1
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
2
|
İnkaya E, Tokgöz E, Barlas N. In Vivo Investigation of the Effects of Nonylphenol on the Pituitary-Adrenal Axis and Pineal Gland in Male Rats. Basic Clin Pharmacol Toxicol 2025; 136:e70003. [PMID: 39887640 PMCID: PMC11783352 DOI: 10.1111/bcpt.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
The pineal gland secretes melatonin, which regulates various physiological processes; damage to this gland disrupts these functions. This study aimed to investigate the effect of nonylphenol on the pineal gland and the pituitary-adrenal axis, which is associated with this system. The study was initiated using Wistar albino male rats on their postnatal 21st day, a critical developmental stage for endocrine regulation. Nonylphenol was administered via oral gavage at doses of 5, 25 and 125 mg/kg/day, while bisphenol-A was given at 50 mg/kg/day as a positive control. At the end of the treatment period, liver, kidney, pituitary, pineal and adrenal tissues were examined histopathologically. Hormone levels were analysed in serum samples. Significant changes in adrenocorticotropic hormone, melatonin and aldosterone levels were detected in hormone analyses. In contrast, no differences in corticosterone and glucose levels were detected. Histopathological findings showed structural changes in tissues. The effects of nonylphenol on the pituitary-adrenal axis and melatonin vary depending on the experimental protocols employed. However, it is clear that nonylphenol and bisphenol A have negative effects on the pituitary-adrenal axis, pineal gland, liver and kidney. In conclusion, future research should focus on elucidating the molecular mechanisms underlying these effects and developing environmentally friendly strategies to eliminate nonylphenol and bisphenol-A contamination.
Collapse
Affiliation(s)
- E. N. İnkaya
- Department of Biology, Faculty of ScienceHacettepe UniversityAnkaraTurkey
| | - E. Tokgöz
- Department of Biology, Faculty of ScienceHacettepe UniversityAnkaraTurkey
| | - N. Barlas
- Department of Biology, Faculty of ScienceHacettepe UniversityAnkaraTurkey
| |
Collapse
|
3
|
Antić VM, Antic M, Stojiljkovic N, Stanković N, Pavlović M, Sokolović D. Role of Melatonin in Regulating Rat Skeletal Muscle Tissue Inflammation and Damage Following Carbon Tetrachloride Intoxication. Int J Mol Sci 2025; 26:1718. [PMID: 40004180 PMCID: PMC11855742 DOI: 10.3390/ijms26041718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Carbon tetrachloride (CCl4) is a toxic compound that causes severe oxidative stress and inflammation in skeletal muscles, resulting in structural damage, mitochondrial dysfunction, and impaired contractile function. While CD45 and melatonin (MLT) are implicated in immune modulation and antioxidative defense, their precise roles in mitigating CCl4-induced muscle damage remain incompletely understood, warranting further investigation. This study used 24 Wistar rats divided into four groups to evaluate the effects of MLT on CCl4-induced muscle inflammation. The first group was used as a control group, the second received only MLT (50 mg/kg), and the third group received CCl4, while the fourth group received MLT (50 mg/kg) and CCl4. Muscle tissues, obtained 24 h after the commencement of the experiment, were analyzed using biochemical assays for inflammatory markers, histological staining, and immunohistochemistry to assess structural and cellular changes. CCl4 exposure significantly increased NF-κB activity, nitric oxide levels, iNOS expression, and CD45-positive immune cell infiltration in skeletal muscles, indicating heightened inflammation and oxidative stress. Pretreatment with MLT markedly reduced these inflammatory markers, restoring damaged tissue and diminishing immune cell infiltration. Histological analyses confirmed reduced inflammatory cell presence and tissue damage in MLT-treated animals, highlighting its protective effects. Melatonin demonstrates significant protective effects against CCl4-induced skeletal muscle damage by reducing inflammation, oxidative stress, and immune cell infiltration, highlighting its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Vladimir Milan Antić
- Faculty of Sports and Physical Education, University of Niš, 18000 Niš, Serbia; (V.M.A.); (N.S.); (N.S.)
| | - Milorad Antic
- Department of Anatomy, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.A.); (M.P.)
| | - Nenad Stojiljkovic
- Faculty of Sports and Physical Education, University of Niš, 18000 Niš, Serbia; (V.M.A.); (N.S.); (N.S.)
| | - Nemanja Stanković
- Faculty of Sports and Physical Education, University of Niš, 18000 Niš, Serbia; (V.M.A.); (N.S.); (N.S.)
| | - Miljana Pavlović
- Department of Anatomy, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.A.); (M.P.)
| | - Dušan Sokolović
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| |
Collapse
|
4
|
Ji SM, Yoo H, Kim JI, Choi MJ, Cheon HG. Melatonin induces white-to-beige adipocyte transdifferentiation through melatonin receptor 1-mediated direct browning and indirect M2 polarization. Mol Cell Endocrinol 2025; 597:112439. [PMID: 39653309 DOI: 10.1016/j.mce.2024.112439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Previous studies have shown that melatonin induces adipocyte browning in vivo. However, the underlying mechanisms of melatonin action at the cellular level remain elusive. In this study, we investigated the mechanisms underlying melatonin-induced browning in 3T3-L1 adipocytes and RAW 264.7 macrophages. Melatonin caused the transdifferentiation of fully differentiated white adipocytes into beige adipocytes, which involves the activation of melatonin receptor 1, followed by increased phosphorylation of p38 MAPK and Akt. Both luzindole (LZ), a non-selective melatonin receptor antagonist, and selective melatonin receptor 1 knockdown attenuated the browning effects of melatonin. Melatonin also induced M2 polarization in RAW 264.7, involving the melatonin receptor 1-Src-STAT3/STAT6 phosphorylation signaling cascade. Melatonin-treated M2-conditioned medium (CM) contained increased levels of catecholamine (CA) and induced beige adipocytes when treated with differentiated 3T3-L1 white adipocytes. In vivo oral administration of melatonin to high-fat diet (HFD)-induced obese (DIO) mice reduced body weight, accompanied by increased expression of uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in subcutaneous adipose tissues. Moreover, arginase-1 (Arg1) and mannose receptor C type-1 (MRC1) levels were markedly higher in the melatonin-treated groups, suggesting that melatonin induces adipose browning and M2 polarization in vivo. Collectively, melatonin-induced adipocyte browning appeared to be reflected by the sum of melatonin receptor 1-activated direct browning effects and indirect M2 polarization-mediated effects.
Collapse
MESH Headings
- Animals
- Melatonin/pharmacology
- Mice
- 3T3-L1 Cells
- Cell Transdifferentiation/drug effects
- Adipocytes, Beige/metabolism
- Adipocytes, Beige/drug effects
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- RAW 264.7 Cells
- Male
- Mice, Inbred C57BL
- Signal Transduction/drug effects
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT1/genetics
- Cell Polarity/drug effects
- Macrophages/metabolism
- Macrophages/drug effects
- Diet, High-Fat
- Obesity/metabolism
- Obesity/pathology
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Tryptamines
Collapse
Affiliation(s)
- Seong Mi Ji
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hana Yoo
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Jea Il Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999, Republic of Korea
| | - Mi Jin Choi
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
5
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Laurindo LF, Simili OAG, Araújo AC, Guiguer EL, Direito R, Valenti VE, de Oliveira V, de Oliveira JS, Yanaguizawa Junior JL, Dias JA, Maria DA, Rici REG, Bueno MDS, Sloan KP, Sloan LA, Barbalho SM. Melatonin from Plants: Going Beyond Traditional Central Nervous System Targeting-A Comprehensive Review of Its Unusual Health Benefits. BIOLOGY 2025; 14:143. [PMID: 40001911 PMCID: PMC11851571 DOI: 10.3390/biology14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
Melatonin is indispensable for the homeostasis of plants and animals. In humans, it can help prevent or be an adjuvant treatment for several diseases mainly related to the immune system, inflammation, and oxidative stress. Moreover, a melatonin-rich diet is linked to several health benefits, such as regulation of circadian rhythm, regulation of the immunological system, epilepsy control, delaying the aging process, and diminishing hormones related to cancer. This review aimed to show the effects of melatonin in diseases beyond its traditional use. The results showed it can present scavenging of free radicals, reducing inflammatory cytokines, and modulating the immune system. Moreover, it can improve insulin resistance, blood pressure, LDL-c, adipose tissue mass, adhesion molecules, endothelial impairment, and plaque formation. These effects result in neuro- and cardioprotection, improvement of liver diseases, rheumatoid arthritis, dermatitis, COVID-19, polycystic ovaries, and sepsis. We conclude that plant melatonin can benefit patients with many diseases besides sleep problems and neurodegeneration. Plant melatonin may be more cost-effective and present fewer adverse events than synthetic. However, more clinical trials should be performed to show adequate doses, formulation, and treatment time.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Otávio Augusto Garcia Simili
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Vitor Engrácia Valenti
- Autonomic Nervous System Center, School of Philosophy and Sciences, São Paulo State University, Marília 17525-902, SP, Brazil
| | - Vitor de Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, New York Medical College, New York, NY 10595, USA
| | - Juliana Santos de Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, University of Miami, Coral Gables, FL 33146, USA
| | - José Luiz Yanaguizawa Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Durvanei Augusto Maria
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05585-000, SP, Brazil
| | - Rose Eli Grassi Rici
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-220, SP, Brazil
| | - Manuela dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA
- Clinical Department, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
7
|
Colombo F, Alfano S, Milani M. Lipidomic and Instrumental Evaluation of a Melatonin-Based In & Out Strategy Versus Topical Treatment in Skin Aging: A Randomized Prospective Trial. Metabolites 2025; 15:33. [PMID: 39852376 PMCID: PMC11767497 DOI: 10.3390/metabo15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
This study aimed to evaluate the efficacy of a novel "In & Out" strategy, combining topical and oral melatonin supplementation, in managing skin aging compared to topical treatment alone. A randomized, prospective study was conducted on 39 healthy females aged 55-69 years. Participants were divided into two groups: one received both the topical formula and oral melatonin supplementation (Group A), while the other received a topical melatonin-based formula (Group B). Clinical evaluations included lipidomic analysis, skin moisturization, and wrinkle depth analysis at baseline and after 84 days. The addition of oral melatonin supplementation to the topical regimen led to improvements in the skin's lipid profile and moisturization levels. These findings suggest that combining topical and oral melatonin may provide a more comprehensive approach to managing skin aging by addressing both local and systemic factors. Background/Objectives: With age, the endogenous antioxidant capacity of the skin decreases, including melatonin (Mel) synthesis. Skin aging is also associated with alterations in epidermal lipids, particularly a reduction in triglycerides and ceramides, which are essential for maintaining skin structure and hydration. The administration of exogenous melatonin could, therefore, be an effective anti-aging strategy. While some data suggest that melatonin may positively influence the lipid profile, specific data on its effects on skin aging are lacking. This study aimed to evaluate the anti-aging effects of an "In & Out" regimen consisting of a Mel-based cream and dietary supplement in comparison with topical treatment alone, focusing on clinical and lipidomic changes involved in skin homeostasis. Results: A statistically significant variation was observed in both groups compared to baseline (T0) in terms of moisturization (+23.6% in Group A, +18.3% in Group B) and wrinkle depth (-18.5% in Group A, -9.4% in Group B, p < 0.05). Both groups showed improvements in the lipid content of the skin, which typically decreases with age. The "In & Out" strategy resulted in a statistically significant increase in triacylglycerols and ceramides, key lipids that exhibit water-holding properties. Conclusions: The "In & Out" melatonin-based regimen demonstrated greater efficacy in clinical improvement and positive lipid profile modifications compared to topical treatment alone, highlighting its potential as a comprehensive anti-aging strategy.
