1
|
Ye J, Ren Y, Dong Y, Fan D. Understanding the impact of nanoplastics on reproductive health: Exposure pathways, mechanisms, and implications. Toxicology 2024; 504:153792. [PMID: 38554767 DOI: 10.1016/j.tox.2024.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Microplastic pollution is a pressing global environmental concern with particular urgency surrounding the issue of nanoplastic particles. Plastic products exhibit a remarkable persistence in natural ecosystems, resisting easy degradation. Nanoplastics, characterized by their diminutive size, possess distinct properties when compared to their larger counterparts, which could potentially render them more ecologically detrimental. Microplastics themselves serve as carriers for toxic and hazardous substances, such as plastic additives, that enter and persist in the environmental cycle. Importantly, nanoplastics exhibit enhanced bioavailability upon entering the food chain. Notably, studies have demonstrated the adverse effects of nanoplastics on the reproductive function of aquatic organisms, and evidence of micro- and nanoplastics have emerged within human reproductive organs, including the placenta. However, a knowledge gap persists regarding the impacts of nanoplastics on the reproductive systems of mammals and, indeed, humans. This paper aims to elucidate the less frequently discussed sources and distribution of nanoplastics in the environment, along with the pathways of human exposure. We also emphasize the extent to which nanoplastics accumulate within the reproductive systems of organisms. Subsequently, we present an in-depth analysis of the effects of nanoplastics and their associated contaminants on mammalian and human reproductive health. The mechanisms through which nanoplastics contribute to reproductive disorders are comprehensively explored, highlighting their potential to disrupt endocrine levels in mammals and humans. Additionally, we scrutinize and discuss studies on biotoxicity of nanoplastics, offering insights into potential areas for future research.
Collapse
Affiliation(s)
- Jingfan Ye
- Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Ren
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yanhui Dong
- Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
2
|
Mentsiou Nikolaou E, Kalafati IP, Dedoussis GV. The Interplay between Endocrine-Disrupting Chemicals and the Epigenome towards Metabolic Dysfunction-Associated Steatotic Liver Disease: A Comprehensive Review. Nutrients 2024; 16:1124. [PMID: 38674815 PMCID: PMC11054068 DOI: 10.3390/nu16081124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), described as the most prominent cause of chronic liver disease worldwide, has emerged as a significant public health issue, posing a considerable challenge for most countries. Endocrine-disrupting chemicals (EDCs), commonly found in daily use items and foods, are able to interfere with nuclear receptors (NRs) and disturb hormonal signaling and mitochondrial function, leading, among other metabolic disorders, to MASLD. EDCs have also been proposed to cause transgenerationally inherited alterations leading to increased disease susceptibility. In this review, we are focusing on the most prominent linking pathways between EDCs and MASLD, their role in the induction of epigenetic transgenerational inheritance of the disease as well as up-to-date practices aimed at reducing their impact.
Collapse
Affiliation(s)
- Evangelia Mentsiou Nikolaou
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, 17676 Athens, Greece; (E.M.N.); (G.V.D.)
| | - Ioanna Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, 17676 Athens, Greece; (E.M.N.); (G.V.D.)
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42132 Trikala, Greece
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, 17676 Athens, Greece; (E.M.N.); (G.V.D.)
| |
Collapse
|
3
|
Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: a unifying theory for the global rise in obesity. Int J Obes (Lond) 2024; 48:449-460. [PMID: 38212644 PMCID: PMC10978495 DOI: 10.1038/s41366-024-01460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Despite varied treatment, mitigation, and prevention efforts, the global prevalence and severity of obesity continue to worsen. Here we propose a combined model of obesity, a unifying paradigm that links four general models: the energy balance model (EBM), based on calories as the driver of weight gain; the carbohydrate-insulin model (CIM), based on insulin as a driver of energy storage; the oxidation-reduction model (REDOX), based on reactive oxygen species (ROS) as a driver of altered metabolic signaling; and the obesogens model (OBS), which proposes that environmental chemicals interfere with hormonal signaling leading to adiposity. We propose a combined OBS/REDOX model in which environmental chemicals (in air, food, food packaging, and household products) generate false autocrine and endocrine metabolic signals, including ROS, that subvert standard regulatory energy mechanisms, increase basal and stimulated insulin secretion, disrupt energy efficiency, and influence appetite and energy expenditure leading to weight gain. This combined model incorporates the data supporting the EBM and CIM models, thus creating one integrated model that covers significant aspects of all the mechanisms potentially contributing to the obesity pandemic. Importantly, the OBS/REDOX model provides a rationale and approach for future preventative efforts based on environmental chemical exposure reduction.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA.
