1
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
2
|
Galgoczi E, Molnar Z, Katko M, Ujhelyi B, Steiber Z, Nagy EV. Cyclosporin A inhibits PDGF-BB induced hyaluronan synthesis in orbital fibroblasts. Chem Biol Interact 2024; 396:111045. [PMID: 38729283 DOI: 10.1016/j.cbi.2024.111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Orbital connective tissue changes are contributors to the pathogenesis in thyroid eye disease (TED). Activated fibroblasts respond to immune stimuli with proliferation and increased hyaluronan (HA) production. Cyclosporin A (CsA) was reported to be beneficial in the treatment of TED. PDGF isoforms are increased in orbital tissue of TED patients and enhance HA production. We aimed to study the effect of CsA on HA production and hyaluronan synthase (HAS1, 2 and 3) and hyaluronidase (HYAL1 and 2) mRNA expressions in orbital fibroblasts (OFs). Measurements were performed in the presence or absence of CsA (10 μM) in unstimulated or PDGF-BB (10 ng/ml) stimulated OFs. The HA production of TED OFs (n = 7) and NON-TED OFs (n = 6) were measured by ELISA. The levels of mRNA expressions were examined using RT-PCR. The proliferation rate and metabolic activity were measured by BrdU incorporation and MTT assays, respectively. Treatment with CsA resulted in an average 42% decrease in HA production of OFs (p < 0.0001). CsA decreased the expression levels of HAS2, HAS3 and HYAL2 (p = 0.005, p = 0.005 and p = 0.002, respectively.) PDGF-BB increased HA production (p < 0.001) and HAS2 expression (p = 0.004). CsA could reduce the PDGF-BB-stimulated HA production (p < 0.001) and HAS2 expression (p = 0.005) below the untreated level. In addition, CsA treatment caused a decrease in proliferation potential (p = 0.002) and metabolic activity (p < 0.0001). These findings point to the fact that CsA affects HA metabolism via HAS2, HAS3 and HYAL2 inhibition in OFs. In addition to its well characterized immunosuppressant properties, CsA's beneficial effect in TED may be related to its direct inhibitory effect on basal and growth factor stimulated HA production.
Collapse
Affiliation(s)
- Erika Galgoczi
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Nagyerdei krt. 98, Hungary.
| | - Zsanett Molnar
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Nagyerdei krt. 98, Hungary.
| | - Monika Katko
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Nagyerdei krt. 98, Hungary.
| | - Bernadett Ujhelyi
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Nagyerdei krt. 98, Hungary.
| | - Zita Steiber
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Nagyerdei krt. 98, Hungary.
| | - Endre V Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Nagyerdei krt. 98, Hungary.
| |
Collapse
|
3
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
4
|
Hart D, Petri WA. Hyaluronan deposition during COVID-19 - helpful or harmful? Trends Mol Med 2024; 30:207-208. [PMID: 38331701 DOI: 10.1016/j.molmed.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Hyaluronan (HA), an extracellular matrix polysaccharide, is increased in the lungs during COVID-19 and correlates with severity. HA acts as an immune mediator that aids cell trafficking and intracellular signaling, but its role in COVID-19 is debated. Although HA is implicated in pulmonary viral disease pathogenesis, some studies suggest a potential protective function in COVID-19.
Collapse
Affiliation(s)
- Duncan Hart
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - William A Petri
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA; Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Li Y, Cui X, Zhu N, Lin Y, Li X. Elevated hyaluronic acid levels in severe SARS-CoV-2 infection in the post-COVID-19 era. Front Cell Infect Microbiol 2024; 14:1338508. [PMID: 38390620 PMCID: PMC10881864 DOI: 10.3389/fcimb.2024.1338508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Objective Human identical sequences of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) promoted the coronavirus disease 2019 (COVID-19) progression by upregulating hyaluronic acid (HA) via NamiRNA-enhancer network, based on previous experimental research. This study aimed to investigate the predictive value of HA for the severity of SARS-CoV-2 infection in the post-COVID-19 era. Methods A total of 217 consecutive patients with COVID-19 were enrolled at Beijing Ditan Hospital between July 2023 and October 2023. HA levels were analyzed using biochemical detector. Logistic regression analysis was used to screen independent factors for severe COVID-19. The predictive performance of HA for severe infection was assessed by ROC curve. Furthermore, the relationship between HA levels and COVID-19 severity was investigated using multivariate logistic regression models after adjustment for potential confounders. Results According to the cut-off value of HA, COVID-19 patients were divided into HA < 90 ng/mL group (80 cases) and HA ≥ 90 ng/mL group (137 cases). High HA levels were positively associated with the severe SARS-CoV-2 infection, including elevated inflammatory indicators, severe lung involvement, prolonged clinical course, and higher incidence of respiratory failure and death (P < 0.05). Logistic regression analysis suggested that HA was an independent predictor of severe COVID-19 (OR = 4.540, 95% CI = 2.105-9.790, P < 0.001). ROC curve analysis showed that the AUC of HA for severe infection was 0.724. HA levels were significantly higher in COVID-19 cases compared to the healthy population (123.9 (82.6, 174.1) vs. 50.5 (37.8, 66.8), P < 0.001), but similar to those with non-SARS-CoV-2 lung infection (121.6 (78.5, 175.6) vs. 106.0 (66.5, 149.7), P = 0.244). We also found that the first COVID-19 infections had higher HA levels (118.8 (79.5, 174.3) vs. 85.0 (61.1, 128.8), P < 0.001) and a higher proportion of severe infection (37.1% vs. 21.3%, P = 0.043) than re-infections. However, HA expression failed to fully return to normal levels with infection recovery (204.7 (152.9, 242.2) vs. 97.0 (69.3, 137.3), P < 0.001). Conclusion HA was associated with severe SARS-CoV-2 infection and could be used as a novel serum biomarker to predict the risk of COVID-19 progression in the post-COVID-19 era.
Collapse
Affiliation(s)
- Yanyan Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Cui
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Na Zhu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yingying Lin
- Center of Integrative Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| | - Xin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Mannino F, Irrera N, Pallio G, Bitto A. Steady state plasma and tissue distribution of low molecular weight hyaluronic acid after oral administration in mice. Nat Prod Res 2024; 38:773-780. [PMID: 37081790 DOI: 10.1080/14786419.2023.2197598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
The oral administration is probably the most used and largely applicable method, even if absorption across the intestinal epithelium is a limiting factor that can invalidate the achievement of a therapy. The aim of this study was to assess the steady state bioavailability of very low molecular weight hyaluronic acid (vLMW-HA) and its distribution in different districts of mice. Adult female C57BL6/J mice (n = 26) were divided in three groups and orally treated for 7 days with: saline solution (SHAM-HA), high dose of vLMW-HA (5 kDa; 500 mg/kg/day; HD-vLMW-HA), and low dose of vLMW-HA (5 kDa; 100 mg/kg/day; LD-vLMW-HA). HA content was quantified in plasma, skin, bladder, gut, rectum, vagina, and eyes with ELISA assay at the end of treatment. HA level significantly increased after treatment with HD-vLMW-HA in all analyzed tissues and plasma. Therefore, vLMW-HA easy absorption and distribution after the oral intake opens new possibilities for future biomedical applications.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- SunNutraPharm s.r.l., Spin-Off Company of University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- SunNutraPharm s.r.l., Spin-Off Company of University of Messina, Messina, Italy
| |
Collapse
|
7
|
Cui L, Zou S, Liu J, Lv H, Li H, Zhang Z. Potential effects of sodium hyaluronate on constipation-predominant irritable bowel syndrome. Int Immunopharmacol 2024; 127:111404. [PMID: 38128311 DOI: 10.1016/j.intimp.2023.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Treatment strategies for constipation-predominant irritable bowel syndrome (IBS-C) continue to improve. However, effective drugs are still lacking. Herein, we explored whether sodium hyaluronate (SH) could be used to treat IBS-C. The effects of SH with different molecular weights were compared in a rat model of IBS-C. Low-molecular-weight SH (LMW-SH, 5 ∼ 10 kDa), medium-molecular-weight SH (MMW-SH, 200 ∼ 400 kDa), and high-molecular-weight SH (HMW-SH, 1300 ∼ 1500 kDa) were screened for efficacy in IBS-C using the following indicators: body weight, number of fecal pellets, fecal moisture, visceral hypersensitivity, and gastrointestinal transit rate. H-HMW-SH was the most effective in improving IBS-C symptoms. The ELISA kits indicated that H-HMW-SH reduced the levels of pro-inflammatory cytokines IL-1β, IL-18, and TNF-α in IBS-C rats. In addition, both western blot and immunofluorescence analyses showed that H-HMW-SH increased the protein expressions of claudin-1, occludin and zonula occludens-1. Furthermore, H-HMW-SH restored the balance of intestinal flora in different intestinal contents (duodenum, jejunum, ileum, and colon) and feces of rats with IBS-C. Overall, our study illustrates the therapeutic potential of H-HMW-SH in the treatment of IBS-C.
Collapse
Affiliation(s)
- Li Cui
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Shuting Zou
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Jing Liu
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Huixia Lv
- School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Hui Li
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China.