Collapse
Affiliation(s)
- Francesca Colombo
- Medical Department, Cantabria Labs Difa Cooper, 21042 Caronno Pertusella, Italy
| | - Stefano Alfano
- Medical Department, Cantabria Labs Difa Cooper, 21042 Caronno Pertusella, Italy
| | - Massimo Milani
- Medical Department, Cantabria Labs Difa Cooper, 21042 Caronno Pertusella, Italy
| |
Collapse
|
8
|
Reiter RJ, De Almeida Chuffa LG, Simão VA, Martín Giménez VM, De Las Heras N, Spandidos DA, Manucha W. Melatonin and vitamin D as potential synergistic adjuvants for cancer therapy (Review). Int J Oncol 2024; 65:114. [PMID: 39450562 PMCID: PMC11575929 DOI: 10.3892/ijo.2024.5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Significant advancements have been made in cancer therapy; however, limitations remain with some conventional approaches. Adjuvants are agents used alongside primary treatments to enhance their efficacy and the treatment outcomes of patients. Modern lifestyles contribute to deficiencies in melatonin and vitamin D. Limited sun exposure affects vitamin D synthesis, and artificial light at night suppresses melatonin production. Both melatonin and vitamin D possess anti‑inflammatory, immune‑boosting and anticancer properties, rendering them potential adjuvants of interest. Studies suggest melatonin and vitamin D supplementation may address antioxidant imbalances in lip, oral and pharyngeal cancers. Moreover, promising results from breast, head and neck, brain, and osteosarcoma research indicate potential for tumor growth inhibition, improved survival, and a better quality of life of patients with cancer. The radioprotective properties of melatonin and vitamin D are another exciting area of exploration, potentially enhancing radiotherapy effectiveness while reducing side effects. For its part, the sleep‑promoting effects of melatonin may indirectly benefit patients with cancer by influencing the immune system. Thus, the prevalence of vitamin D and melatonin deficiencies highlights the importance of supplementation, as lower levels can worsen side‑effects from cancer treatments. The present review explores the potential of combining melatonin and vitamin D as synergistic adjuvants for cancer therapy. These agents have shown promise individually in cancer prevention and treatment, and their combined effects warrant investigation. Therefore, large‑scale controlled trials are crucial to definitively determine the optimal dosage, safety and efficacy of this combination in improving the lives of patients with cancer.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Luiz Gustavo De Almeida Chuffa
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Virna Margarita Martín Giménez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Natalia De Las Heras
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Walter Manucha
- Pharmacology Area, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
9
|
Cardenas-Padilla AJ, Jimenez-Trejo F, Cerbon M, Medrano A. The Role of Melatonin on Caprine ( Capra hircus) Sperm Freezability: A Review. Antioxidants (Basel) 2024; 13:1466. [PMID: 39765795 PMCID: PMC11673025 DOI: 10.3390/antiox13121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
In mammals, the pineal hormone melatonin is the most powerful pacemaker of the master circadian clock and is responsible for reproduction in seasonal breeders. It is also well known that melatonin and its metabolites play antioxidant roles in many tissues, including reproductive cells. Melatonin synthesis and secretion from the pineal gland occurs during scotophase (the dark phase during a day-night cycle), while its inhibition is observed during photophase (period of light during a day-night cycle). Short-day breeders, such as goats, are stimulated to breed in a manner dependent on high endogenous levels of melatonin. This hormone can be synthesized in various extra-pineal tissues, such as retina, gastrointestinal tract, ovaries, and testis, with its main function being as a local antioxidant, given that melatonin and its metabolites are potent scavengers of reactive oxygen and nitrogen species. Moreover, it has been reported that some functions of melatonin can be exerted through plasma membrane and intracellular receptors expressed in the male reproductive system, including germ cells, immature and mature spermatozoa. It has been shown that melatonin may enhance gamete cryosurvival mainly by its addition into the media and/or in exogenous melatonin treatments in several species. In the present review, the physiological effects of endogenous melatonin in mammals are described, with a deeper focus on caprine reproduction. Additionally, results from recent investigations on the roles of exogenous melatonin aimed at improving the reproductive efficiency of goat bucks are discussed. There are contradictory findings and a limited amount of research available in the field of goat sperm cryopreservation associated with the use of melatonin. Understanding and improving goat reproduction and production is essential for many marginalized human populations around the world who directly depend on goats to maintain and improve their lifestyle.
Collapse
Affiliation(s)
- Alberto Jorge Cardenas-Padilla
- Laboratorio de Reproducción Animal, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54714, Mexico;
| | | | - Marco Cerbon
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de Mexico, Coyoacán, Mexico City 04510, Mexico;
| | - Alfredo Medrano
- Laboratorio de Reproducción Animal, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54714, Mexico;
| |
Collapse
|
10
|
Zimmermann P, Kurth S, Pugin B, Bokulich NA. Microbial melatonin metabolism in the human intestine as a therapeutic target for dysbiosis and rhythm disorders. NPJ Biofilms Microbiomes 2024; 10:139. [PMID: 39604427 PMCID: PMC11603051 DOI: 10.1038/s41522-024-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Melatonin (MT) (N-acetyl-5-methoxytryptamine) is an indoleamine recognized primarily for its crucial role in regulating sleep through circadian rhythm modulation in humans and animals. Beyond its association with the pineal gland, it is synthesized in various tissues, functioning as a hormone, tissue factor, autocoid, paracoid, and antioxidant, impacting multiple organ systems, including the gut-brain axis. However, the mechanisms of extra-pineal MT production and its role in microbiota-host interactions remain less understood. This review provides a comprehensive overview of MT, including its production, actions sites, metabolic pathways, and implications for human health. The gastrointestinal tract is highlighted as an additional source of MT, with an examination of its effects on the intestinal microbiota. This review explores whether the microbiota contributes to MT in the intestine, its relationship to food intake, and the implications for human health. Due to its impacts on the intestinal microbiota, MT may be a valuable therapeutic agent for various dysbiosis-associated conditions. Moreover, due to its influence on intestinal MT levels, the microbiota may be a possible therapeutic target for treating health disorders related to circadian rhythm dysregulation.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland.
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Benoit Pugin
- Laboratory of Food Systems Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nicholas A Bokulich
- Laboratory of Food Systems Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Reiter RJ, Sharma RN, Manucha W, Rosales-Corral S, Almieda Chuffa LGD, Loh D, Luchetti F, Balduini W, Govitrapong P. Dysfunctional mitochondria in age-related neurodegeneration: Utility of melatonin as an antioxidant treatment. Ageing Res Rev 2024; 101:102480. [PMID: 39236857 DOI: 10.1016/j.arr.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Mitochondria functionally degrade as neurons age. Degenerative changes cause inefficient oxidative phosphorylation (OXPHOS) and elevated electron leakage from the electron transport chain (ETC) promoting increased intramitochondrial generation of damaging reactive oxygen and reactive nitrogen species (ROS and RNS). The associated progressive accumulation of molecular damage causes an increasingly rapid decline in mitochondrial physiology contributing to aging. Melatonin, a multifunctional free radical scavenger and indirect antioxidant, is synthesized in the mitochondrial matrix of neurons. Melatonin reduces electron leakage from the ETC and elevates ATP production; it also detoxifies ROS/RNS and via the SIRT3/FOXO pathway it upregulates activities of superoxide dismutase 2 and glutathione peroxidase. Melatonin also influences glucose processing by neurons. In neurogenerative diseases, neurons often adopt Warburg-type metabolism which excludes pyruvate from the mitochondria causing reduced intramitochondrial acetyl coenzyme A production. Acetyl coenzyme A supports the citric acid cycle and OXPHOS. Additionally, acetyl coenzyme A is a required co-substrate for arylalkylamine-N-acetyl transferase, which rate limits melatonin synthesis; therefore, melatonin production is diminished in cells that experience Warburg-type metabolism making mitochondria more vulnerable to oxidative stress. Moreover, endogenously produced melatonin diminishes during aging, further increasing oxidative damage to mitochondrial components. More normal mitochondrial physiology is preserved in aging neurons with melatonin supplementation.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA.
| | - Ramaswamy N Sharma
- Applied Biomedical Sciences, University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, USA.
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.
| | - Luiz Gustavo de Almieda Chuffa
- Departamento de Biologia Estrutural e Funcional, Setor de Anatomia - Instituto de Biociências, IBB/UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil.
| | - Doris Loh
- Independent Researcher, Marble Falls, TX, USA.
