterize the anti-obesity and anti-atherosclerosis effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 using high-fat diet (HFD)-fed obese C57BL/6 mice. We divided the mice into control (CON), HFD, HFD with 108 CFU/kg/day probiotics (HFD + KL, HY7301:KY1032 = 1:1), and HFD with 109 CFU/kg/day probiotics (HFD + KH, HY7301:KY1032 = 1:1) groups and fed/treated them during 7 weeks. The body mass, brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and epididymal white adipose tissue (eWAT) masses and the total cholesterol and triglyceride concentrations were remarkably lower in probiotic-treated groups than in the HFD group in a dose-dependent manner. In addition, the expression of uncoupling protein 1 in the BAT, iWAT, and eWAT was significantly higher in probiotic-treated HFD mice than in the HFD mice, as demonstrated by immunofluorescence staining and Western blotting. We also measured the expression of cholesterol transport genes in the liver and jejunum and found that the expression of those encoding liver-X-receptor α, ATP-binding cassette transporters G5 and G8, and cholesterol 7α-hydroxylase were significantly higher in the HFD + KH mice than in the HFD mice. Thus, a Lactobacillus HY7601 and KY1032 mixture with 109 CFU/kg/day concentration can assist with body weight regulation through the management of lipid metabolism and thermogenesis.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
25
|
Khobragade NH, Sheth DB, Patel CA, Beladiya JV, Patel S, Dalal M. Polycystic ovary syndrome: Insights into its prevalence, diagnosis, and management with special reference to gut microbial dysbiosis. Steroids 2024; 208:109455. [PMID: 38876407 DOI: 10.1016/j.steroids.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Polycystic ovary syndrome (PCOS) represents major endocrine and metabolic disorder among women largely characterized by hyperandrogenism and oligomenorrhea precipitates serious complications such as type 2 diabetes, early atherosclerosis, infertility, and endometrial cancer. Several etiological theories were proposed to define the exact cause of the PCOS, which is characterized, by the hypothalamic-pituitary axis, ovarian morphology, and release of adrenal steroid hormones, metabolic syndrome, and hereditary factors. The review explored the role of dysbiosis and the mechanisms through which microbial dysbiosis can affect PCOS development. In recent time, various research groups highlighted the role of microbial gut dysbiosis associated with obesity as potential etiological factor for the PCOS. In the present review, we reviewed the mechanisms attributed to the microbial dysbiosis and treatment approaches to deal with the situation.
Collapse
Affiliation(s)
- Nisha H Khobragade
- Research Scholar, Department of Pharmacology, Gujarat Technological University, Ahmedabad, Gujarat, India; Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Devang B Sheth
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | - Chirag A Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Jayesh V Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Mittal Dalal
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
26
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
27
|
Levy C, Caldwell S, Mantry P, Luketic V, Landis CS, Huang J, Mena E, Maheshwari R, Rank K, Xu J, Malkov VA, Billin AN, Liu X, Lu X, Barchuk WT, Watkins TR, Chung C, Myers RP, Kowdley KV. Cilofexor in Patients With Compensated Cirrhosis Due to Primary Sclerosing Cholangitis: An Open-Label Phase 1B Study. Clin Transl Gastroenterol 2024; 15:e00744. [PMID: 38976363 PMCID: PMC11346858 DOI: 10.14309/ctg.0000000000000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
INTRODUCTION This proof-of-concept, open-label phase 1b study evaluated the safety and efficacy of cilofexor, a potent selective farnesoid X receptor agonist, in patients with compensated cirrhosis due to primary sclerosing cholangitis. METHODS Escalating doses of cilofexor (30 mg [weeks 1-4], 60 mg [weeks 5-8], 100 mg [weeks 9-12]) were administered orally once daily over 12 weeks. The primary endpoint was safety. Exploratory measures included cholestasis and fibrosis markers and pharmacodynamic biomarkers of bile acid homeostasis. RESULTS Eleven patients were enrolled (median age: 48 years; 55% men). The most common treatment-emergent adverse events (TEAEs) were pruritus (8/11 [72.7%]), fatigue, headache, nausea, and upper respiratory tract infection (2/11 [18.2%] each). Seven patients experienced a pruritus TEAE (one grade 3) considered drug-related. One patient temporarily discontinued cilofexor owing to peripheral edema. There were no deaths, serious TEAEs, or TEAEs leading to permanent discontinuation. Median changes (interquartile ranges) from baseline to week 12 (predose, fasting) were -24.8% (-35.7 to -7.4) for alanine transaminase, -13.0% (-21.9 to -8.6) for alkaline phosphatase, -43.5% (-52.1 to -30.8) for γ-glutamyl transferase, -12.7% (-25.0 to 0.0) for total bilirubin, and -21.2% (-40.0 to 0.0) for direct bilirubin. Least-squares mean percentage change (95% confidence interval) from baseline to week 12 at trough was -55.3% (-70.8 to -31.6) for C4 and -60.5% (-81.8 to -14.2) for cholic acid. Fasting fibroblast growth factor 19 levels transiently increased after cilofexor administration. DISCUSSION Escalating doses of cilofexor over 12 weeks were well tolerated and improved cholestasis markers in patients with compensated cirrhosis due to primary sclerosing cholangitis (NCT04060147).