| | - Robert H Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, CA, 94143, USA
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University, Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
4
|
Lim J, Shioda T, Malott KF, Shioda K, Odajima J, Leon Parada KN, Nguyen J, Getze S, Lee M, Nguyen J, Reshel Blakeley S, Trinh V, Truong HA, Luderer U. Prenatal exposure to benzo[a]pyrene depletes ovarian reserve and masculinizes embryonic ovarian germ cell transcriptome transgenerationally. Sci Rep 2023; 13:8671. [PMID: 37248279 PMCID: PMC10227008 DOI: 10.1038/s41598-023-35494-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
People are widely exposed to polycyclic aromatic hydrocarbons, like benzo[a]pyrene (BaP). Prior studies showed that prenatal exposure to BaP depletes germ cells in ovaries, causing earlier onset of ovarian senescence post-natally; developing testes were affected at higher doses than ovaries. Our primary objective was to determine if prenatal BaP exposure results in transgenerational effects on ovaries and testes. We orally dosed pregnant germ cell-specific EGFP-expressing mice (F0) with 0.033, 0.2, or 2 mg/kg-day BaP or vehicle from embryonic day (E) 6.5-11.5 (F1 offspring) or E6.5-15.5 (F2 and F3). Ovarian germ cells at E13.5 and follicle numbers at postnatal day 21 were significantly decreased in F3 females at all doses of BaP; testicular germ cell numbers were not affected. E13.5 germ cell RNA-sequencing revealed significantly increased expression of male-specific genes in female germ cells across generations and BaP doses. Next, we compared the ovarian effects of 2 mg/kg-day BaP dosing to wild type C57BL/6J F0 dams from E6.5-11.5 or E12.5-17.5. We observed no effects on F3 ovarian follicle numbers with either of the shorter dosing windows. Our results demonstrate that F0 BaP exposure from E6.5-15.5 decreased the number of and partially disrupted transcriptomic sexual identity of female germ cells transgenerationally.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA
| | - Toshihiro Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kelli F Malott
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA
- Environmental Health Sciences Graduate Program, UCI, Irvine, CA, 92617, USA
| | - Keiko Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Junko Odajima
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | | | - Julie Nguyen
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | - Melody Lee
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | | | - Vienna Trinh
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | - Ulrike Luderer
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA.
- Department of Developmental and Cell Biology, UCI, Irvine, CA, 92617, USA.
- Department of Medicine, UCI, Irvine, CA, 92617, USA.
- Center for Occupational and Environmental Health, 856 Health Sciences Rd, Suite 3200, Zot 1830, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Trasande L, Kassotis CD. The Pediatrician's Role in Protecting Children from Environmental Hazards. Pediatr Clin North Am 2023; 70:137-150. [PMID: 36402464 PMCID: PMC10591514 DOI: 10.1016/j.pcl.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Children suffer disproportionately from disease and disability due to environmental hazards, for reasons rooted in their biology. The contribution is substantial and increasingly recognized, particularly due to ever-increasing awareness of endocrine disruption. Regulatory actions can be traced directly to reductions in toxic exposures, with tangible benefits to society. Deep flaws remain in the policy framework in industrialized countries, failing to offer sufficient protection, but are even more limited in industrializing nations where the majority of chemical production and use will occur by 2030. Evidence-based steps for reducing chemical exposures associated with adverse health outcomes exist and should be incorporated into anticipatory guidance.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU School of Global Public Health, New York, NY, USA.