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok, Thailand.
| |
Collapse
|
12
|
Bisikirska B, Labella R, Cuesta-Dominguez A, Luo N, De Angelis J, Mosialou I, Lin CS, Beck D, Lata S, Shyu PT, McMahon DJ, Guo E, Hagen J, Chung WK, Shane E, Cohen A, Kousteni S. Melatonin receptor 1A variants as genetic cause of idiopathic osteoporosis. Sci Transl Med 2024; 16:eadj0085. [PMID: 39413162 DOI: 10.1126/scitranslmed.adj0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/19/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
Idiopathic osteoporosis (IOP) is a rare form of early-onset osteoporosis diagnosed in patients with no known metabolic or hormonal cause of bone loss and unknown pathogenesis. Patients with IOP commonly report both childhood fractures and family history of osteoporosis, raising the possibility of genetic etiologies of IOP. Whole-exome sequencing analyses of different IOP cohorts identified multiple variants in melatonin receptor 1A (MTNR1A) with a potential pathogenic outcome. A rare MTNR1A variant (rs374152717) was found in members of an Ashkenazi Jewish family with IOP, and an MTNR1A variant (rs28383653) was found in a nonrelated female IOP cohort (4%). Both variants occur at a substantially higher frequency in Ashkenazi Jewish individuals than in the general population. We investigated consequences of the heterozygous (rs374152717) variant [MTNR1Ac.184+1G>T (MTNR1Ac.184+1G>T)] on bone physiology. A mouse model of the human rs374152717 variant reproduced the low bone mass (BM) phenotype of young-adult patients with IOP. Low BM occurred because of induction of senescence in mutant osteoblasts followed by compromised differentiation and function. In human cells, introduction of rs374152717 led to translation of a nonfunctional protein and subsequent dysregulation of melatonin signaling. These studies provide evidence that MTNR1A mutations entail a genetic etiology of IOP and establish the rs374152717 variant as a loss-of-function allele that impairs bone turnover by inducing senescence in osteoblasts. The higher prevalence of the MTNR1A variants identified in IOP cohorts versus the general population indicates a greater risk of IOP in those carrying these variants, especially Ashkenazi Jewish individuals bearing the rs374152717 variant.
Collapse
Affiliation(s)
- Brygida Bisikirska
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Alvaro Cuesta-Dominguez
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Na Luo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jessica De Angelis
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - David Beck
- New York University Grossman School of Medicine, New York, NY 10012, USA
| | - Sneh Lata
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter Timothy Shyu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Donald J McMahon
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jacob Hagen
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elizabeth Shane
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Adi Cohen
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
13
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
14
|
Lisboa CD, Maciel de Souza JL, Gaspar CJ, Turck P, Ortiz VD, Teixeira Proença IC, Fernandes TRG, Fernandes E, Tasca S, Carraro CC, Belló-Klein A, Sander da Rosa Araujo A, Luz de Castro A. Melatonin effects on oxidative stress and on TLR4/NF-kβ inflammatory pathway in the right ventricle of rats with pulmonary arterial hypertension. Mol Cell Endocrinol 2024; 592:112330. [PMID: 39002930 DOI: 10.1016/j.mce.2024.112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Pulmonary arterial hypertension (PAH) is characterised by an increase in mean pulmonary arterial pressure and a compromised the right ventricle (RV), together with progression to heart failure and premature death. Studies have evaluated the role of melatonin as a promising therapeutic strategy for PAH. The objective of this study was to evaluate melatonin's effects on oxidative stress and on the TLR4/NF-kβ inflammatory pathway in the RV of rats with PAH. Male Wistar rats were divided into the following groups: control, monocrotaline (MCT), and monocrotaline plus melatonin groups. These two last groups received one intraperitoneal injection of MCT (60 mg/kg) on the first day of experimental protocol. The monocrotaline plus melatonin group received 10 mg/kg/day of melatonin by gavage for 21 days. Echocardiographic analysis was performed, and the RV was collected for morphometric analysis oxidative stress and molecular evaluations. The main findings of the present study were that melatonin administration attenuated the reduction in RV function that was induced by monocrotaline, as assessed by TAPSE. In addition, melatonin prevented RV diastolic area reduction caused by PAH. Furthermore, animals treated with melatonin did not show an increase in ROS levels or in NF-kβ expression. In addition, the monocrotaline plus melatonin group showed a reduction in TLR4 expression when compared with control and monocrotaline groups. To our knowledge, this is the first study demonstrating a positive effect of melatonin on the TLR4/NF-kβ pathway in the RV of rats with PAH. In this sense, this study makes it possible to think of melatonin as a possible ally in mitigating RV alterations caused by PAH.
Collapse
Affiliation(s)
- Cristiane Dias Lisboa
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - José Luciano Maciel de Souza
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Custódio José Gaspar
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Patrick Turck
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Vanessa Duarte Ortiz
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Isabel Cristina Teixeira Proença
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Tânia Regina G Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Elissa Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Silvio Tasca
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Alexandre Luz de Castro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Rashidi SY, Rafiyan M, Asemi R, Asemi Z, Mohammadi S. Effect of melatonin as a therapeutic strategy against intrauterine growth restriction: a mini-review of current state. Ann Med Surg (Lond) 2024; 86:5320-5325. [PMID: 39238981 PMCID: PMC11374193 DOI: 10.1097/ms9.0000000000002350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/26/2024] [Indexed: 09/07/2024] Open
Abstract
Intrauterine growth restriction (IUGR) or intrauterine growth retardation is a condition that the fetus does not grow as expected. And the biometric profile does not match with the age of fetus. This condition is associated with increased mortality and morbidity of the neonates along with increased risk of cardiovascular, lung, and central nervous system damage. Despite close monitoring of high-risk mothers and the development of new therapeutic approaches, the optimal outcome has not been achieved yet that it indicates the importance of investigations on new therapeutic approaches. Melatonin (MLT) is a neurohormone mainly produced by the pineal gland and has a wide range of effects on different organs due to the broad dispersion of its receptors. Moreover, melatonin is produced by the placenta and also its receptors have been found on the surface of this organ. Not only studies showed the importance of this neurohormone on growth and development of fetus but also they proved its highly anti-oxidant properties. As in IUGR the oxidative stress and inflammation increased melatonin could counteract these changes and improved organ's function. In this study, we found that use of MLT could be a good clinical approach for the treatment of IUGR as its high anti-oxidant activity and vasodilation could dampen the mechanisms lead to the IUGR development.
Collapse
Affiliation(s)
| | - Mahdi Rafiyan
- Student Research Committee
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan
| | - Sotoudeh Mohammadi
- Department of Obstetrics and Gynecology, Shahid Beheshti university of medical sciences, Tehran, Iran
| |
Collapse
|
16
|
Cardenas-Padilla AJ, Jimenez-Trejo F, Cerbon M, Chavez-Garcia A, Cruz-Cano NB, Martinez-Torres M, Alcantar-Rodriguez A, Medrano A. Sperm melatonin receptors, seminal plasma melatonin and semen freezability in goats. Theriogenology 2024; 225:98-106. [PMID: 38801791 DOI: 10.1016/j.theriogenology.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Goat bucks are seasonal breeders that show variation in sperm quality, endogenous melatonin (MLT), and presumably in the expression of MLT receptors on the sperm throughout the year, which may modify sperm freezability. The aim of this study was to determine whether sperm freezability is associated with (i) endogenous melatonin levels in seminal plasma and (ii) the expression of sperm plasma membrane melatonin receptors (MT1, MT2). To evaluate this, spermatozoa from seven Saanen goat bucks were cryopreserved throughout the year in Mexico using a standard freezing protocol. Seminal plasma MLT concentrations were determined by ELISA and the expression and localization of MT1 and MT2 were detected by immunocytochemistry and confirmed by western blotting. The recovery rate of progressive motility after thawing was higher in spring than autumn and winter; in contrast, the F pattern (CTC assay) was higher in winter than in the other seasons. A proportional increase in the AR pattern (CTC assay) was smaller in winter than in the other seasons and the proportion of sperm showing high plasma membrane fluidity was higher in spring than in summer and autumn. The seminal plasma MLT concentrations showed no significant interseasonal differences. The MT1 receptor was immunolocalised at the apical region of the sperm head, while MT2 was mainly localised in the neck. The relative expression of MLT receptors showed significant differences between summer and winter for all bands, except at 75 kDa of MT2. In conclusion, there was an association between the relative expression of MT1 and MT2 receptors throughout the year and sperm freezability in goat bucks in México. Post-thaw sperm quality is enhanced in semen samples collected during breeding season.
Collapse
Affiliation(s)
- Alberto J Cardenas-Padilla
- Laboratorio de Reproducción Animal, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, 54714, Estado de México, Mexico.
| | | | - Marco Cerbon
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Araceli Chavez-Garcia
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Norma B Cruz-Cano
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, Estado de México, Mexico.
| | - Martin Martinez-Torres
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, Estado de México, Mexico.
| | - Alicia Alcantar-Rodriguez
- Laboratorio de Reproducción Animal, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, 54714, Estado de México, Mexico.
| | - Alfredo Medrano
- Laboratorio de Reproducción Animal, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, 54714, Estado de México, Mexico.
| |
Collapse
|
17
|
Sasaki H, Mizuta K. Diurnal variation in asthma symptoms: Exploring the role of melatonin. J Oral Biosci 2024; 66:519-524. [PMID: 38925352 DOI: 10.1016/j.job.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Asthma is a common chronic inflammatory disease affecting more than 260 million people worldwide. Nocturnal exacerbations of asthma symptoms significantly affect sleep quality and contribute to the most serious asthma exacerbations, which can lead to respiratory failure or death. Although β2-adrenoceptor agonists are the standard of care for asthma, their bronchodilatory effect for nocturnal asthma is limited, and medications that specifically target symptoms of nocturnal asthma are lacking. HIGHLIGHT Melatonin, which is secreted by the pineal gland, plays a crucial role in regulating circadian rhythms. Peak serum melatonin concentrations, which are inversely correlated with diurnal changes in pulmonary function, are higher in patients with nocturnal asthma than in healthy individuals. Melatonin potentiates bronchoconstriction through the melatonin MT2 receptor expressed in the smooth muscles of the airway and attenuates the bronchodilatory effects of β2-adrenoceptor agonists, thereby exacerbating asthma symptoms. Melatonin inhibits mucus secretion and airway inflammation, potentially ameliorating asthma symptoms. CONCLUSION Melatonin may exacerbate or ameliorate various pathophysiological conditions associated with asthma. As a potential therapeutic agent for asthma, the balance between its detrimental effects on airway smooth muscles and its beneficial effects on mucus production and inflammation remains unclear. Further studies are needed to elucidate whether melatonin worsens or improves asthma symptoms.
Collapse
Affiliation(s)
- Haruka Sasaki
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan.
| | - Kentaro Mizuta
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan.
| |
Collapse
|
18
|
Hagström A, Kal Omar R, Witzenhausen H, Lardner E, Abdiu O, Stålhammar G. Melatonin Receptor Expression in Primary Uveal Melanoma. Int J Mol Sci 2024; 25:8711. [PMID: 39201396 PMCID: PMC11354273 DOI: 10.3390/ijms25168711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Melatonin, noted for its anti-cancer properties in various malignancies, including cutaneous melanoma, shows promise in Uveal melanoma (UM) treatment. This study aimed to evaluate melatonin receptor expression in primary UM and its association with UM-related mortality and prognostic factors. Immunohistochemical analysis of 47 primary UM tissues showed low expression of melatonin receptor 1A (MTNR1A) and melatonin receptor 1B (MTNR1B), with MTNR1A significantly higher in patients who succumbed to UM. Analysis of TCGA data from 80 UM patients revealed RNA expression for MTNR1A, retinoic acid-related orphan receptor alpha (RORα), and N-ribosyldihydronicotinamide:quinone oxidoreductase (NQO2), but not MTNR1B or G protein-coupled receptor 50 (GPR50). Higher MTNR1A RNA levels were observed in patients with a BRCA1 Associated Protein 1 (BAP1) mutation, and higher NQO2 RNA levels were noted in patients with the epithelioid tumor cell type. However, Kaplan-Meier analysis did not show distinct survival probabilities based on receptor expression. This study concludes that UM clinical samples express melatonin receptors, suggesting a potential mechanism for melatonin's anti-cancer effects. Despite finding higher MTNR1A expression in patients who died of UM, no survival differences were observed.