Collapse
Affiliation(s)
- Cynthia Levy
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
- Schiff Center for Liver Diseases, University of Miami, Miami, Florida, USA;
| | - Stephen Caldwell
- University of Virginia School of Medicine, Charlottesville, Virginia, USA;
| | - Parvez Mantry
- Methodist Transplant Specialists, Dallas, Texas, USA;
| | - Velimir Luketic
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA;
| | - Charles S. Landis
- Univerisity of Washington School of Medicine, Seattle, Washington, USA;
| | - Jonathan Huang
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA;
| | - Edward Mena
- Pasadena Liver Center, Pasadena, California, USA;
| | | | - Kevin Rank
- MNGI Digestive Health, Minneapolis, Minnesota, USA;
| | - Jun Xu
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | | - Xiangyu Liu
- Gilead Sciences, Inc., Foster City, California, USA;
| | - Xiaomin Lu
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | | - Chuhan Chung
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | |
Collapse
|
28
|
Brascher TC, de Bortoli L, Toledo-Silva G, Zacchi FL, Razzera G. In silico structural features of the CgNR5A: CgDAX complex and its role in regulating gene expression of CYP target genes in Crassostrea gigas. CHEMOSPHERE 2024; 361:142443. [PMID: 38815811 DOI: 10.1016/j.chemosphere.2024.142443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Contamination of aquatic environments has been steadily increasing due to human activities. The Pacific oyster Crassostrea gigas has been used as a key species in studies assessing the impacts of contaminants on human health and the aquatic biome. In this context, cytochrome P450 (CYPs) play a crucial role in xenobiotic metabolism. In vertebrates many of these CYPs are regulated by nuclear receptors (NRs) and little is known about the NRs role in C. gigas. Particularly, the CgNR5A represents a homologue of SF1 and LRH-1 found in vertebrates. Members of this group can regulate genes of CYPs involved in lipid/steroid metabolism, with their activity regulated by other NR, called as DAX-1, generating a NR complex on DNA response elements (REs). As C. gigas does not exhibit steroid biosynthesis pathways, CgNR5A may play other physiological roles. To clarify this issue, we conducted an in silico investigation of the interaction between CgNR5A and DNA to identify potential C. gigas CYP target genes. Using molecular docking and dynamics simulations of the CgNR5A on DNA molecules, we identified a monomeric interaction with extended REs. This RE was found in the promoter region of 30 CYP genes and also the NR CgDAX. When the upstream regulatory region was analyzed, CYP2C39, CYP3A11, CYP4C21, CYP7A1, CYP17A1, and CYP27C1 were mapped as the main genes regulated by CgNR5A. These identified CYPs belong to families known for their involvement in xenobiotic and lipid/steroid metabolism. Furthermore, we reconstructed a trimeric complex, previously proposed for vertebrates, with CgNR5A:CgDAX and subjected it to molecular dynamics simulations analysis. Heterotrimeric complex remained stable during the simulations, suggesting that CgDAX may modulate CgNR5A transcriptional activity. This study provides insights into the potential physiological processes involving these NRs in the regulation of CYPs associated with xenobiotic and steroid/lipid metabolism.
Collapse
Affiliation(s)
- Theo Cardozo Brascher
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Leonardo de Bortoli
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Genômica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Guilherme Toledo-Silva
- Laboratório de Genômica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Flávia Lucena Zacchi
- Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88061-600, Brazil
| | - Guilherme Razzera
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
29
|
Dicks L, Schuh-von Graevenitz K, Prehn C, Sadri H, Murani E, Hosseini Ghaffari M, Häussler S. Bile acid profiles and mRNA abundance of bile acid-related genes in adipose tissue of dairy cows with high versus normal body condition. J Dairy Sci 2024; 107:6288-6307. [PMID: 38490538 DOI: 10.3168/jds.2024-24346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Besides their lipid-digestive role, bile acids (BA) influence overall energy homeostasis, such as glucose and lipid metabolism. We hypothesized that BA along with their receptors, regulatory enzymes, and transporters are present in subcutaneous adipose tissue (scAT). In addition, we hypothesized that their mRNA abundance varies with the body condition of dairy cows around calving. Therefore, we analyzed BA in serum and scAT as well as the mRNA abundance of BA-related enzymes, transporters, and receptors in scAT during the transition period in cows with different body conditions around calving. In a previously established animal model, 38 German Holstein cows were divided into either a high (HBCS; n = 19) or normal BCS (NBCS; n = 19) group based on their BCS and back-fat thickness (BFT). Cows were fed different diets to achieve the targeted differences in BCS and BFT (NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until dry-off at 7 wk antepartum. During the dry period and subsequent lactation, both groups were fed the same diets according to their energy demands. Using a targeted metabolomics approach via liquid chromatography-electrospray ionization-MS /MS, BA were analyzed in serum and scAT at wk -7, 1, 3, and 12 relative to parturition. In serum, 15 BA were observed: cholic acid (CA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid, deoxycholic acid (DCA), lithocholic acid, glycodeoxycholic acid (GDCA), glycolithocholic acid, taurodeoxycholic acid, taurolithocholic acid, β-muricholic acid, tauromuricholic acid (sum of α and β), and glycoursodeoxycholic acid, whereas in scAT 7 BA were detected: CA, GCA, TCA, GCDCA, taurochenodeoxycholic acid, GDCA, and taurodeoxycholic acid. In serum and scAT samples, the primary BA CA and its conjugate GCA were predominantly detected. Increasing serum concentrations of CA, CDCA, TCA, GCA, GCDCA, DCA, and β-muricholic acid with the onset of lactation might be related to the increasing DMI after parturition. Furthermore, serum concentrations of CA, CDCA, GCA, DCA, GCDCA, TCA, lithocholic acid, and GDCA were lower in HBCS cows compared with NBCS cows, concomitant with increased lipolysis in HBCS cows. The correlation between CA in serum and scAT may point to the transport of CA across cell membranes. Overall, the findings of the present study suggest a potential role of BA in lipid metabolism depending on the body condition of periparturient dairy cows.