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
6
|
Kladnicka I, Bludovska M, Plavinova I, Muller L, Mullerova D. Obesogens in Foods. Biomolecules 2022; 12:biom12050680. [PMID: 35625608 PMCID: PMC9138445 DOI: 10.3390/biom12050680] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Obesogens, as environmental endocrine-disrupting chemicals, are supposed to have had an impact on the prevalence of rising obesity around the world over the last forty years. These chemicals are probably able to contribute not only to the development of obesity and metabolic disturbances in individuals, but also in their progeny, having the capability to epigenetically reprogram genetically inherited set-up points for body weight and body composition control during critical periods of development, such as fetal, early life, and puberty. In individuals, they may act on myriads of neuro-endocrine–immune metabolic regulatory pathways, leading to pathophysiological consequences in adipogenesis, lipogenesis, lipolysis, immunity, the influencing of central appetite and energy expenditure regulations, changes in gut microbiota–intestine functioning, and many other processes. Evidence-based medical data have recently brought much more convincing data about associations of particular chemicals and the probability of the raised risk of developing obesity. Foods are the main source of obesogens. Some obesogens occur naturally in food, but most are environmental chemicals, entering food as a foreign substance, whether in the form of contaminants or additives, and they are used in a large amount in highly processed food. This review article contributes to a better overview of obesogens, their occurrence in foods, and their impact on the human organism.
Collapse
Affiliation(s)
- Iva Kladnicka
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
- Correspondence: ; Tel.: +420-377-593-193
| | - Monika Bludovska
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Institute of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Iveta Plavinova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
| | - Ludek Muller
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| | - Dana Mullerova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| |
Collapse
|
7
|
Transgenerational Transcriptomic and DNA Methylome Profiling of Mouse Fetal Testicular Germline and Somatic Cells after Exposure of Pregnant Mothers to Tributyltin, a Potent Obesogen. Metabolites 2022; 12:metabo12020095. [PMID: 35208169 PMCID: PMC8874857 DOI: 10.3390/metabo12020095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Obesogens such as tributyltin (TBT) are xenobiotic compounds that promote obesity, in part by distorting the normal balance of lipid metabolism. The obesogenic effects of TBT can be observed in directly exposed (F1 and F2 generations) and also subsequent generations (F3 and beyond) that were never exposed. To address the effects of TBT exposure on germ cells, we exposed pregnant transgenic OG2 mouse dams (F0), which specifically express EGFP in germline cells, to an environmentally relevant dose of TBT or DMSO throughout gestation through drinking water. When fed with a high-fat diet, F3 male offspring of TBT-exposed F0 dams (TBT-F3) accumulated much more body fat than did DMSO-F3 males. TBT-F3 males also lost more body fluid and lean compositions than did DMSO-F3 males. Expression of genes involved in transcriptional regulation or mesenchymal differentiation was up-regulated in somatic cells of TBT-F1 (but not TBT-F3) E18.5 fetal testes, and promoter-associated CpG islands were hyper-methylated in TBT-F1 somatic cells. Global mRNA expression of protein-coding genes in F1 or F3 fetal testicular cells was unaffected by F0 exposure to TBT; however, expression of a subset of endogenous retroviruses was significantly affected in F1 and F3. We infer that TBT may directly target testicular somatic cells in F1 testes to irreversibly affect epigenetic suppression of endogenous retroviruses in both germline and somatic cells.
Collapse
|
8
|
Močnik M, Marčun Varda N. Obesogens in Children-An Uncharted Territory. Metabolites 2021; 11:metabo11120882. [PMID: 34940640 PMCID: PMC8708790 DOI: 10.3390/metabo11120882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022] Open
Abstract
Obesogens are exogenous chemicals belonging to the group of endocrine-disrupting chemicals and are believed to interfere in obesity development. In children, several chemicals are under investigation, most commonly bisphenol A, phthalates, perfluorinated alkyl substances, and persistent organic pollutants, including organochlorinated pesticides, tributyltin, polychlorinated biphenyls and dioxins. Several associations have been studied between chemical exposure in utero and postnatally. Current opinion among researchers indicates that the obesogen theory is very likely; however, limited published studies show inconsistent support for the obesogenic effects of most substances in children and are limited by difficulty in providing the exact mechanisms of action, nor is their mutual effect in humans known, let alone in children. Existing data indicate that we have only scratched the surface and have much more to learn about obesogens. Hopefully, in the future, more information will provide an opportunity for policy makers to take action and protect public health.