Collapse
MESH Headings
- Humans
- Uveal Neoplasms/metabolism
- Uveal Neoplasms/genetics
- Uveal Neoplasms/pathology
- Uveal Neoplasms/mortality
- Melanoma/metabolism
- Melanoma/genetics
- Melanoma/pathology
- Male
- Female
- Middle Aged
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT1/genetics
- Aged
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin Thiolesterase/genetics
- Receptor, Melatonin, MT2/metabolism
- Receptor, Melatonin, MT2/genetics
- Gene Expression Regulation, Neoplastic
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Prognosis
- Adult
- Aged, 80 and over
- Mutation
- Melatonin/metabolism
- Kaplan-Meier Estimate
Collapse
Affiliation(s)
- Anna Hagström
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.O.); (H.W.)
| | - Ruba Kal Omar
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.O.); (H.W.)
| | - Hans Witzenhausen
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.O.); (H.W.)
| | | | - Oran Abdiu
- Ögonspecialisterna Farsta, 12347 Stockholm, Sweden;
| | - Gustav Stålhammar
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.O.); (H.W.)
- St. Erik Eye Hospital, 17164 Stockholm, Sweden;
| |
Collapse
|
19
|
Martins TMDM, Ferrari FR, de Queiroz AA, Dalcin LDL, França DCH, Honório-França AC, França EL, Fagundes-Triches DLG. The Role of Melatonin in the Inflammatory Process in Patients with Hyperglycemia and Leishmania Infection. Biomolecules 2024; 14:950. [PMID: 39199338 PMCID: PMC11352828 DOI: 10.3390/biom14080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder that causes chronic high blood sugar levels, and diabetic patients are more susceptible to infections. American cutaneous leishmaniasis is an infectious disease caused by a parasite that affects the skin and mucous membranes, leading to one or multiple ulcerative lesions. Chronic inflammation and functional changes in various organs and systems, including the immune system, are the primary causes of both diseases. Melatonin, an essential immunomodulatory, antioxidant, and neuroprotective agent, can benefit many immunological processes and infectious diseases, including leishmaniasis. Although, limited reports are available on diabetic patients with leishmaniasis. The literature suggests that melatonin may play a promising role in inflammatory disorders. This study was designed to assess melatonin levels and inflammatory mediators in diabetic patients affected by leishmaniasis. Blood samples from 25 individuals were analyzed and divided into four groups: a control group (without any diseases), a Leishmania-positive group, patients with type 2 diabetes mellitus, and patients with a combination of both diseases. This study measured the serum levels of melatonin through ELISA, while IL-4 and TNF-α were measured using flow cytometry, and C-reactive protein was measured through turbidimetry. This study found that patients with leishmaniasis significantly increased TNF-α and decreased melatonin levels. However, the group of diabetic patients with leishmaniasis showed higher melatonin levels than the control group. These observations suggest that TNF-α may influence melatonin production in patients with American cutaneous leishmaniasis, potentially contributing to the inflammatory characteristics of both diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78605-091, MT, Brazil; (T.M.d.M.M.); (F.R.F.); (A.A.d.Q.); (L.D.L.D.); (D.C.H.F.); (D.L.G.F.-T.)
| | | |
Collapse
|
20
|
Paiva RVN, Mondes PHDL, Brandão BDJ, Sant’Anna JN, Freire dos Santos ME, Fighera YM, Santos LC, Markus RP, Fernandes PACM, Silva JF, Tamura EK. Effects of acute hypothyroidism on plasma melatonin and Aanat and Asmt expression in the pineal gland and gonads of rats. Front Endocrinol (Lausanne) 2024; 15:1322867. [PMID: 39149125 PMCID: PMC11324505 DOI: 10.3389/fendo.2024.1322867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction The reproductive system is tightly regulated by environmental and physiological signals. Melatonin, known as the hormone of darkness, plays a crucial role in regulating both the circadian and reproductive systems in mammals. Hypothyroidism is a key endocrine disorder that harms the reproductive system. Despite many studies on melatonin's effects on the reproductive system, there is conflicting information regarding melatonin synthesis modulation in hypothyroidism. The objective of this study was to investigate the modulation of plasma melatonin levels and gene expression of Aanat and Asmt in the pineal gland and gonads of rats with hypothyroidism at different times of the day. Methods Female and male Wistar rats were divided into control and hypothyroid groups. Hypothyroidism was induced using propylthiouracil (PTU) for 15 days, rats were euthanized six hours after lights on (ZT6), before lights off (ZT11.5), and six hours after lights off (ZT18). Free thyroxine (FT4) and melatonin were quantified in plasma, and gene expressions of melatonin synthesizing enzymes (Aanat and Asmt) were measured in pineal and sexual organs (testis and ovary). Also, morphological analysis was performed in sexual organs. Results The results reveal some disparities between the sexes. Hypothyroidism reduced antral and primary follicles in the ovary, and reduced the weight of testis, epididymis, and prostate. In relation to gene expression, we observed a reduction in Aanat expression in the pineal gland during the light phase (ZT6), and in males, this reduction occurred during the dark phase (ZT18). Regarding Asmt expression, there was a decrease in females also during the dark phase (ZT18). In the gonads, there was an increase in expression in both sexes at ZT11.5. Additionally, it was interesting to observe the association between FT4 levels and Asmt expression in the gonads. Conclusions This study showed that acute hypothyroidism can affect components of the melatonergic system in gonads, particularly gene expression of melatonin synthesis enzymes (Aanat and Asmt) contributing to changes in reproduction organs during disease progression. These findings enhance our understanding of melatonin synthesis in the reproductive system during hypothyroidism, showing distinct responses in male and female rats, and suggest that hypothyroidism affects the circadian rhythmicity of melatonin synthesis in a sex-dependent manner.
Collapse
Affiliation(s)
- Rafaella Valete Nunes Paiva
- Chronobiology Research Group, Department of Health Sciences, State University of Santa Cruz, Ilhéus, Brazil
- Reproduction and Endocrinology Research Center, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | - Beatriz de Jesus Brandão
- Chronobiology Research Group, Department of Health Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Julia Nascimento Sant’Anna
- Chronobiology Research Group, Department of Health Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | - Yasmin Muniz Fighera
- Chronobiology Research Group, Department of Health Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Luciano Cardoso Santos
- Reproduction and Endocrinology Research Center, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Regina P. Markus
- Chronopharmacology Laboratory, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Juneo Freitas Silva
- Reproduction and Endocrinology Research Center, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Eduardo Koji Tamura
- Chronobiology Research Group, Department of Health Sciences, State University of Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
21
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Duarte M, Pedrosa SS, Khusial PR, Madureira AR. Exploring the interplay between stress mediators and skin microbiota in shaping age-related hallmarks: A review. Mech Ageing Dev 2024; 220:111956. [PMID: 38906383 DOI: 10.1016/j.mad.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psychological stress is a major contributing factor to several health problems (e.g., depression, cardiovascular disease). Around 35 % of the world's population suffers from it, including younger generations. Physiologically, stress manifests through neuroendocrine pathways (Hypothalamic-Pituitary-Adrenal (HPA) axis and Sympathetic-Adrenal-Medullary (SAM) system) which culminate in the production of stress mediators like cortisol, epinephrine and norepinephrine. Stress and its mediators have been associated to body aging, through molecular mechanisms such as telomere attrition, mitochondrial dysfunction, cellular senescence, chronic inflammation, and dysbiosis, among others. Regarding its impact in the skin, stress impacts its structural integrity and physiological function. Despite this review focusing on several hallmarks of aging, emphasis was placed on skin microbiota dysbiosis. In this line, several studies, comprising different age groups, demographic contexts and body sites, have reported skin microbiota alterations associated with aging, and some effects of stress mediators on skin microbiota have also been reviewed in this paper. From a different perspective, since it is not a "traditional" stress mediator, oxytocin, a cortisol antagonist, has been related to glucorticoids inhibition and to display positive effects on cellular aging. This hormone dysregulation has been associated to psychological issues such as depression, whereas its upregulation has been linked to positive social interaction.
Collapse
Affiliation(s)
- Marco Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Sílvia Santos Pedrosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - P Raaj Khusial
- Amyris Biotech INC, 5885 Hollis St Ste 100, Emeryville, CA 94608-2405, USA
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
23
|
Dhande SK, Rathod SR, Kolte AP, Lathiya VN, Kasliwal PA. Clinicoradiographic comparative evaluation of 1% melatonin gel plus platelet-rich fibrin over platelet-rich fibrin alone in treatment of Grade II furcation defects: A randomized controlled double-blind clinical trial. J Periodontol 2024; 95:707-717. [PMID: 37515478 DOI: 10.1002/jper.23-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND The present study aims to evaluate and compare the effects of 1% melatonin gel plus platelet-rich fibrin (PRF) and PRF alone in treatment of furcation defects, clinically and radiographically using cone-beam computed tomography. METHODS This split-mouth clinical trial included 23 patients with 46 bilateral Grade II furcation defects in first or second maxillary or mandibular molars. Control group was treated with PRF alone while the test group was treated with 1% melatonin gel and PRF. Clinical attachment level (CAL) and horizontal probing depth (HPD) were primary outcome parameters while secondary outcome parameters were pocket probing depth (PPD) and defect volume (DV) assessed at 3 and 6 months postoperatively. RESULTS Significantly greater mean reduction of PPD, HPD, and CAL gain was observed in test group (2.23 ± 0.41, 2.36 ± 0.68, and 2.97 ± 0.62 mm, respectively) in comparison with control group (2.83 ± 0.78, 2.85 ± 0.67, and 3.21 ± 0.86 mm, respectively) at 6 months. A significant reduction in the mean DV was exhibited radiographically in test group (1.06 ± 0.5 mm3) as compared with control group (3.94 ± 1.32 mm3) at the end of 6 months. Both the groups showed improvements in assessed parameters. CONCLUSIONS In Grade II furcation defects the combination therapy of 1% melatonin + PRF shows a statistically significant degree of bone fill within the periodontal tissues and also better results in terms of decrease in PPD, HPD, and a greater CAL gain.