Collapse
Affiliation(s)
- Lena Dicks
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh-von Graevenitz
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Metabolomics and Proteomics Core, 85764 Neuherberg, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | - Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
30
|
Gallucci GM, Hayes CM, Boyer JL, Barbier O, Assis DN, Ghonem NS. PPAR-Mediated Bile Acid Glucuronidation: Therapeutic Targets for the Treatment of Cholestatic Liver Diseases. Cells 2024; 13:1296. [PMID: 39120326 PMCID: PMC11312002 DOI: 10.3390/cells13151296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Cholestatic liver diseases, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), result from an impairment of bile flow that leads to the hepatic retention of bile acids, causing liver injury. Until recently, the only approved treatments for PBC were ursodeoxycholic acid (UDCA) and obeticholic acid (OCA). While these therapies slow the progression of PBC in the early stage of the disease, approximately 40% of patients respond incompletely to UDCA, and advanced cases do not respond. UDCA does not improve survival in patients with PSC, and patients often have dose-limiting pruritus reactions to OCA. Left untreated, these diseases can progress to fibrosis and cirrhosis, resulting in liver failure and the need for transplantation. These shortcomings emphasize the urgent need for alternative treatment strategies. Recently, nuclear hormone receptors have been explored as pharmacological targets for adjunct therapy because they regulate enzymes involved in bile acid metabolism and detoxification. In particular, the peroxisome proliferator-activated receptor (PPAR) has emerged as a therapeutic target for patients with PBC or PSC who experience an incomplete response to UDCA. PPARα is predominantly expressed in the liver, and it plays an essential role in the regulation of cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, both of which are critical enzyme families involved in the regulation of bile acid metabolism and glucuronidation, respectively. Importantly, PPARα agonists, e.g., fenofibrate, have shown therapeutic benefits in reducing elevated markers of cholestasis in patients with PBC and PSC, and elafibranor, the first PPAR (dual α, β/δ) agonist, has been FDA-approved for the second-line treatment of PBC. Additionally, newer PPAR agonists that target various PPAR isoforms (β/δ, γ) are under development as an adjunct therapy for PBC or PSC, although their impact on glucuronidation pathways are less characterized. This review will focus on PPAR-mediated bile acid glucuronidation as a therapeutic pathway to improve outcomes for patients with PBC and PSC.
Collapse
Affiliation(s)
- Gina M. Gallucci
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Colleen M. Hayes
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - James L. Boyer
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, USA
| | - Olivier Barbier
- Faculty of Pharmacy, Laval University, Québec, QC G1V 0A6, Canada
| | - David N. Assis
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nisanne S. Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
31
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [DOI: https:/doi.org/10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
32
|
Zhou Y, Bai F, Xiao R, Chen M, Sun Y, Ye J. Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper ( Epinephelus coioides). Animals (Basel) 2024; 14:2039. [PMID: 39061501 PMCID: PMC11274106 DOI: 10.3390/ani14142039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In order to understand the intervention effect of taurine on liver fat deposition induced by high fat intake in the orange-spotted grouper (Epinephelus coioides), we performed proteomic analysis and association analysis with previously obtained transcriptomic data. Three isoproteic (47% crude protein) diets were designed to contain two levels of fat and were named as the 10% fat diet (10F), 15% fat diet (15F), and 15% fat with 1% taurine (15FT). The 10F diet was used as the control diet. After 8 weeks of feeding, the 15F diet exhibited comparable weight gain, feed conversion ratio, and hepatosomatic index as the 10F diet, but the former increased liver fat content vs. the latter. Feeding with the 15FT diet resulted in an improvement in weight gain and a reduction in feed conversion ratio, hepatosomatic index, and liver fat content compared with feeding the 15F diet. When comparing liver proteomic data between the 15F and 15FT groups, a total of 133 differentially expressed proteins (DEPs) were identified, of which 51 were upregulated DEPs and 82 were downregulated DEPs. Among these DEPs, cholesterol 27-hydroxylase, phosphatidate phosphatase LPIN, phosphatidylinositol phospholipase C, and 6-phosphofructo-2-kinase were further screened out and were involved in primary bile acid biosynthesis, glycerolipid metabolism, the phosphatidylinositol signaling system, and the AMPK signaling pathway as key DEPs in terms of alleviating liver fat deposition of taurine in high-fat fed fish. With the association analysis of transcriptomic and proteomic data through KEGG, three differentially expressed genes (atp1a, arf1_2, and plcd) and four DEPs (CYP27α1, LPIN, PLCD, and PTK2B) were co-enriched into five pathways related to fat metabolism including primary bile acid synthesis, bile secretion, glycerolipid metabolism, phospholipid D signaling, or/and phosphatidylinositol signaling. The results showed that dietary taurine intervention could trigger activation of bile acid biosynthesis and inhibition of triglyceride biosynthesis, thereby mediating the liver fat-lowering effects in high-fat fed orange-spotted grouper. The present study contributes some novel insight into the liver fat-lowering effects of dietary taurine in high-fat fed groupers.
Collapse
Affiliation(s)
| | | | | | | | | | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China; (Y.Z.); (F.B.); (R.X.); (M.C.); (Y.S.)
| |
Collapse
|
33
|
Huang Y, Xu W, Dong W, Chen G, Sun Y, Zeng X. Anti-diabetic effect of dicaffeoylquinic acids is associated with the modulation of gut microbiota and bile acid metabolism. J Adv Res 2024:S2090-1232(24)00264-9. [PMID: 38969095 DOI: 10.1016/j.jare.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3β) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.
Collapse
Affiliation(s)
- Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
34
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
35
|
Tang G, Nierath WF, Leitner E, Xie W, Revskij D, Seume N, Zhang X, Ehlers L, Vollmar B, Zechner D. Comparing animal well-being between bile duct ligation models. PLoS One 2024; 19:e0303786. [PMID: 38950046 PMCID: PMC11216573 DOI: 10.1371/journal.pone.0303786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/01/2024] [Indexed: 07/03/2024] Open
Abstract
A prevailing animal model currently used to study severe human diseases like obstructive cholestasis, primary biliary or sclerosing cholangitis, biliary atresia, and acute liver injury is the common bile duct ligation (cBDL). Modifications of this model include ligation of the left hepatic bile duct (pBDL) or ligation of the left bile duct with the corresponding left hepatic artery (pBDL+pAL). Both modifications induce cholestasis only in the left liver lobe. After induction of total or partial cholestasis in mice, the well-being of these animals was evaluated by assessing burrowing behavior, body weight, and a distress score. To compare the pathological features of these animal models, plasma levels of liver enzymes, bile acids, bilirubin, and within the liver tissue, necrosis, fibrosis, inflammation, as well as expression of genes involved in the synthesis or transport of bile acids were assessed. The survival rate of the animals and their well-being was comparable between pBDL+pAL and pBDL. However, surgical intervention by pBDL+pAL caused confluent necrosis and collagen depositions at the edge of necrotic tissue, whereas pBDL caused focal necrosis and fibrosis in between portal areas. Interestingly, pBDL animals had a higher survival rate and their well-being was significantly improved compared to cBDL animals. On day 14 after cBDL liver aspartate, as well as alanine aminotransferase, alkaline phosphatase, glutamate dehydrogenase, bile acids, and bilirubin were significantly elevated, but only glutamate dehydrogenase activity was increased after pBDL. Thus, pBDL may be primarily used to evaluate local features such as inflammation and fibrosis or regulation of genes involved in bile acid synthesis or transport but does not allow to study all systemic features of cholestasis. The pBDL model also has the advantage that fewer mice are needed, because of its high survival rate, and that the well-being of the animals is improved compared to the cBDL animal model.