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China.
| |
Collapse
|
8
|
Iwamoto S, Kobayashi T, Hanamatsu H, Yokota I, Teranishi Y, Iwamoto A, Kitagawa M, Ashida S, Sakurai A, Matsuo S, Myokan Y, Sugimoto A, Ushioda R, Nagata K, Gotoh N, Nakajima K, Nishikaze T, Furukawa JI, Itano N. Tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation. Cell Death Dis 2024; 15:53. [PMID: 38225221 PMCID: PMC10789756 DOI: 10.1038/s41419-024-06432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Chronic metabolic stress paradoxically elicits pro-tumorigenic signals that facilitate cancer stem cell (CSC) development. Therefore, elucidating the metabolic sensing and signaling mechanisms governing cancer cell stemness can provide insights into ameliorating cancer relapse and therapeutic resistance. Here, we provide convincing evidence that chronic metabolic stress triggered by hyaluronan production augments CSC-like traits and chemoresistance by partially impairing nucleotide sugar metabolism, dolichol lipid-linked oligosaccharide (LLO) biosynthesis and N-glycan assembly. Notably, preconditioning with either low-dose tunicamycin or 2-deoxy-D-glucose, which partially interferes with LLO biosynthesis, reproduced the promoting effects of hyaluronan production on CSCs. Multi-omics revealed characteristic changes in N-glycan profiles and Notch signaling activation in cancer cells exposed to mild glycometabolic stress. Restoration of N-glycan assembly with glucosamine and mannose supplementation and Notch signaling blockade attenuated CSC-like properties and further enhanced the therapeutic efficacy of cisplatin. Therefore, our findings uncover a novel mechanism by which tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation.
Collapse
Affiliation(s)
- Shungo Iwamoto
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | - Hisatoshi Hanamatsu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Yukiko Teranishi
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Akiho Iwamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Miyu Kitagawa
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Sawako Ashida
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ayane Sakurai
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Suguru Matsuo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuma Myokan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Aiyu Sugimoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Naoki Itano
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
9
|
Neves ER, Anand A, Mueller J, Remy RA, Xu H, Selting KA, Sarkaria JN, Harley BA, Pedron-Haba S. Targeting glioblastoma tumor hyaluronan to enhance therapeutic interventions that regulate metabolic cell properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574065. [PMID: 38260497 PMCID: PMC10802468 DOI: 10.1101/2024.01.05.574065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Despite extensive advances in cancer research, glioblastoma (GBM) still remains a very locally invasive and thus challenging tumor to treat, with a poor median survival. Tumor cells remodel their microenvironment and utilize extracellular matrix to promote invasion and therapeutic resistance. We aim here to determine how GBM cells exploit hyaluronan (HA) to maintain proliferation using ligand-receptor dependent and ligand-receptor independent signaling. We use tissue engineering approaches to recreate the three-dimensional tumor microenvironment in vitro, then analyze shifts in metabolism, hyaluronan secretion, HA molecular weight distribution, as well as hyaluronan synthetic enzymes (HAS) and hyaluronidases (HYAL) activity in an array of patient derived xenograft GBM cells. We reveal that endogenous HA plays a role in mitochondrial respiration and cell proliferation in a tumor subtype dependent manner. We propose a tumor specific combination treatment of HYAL and HAS inhibitors to disrupt the HA stabilizing role in GBM cells. Taken together, these data shed light on the dual metabolic and ligand - dependent signaling roles of hyaluronan in glioblastoma. Significance The control of aberrant hyaluronan metabolism in the tumor microenvironment can improve the efficacy of current treatments. Bioengineered preclinical models demonstrate potential to predict, stratify and accelerate the development of cancer treatments.
Collapse
|
10
|
Verma S, Moreno IY, Sun M, Gesteira TF, Coulson-Thomas VJ. Age related changes in hyaluronan expression leads to Meibomian gland dysfunction. Matrix Biol 2023; 124:23-38. [PMID: 37949327 PMCID: PMC11095397 DOI: 10.1016/j.matbio.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The prevalence of dry eye disease (DED) ranges from ∼5 to 50 % and its associated symptoms decrease productivity and reduce the quality of life. Approximately 85 % of all DED cases are caused by Meibomian gland dysfunction (MGD). As humans and mice age, their Meibomian glands (MGs) undergo age-related changes resulting in age related-MGD (ARMGD). The precise cause of ARMGD remains elusive, which makes developing therapies extremely challenging. We previously demonstrated that a hyaluronan (HA)-rich matrix exists surrounding the MG, regulating MG morphogenesis and homeostasis. Herein, we investigated whether changes to the HA matrix in the MG throughout life contributes towards ARMGD, and whether altering this HA matrix can prevent ARMGD. For such, HA synthase (Has) knockout mice were aged and compared to age matched wild type (wt) mice. MG morphology, lipid production, PPARγ expression, basal cell proliferation, stem cells, presence of atrophic glands and MG dropout were analyzed at 8 weeks, 6 months, 1 year and 2 years of age and correlated with the composition of the HA matrix. We found that as mice age, there is a loss of HA expression in and surrounding the MGs of wt mice, while, in contrast, Has1-/-Has3-/- mice present a significant increase in HA expression through Has2 upregulation. At 1 year, Has1-/-Has3-/- mice present significantly enlarged MGs, compared to age-matched wt mice and compared to all adult mice. Thus, Has1-/-Has3-/- mice continue to develop new glandular tissue as they age, instead of suffering MG atrophy. At 2 years, Has1-/-Has3-/- mice continue to present significantly larger MGs compared to age-matched wt mice. Has1-/-Has3-/- mice present increased lipid production, increased PPARγ expression and an increase in the number of proliferating cells when compared to wt mice at all-time points analyzed. Taken together, our data shows that a loss of the HA matrix surrounding the MG as mice age contributes towards ARMGD, and increasing Has2 expression, and consequently HA levels, prevents ARMGD in mice.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Isabel Y Moreno
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Mingxia Sun
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Tarsis Ferreira Gesteira
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Vivien J Coulson-Thomas
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA.
| |
Collapse
|
11
|
Kim J, Seki E. Hyaluronan in liver fibrosis: basic mechanisms, clinical implications, and therapeutic targets. Hepatol Commun 2023; 7:e0083. [PMID: 36930869 PMCID: PMC10027054 DOI: 10.1097/hc9.0000000000000083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/01/2022] [Indexed: 03/19/2023] Open
Abstract
Hyaluronan (HA), also known as hyaluronic acid, is a glycosaminoglycan that is a critical component of the extracellular matrix (ECM). Production and deposition of ECM is a wound-healing response that occurs during chronic liver disease, such as cirrhosis. ECM production is a sign of the disease progression of fibrosis. Indeed, the accumulation of HA in the liver and elevated serum HA levels are used as biomarkers of cirrhosis. However, recent studies also suggest that the ECM, and HA in particular, as a functional signaling molecule, facilitates disease progression and regulation. The systemic and local levels of HA are regulated by de novo synthesis, cleavage, endocytosis, and degradation of HA, and the molecular mass of HA influences its pathophysiological effects. However, the regulatory mechanisms of HA synthesis and catabolism and the functional role of HA are still poorly understood in liver fibrosis. This review summarizes the role of HA in liver fibrosis at molecular levels as well as its clinical implications and discusses the potential therapeutic uses of targeting HA in liver fibrosis.
Collapse
Affiliation(s)
- Jieun Kim
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
12
|
Berdiaki A, Neagu M, Spyridaki I, Kuskov A, Perez S, Nikitovic D. Hyaluronan and Reactive Oxygen Species Signaling—Novel Cues from the Matrix? Antioxidants (Basel) 2023; 12:antiox12040824. [PMID: 37107200 PMCID: PMC10135151 DOI: 10.3390/antiox12040824] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG) localized to the cell surface and the tissue extracellular matrix (ECM). It is composed of disaccharides containing glucuronic acid and N-acetylglucosamine, is synthesized by the HA synthase (HAS) enzymes and is degraded by hyaluronidase (HYAL) or reactive oxygen and nitrogen species (ROS/RNS) actions. HA is deposited as a high molecular weight (HMW) polymer and degraded to low molecular weight (LMW) fragments and oligosaccharides. HA affects biological functions by interacting with HA-binding proteins (hyaladherins). HMW HA is anti-inflammatory, immunosuppressive, and antiangiogenic, whereas LMW HA has pro-inflammatory, pro-angiogenetic, and oncogenic effects. ROS/RNS naturally degrade HMW HA, albeit at enhanced levels during tissue injury and inflammatory processes. Thus, the degradation of endothelial glycocalyx HA by increased ROS challenges vascular integrity and can initiate several disease progressions. Conversely, HA exerts a vital role in wound healing through ROS-mediated HA modifications, which affect the innate immune system. The normal turnover of HA protects against matrix rigidification. Insufficient turnover leads to increased tissue rigidity, leading to tissue dysfunction. Both endogenous and exogenous HMW HA have a scavenging capacity against ROS. The interactions of ROS/RNS with HA are more complex than presently perceived and present an important research topic.
Collapse
|
13
|
Deng H, Wang J, An R. Hyaluronic acid-based hydrogels: As an exosome delivery system in bone regeneration. Front Pharmacol 2023; 14:1131001. [PMID: 37007032 PMCID: PMC10063825 DOI: 10.3389/fphar.2023.1131001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) containing various ingredients such as DNA, RNA, lipids and proteins, which play a significant role in intercellular communication. Numerous studies have demonstrated the important role of exosomes in bone regeneration through promoting the expression of osteogenic-related genes and proteins in mesenchymal stem cells. However, the low targeting ability and short circulating half-life of exosomes limited their clinical application. In order to solve those problems, different delivery systems and biological scaffolds have been developed. Hydrogel is a kind of absorbable biological scaffold composed of three-dimensional hydrophilic polymers. It not only has excellent biocompatibility and superior mechanical strength but can also provide a suitable nutrient environment for the growth of the endogenous cells. Thus, the combination between exosomes and hydrogels can improve the stability and maintain the biological activity of exosomes while achieving the sustained release of exosomes in the bone defect sites. As an important component of the extracellular matrix (ECM), hyaluronic acid (HA) plays a critical role in various physiological and pathological processes such as cell differentiation, proliferation, migration, inflammation, angiogenesis, tissue regeneration, wound healing and cancer. In recent years, hyaluronic acid-based hydrogels have been used as an exosome delivery system for bone regeneration and have displayed positive effects. This review mainly summarized the potential mechanism of HA and exosomes in promoting bone regeneration and the application prospects and challenges of hyaluronic acid-based hydrogels as exosome delivery devices in bone regeneration.