Collapse
Affiliation(s)
- Srushti K Dhande
- Department of Periodontics and Implantology, VSPM Dental College and Research Center, Nagpur, India
| | - Surekha R Rathod
- Department of Periodontics and Implantology, VSPM Dental College and Research Center, Nagpur, India
| | - Abhay P Kolte
- Department of Periodontics and Implantology, VSPM Dental College and Research Center, Nagpur, India
| | - Vrushali N Lathiya
- Department of Periodontics and Implantology, VSPM Dental College and Research Center, Nagpur, India
| | - Palak A Kasliwal
- Department of Periodontics and Implantology, VSPM Dental College and Research Center, Nagpur, India
| |
Collapse
|
24
|
Khafaji AWM, Al-Zubaidy AAK, Farhood IG, Salman HR. Ameliorative effects of topical ramelteon on imiquimod-induced psoriasiform inflammation in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6231-6248. [PMID: 38446218 DOI: 10.1007/s00210-024-03017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Psoriasis is a long-lasting, immune-related inflammatory skin disease that affects 2-3% of the global population. It is distinguished by erythematous, silvery, and scaly patches. Ramelteon is a type of melatonin agonist that is used to treat insomnia. It has enhanced non-classical immunomodulatory and anti-inflammatory activities. The aim of the study is to assess the ameliorative effects of topical ramelteon on imiquimod (IMQ)-aggravated psoriasiform-like dermatosis in mice. The 32 albino mouse males were placed into six groups of eight animals, all of them. With the exception of the control group, all groups gained a once-a-day regimen of topical imiquimod 5% cream at a dose of 62.5 mg for eight uninterrupted days, while mice in the control group gained vaseline-based ointment alternately. Immediately after an 8-day induction period in the imiquimod group, mice in the clobetasol and ramelteon treatment groups obtained a twice-daily regimen of topical clobetasol propionate 0.05% ointment and 0.1% ointment, respectively, for a further 8 days. This extends the total duration of the experimental study to 16 continuous days. The findings of our study found that ramelteon significantly mitigated the concentrations of inflammatory cytokines in the skin tissue, including interleukin (IL)-6, IL-17A, IL-23, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF), as well as the scores associated with psoriatic lesions, including erythema, scaling, skin thickening, ear thickness, and overall cumulative PASI scores. Additionally, the anti-inflammatory impact of ramelteon was achieved by markedly increasing IL-10 levels in the skin tissue and correcting cutaneous histopathological alterations. Ramelteon ointment (0.1%) was comparable to that of clobetasol (0.05%) ointment in alleviating a mouse model of imiquimod-induced psoriasiform inflammation; this is probably due to its potential anti-inflammatory and immunomodulatory activities. Therefore, ramelteon could be a good additive option for therapeutic management of immune-triggered inflammatory conditions such as psoriasis.
Collapse
Affiliation(s)
| | | | - Iqbal Ghalib Farhood
- Section of Dermatology and Venereology, Department of Medicine, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Hayder Ridha Salman
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, 510001, Hillah, Iraq
| |
Collapse
|
25
|
Korf HW, von Gall C. Mouse Models in Circadian Rhythm and Melatonin Research. J Pineal Res 2024; 76:e12986. [PMID: 38965880 DOI: 10.1111/jpi.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
This contribution reviews the role of inbred and transgenic mouse strains for deciphering the mammalian melatoninergic and circadian system. It focusses on the pineal organ as melatonin factory and two major targets of the melatoninergic system, the suprachiasmatic nuclei (SCN) and the hypophysial pars tuberalis (PT). Mammalian pinealocytes sharing molecular characteristics with true pineal and retinal photoreceptors synthesize and secrete melatonin into the blood and cerebrospinal fluid night by night. Notably, neuron-like connections exist between the deep pinealocytes and the habenular/pretectal region suggesting direct pineal-brain communication. Control of melatonin biosynthesis in rodents involves transcriptional regulation including phosphorylation of CREB and upregulation of mPer1. In the SCN, melatonin acts upon MT1 and MT2 receptors. Melatonin is not necessary to maintain the rhythm of the SCN molecular clockwork, but it has distinct effects on the synchronization of the circadian rhythm by light, facilitates re-entrainment of the circadian system to phase advances in the level of the SCN molecular clockwork by acting upon MT2 receptors and plays a stabilizing role in the circadian system as evidenced from locomotor activity recordings. While the effects in the SCN are subtle, melatonin is essential for PT functions. Via the MT1 receptor it drives the PT-intrinsic molecular clockwork and the retrograde and anterograde output pathways controlling seasonal rhythmicity. Although inbred and transgenic mice do not show seasonal reproduction, the pathways from the PT are fully intact if the animals are melatonin proficient. Thus, only melatonin-proficient strains are suited to investigate the circadian and melatoninergic systems.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
26
|
Megha KB, Arathi A, Shikha S, Alka R, Ramya P, Mohanan PV. Significance of Melatonin in the Regulation of Circadian Rhythms and Disease Management. Mol Neurobiol 2024; 61:5541-5571. [PMID: 38206471 DOI: 10.1007/s12035-024-03915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Melatonin, the 'hormone of darkness' is a neuronal hormone secreted by the pineal gland and other extra pineal sites. Responsible for the circadian rhythm and seasonal behaviour of vertebrates and mammals, melatonin is responsible for regulating various physiological conditions and the maintenance of sleep, body weight and the neuronal activities of the ocular sites. With its unique amphiphilic structure, melatonin can cross the cellular barriers and elucidate its activities in the subcellular components, including mitochondria. Melatonin is a potential scavenger of oxygen and nitrogen-reactive species and can directly obliterate the ROS and RNS by a receptor-independent mechanism. It can also regulate the pro- and anti-inflammatory cytokines in various pathological conditions and exhibit therapeutic activities against neurodegenerative, psychiatric disorders and cancer. Melatonin is also found to show its effects on major organs, particularly the brain, liver and heart, and also imparts a role in the modulation of the immune system. Thus, melatonin is a multifaceted candidate with immense therapeutic potential and is still considered an effective supplement on various therapies. This is primarily due to rectification of aberrant circadian rhythm by improvement of sleep quality associated with risk development of neurodegenerative, cognitive, cardiovascular and other metabolic disorders, thereby enhancing the quality of life.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Saini Shikha
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Rao Alka
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Prabhu Ramya
- P.G. Department of Biotechnology, Government Arts College, Trivandrum, 695 014, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|
27
|
Chen SJ, Chien HC, Tsai SH, Jheng YS, Chen Y, Hsieh PS, Tsui PF, Chien S, Tsai MC. Melatonin Ameliorates Atherosclerotic Plaque Vulnerability by Regulating PPARδ-Associated Smooth Muscle Cell Phenotypic Switching. J Pineal Res 2024; 76:e12988. [PMID: 38982751 DOI: 10.1111/jpi.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Vulnerable atherosclerotic plaque rupture, the leading cause of fatal atherothrombotic events, is associated with an increased risk of mortality worldwide. Peroxisome proliferator-activated receptor delta (PPARδ) has been shown to modulate vascular smooth muscle cell (SMC) phenotypic switching, and, hence, atherosclerotic plaque stability. Melatonin reportedly plays a beneficial role in cardiovascular diseases; however, the mechanisms underlying improvements in atherosclerotic plaque vulnerability remain unknown. In this study, we assessed the role of melatonin in regulating SMC phenotypic switching and its consequential contribution to the amelioration of atherosclerotic plaque vulnerability and explored the mechanisms underlying this process. We analyzed features of atherosclerotic plaque vulnerability and markers of SMC phenotypic transition in high-cholesterol diet (HCD)-fed apolipoprotein E knockout (ApoE-/-) mice and human aortic SMCs (HASMCs). Melatonin reduced atherosclerotic plaque size and necrotic core area while enhancing collagen content, fibrous cap thickness, and smooth muscle alpha-actin positive cell coverage on the plaque cap, which are all known phenotypic characteristics of vulnerable plaques. In atherosclerotic lesions, melatonin significantly decreased the synthetic SMC phenotype and KLF4 expression and increased the expression of PPARδ, but not PPARα and PPARγ, in HCD-fed ApoE-/- mice. These results were subsequently confirmed in the melatonin-treated HASMCs. Further analysis using PPARδ silencing and immunoprecipitation assays revealed that PPARδ plays a role in the melatonin-induced SMC phenotype switching from synthetic to contractile. Collectively, we provided the first evidence that melatonin mediates its protective effect against plaque destabilization by enhancing PPARδ-mediated SMC phenotypic switching, thereby indicating the potential of melatonin in treating atherosclerosis.
Collapse
MESH Headings
- Animals
- Melatonin/pharmacology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Kruppel-Like Factor 4/metabolism
- Humans
- PPAR delta/metabolism
- PPAR delta/genetics
- Mice, Knockout
- Male
- Mice, Knockout, ApoE
- Phenotype
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Apolipoproteins E/deficiency
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Che Chien
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Sin Jheng
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yi Chen
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Pi-Fen Tsui
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Shu Chien
- Department of Bioengineering and Medicine, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
28
|
Wei CY, Zhang X, Si LN, Shu WH, Jiang SN, Ding PJ, Cheng LY, Sun TC, Yang SH. Melatonin activates Nrf2/HO-1 signalling pathway to antagonizes oxidative stress-induced injury via melatonin receptor 1 (MT1) in cryopreserved mice ovarian tissue. Reprod Domest Anim 2024; 59:e14598. [PMID: 38881434 DOI: 10.1111/rda.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 06/18/2024]
Abstract
Our previous research has shown that melatonin (MLT) can reduce cryopreserved ovarian damage in mice. Yet, the molecular mechanism of MLT protection is still unclear. Some studies have shown that melatonin receptor 1 (MT1) is very important for animal reproductive system. To evaluate whether MLT exerts its protective effect on cryopreserved mice ovarian tissue via MT1, we added antagonist of MT1/MT2 (Luzindor) or antagonist of MT2 (4P-PDOT) to the freezing solution, followed by cryopreservation and thawing of ovarian tissue. The levels of total superoxide dismutase (T-SOD), catalase (CAT), nitric oxide (NO) and malondialdehyde (MDA) were detected. Besides, by using RT-PCR and Western blotting, the expression of Bcl-2, Bax and Nrf2/HO-1 signalling pathway-related proteins was detected. These findings demonstrated that compared with the melatonin group, the addition of Luzindor increased apoptosis, NO and MDA activities, decreased CAT and T-SOD activities and inhibited Nrf2/HO-1 signalling pathway. In conclusion, melatonin can play a protective role in cryopreserved ovarian tissue of mice through MT1 receptor.