Collapse
Affiliation(s)
- Guanglin Tang
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
- Department of General Surgery, Fushun Central Hospital, Fushun, Liaoning, China
| | - Wiebke-Felicitas Nierath
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Emily Leitner
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Wentao Xie
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Denis Revskij
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Nico Seume
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Xianbin Zhang
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Luise Ehlers
- Department of General Surgery, Fushun Central Hospital, Fushun, Liaoning, China
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
36
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
37
|
D'Alessandro AG, Desantis S, Fracchiolla G, Porrelli R, Dibenedetto RS, Di Luca A, Martemucci G. Response of laying hens fed diet supplemented with a mixture of olive, laurel, and rosemary leaf powders: Metabolic profile, oxidative status, intestinal histomorphology, and egg quality. Res Vet Sci 2024; 174:105294. [PMID: 38744020 DOI: 10.1016/j.rvsc.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to evaluate the effects of a mixture of olive, laurel, and rosemary leaf powders, on the oxidative state, biochemical, immune, intestinal morphophysiological parameters, and egg quality of laying hens. One hundred Lohmann Brown hens (28 weeks old) were equally assigned to two groups (n. 50) corresponding to a basal control diet (CON) or the diet supplemented with 6 g/kg feed of leaf powder mixture (LPM) containing olive, laurel, and rosemary leaves (1:1:1), for 60 days. Oxidative status, biochemical indices, immune response, cecal short chain fatty acids (SCFAs), intestinal morphological characteristics, and some egg traits were evaluated at the end of the experiment. The results indicated that LPM improved (P < 0.05) the oxidative status (TOS, ROMs), the immune system (IL-6, IL-1β, and TNF-α), the total protein and HDL cholesterol content, whereas it decreased (P < 0.05) total cholesterol and LDL cholesterol. Aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase were significantly (P < 0.05) lower in the LPM than in the CON group. A significant increase (P < 0.05) in SCFA content in the caecum, as well as in villi height and crypt depth in both duodenum and ileum of LPM-treated hens, was observed. Egg quality parameters were not influenced (P > 0.05) by LPM. These findings indicate that LPM can be considered a candidate as an antioxidant ingredient for functional food in laying hens.
Collapse
Affiliation(s)
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 per Casamassima Km 3, 70010 Valenzano (Bari), Italy.
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy.
| | | | | | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | | |
Collapse
|
38
|
Yang Y, Chi L, Hsiao YC, Lu K. Sex-specific effects of gut microbiome on shaping bile acid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601003. [PMID: 38979196 PMCID: PMC11230406 DOI: 10.1101/2024.06.27.601003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Gut microbiome is a group of microorganisms that plays important roles in contributing to health and diseases. These bacterial compositions have been demonstrated to impact bile acids (BAs) profiles, either by directly metabolizing primary BAs to secondary BAs or indirect ways through host metabolism by influencing BAs synthesis, transportation and conjugation in liver. It has been observed sexually dimorphic gut microbiome and bile acids composition, with variations in expression levels of bile acid metabolizing genes in the liver. However, associations between sex-specific differences in gut microbiome and BAs profiles are not well understood. This study aimed to investigate whether gut microbiome could influence BAs profiles in host in a sexspecific manner. We transplanted cecum feces of male and female C57BL/6 mice to male mice and measured BAs concentrations in feces, serum and liver samples 7 days after fecal transplantation. We found different BAs profiles between mice with male and female gut microbiome, including altering levels and proportions of secondary BAs. We also observed varied expression levels of genes related to bile acid metabolism in the liver and distal ileum. Our results highlight sex-specific effects of gut microbiome on shaping bile acid metabolism through gut bacteria and regulation of host genes.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, 27599, United States
| |
Collapse
|
39
|
Huang P, Dong Q, Wang Y, Tian Y, Wang S, Zhang C, Yu L, Tian F, Gao X, Guo H, Yi S, Li M, Liu Y, Zhang Q, Lu W, Wang G, Yang B, Cui S, Hua D, Wang X, Jiao Y, Liu L, Deng Q, Ma B, Wu T, Zou H, Shi J, Zhang H, Fan D, Sheng Y, Zhao J, Tang L, Zhang H, Sun W, Chen W, Kong X, Chen L, Zhai Q. Gut microbial genomes with paired isolates from China illustrate probiotic and cardiometabolic effects. CELL GENOMICS 2024; 4:100559. [PMID: 38740021 PMCID: PMC11228888 DOI: 10.1016/j.xgen.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
The gut microbiome displays genetic differences among populations, and characterization of the genomic landscape of the gut microbiome in China remains limited. Here, we present the Chinese Gut Microbial Reference (CGMR) set, comprising 101,060 high-quality metagenomic assembled genomes (MAGs) of 3,707 nonredundant species from 3,234 fecal samples across primarily rural Chinese locations, 1,376 live isolates mainly from lactic acid bacteria, and 987 novel species relative to worldwide databases. We observed region-specific coexisting MAGs and MAGs with probiotic and cardiometabolic functionalities. Preliminary mouse experiments suggest a probiotic effect of two Faecalibacillus intestinalis isolates in alleviating constipation, cardiometabolic influences of three Bacteroides fragilis_A isolates in obesity, and isolates from the genera Parabacteroides and Lactobacillus in host lipid metabolism. Our study expands the current microbial genomes with paired isolates and demonstrates potential host effects, contributing to the mechanistic understanding of host-microbe interactions.