Collapse
Affiliation(s)
- Mirjam Močnik
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
- Correspondence: ; Tel.: +386-40323726
| | - Nataša Marčun Varda
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
- Medical Faculty, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
| |
Collapse
|
9
|
Epigenetic toxicity and cytotoxicity of perfluorooctanoic acid and its effects on gene expression in embryonic mouse hypothalamus cells. ACTA ACUST UNITED AC 2021; 72:182-190. [PMID: 34587672 PMCID: PMC8576751 DOI: 10.2478/aiht-2021-72-3555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022]
Abstract
Even though the endocrine-disrupting potential of perfluorooctanoic acid (PFOA) is well known, the mechanisms underlying its cellular and epigenetic toxicity at the critical stage of hypothalamic development are poorly understood. This is why we studied its effects on the embryonic mouse hypothalamic cell line N46 (mHypoE-N46) with a hope to shed more light on the mechanisms through which PFOA causes embryonic hypothalamic cell damage. To do that, we studied cell viability, global DNA methylation, and gene expression in cells exposed to PFOA. As the PFOA dose increased, cell viability decreased, while global DNA methylation increased. PFOA also significantly altered the expression of genes related to the apoptosis and cell cycle, neurotrophic genes, and the Tet, Dnmt, and Mecp2 genes. Our findings suggest that exposure to PFOA affects cell survival through the reprogramming of embryonic hypothalamic DNA methylation patterns and altering cell homeostasis genes. DNA methylation and changes in the Mecp2 gene expression induced by PFOA also imply wider ramifications, as they alter genes of other major mechanisms of the embryonic hypothalamus. Our study may therefore serve as a good starting point for further research into the mechanisms of PFOA effect of hypothalamic development.
Collapse
|
10
|
Kannan K, Vimalkumar K. A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front Endocrinol (Lausanne) 2021; 12:724989. [PMID: 34484127 PMCID: PMC8416353 DOI: 10.3389/fendo.2021.724989] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
The ubiquitous exposure of humans to microplastics (MPs) through inhalation of particles in air and ingestion in dust, water, and diet is well established. Humans are estimated to ingest tens of thousands to millions of MP particles annually, or on the order of several milligrams daily. Available information suggests that inhalation of indoor air and ingestion of drinking water bottled in plastic are the major sources of MP exposure. Little is known on the occurrence of MPs in human diet. Evidence is accumulating that feeding bottles and medical devices can contribute to MP exposure in newborns and infants. Biomonitoring studies of human stool, fetus, and placenta provide direct evidence of MP exposure in infants and children. MPs <20 µm were reported to cross biological membranes. Although plastics were once perceived as inert materials, MP exposure in laboratory animals is linked to various forms of inflammation, immunological response, endocrine disruption, alteration of lipid and energy metabolism, and other disorders. Whereas exposure to MPs itself is a concern, MPs can also be sources of exposure to plastic additives and other toxicants. Exposure of human cell lines to MP additives such as phthalates, bisphenols, and organotins causes adverse effects through the activation of nuclear receptors, peroxisome proliferator-activated receptors (PPARs) α, β, and γ, and retinoid X receptor (RXR), leading to oxidative stress, cytotoxicity, immunotoxicity, thyroid hormone disruption, and altered adipogenesis and energy production. The size, shape, chemical composition, surface charge, and hydrophobicity of MPs influence their toxicity. Maternal transfer of MPs to the developing fetus has been demonstrated in exposed laboratory animals and through the analysis of human placenta. In laboratory animal studies, maternal exposure to MPs altered energy and lipid metabolism in offspring and subsequent generations. Moreover, concomitant with the global increase in plastics production, the prevalence of overweight and obesity in human populations has increased over the past five decades, and there is evidence to support the hypothesis that MPs and their additives are potential obesogens. Even though MP exposures are ubiquitous and toxic effects from such exposures are a concern, systematic studies on this topic remain urgently needed.