Collapse
Affiliation(s)
- Chen Yang Wei
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei, China
| | - Xin Zhang
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei, China
| | - Li Na Si
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei, China
| | - Wei Han Shu
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Immunology, Chengde Medical University, Chengde, Hebei, China
| | - Sheng Nan Jiang
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Immunology, Chengde Medical University, Chengde, Hebei, China
| | - Pei Jian Ding
- Department of Gastrointestinal Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Lu Yang Cheng
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Immunology, Chengde Medical University, Chengde, Hebei, China
| | - Tie Cheng Sun
- HLA Laboratory, Beijing Red Cross Blood Center, Beijing, China
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Song He Yang
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
29
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
30
|
Juiz PJL, Ferreira LTB, Pires EA, Villarreal CF. Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis. Antioxidants (Basel) 2024; 13:566. [PMID: 38790671 PMCID: PMC11117607 DOI: 10.3390/antiox13050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontal disease is an inflammatory condition characterized by an aberrant immune response against a dysbiotic dental biofilm, with oxidative stress performing an essential role in its pathogenesis. This paper presents a patent mining, performed in the Orbit Intelligence patent database, related to antioxidant phytochemicals in the technological developments that are working to prevent and treat periodontal disease. To access the documents, the descriptors "PERIODONTAL" and "ANTIOXIDANT" were typed in the title, abstract, and claim search fields. A total of 322 patents demonstrate the growing interest in researching natural antioxidants for scientific and technological purposes. The top ten countries regarding the number of family patents produced were the United States, the European Office, Japan, South Korea, China, India, Mexico, Denmark, Canada, and Great Britain. The most cited compounds were vitamin C, green tea, quercetin, melatonin, lycopene, resveratrol, and curcumin. These compounds have been used for the technological development of gels, membranes, dentifrices, chewing gum, orally disintegrating film, mouthwash, mouth spray, and mouth massage cream and exhibit the ability to neutralize free radicals and reduce oxidative stress, a critical factor in the development and progression of periodontal diseases. The patent documents have shown that using antioxidant compounds in conjunction with traditional periodontal treatments is a promising area of interest in periodontal therapy.
Collapse
Affiliation(s)
- Paulo José Lima Juiz
- Center for Science and Technology in Energy and Sustainability, Federal University of Recôncavo da Bahia, Feira de Santana 44042-280, BA, Brazil; (P.J.L.J.); (L.T.B.F.)
| | - Luiza Teles Barbalho Ferreira
- Center for Science and Technology in Energy and Sustainability, Federal University of Recôncavo da Bahia, Feira de Santana 44042-280, BA, Brazil; (P.J.L.J.); (L.T.B.F.)
| | - Edilson Araújo Pires
- Faculty of Education and Integrated Sciences of Sertão de Canindé, State University of Ceará, Canindé 62700-000, CE, Brazil;
| | | |
Collapse
|
31
|
Guan Q, Wang Z, Cao J, Dong Y, Tang S, Chen Y. Melatonin restores hepatic lipid metabolic homeostasis disrupted by blue light at night in high-fat diet-fed mice. J Pineal Res 2024; 76:e12963. [PMID: 38779971 DOI: 10.1111/jpi.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Artificial light at night (ALAN) is an emerging environmental pollutant that threatens public health. Recently, ALAN has been identified as a risk factor for obesity; however, the role of ALAN and its light wavelength in hepatic lipid metabolic homeostasis remains undetermined. We showed that chronic dim (~5 lx) ALAN (dLAN) exposure significantly promoted hepatic lipid accumulation in obese or diabetic mice, with the most severe effect of blue light and little effect of green or red light. These metabolic phenotypes were attributed to blue rather than green or red dLAN interfering with hepatic lipid metabolism, especially lipogenesis and lipolysis. Further studies found that blue dLAN disrupted hepatic lipogenesis and lipolysis processes by inhibiting hepatic REV-ERBs. Mechanistically, feeding behavior mediated the regulation of dLAN on hepatic REV-ERBs. In addition, different effects of light wavelengths at night on liver REV-ERBs depended on the activation of the corticosterone (CORT)/glucocorticoid receptor (GR) axis. Blue dLAN could activate the CORT/GR axis significantly while other wavelengths could not. Notably, we demonstrated that exogenous melatonin could effectively inhibit hepatic lipid accumulation and restore the hepatic GR/REV-ERBs axis disrupted by blue dLAN. These findings demonstrate that dLAN promotes hepatic lipid accumulation in mice via a short-wavelength-dependent manner, and exogenous melatonin is a potential therapeutic approach. This study strengthens the relationship between ALAN and hepatic lipid metabolism and provides insights into directing ambient light.
Collapse
Affiliation(s)
- Qingyun Guan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
| | - Zixu Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
| | - Jing Cao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
32
|
Challet E, Pévet P. Melatonin in energy control: Circadian time-giver and homeostatic monitor. J Pineal Res 2024; 76:e12961. [PMID: 38751172 DOI: 10.1111/jpi.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Melatonin is a neurohormone synthesized from dietary tryptophan in various organs, including the pineal gland and the retina. In the pineal gland, melatonin is produced at night under the control of the master clock located in the suprachiasmatic nuclei of the hypothalamus. Under physiological conditions, the pineal gland seems to constitute the unique source of circulating melatonin. Melatonin is involved in cellular metabolism in different ways. First, the circadian rhythm of melatonin helps the maintenance of proper internal timing, the disruption of which has deleterious effects on metabolic health. Second, melatonin modulates lipid metabolism, notably through diminished lipogenesis, and it has an antidiabetic effect, at least in several animal models. Third, pharmacological doses of melatonin have antioxidative, free radical-scavenging, and anti-inflammatory properties in various in vitro cellular models. As a result, melatonin can be considered both a circadian time-giver and a homeostatic monitor of cellular metabolism, via multiple mechanisms of action that are not all fully characterized. Aging, circadian disruption, and artificial light at night are conditions combining increased metabolic risks with diminished circulating levels of melatonin. Accordingly, melatonin supplementation could be of potential therapeutic value in the treatment or prevention of metabolic disorders. More clinical trials in controlled conditions are needed, notably taking greater account of circadian rhythmicity.
Collapse
Affiliation(s)
- Etienne Challet
- Centre National de la Recherche Scientifique (CNRS), Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Paul Pévet
- Centre National de la Recherche Scientifique (CNRS), Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
Cheng J, Xu J, Gu Y, Wang Y, Wang J, Sun F. Melatonin ameliorates 10-hydroxycamptothecin-induced oxidative stress and apoptosis via autophagy-regulated p62/Keap1/Nrf2 pathway in mouse testicular cells. J Pineal Res 2024; 76:e12959. [PMID: 38738543 DOI: 10.1111/jpi.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
10-Hydroxycamptothecin (HCPT) is a widely used clinical anticancer drug but has a significant side effect profile. Melatonin has a beneficial impact on the chemotherapy of different cancer cells and reproductive processes, but the effect and underlying molecular mechanism of melatonin's involvement in the HCPT-induced side effects in cells, especially in the testicular cells, are poorly understood. In this study, we found that melatonin therapy significantly restored HCPT-induced testicular cell damage and did not affect the antitumor effect of HCPT. Further analysis found that melatonin therapy suppressed HCPT-induced DNA damage associated with ataxia-telangiectasia mutated- and Rad3-related and CHK1 phosphorylation levels in the testis. Changes in apoptosis-associated protein levels (Bax, Bcl-2, p53, and Cleaved caspase-3) and in reactive oxygen species-associated proteins (Nrf2 and Keap1) and index (malondialdehyde and glutathione) suggested that melatonin treatment relieved HCPT-induced cell apoptosis and oxidative damage, respectively. Mechanistically, melatonin-activated autophagy proteins (ATG7, Beclin1, and LC3bII/I) may induce p62-dependent autophagy to degrade Keap1, eliciting Nrf2 from Keap1-Nrf2 interaction to promote antioxidant enzyme expression such as HO-1, which would salvage HCPT-induced ROS production and mitochondrial dysfunction. Collectively, this study reveals that melatonin therapy may protect testicular cells from HCPT-induced damage via the activation of autophagy, which alleviates oxidative stress, mitochondrial dysfunction, and cell apoptosis.
Collapse
Affiliation(s)
- Jinmei Cheng
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Junjie Xu
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yimin Gu
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Yueming Wang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Jianyu Wang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Fei Sun
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
34
|
Romano IR, D’Angeli F, Gili E, Fruciano M, Lombardo GAG, Mannino G, Vicario N, Russo C, Parenti R, Vancheri C, Giuffrida R, Pellitteri R, Lo Furno D. Melatonin Enhances Neural Differentiation of Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:4891. [PMID: 38732109 PMCID: PMC11084714 DOI: 10.3390/ijms25094891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.
Collapse
Affiliation(s)
- Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (E.G.); (M.F.); (C.V.)
| | - Mary Fruciano
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (E.G.); (M.F.); (C.V.)
| | | | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (E.G.); (M.F.); (C.V.)
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy;
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| |
Collapse
|
35
|
Jurjus A, El Masri J, Ghazi M, El Ayoubi LM, Soueid L, Gerges Geagea A, Jurjus R. Mechanism of Action of Melatonin as a Potential Adjuvant Therapy in Inflammatory Bowel Disease and Colorectal Cancer. Nutrients 2024; 16:1236. [PMID: 38674926 PMCID: PMC11054672 DOI: 10.3390/nu16081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a continuum of chronic inflammatory diseases, is tightly associated with immune system dysregulation and dysbiosis, leading to inflammation in the gastrointestinal tract (GIT) and multiple extraintestinal manifestations. The pathogenesis of IBD is not completely elucidated. However, it is associated with an increased risk of colorectal cancer (CRC), which is one of the most common gastrointestinal malignancies. In both IBD and CRC, a complex interplay occurs between the immune system and gut microbiota (GM), leading to the alteration in GM composition. Melatonin, a neuroendocrine hormone, was found to be involved with this interplay, especially since it is present in high amounts in the gut, leading to some protective effects. Actually, melatonin enhances the integrity of the intestinal mucosal barrier, regulates the immune response, alleviates inflammation, and attenuates oxidative stress. Thereby, the authors summarize the multifactorial interaction of melatonin with IBD and with CRC, focusing on new findings related to the mechanisms of action of this hormone, in addition to its documented positive outcomes on the treatment of these two pathologies and possible future perspectives to use melatonin as an adjuvant therapy.