Collapse
Affiliation(s)
- Pan Huang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Quanbin Dong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Yifeng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yunfan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoxiang Gao
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Guo
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shanrong Yi
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingyang Li
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yang Liu
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dongxu Hua
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiuchao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuwen Jiao
- Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Lu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiufeng Deng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Beining Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Huayiyang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Haifeng Zhang
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanhui Sheng
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liming Tang
- Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
40
|
Dicks L, Schuh-von Graevenitz K, Prehn C, Sadri H, Ghaffari MH, Häussler S. Bile acid profiles and mRNA expression of bile acid-related genes in the liver of dairy cows with high versus normal body condition. J Dairy Sci 2024:S0022-0302(24)00922-6. [PMID: 38876220 DOI: 10.3168/jds.2024-24844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/12/2024] [Indexed: 06/16/2024]
Abstract
Bile acids (BA) play a crucial role not only in lipid digestion but also in the regulation of overall energy homeostasis, including glucose and lipid metabolism. The aim of this study was to investigate BA profiles and mRNA expression of BA-related genes in the liver of high versus normal body condition in dairy cows. We hypothesized that body condition and the transition from gestation to lactation affect hepatic BA concentrations as well as the mRNA abundance of BA-related receptors, regulatory enzymes, and transporters. Therefore, we analyzed BA in the liver as well as the mRNA abundance of BA-related synthesizing enzymes, transporters, and receptors in the liver during the transition period in cows with different body conditions around calving. In a previously established animal model, 38 German Holstein cows were divided into groups with high body condition score (BCS) (HBCS; n = 19) or normal BCS (NBCS; n = 19) based on BCS and backfat thickness (BFT). Cows were fed diets aimed at achieving the targeted differences in BCS and BFT (NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until they were dried off at wk 7 before parturition. Both groups were fed identical diets during the dry period and subsequent lactation. Liver biopsies were taken at wk -7, 1, 3, and 12 relative to parturition. For BA measurement, a targeted metabolomics approach with LC-ESI-MS/MS was used to analyze BA in the liver. The mRNA abundance of targeted genes related to BA-synthesizing enzymes, transporters, and receptors in the liver was analyzed using microfluidic quantitative PCR. In total, we could detect 14 BA in the liver: 6 primary and 8 secondary BA, with glycocholic acid (GCA) being the most abundant one. The increase of glycine-conjugated BA after parturition, in parallel to increasing serum glycine concentrations may originate from an enhanced mobilization of muscle protein to meet the high nutritional requirements in early lactating cows. Higher DMI in NBCS cows compared with HBCS cows was associated with higher liver BA concentrations such as GCA, deoxycholic acid (DCA), and cholic acid (CA). The mRNA abundance of BA-related enzymes measured herein suggests the dominance of the alternative signaling pathway in the liver of HBCS cows. Overall, BA profiles and BA metabolism in the liver depend on both, the body condition and lactation-induced effects in periparturient dairy cows.
Collapse
Affiliation(s)
- Lena Dicks
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh-von Graevenitz
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Metabolomics and Proteomics Core, 85764 Neuherberg, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
41
|
Li M, Zhou X, Huang D, Zhao Y, Chen J, Dong Z, Chen W, Zhang F, Sun L. Unveiling the Pharmacological Mechanisms of Davidiin's Anti-Diabetic Efficacy in Streptozotocin-Treated Rats: A Comprehensive Analysis of Serum Metabolome. Drug Des Devel Ther 2024; 18:1981-1996. [PMID: 38855535 PMCID: PMC11162635 DOI: 10.2147/dddt.s459931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Background Polygonum capitatum Buch.-Ham. ex D. Don (P. capitatum), a traditional herb used in Miao medicine, is renowned for its heart-clearing properties. Davidiin, the primary bioactive component (approximately 1%), has been used to treat various conditions, including diabetes. Given its wide range of effects and the diverse biomolecular pathways involved in diabetes, there is a crucial need to study how davidiin interacts with these pathways to better understand its anti-diabetic properties. Materials and Methods Diabetic rats were induced using a high-fat diet and streptozotocin (STZ) administered intraperitoneally at 35 mg/kg. Out of these, 24 rats with blood glucose levels ≥ 11.1 mmol/L and fasting blood glucose levels ≥ 7.0 mmol/L were selected for three experimental groups. These groups were then treated with either metformin (gavage, 140 mg/kg) or davidiin (gavage, 90 mg/kg) for four weeks. After the treatment period, we measured body weight, blood glucose levels, and conducted untargeted metabolic profiling using UPLC-QTOF-MS. Results Davidiin has been shown to effectively treat diabetes by reducing blood glucose levels from 30.2 ± 2.6 mmol/L to 25.1 ± 2.4 mmol/L (P < 0.05). This effect appears stronger than that of metformin, which lowered glucose levels to 26.5 ± 2.6 mmol/L. The primary outcomes of serum metabolomics are significant changes in lipid and lipid-like molecular profiles. Firstly, davidiin may affect phosphatide metabolism by increasing levels of phosphatidylinositol and sphingosine-1-phosphate. Secondly, davidiin could influence cholesterol metabolism by reducing levels of glycocholic acid and glycochenodeoxycholic acid. Lastly, davidiin might impact steroid hormone metabolism by increasing hepoxilin B3 levels and decreasing prostaglandins. Conclusion Our study demonstrates that davidiin modulates various lipid-related metabolic pathways to exert its anti-diabetic effects. These findings offer the first detailed metabolic profile of davidiin's action mechanism, contributing valuable insights to the field of Traditional Chinese Medicine in the context of diabetes treatment.