Collapse
Affiliation(s)
- Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | | |
Collapse
|
11
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
12
|
Rao A, Douglas SC, Hall JM. Endocrine Disrupting Chemicals, Hormone Receptors, and Acne Vulgaris: A Connecting Hypothesis. Cells 2021; 10:cells10061439. [PMID: 34207527 PMCID: PMC8228950 DOI: 10.3390/cells10061439] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between endocrine disrupting chemicals (EDCs) and the pathogenesis of acne vulgaris has yet to be explored in the literature. Acne vulgaris is a chronic inflammatory skin disease of the pilosebaceous unit. The pathogenesis of acne involves several hormonal pathways, including androgens, insulin-like growth factor 1(IGF-1), estrogens, and corticosteroids. EDCs influence these pathways primarily through two mechanisms: altering endogenous hormone levels and interfering with hormone receptor function. This review article describes the mechanistic links between EDCs and the development of acne lesions. Highlighted is the contributory role of androgen receptor ligands, such as bisphenol A (BPA) and mono-2-ethylhexyl Phthalate (MEHP), via upregulation of lipogenic genes and resultant exacerbation of cholesterol synthesis. Additionally discussed is the protective role of phytoestrogen EDCs in counteracting androgen-induced sebocyte maturation through attenuation of PPARy transcriptional activity (i.e., resveratrol) and restoration of estrogen-regulated TGF-B expression in skin cells (i.e., genistein). Examination of the relationship between EDCs and acne vulgaris may inform adjunctive avenues of treatment such as limiting environmental exposures, and increasing low-glycemic, plant-rich foods in the diet. With a better understanding of the cumulative role that EDCs play in acne, clinicians can be better equipped to treat and ultimately improve the lives of their patients.
Collapse
|
13
|
Shao W, Xu J, Xu C, Weng Z, Liu Q, Zhang X, Liang J, Li W, Zhang Y, Jiang Z, Gu A. Early-life perfluorooctanoic acid exposure induces obesity in male offspring and the intervention role of chlorogenic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115974. [PMID: 33218772 DOI: 10.1016/j.envpol.2020.115974] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 05/28/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an emerging organic pollutant (EOP) hazardous to human health. Effects of maternal PFOA exposure on offspring as well as the underlying mechanisms remain unclear. In this study, ICR mouse models of gestational low PFOA exposure (0.05 mg/kg/day) were established to investigate the roles on metabolic disorders of offspring. Body weight, body composition, hepatic lipid levels, transcriptome and metabolome were analyzed. Expression of genes related to lipid metabolism, inflammasome formation and gut barrier integrity were measured. Furthermore, oral administration of chlorogenic acid (CGA) (100 mg/kg/day) was performed to observe the rescue effect on lipid disorders caused by PFOA exposure. Our findings demonstrated that gestational exposure to PFOA resulted in obesity, hepatic inflammation, disorders of lipid metabolism, and disruption of gut barrier integrity in male offspring. Notably, these adverse effects were attenuated by CGA supplementation. These data suggested that PFOA exposure during early life stage induced potential risks for later onset of obesity and metabolic disorder which could be ameliorated by CGA treatment.
Collapse
Affiliation(s)
- Wentao Shao
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, China; School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, PR China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
14
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
15
|
Aylwin CF, Lomniczi A. Sirtuin (SIRT)-1: At the crossroads of puberty and metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:65-72. [PMID: 32905232 PMCID: PMC7467505 DOI: 10.1016/j.coemr.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the arcuate nucleus (ARC) of the hypothalamus reside two neuronal systems in charge of regulating feeding control and reproductive development. The melanocortin system responds to metabolic fluctuations adjusting food intake, whereas kisspeptin neurons are in charge of the excitatory control of Gonadotropin Hormone Releasing Hormone (GnRH) neurons. While it is known that the melanocortin system regulates GnRH neuronal activity, it was recently demonstrated that kisspeptin neurons not only innervate melanocortin neurons, but also play an active role in the control of metabolism. These two neuronal systems are intricately interconnected forming loops of stimulation and inhibition according to metabolic status. Furthermore, intracellular and epigenetic pathways respond to external environmental signals by changing DNA conformation and gene expression. Here we review the role of Silent mating type Information Regulation 2 homologue 1 (Sirt1), a class III NAD+ dependent protein deacetylase, in the ARC control of pubertal development and feeding behavior.