Collapse
Affiliation(s)
- Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | - Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | | | - Lara Soueid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| |
Collapse
|
36
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
37
|
Guo Q, Zhao M, Wang Q, Lu T, Luo P, Chen L, Xia F, Pang H, Shen S, Cheng G, Dai C, Meng Y, Zhong T, Qiu C, Wang J. Glycyrrhetinic acid inhibits non-small cell lung cancer via promotion of Prdx6- and caspase-3-mediated mitochondrial apoptosis. Biomed Pharmacother 2024; 173:116304. [PMID: 38401519 DOI: 10.1016/j.biopha.2024.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Glycyrrhetinic acid (GA) shows great efficiency against non-small cell lung cancer (NSCLC), but the detailed mechanism is unclear, which has limited its clinical application. Herein, we investigated the potential targets of GA against NSCLC by activity-based protein profiling (ABPP) technology and the combination of histopathology and proteomics validation. In vitro and in vivo results indicated GA significantly inhibited NSCLC via promotion of peroxiredoxin-6 (Prdx6) and caspase-3 (Casp3)-mediated mitochondrial apoptosis. This original finding will provide theoretical and data support to improve the treatment of NSCLC with the application of GA.
Collapse
Affiliation(s)
- Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Minghong Zhao
- First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Ganzhou, Jiangxi 341000, China
| | - Qixin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tianming Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Piao Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chuanhao Dai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tianyu Zhong
- First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Ganzhou, Jiangxi 341000, China.
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| |
Collapse
|
38
|
Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel) 2024; 17:441. [PMID: 38675402 PMCID: PMC11054783 DOI: 10.3390/ph17040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a ubiquitous molecule found in living organisms, ranging from bacteria to plants and mammals. It possesses various properties, partly due to its robust antioxidant nature and partly owed to its specific interaction with melatonin receptors present in almost all tissues. Melatonin regulates different physiological functions and contributes to the homeostasis of the entire organism. In the human eye, a small amount of melatonin is also present, produced by cells in the anterior segment and the posterior pole, including the retina. In the eye, melatonin may provide antioxidant protection along with regulating physiological functions of ocular tissues, including intraocular pressure (IOP). Therefore, it is conceivable that the exogenous topical administration of sufficiently high amounts of melatonin to the eye could be beneficial in several instances: for the treatment of eye pathologies like glaucoma, due to the IOP-lowering and neuroprotection effects of melatonin; for the prevention of other dysfunctions, such as dry eye and refractive defects (cataract and myopia) mainly due to its antioxidant properties; for diabetic retinopathy due to its metabolic influence and neuroprotective effects; for macular degeneration due to the antioxidant and neuroprotective properties; and for uveitis, mostly owing to anti-inflammatory and immunomodulatory properties. This paper reviews the scientific evidence supporting the use of melatonin in different ocular districts. Moreover, it provides data suggesting that the topical administration of melatonin as eye drops is a real possibility, utilizing nanotechnological formulations that could improve its solubility and permeation through the eye. This way, its distribution and concentration in different ocular tissues may support its pleiotropic therapeutic effects.
Collapse
Affiliation(s)
- Dario Rusciano
- Fidia Research Centre, c/o University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| |
Collapse
|
39
|
Soares JM, Detanac D, Sengul I, Dugalic S, Sengul D, Detanac D. Melatonin, menopause, and thyroid function in gynecologic endocrinology: what is the role? REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e701EDIT. [PMID: 38511761 PMCID: PMC10941877 DOI: 10.1590/1806-9282.701edit] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 03/22/2024]
Affiliation(s)
- José Maria Soares
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Laboratório de Ginecologia Estrutural e Molecular, São Paulo (SP), Brazil
| | - Dzemail Detanac
- General Hospital Novi Pazar, Department of Surgery – Novi Pazar, Serbia
| | - Ilker Sengul
- Giresun University, Faculty of Medicine, Division of Endocrine Surgery – Giresun, Turkey
- Giresun University, Faculty of Medicine, Department of General Surgery – Giresun, Turkey
| | - Stefan Dugalic
- University Clinical Center of Serbia, Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics – Belgrade, Serbia
| | - Demet Sengul
- Giresun University, Faculty of Medicine, Department of Pathology – Giresun, Turkey
| | - Dzenana Detanac
- General Hospital Novi Pazar, Department of Ophthalmology – Novi Pazar, Serbia
| |
Collapse
|
40
|
Bicer E, Bese T, Tuzun DD, Ilvan S, Kayan BO, Demirkiran F. The Relationship Between Melatonin 1-2 Receptor Expression in Patients With Epithelial Ovarian Cancer and Survival. Int J Gynecol Pathol 2024; 43:190-199. [PMID: 37922887 DOI: 10.1097/pgp.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Melatonin has antiproliferative, antiangiogenic, apoptotic, and immunomodulatory properties in ovarian cancer. Considering those, we evaluated the relationship between melatonin 1 (MT1) and melatonin 2 receptor (MT2) expression in tumor tissues of patients with epithelial ovarian cancer, disease-free survival (DFS), and overall survival (OS). Patients who received primary surgical treatment for epithelial ovarian cancer in our clinic between 2000 and 2019 were retrospectively scanned through patient files, electronic databases, and telephone calls. One hundred forty-two eligible patients were included in the study, their tumoral tissues were examined to determine MT1 and MT2 expression by immunohistochemical methods. The percentage of receptor-positive cells and intensity of staining were determined. MT1 receptor expression ( P = 0.002 for DFS and P = 0.002 for OS) showed a significant effect on DFS and OS. MT2 expression had no effect on survival ( P = 0.593 for DFS and P = 0.209 for OS). The results showed that the higher the MT1 receptor expression, the longer the DFS and OS. It is suggested that melatonin should be considered as adjuvant therapy for ovarian cancer patients in addition to standard treatment, and clinical progress should be observed.
Collapse
|
41
|
Lempesis IG, Georgakopoulou VE, Reiter RJ, Spandidos DA. A mid‑pandemic night's dream: Melatonin, from harbinger of anti‑inflammation to mitochondrial savior in acute and long COVID‑19 (Review). Int J Mol Med 2024; 53:28. [PMID: 38299237 PMCID: PMC10852014 DOI: 10.3892/ijmm.2024.5352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Coronavirus disease 2019 (COVID‑19), a systemic illness caused by severe acute respiratory distress syndrome 2 (SARS‑CoV‑2), has triggered a worldwide pandemic with symptoms ranging from asymptomatic to chronic, affecting practically every organ. Melatonin, an ancient antioxidant found in all living organisms, has been suggested as a safe and effective therapeutic option for the treatment of SARS‑CoV‑2 infection due to its good safety characteristics and broad‑spectrum antiviral medication properties. Melatonin is essential in various metabolic pathways and governs physiological processes, such as the sleep‑wake cycle and circadian rhythms. It exhibits oncostatic, anti‑inflammatory, antioxidant and anti‑aging properties, exhibiting promise for use in the treatment of numerous disorders, including COVID‑19. The preventive and therapeutic effects of melatonin have been widely explored in a number of conditions and have been well‑established in experimental ischemia/reperfusion investigations, particularly in coronary heart disease and stroke. Clinical research evaluating the use of melatonin in COVID‑19 has shown various improved outcomes, including reduced hospitalization durations; however, the trials are small. Melatonin can alleviate mitochondrial dysfunction in COVID‑19, improve immune cell function and provide antioxidant properties. However, its therapeutic potential remains underexplored due to funding limitations and thus further investigations are required.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
42
|
Tain YL, Hsu CN. Melatonin Use during Pregnancy and Lactation Complicated by Oxidative Stress: Focus on Offspring's Cardiovascular-Kidney-Metabolic Health in Animal Models. Antioxidants (Basel) 2024; 13:226. [PMID: 38397824 PMCID: PMC10886428 DOI: 10.3390/antiox13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome has emerged as a major global public health concern, posing a substantial threat to human health. Early-life exposure to oxidative stress may heighten vulnerability to the developmental programming of adult diseases, encompassing various aspects of CKM syndrome. Conversely, the initiation of adverse programming processes can potentially be thwarted through early-life antioxidant interventions. Melatonin, originally recognized for its antioxidant properties, is an endogenous hormone with diverse biological functions. While melatonin has demonstrated benefits in addressing disorders linked to oxidative stress, there has been comparatively less focus on investigating its reprogramming effects on CKM syndrome. This review consolidates the current knowledge on the role of oxidative stress during pregnancy and lactation in inducing CKM traits in offspring, emphasizing the underlying mechanisms. The multifaceted role of melatonin in regulating oxidative stress, mediating fetal programming, and preventing adverse outcomes in offspring positions it as a promising reprogramming strategy. Currently, there is a lack of sufficient information in humans, and the available evidence primarily originates from animal studies. This opens up new avenues for novel preventive intervention in CKM syndrome.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
43
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
44
|
Abuzahra M, Wijayanti D, Effendi MH, Mustofa I, Lamid M. Association of melatonin receptor 1 A with litter size in sheep: A review. F1000Res 2024; 12:900. [PMID: 38322310 PMCID: PMC10844802 DOI: 10.12688/f1000research.134890.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Sheep are a valuable livestock species worldwide, providing meat, milk, and various dairy products. This article aims to review the latest literature on the melatonin receptor 1A (MTNR1A) gene as a potential candidate gene associated with reproductive traits, particularly the litter size trait in sheep, by searching various databases for available literature. Studies have shown that different parts of the MTNR1A gene play various roles in sheep. By identifying marker genes associated with reproductive traits in MTNR1A polymorphisms linked to the litter size trait, breeders can achieve a faster selection response in sheep breeding by recognizing the genomic region where these genes are located and understanding their physiological functions. Therefore, highlighting the literature on these functions and their association with reproductive traits may contribute to improving the genetic makeup during sheep breeding.