Collapse
Affiliation(s)
| | | | - Ran An
- *Correspondence: Jiecong Wang, ; Ran An,
| |
Collapse
|
14
|
Lu KH, Lu PWA, Lin CW, Lu EWH, Yang SF. Different molecular weights of hyaluronan research in knee osteoarthritis: A state-of-the-art review. Matrix Biol 2023; 117:46-71. [PMID: 36849081 DOI: 10.1016/j.matbio.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Osteoarthritis (OA), the most common form of arthritis, is characterized by progressive cartilage destruction, concomitant adaptive osteogenesis, and loss of joint function. The progression of OA with aging is associated with a decrease in native hyaluronan (HA, hyaluronate or hyaluronic acid) with a high molecular weight (HMW) in synovial fluid and a subsequent increase in lower MW HA and fragments. As HMW HA possesses numerous biochemical and biological properties, we review new molecular insights into the potential of HA to modify OA processes. Different MWs in the formulation of products appear to have varying effects on knee OA (KOA) pain relief, improved function, and postponing surgery. In addition to the safety profile, more evidence indicates that intraarticular (IA) HA administration may be an effective option to treat KOA, with a particular emphasis on the use of HA with fewer injections of higher MW, including potential applications of HA of very HMW. We also analyzed published systemic reviews and meta-analyses of IA HA in treating KOA in order to discuss their conclusions and consensus statements. According to its MW, HA may offer a simple way to refine therapeutic information in selective KOA.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | | | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Eric Wun-Hao Lu
- Department of Mechanical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
15
|
Karousou E, Parnigoni A, Moretto P, Passi A, Viola M, Vigetti D. Hyaluronan in the Cancer Cells Microenvironment. Cancers (Basel) 2023; 15:cancers15030798. [PMID: 36765756 PMCID: PMC9913668 DOI: 10.3390/cancers15030798] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The presence of the glycosaminoglycan hyaluronan in the extracellular matrix of tissues is the result of the cooperative synthesis of several resident cells, that is, macrophages and tumor and stromal cells. Any change in hyaluronan concentration or dimension leads to a modification in stiffness and cellular response through receptors on the plasma membrane. Hyaluronan has an effect on all cancer cell behaviors, such as evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and metastasis. It is noteworthy that hyaluronan metabolism can be dramatically altered by growth factors and matrikines during inflammation, as well as by the metabolic homeostasis of cells. The regulation of HA deposition and its dimensions are pivotal for tumor progression and cancer patient prognosis. Nevertheless, because of all the factors involved, modulating hyaluronan metabolism could be tough. Several commercial drugs have already been described as potential or effective modulators; however, deeper investigations are needed to study their possible side effects. Moreover, other matrix molecules could be identified and targeted as upstream regulators of synthetic or degrading enzymes. Finally, co-cultures of cancer, fibroblasts, and immune cells could reveal potential new targets among secreted factors.
Collapse
|
16
|
Parnigoni A, Moretto P, Rovera S, Viola M, Karousou E, Passi A, Vigetti D. Particle Exclusion Assay: A Tool for Measuring Hyaluronan Pericellular Matrix. Methods Mol Biol 2023; 2619:53-60. [PMID: 36662461 DOI: 10.1007/978-1-0716-2946-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hyaluronan (HA) is the most abundant glycosaminoglycan in the extracellular matrix, and its deposition is strictly related to changes in cellular behaviors, such as cell migration, proliferation, and adhesion. Pericellular HA is abundant in a variety of cell types, and its amount could reflect specific conditions, thus suggesting a particular cellular status.Particle exclusion assay is a useful tool to visualize pericellular matrices with a high HA content, simply employing microscope image analysis. This approach is quick and allows to visualize the presence of a clear pericellular region around single cells, where fixed red blood cells are excluded if the pericellular matrix has been deposited.
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Simona Rovera
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| |
Collapse
|
17
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Humaira, Raza Bukhari SA, Shakir HA, Khan M, Saeed S, Ahmad I, Muzammil K, Franco M, Irfan M, Li K. Hyaluronic acid-based nanofibers: Electrospun synthesis and their medical applications; recent developments and future perspective. Front Chem 2022; 10:1092123. [PMID: 36618861 PMCID: PMC9816904 DOI: 10.3389/fchem.2022.1092123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Hyaluronan is a biodegradable, biopolymer that represents a major part of the extracellular matrix and has the potential to be fabricated in a fibrous form conjugated with other polymers via electrospinning. Unique physicochemical features such as viscoelasticity, conductivity, and biological activity mainly affected by molecular weight attracted the attention of biomedical researchers to utilize hyaluronan for designing novel HA-based nano-devices. Particularly HA-based nanofibers get focused on a diverse range of applications in medical like tissue implants for regeneration of damaged tissue or organ repair, wound dressings, and drug delivery carriers to treat various disorders. Currently, electrospinning represents an effective available method for designing highly porous, 3D, HA-based nanofibers with features similar to that of the extra-cellular matrix making them a promising candidate for designing advanced regenerative medicines. This review highlights the structural and physicochemical features of HA, recently cited protocols in literature for HA production via microbial fermentation with particular focus on electrospun fabrication of HA-based nanofibers and parameters affecting its synthesis, current progress in medical applications of these electrospun HA-based nanofibers, their limitations and future perspective about the potential of these HA-based nanofibers in medical field.
Collapse
Affiliation(s)
- Humaira
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | | | | | - Muhammad Khan
- Institute of Zoology, University of the Punjab New Campus, Lahore, Pakistan
| | - Shagufta Saeed
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Marcelo Franco
- Department of Exact Science and Technology, State University of Santa Cruz, Ilhéus, Brazil
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Kun Li
- School of Medicine, Dalian University, Dalian, China
| |
Collapse
|
19
|
Galgoczi E, Katko M, Papp FR, Csiki R, Csiha S, Erdei A, Bodor M, Ujhelyi B, Steiber Z, Gyory F, Nagy EV. Glucocorticoids Directly Affect Hyaluronan Production of Orbital Fibroblasts; A Potential Pleiotropic Effect in Graves' Orbitopathy. Molecules 2022; 28:molecules28010015. [PMID: 36615214 PMCID: PMC9822010 DOI: 10.3390/molecules28010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Orbital connective tissue expansion is a hallmark of Graves’ orbitopathy (GO). In moderate-to-severe active GO, glucocorticoids (GC) are the first line of treatment. Here we show that hydrocortisone (HC), prednisolone (P), methylprednisolone (MP), and dexamethasone (DEX) inhibit the hyaluronan (HA) production of orbital (OF) and dermal (DF) fibroblasts. HA production of GO OFs (n = 4), NON-GO OFs (n = 4) and DFs (n = 4) was measured by ELISA. mRNA expression of enzymes of HA metabolism and fibroblast proliferation was examined by RT-PCR and BrdU incorporation, respectively. After 24 h of GC treatment (1µM) HA production decreased by an average of 67.9 ± 3.11% (p < 0.0001) in all cell cultures. HAS2, HAS3 and HYAL1 expression in OFs also decreased (p = 0.009, p = 0.0005 and p = 0.015, respectively). Ten ng/mL PDGF-BB increased HA production and fibroblast proliferation in all cell lines (p < 0.0001); GC treatment remained effective and reduced HA production under PDGF-BB-stimulated conditions (p < 0.0001). MP and DEX reduced (p < 0.001, p = 0.002, respectively) PDGF-BB-induced HAS2 expression in OFs. MP and DEX treatment decreased PDGF-BB stimulated HAS3 expression (p = 0.035 and p = 0.029, respectively). None of the GCs tested reduced the PDGF-BB stimulated proliferation rate. Our results confirm that GCs directly reduce the HA production of OFs, which may contribute to the beneficial effect of GCs in GO.
Collapse
Affiliation(s)
- Erika Galgoczi
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Monika Katko
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Fruzsina Reka Papp
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Robert Csiki
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Sara Csiha
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Annamaria Erdei
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Miklos Bodor
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Bernadett Ujhelyi
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Zita Steiber
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Ferenc Gyory
- Department of Surgery, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Endre V. Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-30-3371444
| |
Collapse
|
20
|
Liu T, Zhang J, Lu B, Wang H, Zhan J, Tan X, Wu C, Liu S, Wang Z, Zhang J, Zhang J. Highly efficient conotoxin delivery enabled by a bio-derived ionic liquid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Kang H, Zuo Z, Lin R, Yao M, Han Y, Han J. The most promising microneedle device: present and future of hyaluronic acid microneedle patch. Drug Deliv 2022; 29:3087-3110. [PMID: 36151726 PMCID: PMC9518289 DOI: 10.1080/10717544.2022.2125600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Microneedle patch (MNP) is an alternative to the oral route and subcutaneous injection with unique advantages such as painless administration, good compliance, and fewer side effects. Herein, we report MNP as a prominent strategy for drug delivery to treat local or systemic disease. Hyaluronic acid (HA) has advantageous properties, such as human autologous source, strong water absorption, biocompatibility, and viscoelasticity. Therefore, the Hyaluronic acid microneedle patch (HA MNP) occupies a large part of the MNP market. HA MNP is beneficial for wound healing, targeted therapy of certain specific diseases, extraction of interstitial skin fluid (ISF), and preservation of drugs. In this review, we summarize the benefits of HA and cross-linked HA (x-HA) as an MNP matrix. Then, we introduce the types of HA MNP, delivered substances, and drug distribution. Finally, we focus on the biomedical application of HA MNP as an excellent drug carrier in some specific diseases and the extraction and analysis of biomarkers. We also discuss the future development prospect of HA MNP in transdermal drug delivery systems (TDDS).