Collapse
Affiliation(s)
- Mingming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Xin Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Doudou Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yingkui Zhao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Jiani Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Wansheng Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Lianna Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
42
|
Hari A, AbdulHameed MDM, Balik-Meisner MR, Mav D, Phadke DP, Scholl EH, Shah RR, Casey W, Auerbach SS, Wallqvist A, Pannala VR. Exposure to PFAS chemicals induces sex-dependent alterations in key rate-limiting steps of lipid metabolism in liver steatosis. FRONTIERS IN TOXICOLOGY 2024; 6:1390196. [PMID: 38903859 PMCID: PMC11188372 DOI: 10.3389/ftox.2024.1390196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Toxicants with the potential to bioaccumulate in humans and animals have long been a cause for concern, particularly due to their association with multiple diseases and organ injuries. Per- and polyfluoro alkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH) are two such classes of chemicals that bioaccumulate and have been associated with steatosis in the liver. Although PFAS and PAH are classified as chemicals of concern, their molecular mechanisms of toxicity remain to be explored in detail. In this study, we aimed to identify potential mechanisms by which an acute exposure to PFAS and PAH chemicals can induce lipid accumulation and whether the responses depend on chemical class, dose, and sex. To this end, we analyzed mechanisms beginning with the binding of the chemical to a molecular initiating event (MIE) and the consequent transcriptomic alterations. We collated potential MIEs using predictions from our previously developed ToxProfiler tool and from published steatosis adverse outcome pathways. Most of the MIEs are transcription factors, and we collected their target genes by mining the TRRUST database. To analyze the effects of PFAS and PAH on the steatosis mechanisms, we performed a computational MIE-target gene analysis on high-throughput transcriptomic measurements of liver tissue from male and female rats exposed to either a PFAS or PAH. The results showed peroxisome proliferator-activated receptor (PPAR)-α targets to be the most dysregulated, with most of the genes being upregulated. Furthermore, PFAS exposure disrupted several lipid metabolism genes, including upregulation of fatty acid oxidation genes (Acadm, Acox1, Cpt2, Cyp4a1-3) and downregulation of lipid transport genes (Apoa1, Apoa5, Pltp). We also identified multiple genes with sex-specific behavior. Notably, the rate-limiting genes of gluconeogenesis (Pck1) and bile acid synthesis (Cyp7a1) were specifically downregulated in male rats compared to female rats, while the rate-limiting gene of lipid synthesis (Scd) showed a PFAS-specific upregulation. The results suggest that the PPAR signaling pathway plays a major role in PFAS-induced lipid accumulation in rats. Together, these results show that PFAS exposure induces a sex-specific multi-factorial mechanism involving rate-limiting genes of gluconeogenesis and bile acid synthesis that could lead to activation of an adverse outcome pathway for steatosis.
Collapse
Affiliation(s)
- Archana Hari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | - Deepak Mav
- Sciome LLC, Research Triangle Park, NC, United States
| | | | | | | | - Warren Casey
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Scott S. Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
43
|
McCarthy C, Papada E, Kalea AZ. The effects of cereal β-glucans on cardiovascular risk factors and the role of the gut microbiome. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38826110 DOI: 10.1080/10408398.2024.2345159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The human gut microbiome has emerged as a key influencer of human health and disease, particularly through interactions with dietary fiber. However, national dietary guidelines worldwide are only beginning to capitalize on the potential of microbiome research, which has established the vital role of host-microbe interactions in mediating the physiological effects of diet on overall health and disease. β-glucans have been demonstrated to modulate the composition of the gut microbiota, leading to improved outcomes in cardiovascular disease (CVD). Raised serum cholesterol and blood pressure are important modifiable risk factors in the development of CVD and emerging evidence highlights the role of the gut microbiota in ameliorating such biomarkers and clinical characteristics of the disease. The proposed mechanism of action of β-glucans on the pathophysiological mechanisms of disease have yet to be elucidated. Validating gaps in the literature may substantiate β-glucans as a potential novel dietary therapy against modifiable risk factors for CVD and would further support the public health significance of including a habitual fiber-rich diet.
Collapse
Affiliation(s)
| | | | - Anastasia Z Kalea
- Division of Medicine, University College London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
44
|
Greenhalgh R, Klure DM, Orr TJ, Armstrong NM, Shapiro MD, Dearing MD. The desert woodrat (Neotoma lepida) induces a diversity of biotransformation genes in response to creosote bush resin. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109870. [PMID: 38428625 PMCID: PMC11006593 DOI: 10.1016/j.cbpc.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Liver biotransformation enzymes have long been thought to enable animals to feed on diets rich in xenobiotic compounds. However, despite decades of pharmacological research in humans and rodents, little is known about hepatic gene expression in specialized mammalian herbivores feeding on toxic diets. Leveraging a recently identified population of the desert woodrat (Neotoma lepida) found to be highly tolerant to toxic creosote bush (Larrea tridentata), we explored the expression changes of suites of biotransformation genes in response to diets enriched with varying amounts of creosote resin. Analysis of hepatic RNA-seq data indicated a dose-dependent response to these compounds, including the upregulation of several genes encoding transcription factors and numerous phase I, II, and III biotransformation families. Notably, elevated expression of five biotransformation families - carboxylesterases, cytochromes P450, aldo-keto reductases, epoxide hydrolases, and UDP-glucuronosyltransferases - corresponded to species-specific duplication events in the genome, suggesting that these genes play a prominent role in N. lepida's adaptation to creosote bush. Building on pharmaceutical studies in model rodents, we propose a hypothesis for how the differentially expressed genes are involved in the biotransformation of creosote xenobiotics. Our results provide some of the first details about how these processes likely operate in the liver of a specialized mammalian herbivore.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Dylan M Klure
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Teri J Orr
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Noah M Armstrong
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Michael D Shapiro
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
45
|
Uriarte I, Santamaria E, López-Pascual A, Monte MJ, Argemí J, Latasa MU, Adán-Villaescusa E, Irigaray A, Herranz JM, Arechederra M, Basualdo J, Lucena F, Corrales FJ, Rotellar F, Pardo F, Merlen G, Rainteau D, Sangro B, Tordjmann T, Berasain C, Marín JJG, Fernández-Barrena MG, Herrero I, Avila MA. New insights into the regulation of bile acids synthesis during the early stages of liver regeneration: A human and experimental study. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167166. [PMID: 38642480 DOI: 10.1016/j.bbadis.2024.167166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND AND AIMS Liver regeneration is essential for the preservation of homeostasis and survival. Bile acids (BAs)-mediated signaling is necessary for liver regeneration, but BAs levels need to be carefully controlled to avoid hepatotoxicity. We studied the early response of the BAs-fibroblast growth factor 19 (FGF19) axis in healthy individuals undergoing hepatectomy for living donor liver transplant. We also evaluated BAs synthesis in mice upon partial hepatectomy (PH) and acute inflammation, focusing on the regulation of cytochrome-7A1 (CYP7A1), a key enzyme in BAs synthesis from cholesterol. METHODS Serum was obtained from twelve human liver donors. Mice underwent 2/3-PH or sham-operation. Acute inflammation was induced with bacterial lipopolysaccharide (LPS) in mice fed control or antoxidant-supplemented diets. BAs and 7α-hydroxy-4-cholesten-3-one (C4) levels were measured by HPLC-MS/MS; serum FGF19 by ELISA. Gene expression and protein levels were analyzed by RT-qPCR and western-blot. RESULTS Serum BAs levels increased after PH. In patients with more pronounced hypercholanemia, FGF19 concentrations transiently rose, while C4 levels (a readout of CYP7A1 activity) dropped 2 h post-resection in all cases. Serum BAs and C4 followed the same pattern in mice 1 h after PH, but C4 levels also dropped in sham-operated and LPS-treated animals, without marked changes in CYP7A1 protein levels. LPS-induced serum C4 decline was attenuated in mice fed an antioxidant-supplemented diet. CONCLUSIONS In human liver regeneration FGF19 upregulation may constitute a protective response from BAs excess during liver regeneration. Our findings suggest the existence of post-translational mechanisms regulating CYP7A1 activity, and therefore BAs synthesis, independent from CYP7A1/Cyp7a1 gene transcription.