Collapse
Affiliation(s)
- Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| |
Collapse
|
16
|
Fan Y, Qin Y, Chen M, Li X, Wang R, Huang Z, Xu Q, Yu M, Zhang Y, Han X, Du G, Xia Y, Wang X, Lu C. Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121534. [PMID: 31706747 PMCID: PMC7220048 DOI: 10.1016/j.jhazmat.2019.121534] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 05/04/2023]
Abstract
Di-(2-ethylhexyl)-phthalate (DEHP) is a ubiquitous environmental pollutant and is widely used in industrial plastics. However, the long-term health implications of prenatal exposure to DEHP remains unclear. We set out to determine whether prenatal DEHP exposure can induce metabolic syndrome in offspring and investigate the underlying mechanisms. A mouse model of prenatal DEHP exposure (0.2, 2, and 20 mg/kg/day) was established to evaluate the long-term metabolic disturbance in offspring. The mice were profiled for the hepatic metabolome, transcriptome and gut microbiota to determine the underlying mechanisms. Thiamine supplementation (50 mg/kg/day) was administered to offspring to investigate the role of thiamine in ameliorating metabolic syndrome. Prenatal exposure to low-dose DEHP (0.2 mg/kg/day) resulted in metabolic syndrome, including abnormal adipogenesis, energy expenditure and glucose metabolism, along with dysbiosis of the gut microbiome, in male offspring. Notably, hepatic thiamine metabolism was disrupted in these offspring due to the dysregulation of thiamine transport enzymes, which caused abnormal glucose metabolism. Prenatal low-dose DEHP exposure caused life-long metabolic consequences in a sex-dependent manner, and these consequences were be attenuated by thiamine supplementation in offspring. Our findings suggest low-dose DEHP exposure during early life stages is a potential risk factor for later obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yufeng Qin
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiuzhu Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruohan Wang
- The First Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Zhang
- Kangda College of Nanjing Medical University, Lianyungang 222002, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
17
|
Egusquiza RJ, Blumberg B. Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals. Endocrinology 2020; 161:bqaa024. [PMID: 32067051 PMCID: PMC7060764 DOI: 10.1210/endocr/bqaa024] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The incidence of obesity has reached an all-time high, and this increase is observed worldwide. There is a growing need to understand all the factors that contribute to obesity to effectively treat and prevent it and associated comorbidities. The obesogen hypothesis proposes that there are chemicals in our environment termed obesogens that can affect individual susceptibility to obesity and thus help explain the recent large increases in obesity. This review discusses current advances in our understanding of how obesogens act to affect health and obesity susceptibility. Newly discovered obesogens and potential obesogens are discussed, together with future directions for research that may help to reduce the impact of these pervasive chemicals.
Collapse
Affiliation(s)
- Riann Jenay Egusquiza
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California
- Department of Biomedical Engineering, University of California Irvine, Irvine, California
| |
Collapse
|
18
|
Anhê FF, Jensen BAH, Varin TV, Servant F, Van Blerk S, Richard D, Marceau S, Surette M, Biertho L, Lelouvier B, Schertzer JD, Tchernof A, Marette A. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat Metab 2020; 2:233-242. [PMID: 32694777 DOI: 10.1038/s42255-020-0178-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Visceral obesity is a key risk factor for type 2 diabetes (T2D). Whereas gut dysbiosis appears to be instrumental for this relationship, whether gut-associated signatures translocate to extra-intestinal tissues and how this affects host metabolism remain elusive. Here we provide a comparative analysis of the microbial profile found in plasma, liver and in three distinct adipose tissues of individuals with morbid obesity. We explored how these tissue microbial signatures vary between individuals with normoglycaemia and those with T2D that were matched for body mass index. We identified tissue-specific signatures with higher bacterial load in the liver and omental adipose tissue. Gut commensals, but also environmental bacteria, showed tissue- and T2D-specific compartmentalisation. T2D signatures were most evident in mesenteric adipose tissue, in which individuals with diabetes displayed reduced bacterial diversity concomitant with fewer Gram-positive bacteria, such as Faecalibacterium, as opposed to enhanced levels of typically opportunistic Gram-negative Enterobacteriaceae. Plasma samples of individuals with diabetes were similarly enriched in Enterobacteriaceae, including the pathobiont Escherichia-Shigella. Our work provides evidence for the presence of selective plasma and tissue microbial signatures in individuals with severe obesity and identifies new potential microbial targets and biomarkers of T2D.