Collapse
Affiliation(s)
- Huizhi Kang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Zuo
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Ru Lin
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Muzi Yao
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Han
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
22
|
Karalis T, Shiau AK, Gahman TC, Skandalis SS, Heldin CH, Heldin P. Identification of a Small Molecule Inhibitor of Hyaluronan Synthesis, DDIT, Targeting Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14235800. [PMID: 36497283 PMCID: PMC9741431 DOI: 10.3390/cancers14235800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer is a common cancer in women. Breast cancer cells synthesize large amounts of hyaluronan to assist their proliferation, survival, migration and invasion. Accumulation of hyaluronan and overexpression of its receptor CD44 and hyaluronidase TMEM2 in breast tumors correlate with tumor progression and reduced overall survival of patients. Currently, the only known small molecule inhibitor of hyaluronan synthesis is 4-methyl-umbelliferone (4-MU). Due to the importance of hyaluronan for breast cancer progression, our aim was to identify new, potent and chemically distinct inhibitors of its synthesis. Here, we report a new small molecule inhibitor of hyaluronan synthesis, the thymidine analog 5'-Deoxy-5'-(1,3-Diphenyl-2-Imidazolidinyl)-Thymidine (DDIT). This compound is more potent than 4-MU and displays significant anti-tumorigenic properties. Specifically, DDIT inhibits breast cancer cell proliferation, migration, invasion and cancer stem cell self-renewal by suppressing HAS-synthesized hyaluronan. DDIT appears as a promising lead compound for the development of inhibitors of hyaluronan synthesis with potential usefulness in breast cancer treatment.
Collapse
Affiliation(s)
- Theodoros Karalis
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 572, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Andrew K. Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Timothy C. Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Spyros S. Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 572, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 572, Uppsala University, SE-751 23 Uppsala, Sweden
- Correspondence: ; Tel.: +46-18-4714733
| |
Collapse
|
23
|
Khegai II. Hyaluronan Metabolism and Tumor Progression. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Sugita S, Naito Y, Zhou L, He H, Hao Q, Sakamoto A, Lee JW. Hyaluronic acid restored protein permeability across injured human lung microvascular endothelial cells. FASEB Bioadv 2022; 4:619-631. [PMID: 36089980 PMCID: PMC9447422 DOI: 10.1096/fba.2022-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
Lung endothelial permeability is a key pathological feature of acute respiratory distress syndrome. Hyaluronic acid (HA), a major component of the glycocalyx layer on the endothelium, is generated by HA synthase (HAS) during inflammation and injury and is critical for repair. We hypothesized that administration of exogenous high molecular weight (HMW) HA would restore protein permeability across human lung microvascular endothelial cells (HLMVEC) injured by an inflammatory insult via upregulation of HAS by binding to CD44. A transwell coculture system was used to study the effects of HA on protein permeability across HLMVEC injured by cytomix, a mixture of IL-1β, TNFα, and IFNγ, with or without HMW or low molecular weight (LMW) HA. Coincubation with HMW HA, but not LMW HA, improved protein permeability following injury at 24 h. Fluorescence microscopy demonstrated that exogenous HMW HA partially prevented the increase in "actin stress fiber" formation. HMW HA also increased the synthesis of HAS2 mRNA expression and intracellular HMW HA levels in HLMVEC following injury. Pretreatment with an anti-CD44 antibody or 4-methylumbelliferone, a HAS inhibitor, blocked the therapeutic effects. In conclusion, exogenous HMW HA restored protein permeability across HLMVEC injured by an inflammatory insult in part through upregulation of HAS2.
Collapse
Affiliation(s)
- Shinji Sugita
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Yoshifumi Naito
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Li Zhou
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hongli He
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Qi Hao
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
| | - Jae W. Lee
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
25
|
Tseng V, Collum SD, Allawzi A, Crotty K, Yeligar S, Trammell A, Ryan Smith M, Kang BY, Sutliff RL, Ingram JL, Jyothula SSSK, Thandavarayan RA, Huang HJ, Nozik ES, Wagner EJ, Michael Hart C, Karmouty-Quintana H. 3'UTR shortening of HAS2 promotes hyaluronan hyper-synthesis and bioenergetic dysfunction in pulmonary hypertension. Matrix Biol 2022; 111:53-75. [PMID: 35671866 PMCID: PMC9676077 DOI: 10.1016/j.matbio.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023]
Abstract
Pulmonary hypertension (PH) comprises a diverse group of disorders that share a common pathway of pulmonary vascular remodeling leading to right ventricular failure. Development of anti-remodeling strategies is an emerging frontier in PH therapeutics that requires a greater understanding of the interactions between vascular wall cells and their extracellular matrices. The ubiquitous matrix glycan, hyaluronan (HA), is markedly elevated in lungs from patients and experimental models with PH. Herein, we identified HA synthase-2 (HAS2) in the pulmonary artery smooth muscle cell (PASMC) layer as a predominant locus of HA dysregulation. HA upregulation involves depletion of NUDT21, a master regulator of alternative polyadenylation, resulting in 3'UTR shortening and hyper-expression of HAS2. The ensuing increase of HAS2 and hyper-synthesis of HA promoted bioenergetic dysfunction of PASMC characterized by impaired mitochondrial oxidative capacity and a glycolytic shift. The resulting HA accumulation stimulated pro-remodeling phenotypes such as cell proliferation, migration, apoptosis-resistance, and stimulated pulmonary artery contractility. Transgenic mice, mimicking HAS2 hyper-synthesis in smooth muscle cells, developed spontaneous PH, whereas targeted deletion of HAS2 prevented experimental PH. Pharmacological blockade of HAS2 restored normal bioenergetics in PASMC, ameliorated cell remodeling phenotypes, and reversed experimental PH in vivo. In summary, our results uncover a novel mechanism of HA hyper-synthesis and downstream effects on pulmonary vascular cell metabolism and remodeling.
Collapse
Affiliation(s)
- Victor Tseng
- Respiratory Medicine, Ansible Health Mountain View, CA
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX
| | | | - Kathryn Crotty
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA
| | - Samantha Yeligar
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA
| | - Aaron Trammell
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA
| | - M Ryan Smith
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA
| | - Bum-Yong Kang
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA; Atlanta Veteran Affairs Health Care System Decatur, GA
| | - Roy L Sutliff
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA; Atlanta Veteran Affairs Health Care System Decatur, GA
| | | | - Soma S S K Jyothula
- Divisions of Critical Care, Pulmonary & Sleep Medicine, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX; Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston TX, USA
| | | | - Howard J Huang
- Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston TX, USA
| | - Eva S Nozik
- University of Colorado Anschutz Medical Campus, Department of Pediatrics Aurora, CO
| | - Eric J Wagner
- University of Rochester Medical Center, School of Medicine and Dentistry Rochester, NY
| | - C Michael Hart
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA; Atlanta Veteran Affairs Health Care System Decatur, GA.
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX; Divisions of Critical Care, Pulmonary & Sleep Medicine, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX.
| |
Collapse
|
26
|
CD44 Depletion in Glioblastoma Cells Suppresses Growth and Stemness and Induces Senescence. Cancers (Basel) 2022; 14:cancers14153747. [PMID: 35954411 PMCID: PMC9367353 DOI: 10.3390/cancers14153747] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumor, characterized by enhanced proliferation and invasion, as well as increased vascularization and chemoresistance. The expression of the hyaluronan receptor CD44 has been shown to correlate with GBM progression and poor prognosis. Here, we sought to elucidate the molecular mechanisms by which CD44 promotes GBM progression by knocking out (KO) CD44, employing CRISPR/Cas9 gene editing in U251MG cells. CD44-depleted cells exhibited an impaired proliferation rate, as shown by the decreased cell numbers, decreased Ki67-positive cell nuclei, diminished phosphorylation of CREB, and increased levels of the cell cycle inhibitor p16 compared to control cells. Furthermore, the CD44 KO cells showed decreased stemness and increased senescence, which was manifested upon serum deprivation. In stem cell-like enriched spheres, RNA-sequencing analysis of U251MG cells revealed a CD44 dependence for gene signatures related to hypoxia, the glycolytic pathway, and G2 to M phase transition. Partially similar results were obtained when cells were treated with the γ-secretase inhibitor DAPT, which inhibits CD44 cleavage and therefore inhibits the release of the intracellular domain (ICD) of CD44, suggesting that certain transcriptional responses are dependent on CD44-ICD. Interestingly, the expression of molecules involved in hyaluronan synthesis, degradation, and interacting matrix proteins, as well as of platelet-derived growth factor (PDGF) isoforms and PDGF receptors, were also deregulated in CD44 KO cells. These results were confirmed by the knockdown of CD44 in another GBM cell line, U2990. Notably, downregulation of hyaluronan synthase 2 (HAS2) impaired the hypoxia-related genes and decreased the CD44 protein levels, suggesting a CD44/hyaluronan feedback circuit contributing to GBM progression.