Collapse
Affiliation(s)
- Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Santamaria
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaya López-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - María J Monte
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Université Paris-Saclay, Inserm U1193, Orsay, France
| | - Josepmaria Argemí
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | - M Ujue Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Elena Adán-Villaescusa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Ainara Irigaray
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Jose M Herranz
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Jorge Basualdo
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain; Internal Medicine Department, ICOT Hospital Ciudad de Telde, Las Palmas, Spain
| | - Felipe Lucena
- Internal Medicine Department, Navarra University Clinic, Pamplona, Spain
| | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Fernando Rotellar
- General Surgery Department, Navarra University Clinic, Pamplona, Spain
| | - Fernando Pardo
- General Surgery Department, Navarra University Clinic, Pamplona, Spain
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine, Paris, France
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | | | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose J G Marín
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maite G Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Ignacio Herrero
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain.
| | - Matias A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
46
|
Martens N, Zhan N, Yam SC, Leijten FPJ, Palumbo M, Caspers M, Tiane A, Friedrichs S, Li Y, van Vark-van der Zee L, Voortman G, Zimetti F, Jaarsma D, Verschuren L, Jonker JW, Kuipers F, Lütjohann D, Vanmierlo T, Mulder MT. Supplementation of Seaweed Extracts to the Diet Reduces Symptoms of Alzheimer's Disease in the APPswePS1ΔE9 Mouse Model. Nutrients 2024; 16:1614. [PMID: 38892548 PMCID: PMC11174572 DOI: 10.3390/nu16111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
We previously demonstrated that diet supplementation with seaweed Sargassum fusiforme (S. fusiforme) prevented AD-related pathology in a mouse model of Alzheimer's Disease (AD). Here, we tested a lipid extract of seaweed Himanthalia elongata (H. elongata) and a supercritical fluid (SCF) extract of S. fusiforme that is free of excess inorganic arsenic. Diet supplementation with H. elongata extract prevented cognitive deterioration in APPswePS1ΔE9 mice. Similar trends were observed for the S. fusiforme SCF extract. The cerebral amyloid-β plaque load remained unaffected. However, IHC analysis revealed that both extracts lowered glial markers in the brains of APPswePS1ΔE9 mice. While cerebellar cholesterol concentrations remained unaffected, both extracts increased desmosterol, an endogenous LXR agonist with anti-inflammatory properties. Both extracts increased cholesterol efflux, and particularly, H. elongata extract decreased the production of pro-inflammatory cytokines in LPS-stimulated THP-1-derived macrophages. Additionally, our findings suggest a reduction of AD-associated phosphorylated tau and promotion of early oligodendrocyte differentiation by H. elongata. RNA sequencing on the hippocampus of one-week-treated APPswePS1ΔE9 mice revealed effects of H. elongata on, amongst others, acetylcholine and synaptogenesis signaling pathways. In conclusion, extracts of H. elongata and S. fusiforme show potential to reduce AD-related pathology in APPswePS1ΔE9 mice. Increasing desmosterol concentrations may contribute to these effects by dampening neuroinflammation.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sammie C. Yam
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Frank P. J. Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.P.)
| | - Martien Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany (D.L.)
| | - Yanlin Li
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Immunology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Leonie van Vark-van der Zee
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.P.)
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Johan W. Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.J.)
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.J.)
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany (D.L.)
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| |
Collapse
|
47
|
Zhao C, Song Y, Zhang G, Zhang K, Yin S, Ji J. Multi-omics analysis identifies sex-specific hepatic protein-metabolite networks in yellow catfish (Pelteobagrus fulvidraco) exposed to chronic hypoxia. Int J Biol Macromol 2024; 268:131892. [PMID: 38677698 DOI: 10.1016/j.ijbiomac.2024.131892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Hypoxia disrupts the endocrine system of teleosts. The liver plays important roles in the endocrine system, energy storage, and metabolic processes. The aim of this study was to investigate the sex-specific hepatic response of yellow catfish under chronic hypoxia at the multi-omics level. Common hepatic responses in both sexes included the HIF-1 signaling pathway, glycolysis/gluconeogenesis, and steroid biosynthesis. Hypoxia dysregulated primary bile acid biosynthesis, lipid metabolism, and vitellogenin levels in female fish. Endoplasmic reticulum function in females also tended to be disrupted by hypoxia, as evidenced by significantly enriched pathways, including ribosome, protein processing in the endoplasmic reticulum, and RNA degradation. Other pathways, including the TCA cycle, oxidative phosphorylation, and Parkinson's and Huntington's disease, were highly enriched by hypoxia in male fish, suggesting that mitochondrial function was dysregulated. In both sexes of yellow catfish, the cell cycle was arrested and apoptosis was inhibited under chronic hypoxia. Multi-omics suggested that SLC2A5, CD209, LGMN, and NEDD8 served as sex-specific markers in these fish under chronic hypoxia. Our results provide insights into hepatic adaptation to chronic hypoxia and facilitate our understanding of sex-specific responses in fish.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China
| | - Yufeng Song
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guosong Zhang
- School of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Kai Zhang
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China.
| | - Jie Ji
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China.