Collapse
Affiliation(s)
- Fernando F Anhê
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute and Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Benjamin Anderschou Holbech Jensen
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thibault V Varin
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
| | | | | | - Denis Richard
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
| | - Simon Marceau
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
| | - Michael Surette
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute and Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Laurent Biertho
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute and Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
| | - André Marette
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada.
| |
Collapse
|
19
|
Leppert B, Strunz S, Seiwert B, Schlittenbauer L, Schlichting R, Pfeiffer C, Röder S, Bauer M, Borte M, Stangl GI, Schöneberg T, Schulz A, Karkossa I, Rolle-Kampczyk UE, Thürmann L, von Bergen M, Escher BI, Junge KM, Reemtsma T, Lehmann I, Polte T. Maternal paraben exposure triggers childhood overweight development. Nat Commun 2020; 11:561. [PMID: 32047148 PMCID: PMC7012887 DOI: 10.1038/s41467-019-14202-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
Parabens are preservatives widely used in consumer products including cosmetics and food. Whether low-dose paraben exposure may cause adverse health effects has been discussed controversially in recent years. Here we investigate the effect of prenatal paraben exposure on childhood overweight by combining epidemiological data from a mother–child cohort with experimental approaches. Mothers reporting the use of paraben-containing cosmetic products have elevated urinary paraben concentrations. For butyl paraben (BuP) a positive association is observed to overweight within the first eight years of life with a stronger trend in girls. Consistently, maternal BuP exposure of mice induces a higher food intake and weight gain in female offspring. The effect is accompanied by an epigenetic modification in the neuronal Pro-opiomelanocortin (POMC) enhancer 1 leading to a reduced hypothalamic POMC expression. Here we report that maternal paraben exposure may contribute to childhood overweight development by altered POMC-mediated neuronal appetite regulation. Parabens are preservatives widely used in consumer products including cosmetics and food. Here the authors demonstrate that maternal paraben exposure may contribute to childhood overweight development by an altered neuronal appetite regulation.
Collapse
Affiliation(s)
- Beate Leppert
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Sandra Strunz
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Department of Dermatology Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Bettina Seiwert
- Department for Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Linda Schlittenbauer
- Department for Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Rita Schlichting
- Department for Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christiane Pfeiffer
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stefan Röder
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Mario Bauer
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Michael Borte
- Children's Hospital, Municipal Hospital St. Georg, Leipzig, Germany
| | - Gabriele I Stangl
- Institute of Agriculture and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena, Leipzig, Germany
| | - Torsten Schöneberg
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Isabell Karkossa
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Loreen Thürmann
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Environmental Epigenetics and Lung Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Molecular Epidemiology, Berlin Institute of Health (BIH), Berlin, Germany
| | - Martin von Bergen
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Beate I Escher
- Department for Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kristin M Junge
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Thorsten Reemtsma
- Department for Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Irina Lehmann
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany. .,Environmental Epigenetics and Lung Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Molecular Epidemiology, Berlin Institute of Health (BIH), Berlin, Germany.
| | - Tobias Polte
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany. .,Department of Dermatology Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany.