Collapse
|
27
|
Small fragments of hyaluronan are increased in individuals with obesity and contribute to low-grade inflammation through TLR-mediated activation of innate immune cells. Int J Obes (Lond) 2022; 46:1960-1969. [PMID: 35896710 PMCID: PMC9584819 DOI: 10.1038/s41366-022-01187-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Background and aim Extracellular matrix (ECM) components released during excessive fat mass expansion are considered potential endogenous danger/alarm signals contributing to innate immune system activation. The aim of the current study was to specifically measure plasma levels of low molecular weight (LMW) hyaluronan (HA) and to evaluate its role as pro-inflammatory damage-associated molecular pattern (DAMP) on leukocyte response in the context of human obesity. Subjects and methods Participants were selected according to their body mass index (BMI, kg/m2) as non-obese (BMI < 29.9, n = 18) and obese (BMI > 29.9, n = 33). Plasma samples were size-dependent fractionated using ion-exchange chromatography to specifically obtain LMW HA fractions that were subsequently quantified by ELISA. Cell incubation experiments with synthetic HA molecules were performed on freshly Ficoll-isolated neutrophils (PMN) and peripheral blood monocytes (PBMC). Leukocyte and adipose tissue gene expression was assessed by real-time PCR and NF-κB activation by western blot. Plasma cytokine levels were measured by fluorescent bead-based (Luminex) immunoassay. Results We observed a statistically significant increase in the circulating levels of HA fragments of LMW in individuals with obesity which were consistent with significant up-regulated expression of the LMW HA synthesizing enzyme hyaluronan synthase-1 (HAS-1) in obese adipose tissue. Gene expression assessment of HA receptors revealed up-regulated levels for TLR2 in both obese PMN and PBMC. Synthetic HA molecules of different sizes were tested on leukocytes from healthy donors. LMW HA fragments (15–40 kDa) and not those from intermediate molecular sizes (75–350 kDa) induced a significant up-regulation of the expression of major pro-inflammatory cytokines such as IL-1β, MCP-1 and IL-8 in PBMC. Importantly, LMW HA was able to induce the phosphorylation of IKK α/β complex supporting its pro-inflammatory role through NF-κB activation. Conclusion Circulating LMW HA molecules are elevated in obesity and may play an important role in triggering low-grade inflammation and the development of metabolic complications.
Collapse
|
28
|
Karalis T, Skandalis SS. Hyaluronan network: a driving force in cancer progression. Am J Physiol Cell Physiol 2022; 323:C145-C158. [PMID: 35649255 DOI: 10.1152/ajpcell.00139.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan is one of the most abundant macromolecules of the extracellular matrix and regulates several physiological cell and tissue properties. However, hyaluronan has been shown to accumulate together with its receptors in various cancers. In tumors, accumulation of hyaluronan system components (hyaluronan synthesizing/degrading enzymes and interacting proteins) associates with poor outcomes of the patients. In this article, we review the main roles of hyaluronan in normal physiology and cancer, and further discuss the targeting of hyaluronan system as an applicable therapeutic strategy.
Collapse
Affiliation(s)
- Theodoros Karalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
29
|
Rykov SV, Battalova IY, Mironov AS. Construction of Recombinant Bacillus subtilis Strains Producing Hyaluronic Acid. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422050088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Menko AS, Romisher A, Walker JL. The Pro-fibrotic Response of Mesenchymal Leader Cells to Lens Wounding Involves Hyaluronic Acid, Its Receptor RHAMM, and Vimentin. Front Cell Dev Biol 2022; 10:862423. [PMID: 35386200 PMCID: PMC8977891 DOI: 10.3389/fcell.2022.862423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Hyaluronic Acid/Hyaluronan (HA) is a major component of the provisional matrix deposited by cells post-wounding with roles both in regulating cell migration to repair a wound and in promoting a fibrotic outcome to wounding. Both are mediated through its receptors CD44 and RHAMM. We now showed that HA is present in the provisional matrix assembled on the substrate surface in a lens post-cataract surgery explant wound model in which mesenchymal leader cells populate the wound edges to direct migration of the lens epithelium across the adjacent culture substrate onto which this matrix is assembled. Inhibiting HA expression with 4-MU blocked assembly of FN-EDA and collagen I by the wound-responsive mesenchymal leader cells and their migration. These cells express both the HA receptors CD44 and RHAMM. CD44 co-localized with HA at their cell-cell interfaces. RHAMM was predominant in the lamellipodial protrusions extended by the mesenchymal cells at the leading edge, and along HA fibrils organized on the substrate surface. Within a few days post-lens wounding the leader cells are induced to transition to αSMA+ myofibroblasts. Since HA/RHAMM is implicated in both cell migration and inducing fibrosis we examined the impact of blocking HA synthesis on myofibroblast emergence and discovered that it was dependent on HA. While RHAMM has not been previously linked to the intermediate filament protein vimentin, our studies with these explant cultures have shown that vimentin in the cells’ lamellipodial protrusions regulate their transition to myofibroblast. PLA studies now revealed that RHAMM was complexed with both HA and vimentin in the lamellipodial protrusions of leader cells, implicating this HA/RHAMM/vimentin complex in the regulation of leader cell function post-wounding, both in promoting cell migration and in the transition of these cells to myofibroblasts. These results increase our understanding of how the post-wounding matrix environment interacts with receptor/cytoskeletal complexes to determine whether injury outcomes are regenerative or fibrotic.
Collapse
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alison Romisher
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Parnigoni A, Caon I, Teo WX, Hua SH, Moretto P, Bartolini B, Viola M, Karousou E, Yip GW, Götte M, Heldin P, Passi A, Vigetti D. The natural antisense transcript HAS2-AS1 regulates breast cancer cells aggressiveness independently from hyaluronan metabolism. Matrix Biol 2022; 109:140-161. [PMID: 35395387 DOI: 10.1016/j.matbio.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
Abstract
Hyaluronan (HA) is a ubiquitous extracellular matrix component playing a crucial role in the regulation of cell behaviors, including cancer. Aggressive breast cancer cells tend to proliferate, migrate and metastatize. Notably, triple-negative breast cancer cells lacking the expression of estrogen receptor (ER) as well as progesterone receptor and HER2 are more aggressive than ER-positive ones. As currently no targeted therapy is available for triple-negative breast cancer, the identification of novel therapeutic targets has a high clinical priority. In ER-negative cells, tumoral behavior can be reduced by inhibiting HA synthesis or silencing the enzymes involved in its metabolism, such as HA synthase 2 (HAS2). HAS2-AS1 is a long non-coding RNA belonging to the natural antisense transcript family which is known to favor HAS2 gene expression and HA synthesis, thus bolstering malignant progression in brain, ovary, and lung tumors. As the role of HAS2-AS1 has not yet been investigated in breast cancer, in this work we report that ER-positive breast cancers had lower HAS2-AS1 expression compared to ER-negative tumors. Moreover, the survival of patients with ER-negative tumors was higher when the expression of HAS2-AS1 was elevated. Experiments with ER-negative cell lines as MDA-MB-231 and Hs 578T revealed that the overexpression of either the full-length HAS2-AS1 or its exon 2 long or short isoforms alone, strongly reduced cell viability, migration, and invasion, whereas HAS2-AS1 silencing increased cell aggressiveness. Unexpectedly, in these ER-negative cell lines, HAS2-AS1 is involved neither in the regulation of HAS2 nor in HA deposition. Finally, transcriptome analysis revealed that HAS2-AS1 modulation affected several pathways, including apoptosis, proliferation, motility, adhesion, epithelial to mesenchymal transition, and signaling, describing this long non-coding RNA as an important regulator of breast cancer cells aggressiveness.
Collapse
Affiliation(s)
- Arianna Parnigoni
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Ilaria Caon
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Wei Xuan Teo
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore 4 Medical Drive, Block MD10, Singapore, 117594, Singapore
| | - San Hue Hua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore 4 Medical Drive, Block MD10, Singapore, 117594, Singapore
| | - Paola Moretto
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Barbara Bartolini
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Manuela Viola
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Evgenia Karousou
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore 4 Medical Drive, Block MD10, Singapore, 117594, Singapore
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Albert-Schweitzer-Campus 1, D11, 48149, Münster, Germany
| | - Paraskevi Heldin
- Department Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alberto Passi
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Davide Vigetti
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy.
| |
Collapse
|
32
|
Takabe P, Siiskonen H, Rönkä A, Kainulainen K, Pasonen-Seppänen S. The Impact of Hyaluronan on Tumor Progression in Cutaneous Melanoma. Front Oncol 2022; 11:811434. [PMID: 35127523 PMCID: PMC8813769 DOI: 10.3389/fonc.2021.811434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
The incidence of cutaneous melanoma is rapidly increasing worldwide. Cutaneous melanoma is an aggressive type of skin cancer, which originates from malignant transformation of pigment producing melanocytes. The main risk factor for melanoma is ultraviolet (UV) radiation, and thus it often arises from highly sun-exposed skin areas and is characterized by a high mutational burden. In addition to melanoma-associated mutations such as BRAF, NRAS, PTEN and cell cycle regulators, the expansion of melanoma is affected by the extracellular matrix surrounding the tumor together with immune cells. In the early phases of the disease, hyaluronan is the major matrix component in cutaneous melanoma microenvironment. It is a high-molecular weight polysaccharide involved in several physiological and pathological processes. Hyaluronan is involved in the inflammatory reactions associated with UV radiation but its role in melanomagenesis is still unclear. Although abundant hyaluronan surrounds epidermal and dermal cells in normal skin and benign nevi, its content is further elevated in dysplastic lesions and local tumors. At this stage hyaluronan matrix may act as a protective barrier against melanoma progression, or alternatively against immune cell attack. While in advanced melanoma, the content of hyaluronan decreases due to altered synthesis and degradation, and this correlates with poor prognosis. This review focuses on hyaluronan matrix in cutaneous melanoma and how the changes in hyaluronan metabolism affect the progression of melanoma.