| |
Collapse
|
48
|
Wakabayashi N, Yagishita Y, Joshi T, Kensler TW. Dual Deletion of Keap1 and Rbpjκ Genes in Liver Leads to Hepatomegaly and Hypercholesterolemia. Int J Mol Sci 2024; 25:4712. [PMID: 38731931 PMCID: PMC11083431 DOI: 10.3390/ijms25094712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The hepatic deletion of Rbpjκ (RbpjF/F::AlbCre) in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the RbpjF/F::AlbCre mouse by hepatic deletion of Keap1 in compound Keap1F/F::RbpjF/F::AlbCre mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the RbpjF/F::AlbCre mice. In addition, hypercholesterolemia and hepatic damage were sustained throughout the growth period unlike in the RbpjF/F::AlbCre mouse. These enhanced abnormalities in lipid metabolism appear to be due to NRF2-dependent changes in gene expression related to cholesterol synthetic and subsequent bile acid production pathways. Notably, the hepatic expression of Cyp1A7 and Abcb11 genes involved in bile acid homeostasis was significantly reduced in Keap1F/F::RbpjF/F::AlbCre compared to RbpjF/F::AlbCre mice. The accumulation of liver cholesterol and the weakened capacity for bile excretion during the 3 pre-weaning weeks in the Keap1F/F::RbpjF/F::AlbCre mice may aggravate hepatocellular damage level caused by both excessive cholesterol and residual bile acid toxicity in hepatocytes. These results indicate that a tuned balance of NOTCH and NRF2 signaling is of biological importance for early liver development after birth.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| | - Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
- Division of Endocrinology, Columbia University, New York, NY 10032, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| |
Collapse
|
49
|
Niu C, Xie X, Liu R, Liang X, Hu Y, Lai Y. CYP7A1 Gene Induction via SHP-Dependent or Independent Mechanisms can Increase the Risk of Drug-Induced Liver Injury Independently or in Synergy with BSEP Inhibition. Drug Metab Dispos 2024; 52:432-441. [PMID: 38485279 DOI: 10.1124/dmd.124.001675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Drug-induced liver injury (DILI) is a frequent cause of clinical trial failures during drug development. While inhibiting bile salt export pump (BSEP) is a well-documented DILI mechanism, interference with genes related to bile acid (BA) metabolism and transport can further complicate DILI development. Here, the effects of twenty-eight compounds on genes associated with BA metabolism and transport were evaluated, including those with discontinued development or use, boxed warnings, and clean labels for DILI. The study also included rifampicin and omeprazole, pregnane X receptor and aryl hydrocarbon receptor ligands, and four mitogen-activated protein kinase kinase (MEK1/2) inhibitors. BSEP inhibitors with more severe DILI, notably pazopanib and CP-724714, significantly upregulated the expression of 7 alpha-hydroxylase (CYP7A1), independent of small heterodimer partner (SHP) expression. CYP7A1 expression was marginally induced by omeprazole. In contrast, its expression was suppressed by mometasone (10-fold), vinblastine (18-fold), hexachlorophene (2-fold), bosentan (2.1-fold), and rifampin (2-fold). All four MEK1/2 inhibitors that show clinical DILI were not potent BSEP inhibitors but significantly induced CYP7A1 expression, accompanied by a significant SHP gene suppression. Sulfotransferase 2A1 and BSEP were marginally upregulated, but no other genes were altered by the drugs tested. Protein levels of CYP7A1 were increased with the treatment of CYP7A1 inducers and decreased with obeticholic acid, an farnesoid X receptor ligand. CYP7A1 inducers significantly increased bile acid (BA) production in hepatocytes, indicating the overall regulatory effects of BA metabolism. This study demonstrates that CYP7A1 induction via various mechanisms can pose a risk for DILI, independently or in synergy with BSEP inhibition, and it should be evaluated early in drug discovery. SIGNIFICANCE STATEMENT: Kinase inhibitors, pazopanib and CP-724714, inhibit BSEP and induce CYP7A1 expression independent of small heterodimer partner (SHP) expression, leading to increased bile acid (BA) production and demonstrating clinically elevated drug-induced liver toxicity. MEK1/2 inhibitors that show BSEP-independent drug-induced liver injury (DILI) induced the CYP7A1 gene accompanied by SHP suppression. CYP7A1 induction via SHP-dependent or independent mechanisms can pose a risk for DILI, independently or in synergy with BSEP inhibition. Monitoring BA production in hepatocytes can reliably detect the total effects of BA-related gene regulation for de-risking.
Collapse
Affiliation(s)
- Congrong Niu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Xiaodong Xie
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Renmeng Liu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Yiding Hu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| |
Collapse
|
50
|
Zhang Y, Liu T, Qu ZJ, Wang X, Song WG, Guo SD. Laminaria japonica Aresch-Derived Fucoidan Ameliorates Hyperlipidemia by Upregulating LXRs and Suppressing SREBPs. Cardiovasc Ther 2024; 2024:8649365. [PMID: 38375358 PMCID: PMC10876302 DOI: 10.1155/2024/8649365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, and hyperlipidemia is one major inducing factor of CVD. It is worthy to note that fucoidans are reported to have hypolipidemic activity with species specificity; however, the underlying mechanisms of action are far from clarification. This study is aimed at investigating the plasma lipid-lowering mechanisms of the fucoidan from L. japonica Aresch by detecting the levels of hepatic genes that are involved in lipid metabolism. Our results demonstrated that the fucoidan F3 significantly lowered total cholesterol and triglyceride in C57BL/6J mice fed a high-fat diet. In the mouse liver, fucoidan F3 intervention significantly increased the gene expression of peroxisome proliferator-activated receptor (PPAR) α, liver X receptor (LXR) α and β, and ATP-binding cassette transporter (ABC) G1 and G8 and decreased the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), low-density lipoprotein receptor, cholesterol 7 alpha-hydroxylase A1, and sterol regulatory element-binding protein (SREBP) 1c and SREBP-2. These results demonstrated that the antihyperlipidemic effects of fucoidan F3 are related to its activation of PPARα and LXR/ABC signaling pathways and inactivation of SREBPs. In conclusion, fucoidan F3 may be explored as a potential compound for prevention or treatment of lipid disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang 550018, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ze-Jie Qu
- Cardiology Department, Qingzhou People's Hospital, Weifang 262500, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Gang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|