Collapse
Affiliation(s)
| | - Dwi Wijayanti
- Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, West Java, 46115, Indonesia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Mustofa
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mirni Lamid
- Department of Animal Husbandry, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
45
|
Postolache TT, Al Tinawi QM, Gragnoli C. The melatonin receptor genes are linked and associated with the risk of polycystic ovary syndrome. J Ovarian Res 2024; 17:17. [PMID: 38217063 PMCID: PMC10787433 DOI: 10.1186/s13048-024-01343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a genetically complex disorder that involves the interplay of multiple genes and environmental factors. It is characterized by anovulation and irregular menses and is associated with type 2 diabetes. Neuroendocrine pathways and ovarian and adrenal dysfunctions are possibly implicated in the disorder pathogenesis. The melatonin system plays a role in PCOS. Melatonin receptors are expressed on the surface of ovarian granulosa cells, and variations in the melatonin receptor genes have been associated with increased risk of PCOS in both familial and sporadic cases. We have recently reported the association of variants in MTNR1A and MTNR1B genes with familial type 2 diabetes. In this study, we aimed to investigate whether MTNR1A and MTNR1B contribute to PCOS risk in peninsular families. In 212 Italian families phenotyped for PCOS, we amplified by microarray 14 variants in the MTNR1A gene and 6 variants in the MTNR1B gene and tested them for linkage and linkage disequilibrium with PCOS. We detected 4 variants in the MTNR1A gene and 2 variants in the MTNR1B gene significantly linked and/or in linkage disequilibrium with the risk of PCOS (P < 0.05). All variants are novel and have not been reported before with PCOS or any of its related phenotypes, except for 3 variants previously reported by us to confer risk for type 2 diabetes and 1 variant for type 2 diabetes-depression comorbidity. These findings implicate novel melatonin receptor genes' variants in the risk of PCOS with potential functional roles.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Consortium for Research and Education (MVM-CoRE), Denver, CO, 80246, USA
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, 21090, USA
| | - Qamar M Al Tinawi
- Department of Medicine, Creighton University School of Medicine, Omaha, NE, 68124, USA
| | - Claudia Gragnoli
- Department of Medicine, Creighton University School of Medicine, Omaha, NE, 68124, USA.
- Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE, 68124, USA.
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA.
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, 00197, Italy.
| |
Collapse
|
46
|
Rai S, Roy G, Hajam YA. Melatonin: a modulator in metabolic rewiring in T-cell malignancies. Front Oncol 2024; 13:1248339. [PMID: 38260850 PMCID: PMC10800968 DOI: 10.3389/fonc.2023.1248339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Melatonin, (N-acetyl-5-methoxytryptamine) an indoleamine exerts multifaced effects and regulates numerous cellular pathways and molecular targets associated with circadian rhythm, immune modulation, and seasonal reproduction including metabolic rewiring during T cell malignancy. T-cell malignancies encompass a group of hematological cancers characterized by the uncontrolled growth and proliferation of malignant T-cells. These cancer cells exhibit a distinct metabolic adaptation, a hallmark of cancer in general, as they rewire their metabolic pathways to meet the heightened energy requirements and biosynthesis necessary for malignancies is the Warburg effect, characterized by a shift towards glycolysis, even when oxygen is available. In addition, T-cell malignancies cause metabolic shift by inhibiting the enzyme pyruvate Dehydrogenase Kinase (PDK) which in turn results in increased acetyl CoA enzyme production and cellular glycolytic activity. Further, melatonin plays a modulatory role in the expression of essential transporters (Glut1, Glut2) responsible for nutrient uptake and metabolic rewiring, such as glucose and amino acid transporters in T-cells. This modulation significantly impacts the metabolic profile of T-cells, consequently affecting their differentiation. Furthermore, melatonin has been found to regulate the expression of critical signaling molecules involved in T-cell activations, such as CD38, and CD69. These molecules are integral to T-cell adhesion, signaling, and activation. This review aims to provide insights into the mechanism of melatonin's anticancer properties concerning metabolic rewiring during T-cell malignancy. The present review encompasses the involvement of oncogenic factors, the tumor microenvironment and metabolic alteration, hallmarks, metabolic reprogramming, and the anti-oncogenic/oncostatic impact of melatonin on various cancer cells.
Collapse
Affiliation(s)
- Seema Rai
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Gunja Roy
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Bhag Singh University, Jalandhar, India
| |
Collapse
|
47
|
Pourhanifeh MH, Hosseinzadeh A, Koosha F, Reiter RJ, Mehrzadi S. Therapeutic Effects of Melatonin in the Regulation of Ferroptosis: A Review of Current Evidence. Curr Drug Targets 2024; 25:543-557. [PMID: 38706348 DOI: 10.2174/0113894501284110240426074746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Ferroptosis is implicated in the pathogenesis of multiple diseases, including neurodegenerative diseases, cardiovascular diseases, kidney pathologies, ischemia-reperfusion injury, and cancer. The current review article highlights the involvement of ferroptosis in traumatic brain injury, acute kidney damage, ethanol-induced liver injury, and PM2.5-induced lung injury. Melatonin, a molecule produced by the pineal gland and many other organs, is well known for its anti- aging, anti-inflammatory, and anticancer properties and is used in the treatment of different diseases. Melatonin's ability to activate anti-ferroptosis pathways including sirtuin (SIRT)6/p- nuclear factor erythroid 2-related factor 2 (Nrf2), Nrf2/ antioxidant responsive element (ARE)/ heme oxygenase (HO-1)/SLC7A11/glutathione peroxidase (GPX4)/ prostaglandin-endoperoxide synthase 2 (PTGS2), extracellular signal-regulated kinase (ERK)/Nrf2, ferroportin (FPN), Hippo/ Yes-associated protein (YAP), Phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and SIRT6/ nuclear receptor coactivator 4 (NCOA4)/ ferritin heavy chain 1 (FTH1) signaling pathways suggests that it could serve as a valuable therapeutic agent for preventing cell death associated with ferroptosis in various diseases. Further research is needed to fully understand the precise mechanisms by which melatonin regulates ferroptosis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular & Structural Biology, University of Texas, Health Science Center, San Antonio, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
LeFort KR, Rungratanawanich W, Song BJ. Melatonin Prevents Alcohol- and Metabolic Dysfunction- Associated Steatotic Liver Disease by Mitigating Gut Dysbiosis, Intestinal Barrier Dysfunction, and Endotoxemia. Antioxidants (Basel) 2023; 13:43. [PMID: 38247468 PMCID: PMC10812487 DOI: 10.3390/antiox13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Melatonin (MT) has often been used to support good sleep quality, especially during the COVID-19 pandemic, as many have suffered from stress-related disrupted sleep patterns. It is less known that MT is an antioxidant, anti-inflammatory compound, and modulator of gut barrier dysfunction, which plays a significant role in many disease states. Furthermore, MT is produced at 400-500 times greater concentrations in intestinal enterochromaffin cells, supporting the role of MT in maintaining the functions of the intestines and gut-organ axes. Given this information, the focus of this article is to review the functions of MT and the molecular mechanisms by which it prevents alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), including its metabolism and interactions with mitochondria to exert its antioxidant and anti-inflammatory activities in the gut-liver axis. We detail various mechanisms by which MT acts as an antioxidant, anti-inflammatory compound, and modulator of intestinal barrier function to prevent the progression of ALD and MASLD via the gut-liver axis, with a focus on how these conditions are modeled in animal studies. Using the mechanisms of MT prevention and animal studies described, we suggest behavioral modifications and several exogenous sources of MT, including food and supplements. Further clinical research should be performed to develop the field of MT in preventing the progression of liver diseases via the gut-liver axis, so we mention a few considerations regarding MT supplementation in the context of clinical trials in order to advance this field of research.
Collapse
Affiliation(s)
- Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | | | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| |
Collapse
|
49
|
Fernández-Martínez J, Ramírez-Casas Y, Yang Y, Aranda-Martínez P, Martínez-Ruiz L, Escames G, Acuña-Castroviejo D. From Chronodisruption to Sarcopenia: The Therapeutic Potential of Melatonin. Biomolecules 2023; 13:1779. [PMID: 38136651 PMCID: PMC10741491 DOI: 10.3390/biom13121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Sarcopenia is an age-related condition that involves a progressive decline in muscle mass and function, leading to increased risk of falls, frailty, and mortality. Although the exact mechanisms are not fully understood, aging-related processes like inflammation, oxidative stress, reduced mitochondrial capacity, and cell apoptosis contribute to this decline. Disruption of the circadian system with age may initiate these pathways in skeletal muscle, preceding the onset of sarcopenia. At present, there is no pharmacological treatment for sarcopenia, only resistance exercise and proper nutrition may delay its onset. Melatonin, derived from tryptophan, emerges as an exceptional candidate for treating sarcopenia due to its chronobiotic, antioxidant, and anti-inflammatory properties. Its impact on mitochondria and organelle, where it is synthesized and crucial in aging skeletal muscle, further highlights its potential. In this review, we discuss the influence of clock genes in muscular aging, with special reference to peripheral clock genes in the skeletal muscle, as well as their relationship with melatonin, which is proposed as a potential therapy against sarcopenia.
Collapse
Affiliation(s)
- José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China;
| | - Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Laura Martínez-Ruiz
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
50
|
Mubashshir M, Ahmad N, Negi T, Sharma RB, Sköld HN, Ovais M. Exploring the mechanisms and impacts of melatonin on fish colouration. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1511-1525. [PMID: 37982969 DOI: 10.1007/s10695-023-01271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
The pineal hormone melatonin is a multi-functional molecule with a recognized role in pigment aggregation in chromatophores, mediating its actions through binding to subtypes of its specific receptors. Since its discovery, melatonin has been known to be responsible for pigment aggregation towards the cell centre in fishes, including their embryos, as an adaptation to reduced light and thus results in pale body colouration. Diversity exists in the sensitivity of melanophores towards melatonin at interspecies, intraspecific levels, seasons, and amongst chromatophores at different regions of the animal body. In most of the fishes, melatonin leads to their skin paling at night. It is indicated that the melatonin receptors have characteristically maintained to show the same aggregating effects in fishes and other vertebrates in the evolutionary hierarchy. However, besides this aggregatory effect, melatonin is also responsible for pigment dispersion in certain fishes. Here is the demand in our review to explore further the nature of the dispersive behaviour of melatonin through the so-called β-melatonin receptors. It is clear that the pigment translocations in lower vertebrates under the effect of melatonin are mediated through the melatonin receptors coupled with other hormonal receptors as well. Therefore, being richly supplied with a variety of receptors, chromatophores and melanocytes can be used as in vitro test models for pharmacological applications of known and novel drugs. In this review, we present diverse effects of melatonin on chromatophores of fishes in particular with appropriate implications on most of the recent findings.
Collapse
Affiliation(s)
- Muhammad Mubashshir
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, 248007, India.
- Department of Life Sciences, Faculty of Basic & Applied Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, 248007, India
| | - Tripti Negi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, 248007, India
| | - Renu Bala Sharma
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, 248007, India
| | | | - Mohd Ovais
- Department of Bio-Science, Barkatullah University, Bhopal, MP, 462026, India
| |
Collapse
|