Collapse
Affiliation(s)
- Piia Takabe
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Hanna Siiskonen
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Aino Rönkä
- Department of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Kirsi Kainulainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Sanna Pasonen-Seppänen,
| |
Collapse
|
33
|
OUP accepted manuscript. Glycobiology 2022; 32:743-750. [DOI: 10.1093/glycob/cwac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
|
34
|
Kocurkova A, Nesporova K, Sandanusova M, Kerberova M, Lehka K, Velebny V, Kubala L, Ambrozova G. Endogenously-Produced Hyaluronan and Its Potential to Regulate the Development of Peritoneal Adhesions. Biomolecules 2021; 12:biom12010045. [PMID: 35053193 PMCID: PMC8773905 DOI: 10.3390/biom12010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Formation of peritoneal adhesions (PA) is one of the major complications following intra-abdominal surgery. It is primarily caused by activation of the mesothelial layer and underlying tissues in the peritoneal membrane resulting in the transition of mesothelial cells (MCs) and fibroblasts to a pro-fibrotic phenotype. Pro-fibrotic transition of MCs—mesothelial-to-mesenchymal transition (MMT), and fibroblasts activation to myofibroblasts are interconnected to changes in cellular metabolism and culminate in the deposition of extracellular matrix (ECM) in the form of fibrotic tissue between injured sides in the abdominal cavity. However, ECM is not only a mechanical scaffold of the newly synthetized tissue but reciprocally affects fibrosis development. Hyaluronan (HA), an important component of ECM, is a non-sulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcUA) that can affect the majority of processes involved in PA formation. This review considers the role of endogenously produced HA in the context of different fibrosis-related pathologies and its overlap in the development of PA.
Collapse
Affiliation(s)
- Anna Kocurkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Kristina Nesporova
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Miriam Sandanusova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Michaela Kerberova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
| | - Katerina Lehka
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Correspondence:
| |
Collapse
|
35
|
Marunaka K, Shu S, Kobayashi M, Goto M, Katsuta Y, Yoshino Y, Ikari A. Elevation of Hyaluronan Synthase by Magnesium Supplementation Mediated through the Activation of GSK3 and CREB in Human Keratinocyte-Derived HaCaT Cells. Int J Mol Sci 2021; 23:ijms23010071. [PMID: 35008494 PMCID: PMC8744730 DOI: 10.3390/ijms23010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Skin barrier damage is present in the patients with hereditary disorders of the magnesium channel, but the molecular mechanism has not been fully understood. We found that the expressions of hyaluronan synthase (HAS), HAS2 and HAS3 are influenced by MgCl2 concentration in human keratinocyte-derived HaCaT cells. The exposure of cells to a high concentration (5.8 mM) of MgCl2 induced the elevation of HAS2/3 expression, which was inhibited by mRNA knockdown of nonimprinted in Prader-Willi/Angelman syndrome-like domain containing 4 (NIPAL4). Similarly, the content of hyaluronic acid (HA) was changed according to MgCl2 concentration and the expression of NIPAL4. The MgCl2 supplementation increased the reporter activities of HAS2/3, which were inhibited by NIPAL4 knockdown, indicating that the expressions of HAS2/3 are up-regulated at the transcriptional level. The reporter activities and mRNA levels of HAS2/3, and the production of HA were inhibited by CHIR-99021, a glycogen synthase kinase-3 (GSK3) inhibitor, and naphthol AS-E, a cyclic AMP-response element binding protein (CREB) inhibitor. Furthermore, the mutation in putative CREB-binding sites of promoter region in HAS2/3 genes inhibited the MgCl2 supplementation-induced elevation of promoter activity. Our results indicate that the expressions of HAS2/3 are up-regulated by MgCl2 supplementation in HaCaT cells mediated through the activation of GSK3 and CREB. Magnesium may play a pivotal role in maintaining the skin barrier function and magnesium supplementation may be useful to enhance moisturization and wound repair in the skin.
Collapse
Affiliation(s)
- Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Shokoku Shu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Mao Kobayashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Makiko Goto
- MIRAI Technology Institute, Shiseido Co. Ltd., Kanagawa 220-0011, Japan; (M.G.); (Y.K.)
| | - Yuji Katsuta
- MIRAI Technology Institute, Shiseido Co. Ltd., Kanagawa 220-0011, Japan; (M.G.); (Y.K.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
36
|
Koutsakis C, Tavianatou AG, Kokoretsis D, Baroutas G, Karamanos NK. Sulfated Hyaluronan Modulates the Functional Properties and Matrix Effectors Expression of Breast Cancer Cells with Different Estrogen Receptor Status. Biomolecules 2021; 11:biom11121916. [PMID: 34944559 PMCID: PMC8699821 DOI: 10.3390/biom11121916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hyaluronan (HA) is an extracellular matrix glycosaminoglycan (GAG) that plays a pivotal role in breast cancer. While HA is the only GAG not normally substituted with sulfate groups, sulfated hyaluronan (sHA) has previously been used in studies with promising antitumor results. The aim of the present study was to evaluate the effects sHA fragments have on breast cancer cells with different estrogen receptor (ER) status. To this end, ERα-positive MCF-7, and ERβ-positive MDA-MB-231 cells were treated with non-sulfated HA or sHA fragments of 50 kDa. The functional properties of the breast cancer cells and the expression of key matrix effectors were investigated. According to the results, sHA attenuates cell proliferation, migration, and invasion, while increasing adhesion on collagen type I. Furthermore, sHA modulates the expression of epithelial-to-mesenchymal transition (EMT) markers, such as e-cadherin and snail2/slug. Additionally, sHA downregulates matrix remodeling enzymes such as the matrix metalloproteinases MT1-MMP, MMP2, and MMP9. Notably, sHA exhibits a stronger effect on the breast cancer cell properties compared to the non-sulfated counterpart, dependent also on the type of cancer cell type. Consequently, a deeper understanding of the mechanism by which sHA facilitate these processes could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (C.K.); (A.-G.T.); (D.K.); (G.B.)
| | - Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (C.K.); (A.-G.T.); (D.K.); (G.B.)
| | - Dimitris Kokoretsis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (C.K.); (A.-G.T.); (D.K.); (G.B.)
| | - Georgios Baroutas
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (C.K.); (A.-G.T.); (D.K.); (G.B.)
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (C.K.); (A.-G.T.); (D.K.); (G.B.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
- Correspondence: ; Tel.: +30-261-099-7915
| |
Collapse
|
37
|
Tolg C, Messam BJA, McCarthy JB, Nelson AC, Turley EA. Hyaluronan Functions in Wound Repair That Are Captured to Fuel Breast Cancer Progression. Biomolecules 2021; 11:1551. [PMID: 34827550 PMCID: PMC8615562 DOI: 10.3390/biom11111551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Signaling from an actively remodeling extracellular matrix (ECM) has emerged as a critical factor in regulating both the repair of tissue injuries and the progression of diseases such as metastatic cancer. Hyaluronan (HA) is a major component of the ECM that normally functions in tissue injury to sequentially promote then suppress inflammation and fibrosis, a duality in which is featured, and regulated in, wound repair. These essential response-to-injury functions of HA in the microenvironment are hijacked by tumor cells for invasion and avoidance of immune detection. In this review, we first discuss the numerous size-dependent functions of HA and emphasize the multifunctional nature of two of its receptors (CD44 and RHAMM) in regulating the signaling duality of HA in excisional wound healing. This is followed by a discussion of how HA metabolism is de-regulated in malignant progression and how targeting HA might be used to better manage breast cancer progression.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada;
| | - Britney Jodi-Ann Messam
- Department Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - James Benjamin McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Andrew Cook Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Eva Ann Turley
- London Regional Cancer Program, Lawson Health Research Institute, Department Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
38
|
Kuroda Y, Higashi H. Regulation of hyaluronan production by β2 adrenergic receptor signaling. Biochem Biophys Res Commun 2021; 575:50-55. [PMID: 34455221 DOI: 10.1016/j.bbrc.2021.08.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hyaluronan (HA), the main component of the extracellular matrix, is involved in tissue elasticity and cell scaffolding, and in progression of conditions such as cancer, inflammation and wound healing. Signaling by G protein coupled receptor (GPCR) activation increases expression of hyaluronan synthase (HAS) and HA production. The β2 adrenergic receptor (β2AR) is a catecholamine-liganded GPCR that is involved in cancer progression and wound healing. Since HA and β2AR are involved in a common pathology, we investigated whether β2AR signaling regulates HA production. METHODS After stimulating β2AR-expressing cells with a β agonist, the amount of HA in the culture medium was measured and HAS expression was examined by real-time PCR. A variety of signaling molecule inhibitors were used to identify signaling pathways that alter HAS expression. RESULTS β2AR activation increased HA production and enhanced HAS2 expression. The increase in HAS2 expression by β2AR activation occurred via the Gs - adenylyl cyclase - PKA - CREB signal transduction pathway. CONCLUSIONS Downstream signal transduction by β2AR activation increased HA production by enhancing transcription of the HAS2 gene. This study suggests that β2AR is a GPCR that regulates HA production, and that stimulation with a catecholamine (β2 agonist) can regulate HA production. GENERAL SIGNIFICANCE β2AR may function through regulation of HA production in cancer progression and wound healing.
Collapse
Affiliation(s)
- Yoshiyuki Kuroda
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Hideyoshi Higashi
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
39
|
Pibuel MA, Poodts D, Díaz M, Molinari YA, Franco PG, Hajos SE, Lompardía SL. Antitumor effect of 4MU on glioblastoma cells is mediated by senescence induction and CD44, RHAMM and p-ERK modulation. Cell Death Discov 2021; 7:280. [PMID: 34628469 PMCID: PMC8502173 DOI: 10.1038/s41420-021-00672-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix plays a key role in cancer progression. Hyaluronan, the main glycosaminoglycan of the extracellular matrix, has been related to several tumor processes. Hyaluronan acts through the interaction with cell membrane receptors as CD44 and RHAMM and triggers signaling pathways as MEK/ERK. 4-methylumbelliferone (4MU), a well-known hyaluronan synthesis inhibitor, is a promising alternative for cancer therapy. 4MU is a coumarin derivative without adverse effects that has been studied in several tumors. However, little is known about its use in glioblastoma (GBM), the most malignant primary brain tumor in adults. Glioblastoma is characterized by fast growth, migration and tissue invasiveness, and a poor median survival of the patients after treatment. Several reports linked glioblastoma progression with HA levels and even with CD44 and RHAMM expression, as well as MEK/ERK activation. Previously, we showed on a murine GBM cell line that HA enhances GBM migration, while 4MU markedly inhibits it. In this work we showed for the first time, that 4MU decreases cell migration and induces senescence in U251 and LN229 human GBM cell lines. Furthermore, we observed that HA promotes GBM cell migration on both cell lines and that such effects depend on CD44 and RHAMM, as well as MEK/ERK signaling pathway. Interestingly, we observed that the exogenous HA failed to counteract the effects of 4MU, indicating that 4MU effects are independent of HA synthesis inhibition. We found that 4MU decreases total CD44 and RHAMM membrane expression, which could explain the effect of 4MU on cell migration. Furthermore, we observed that 4MU increases the levels of RHAMM inside the cell while decreases the nucleus/cytoplasm relation of p-ERK, associated with 4MU effects on cell proliferation and senescence induction. Overall, 4MU should be considered as a promising therapeutic alternative to improve the outcome of patients with GBM.
Collapse
Grants
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Yamila Azul Molinari
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET; Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Paula Gabriela Franco
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET; Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| |
Collapse
|
40
|
Kotla NG, Bonam SR, Rasala S, Wankar J, Bohara RA, Bayry J, Rochev Y, Pandit A. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J Control Release 2021; 336:598-620. [PMID: 34237401 DOI: 10.1016/j.jconrel.2021.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG), cell-surface-associated biopolymer and is the key component of tissue extracellular matrix (ECM). Along with remarkable physicochemical properties, HA also has multifaceted biological effects that include but not limited to ECM organization, immunomodulation, and various cellular processes. Environmental cues such as tissue injury, infection or cancer change downstream signaling functionalities of HA. Unlike native HA, the fragments of HA have diversified effects on inflammation, cancer, fibrosis, angiogenesis and autoimmune response. In this review, we aim to discuss HA as a therapeutic delivery system development process, source, biophysical-chemical properties, and associated biological pathways (especially via cell surface receptors) of native and fragmented HA. We also tried to address an overview of the potential role of HA (native HA vs fragments) in the modulation of inflammation, immune response and various cancer targeting delivery applications. This review will also highlight the HA based therapeutic systems, medical devices and future perspectives of various biomedical applications were discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Swetha Rasala
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jitendra Wankar
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France; Indian Institute of Technology Palakkad, Palakkad 678 623, Kerala, India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland.
| |
Collapse
|
41
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
42
|
Neill T, Kapoor A, Xie C, Buraschi S, Iozzo RV. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 2021; 100-101:118-149. [PMID: 33838253 PMCID: PMC8355044 DOI: 10.1016/j.matbio.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
43
|
Bogdani M, Faxius L, Fex M, Ramelius A, Wernersson A, Mordes JP, Blankenhorn EP, Lernmark Å. The Vbeta13 T Cell Receptor Monoclonal Antibody Reduces Hyaluronan and CD68+, CD3+, and CD8+ Cell Infiltrations to Delay Diabetes in Congenic BB DR Lyp/Lyp Rats. Front Endocrinol (Lausanne) 2021; 12:629242. [PMID: 33815287 PMCID: PMC8010654 DOI: 10.3389/fendo.2021.629242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/08/2021] [Indexed: 01/10/2023] Open
Abstract
The depleting Vβ13a T cell receptor monoclonal antibody (mAb) 17D5 prevents both induced and spontaneous autoimmune diabetes in BB rats. Here it was tested in congenic DRLyp/Lyp rats, all of which spontaneously developed diabetes. Starting at 40 days of age, rats were injected once weekly with either saline, His42 Vβ16 mAb, or 17D5 mAb and monitored for hyperglycemia. Diabetes occurred in 100% (n = 5/5) of saline-treated rats (median age, 66 days; range 55-73), and in 100% (n = 6/6) of His42-treated rats (median age, 69 days; range 59-69). Diabetes occurred in fewer (n = 8/11, 73%) 17D5-treated rats at a later age (median 76 days, range 60-92). Three (27%) of the 17D5-treated rats were killed at 101-103 days of age without diabetes (17D5 no-diabetes rats). Survival analysis demonstrated that 17D5 mAb delayed diabetes onset. Saline- and His42-treated rats had severely distorted islets with substantial loss of insulin-positive cells. These rats exhibited prominent hyaluronan (HA) staining, with the intra-islet HA+ accumulations measuring 5,000 ± 2,400 µm2 and occupying 36 ± 12% of islet area, and severe (grade 4) insulitis with abundant infiltration by CD68+, CD3+, and CD8+ cells. The 17D5 mAb-treated rats with delayed diabetes onset exhibited less severe insulitis (predominantly grade 3). In contrast, the 17D5 no-diabetes rats had mostly normal islets, with insulin+ cells representing 76 ± 3% of islet cells. In these rats, the islet HA deposits were significantly smaller than in the diabetic rats; the intra-islet HA+ areas were 1,200 ± 300 µm2 and accounted for 8 ± 1% of islet area. Also, islet-associated CD68+ and CD3+ cells occurred less frequently (on average in 60 and 3% of the islets, respectively) than in the diabetes rats (present in >95% of the islets). No CD8+ cells were detected in islets in all 17D5 no-diabetes rats. We conclude that mAb 17D5 delayed diabetes in DRLyp/Lyp rats and markedly reduced expression of HA and concomitant infiltration of CD68+, CD3+, and CD8+ cells. Our findings underscore the importance of refining immune suppression in prevention or intervention clinical trials to use mAb reagents that are directed against specific T cell receptors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Blood Glucose/metabolism
- CD3 Complex/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/prevention & control
- Hyaluronic Acid/metabolism
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Polymorphism, Single Nucleotide/genetics
- Rats, Inbred BB
- Receptors, Antigen, T-Cell/metabolism
- Rats
Collapse
Affiliation(s)
- Marika Bogdani
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Linda Faxius
- Department of Clinical Sciences, Lund University Clinical Research Center (CRC), Skåne University Hospital, Malmö, Sweden
| | - Malin Fex
- Department of Clinical Sciences, Lund University Clinical Research Center (CRC), Skåne University Hospital, Malmö, Sweden
| | - Anita Ramelius
- Department of Clinical Sciences, Lund University Clinical Research Center (CRC), Skåne University Hospital, Malmö, Sweden
| | - Anya Wernersson
- Department of Clinical Sciences, Lund University Clinical Research Center (CRC), Skåne University Hospital, Malmö, Sweden
| | - John P. Mordes
- Department of Medicine, University of Massachusetts, Worcester, MA, United States
| | - Elizabeth P. Blankenhorn
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University Clinical Research Center (CRC), Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
44
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 362] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
45
|
Tavianatou AG, Piperigkou Z, Koutsakis C, Barbera C, Beninatto R, Franchi M, Karamanos NK. The action of hyaluronan in functional properties, morphology and expression of matrix effectors in mammary cancer cells depends on its molecular size. FEBS J 2021; 288:4291-4310. [PMID: 33512780 DOI: 10.1111/febs.15734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer constitutes a heterogeneous disease. The expression profiles of estrogen receptors (ERs), as well as the expression patterns of extracellular matrix (ECM) macromolecules, determine its development and progression. Hyaluronan (HA) is an ECM molecule that regulates breast cancer cells' properties in a molecular size-dependent way. Previous studies have shown that 200-kDa HA fragments modulate the functional properties, morphology, and expression of several matrix mediators of the highly metastatic ERα- /ERβ+ MDA-MB-231 cells. In order to evaluate the effects of HA fragments (< 10, 30 and 200-kDa) in ERβ-suppressed breast cancer cells, the shERβ MDA-MB-231 cells were used. These cells are less aggressive when compared with MDA-MB-231 cells. To this end, the functional properties, the morphology, and the expression of the molecules associated with breast cancer cells metastatic potential were studied. Notably, both cell proliferation and invasion were significantly reduced after treatment with 200-kDa HA. Moreover, as assessed by scanning electron microscopy, 200-kDa HA affected cellular morphology, and as assessed by qPCR, upregulated the epithelial marker Ε-cadherin. The expression profiles of ECM mediators, such as HAS2, CD44, and MMP7, were also altered. On the other hand, cellular migration and the expression levels of syndecan-4 (SDC-4) were not significantly affected in contrast to our observations regarding MDA-MB-231 cells. These novel data demonstrate that the molecular size of the HA determines its effects on ERβ-suppressed breast cancer cells and that 200-kDa HA exhibits antiproliferative effects on these cells. A deeper understanding of this mechanism may contribute to the development of therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | | | | | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
46
|
Marshall PL, Nagy N, Kaber G, Barlow GL, Ramesh A, Xie BJ, Linde MH, Haddock NL, Lester CA, Tran QL, de Vries CR, Hargil A, Malkovskiy AV, Gurevich I, Martinez HA, Kuipers HF, Yadava K, Zhang X, Evanko SP, Gebe JA, Wang X, Vernon RB, de la Motte C, Wight TN, Engleman EG, Krams SM, Meyer EH, Bollyky PL. Hyaluronan synthesis inhibition impairs antigen presentation and delays transplantation rejection. Matrix Biol 2021; 96:69-86. [PMID: 33290836 PMCID: PMC8147171 DOI: 10.1016/j.matbio.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
A coat of pericellular hyaluronan surrounds mature dendritic cells (DC) and contributes to cell-cell interactions. We asked whether 4-methylumbelliferone (4MU), an oral inhibitor of HA synthesis, could inhibit antigen presentation. We find that 4MU treatment reduces pericellular hyaluronan, destabilizes interactions between DC and T-cells, and prevents T-cell proliferation in vitro and in vivo. These effects were observed only when 4MU was added prior to initial antigen presentation but not later, consistent with 4MU-mediated inhibition of de novo antigenic responses. Building on these findings, we find that 4MU delays rejection of allogeneic pancreatic islet transplant and allogeneic cardiac transplants in mice and suppresses allogeneic T-cell activation in human mixed lymphocyte reactions. We conclude that 4MU, an approved drug, may have benefit as an adjunctive agent to delay transplantation rejection.
Collapse
Affiliation(s)
- Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Graham L Barlow
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Amrit Ramesh
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Bryan J Xie
- Division of Blood and Marrow Transplantation, Dept. of Medicine, Stanford University School of Medicine, CCSR, 1291 Welch Road, Stanford, CA 94305, United States
| | - Miles H Linde
- Division of Hematology, Dept. of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, SIM1, 265 Campus Drive, Stanford, CA 94305, United States
| | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Colin A Lester
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Quynh-Lam Tran
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Christiaan R de Vries
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Andrey V Malkovskiy
- Biomaterials and Advanced Drug Delivery (BioADD) Laboratory Stanford School of Medicine, Stanford, CA 94304, United States
| | - Irina Gurevich
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Hunter A Martinez
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Koshika Yadava
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Xiangyue Zhang
- Department of Pathology, Stanford School of Medicine, 3373 Hillview Ave, Palo Alto CA 94304, United States
| | - Stephen P Evanko
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, United States
| | - John A Gebe
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, United States
| | - Xi Wang
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford University School of Medicine, 1201 Welch Rd, MSLS P313, Stanford, CA 94305, United States
| | - Robert B Vernon
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, United States
| | - Carol de la Motte
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue Cleveland, OH 4419, United States
| | - Thomas N Wight
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, United States
| | - Edgar G Engleman
- Division of Hematology, Dept. of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, SIM1, 265 Campus Drive, Stanford, CA 94305, United States
| | - Sheri M Krams
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford University School of Medicine, 1201 Welch Rd, MSLS P313, Stanford, CA 94305, United States
| | - Everett H Meyer
- Division of Blood and Marrow Transplantation, Dept. of Medicine, Stanford University School of Medicine, CCSR, 1291 Welch Road, Stanford, CA 94305, United States
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States.
| |
Collapse
|
47
|
Gebe JA, Gooden MD, Workman G, Nagy N, Bollyky PL, Wight TN, Vernon RB. Modulation of hyaluronan synthases and involvement of T cell-derived hyaluronan in autoimmune responses to transplanted islets. Matrix Biol Plus 2021; 9:100052. [PMID: 33718858 PMCID: PMC7930869 DOI: 10.1016/j.mbplus.2020.100052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix glycosaminoglycan hyaluronan (HA) accumulates in human and mouse islets during the onset of autoimmune type 1 diabetes (T1D). HA plays a critical role in T1D pathogenesis, as spontaneous disease is blocked in mice fed the HA synthesis inhibitor 4-methylumbelliferone (4MU). The present study demonstrates the involvement of HA in T cell-mediated autoimmune responses to transplanted islets and in in vivo and in vitro T cell activation. Scaffolded islet implants (SIs) loaded with RIP-mOVA mouse islets expressing chicken ovalbumin (OVA) on their β cells were grafted into T and B cell-deficient RIP-mOVA mice, which subsequently received CD4+ T cells from DO11.10 transgenic mice bearing OVA peptide-specific T cell receptors (TcRs), followed by injection of OVA peptide to induce an immune response to the OVA-expressing islets. By affinity histochemistry (AHC), HA was greatly increased in grafted islets with T cell infiltrates (compared to islets grafted into mice lacking T cells) and a portion of this HA co-localized with the infiltrating T cells. Transferred T cells underwent HA synthase (HAS) isoform switching - T cells isolated from the SI grafts strongly upregulated HAS1 and HAS2 mRNAs and downregulated HAS3 mRNA, in contrast to T cells from graft-draining mesenteric lymph nodes, which expressed HAS3 mRNA only. Expression of HAS1 and HAS2 proteins by T cells in SI infiltrates was confirmed by immunohistochemistry (IHC). DO11.10 mice fed 4MU had suppressed in vivo T cell immune priming (measured as a reduced recall response to OVA peptide) compared to T cells from control mice fed a normal diet. In co-cultures of naïve DO11.10 T cells and OVA peptide-loaded antigen-presenting cells (APCs), pre-exposure of the T cells (but not pre-exposure of APCs) to 4MU inhibited early T cell activation (CD69 expression). In addition, T cells exposed to 4MU during activation in vitro with anti-CD3/CD28 antibodies had inhibited phosphorylation of the CD3ζ subunit of the TcR, a very early event in TcR signaling. Collectively, our results demonstrate that T cell-derived HA plays a significant role in T cell immune responses, and that expression of T cell HAS isoforms changes in a locale-specific manner during in vivo priming and functional phases of the T cell response.
Collapse
Affiliation(s)
- John A. Gebe
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Michel D. Gooden
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Gail Workman
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas N. Wight
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Robert B. Vernon
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
48
|
Abstract
Coronavirus infection (COVID-19) is an acute viral disease, which affects all vital organs and is caused by an RNA-genomic virus of the genus Betacoronavirus of the family Coronaviridae. This virus (SARS-CoV-2) enters the body through the respiratory tract and interacts primarily with Toll-like receptors of epithelial cells of the bronchi, alveoli, intestines and vascular endotheliocytes, as well as with angiotensin-converting enzyme 2 receptors. Toll-like receptors activate nuclear factor Kappa B in these cells, which initiates the formation of many cytokines (“cytokine storm”). SARS-CoV-2 affects type II pneumocytes by causing a termination of surfactant formation and, accordingly, alveolar shrinking and the formation of acute respiratory distress syndrome and also fibrosis on the interalveolar-capillary membrane and the formation of acute respiratory failure. SARS-CoV-2 and cytokines disrupt the function of vascular endothelial cells, which leads to endothelial dysfunction. In microvessels forms a mass formation of microthrombi, which causes the failure of organs and systems. “Cytokine storm” turns into cytokine sepsis with the formation of multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- S. B. Bolevich
- Sechenov First Moscow State Medical University (Sechenov University)
| | - S. S. Bolevich
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
49
|
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 2020; 19:217. [PMID: 33243230 PMCID: PMC7689646 DOI: 10.1186/s12934-020-01483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.
Collapse
Affiliation(s)
- Taha Baghbani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicin, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
50
|
Karami M, Shahraky MK, Ranjbar M, Tabandeh F, Morshedi D, Aminzade S. Preparation, purification, and characterization of low-molecular-weight hyaluronic acid. Biotechnol Lett 2020; 43:133-142. [PMID: 33131008 DOI: 10.1007/s10529-020-03035-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The use and commercial value of hyaluronic acid (HA) as an important element in the pharmaceutical, biomedical, and cosmetics industry is because of its purity. Four recombinant strains of Corynebacterium glutamicum containing different genes were used to produce HA. RESULTS The production parameters were measured and strain 183.2, with the highest amount of HA (2.15 mg/ml), was selected for further experiments. HA was precipitated by different ratios of ethanol-isopropanol at 4 °C and - 20 °C. Active charcoal (1%) was added to the solvent precipitation mixture at pH 5 and 10. Finally, to achieve more purity and separation, gel filtration chromatography was used. The best result was obtained using an ethanol-isopropanol ratio of 1:1 of at - 20 °C, followed by active charcoal treatment at the acidic pH, and three fractions of the chromatography with molecular weights of 27, 27-110, and < 27 KDa were more analyzed with electrophoresis and FTIR. CONCLUSIONS The present study described a simple, economical, and reproducible method resulting in a high yield for low-MW HA from C. glutamicum.
Collapse
Affiliation(s)
- Mohammad Karami
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran
| | - Mahvash Khodabandeh Shahraky
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran.
| | - Masume Ranjbar
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran
| | - Fatemeh Tabandeh
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran
| | - Dina Morshedi
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran
| | - Saeed Aminzade
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran
| |
Collapse
|