| |
Collapse
|
20
|
Hall JM, Greco CW. Perturbation of Nuclear Hormone Receptors by Endocrine Disrupting Chemicals: Mechanisms and Pathological Consequences of Exposure. Cells 2019; 9:cells9010013. [PMID: 31861598 PMCID: PMC7016921 DOI: 10.3390/cells9010013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
Much of the early work on Nuclear Hormone Receptors (NHRs) focused on their essential roles as mediators of sex steroid hormone signaling in reproductive development and function, and thyroid hormone-dependent formation of the central nervous system. However, as NHRs display tissue-specific distributions and activities, it is not surprising that they are involved and vital in numerous aspects of human development and essential for homeostasis of all organ systems. Much attention has recently been focused on the role of NHRs in energy balance, metabolism, and lipid homeostasis. Dysregulation of NHR function has been implicated in numerous pathologies including cancers, metabolic obesity and syndrome, Type II diabetes mellitus, cardiovascular disease, hyperlipidemia, male and female infertility and other reproductive disorders. This review will discuss the dysregulation of NHR function by environmental endocrine disrupting chemicals (EDCs), and the associated pathological consequences of exposure in numerous tissues and organ systems, as revealed by experimental, clinical, and epidemiological studies.
Collapse
|
21
|
Greco EA, Lenzi A, Migliaccio S, Gessani S. Epigenetic Modifications Induced by Nutrients in Early Life Phases: Gender Differences in Metabolic Alteration in Adulthood. Front Genet 2019; 10:795. [PMID: 31572434 PMCID: PMC6749846 DOI: 10.3389/fgene.2019.00795] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Metabolic chronic diseases, also named noncommunicable diseases (NCDs), are considered multifactorial pathologies, which are dramatically increased during the last decades. Noncommunicable diseases such as cardiovascular diseases, obesity, diabetes mellitus, cancers, and chronic respiratory diseases markedly increase morbidity, mortality, and socioeconomic costs. Moreover, NCDs induce several and complex clinical manifestations that lead to a gradual deterioration of health status and quality of life of affected individuals. Multiple factors are involved in the development and progression of these diseases such as sedentary behavior, smoking, pollution, and unhealthy diet. Indeed, nutrition has a pivotal role in maintaining health, and dietary imbalances represent major determinants favoring chronic diseases through metabolic homeostasis alterations. In particular, it appears that specific nutrients and adequate nutrition are important in all periods of life, but they are essential during specific times in early life such as prenatal and postnatal phases. Indeed, epidemiologic and experimental studies report the deleterious effects of an incorrect nutrition on health status several decades later in life. During the last decade, a growing interest on the possible role of epigenetic mechanisms as link between nutritional imbalances and NCDs development has been observed. Finally, because of the pivotal role of the hormones in fat, carbohydrate, and protein metabolism regulation throughout life, it is expected that any hormonal modification of these processes can imbalance metabolism and fat storage. Therefore, a particular interest to several chemicals able to act as endocrine disruptors has been recently developed. In this review, we will provide an overview and discuss the epigenetic role of some specific nutrients and chemicals in the modulation of physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Emanuela A Greco
- Section of Medical Pathophysiology, Endocrinology and Food Sciences, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Section of Medical Pathophysiology, Endocrinology and Food Sciences, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Rome, Italy
| | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
22
|
Lee MK, Blumberg B. Transgenerational effects of obesogens. Basic Clin Pharmacol Toxicol 2019; 125 Suppl 3:44-57. [PMID: 30801972 PMCID: PMC6708505 DOI: 10.1111/bcpt.13214] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Abstract
Obesity and associated disorders are now a global pandemic. The prevailing clinical model for obesity is overconsumption of calorie-dense food and diminished physical activity (the calories in-calories out model). However, this explanation does not account for numerous recent research findings demonstrating that a variety of environmental factors can be superimposed on diet and exercise to influence the development of obesity. The environmental obesogen model proposes that exposure to chemical obesogens during in utero and/or early life can strongly influence later predisposition to obesity. Obesogens are chemicals that inappropriately stimulate adipogenesis and fat storage, in vivo either directly or indirectly. Numerous obesogens have been identified in recent years and some of these elicit transgenerational effects on obesity as well as a variety of health end-points after exposure of pregnant F0 females. Prenatal exposure to environmental obesogens can produce lasting effects on the exposed animals and their offspring to at least the F4 generation. Recent results show that some of these transgenerational effects of obesogen exposure can be carried across the generations via alterations in chromatin structure and accessibility. That some chemicals can have permanent effects on the offspring of exposed animals suggests increased caution in the debate about whether and to what extent exposure to endocrine-disrupting chemicals and obesogens should be regulated.
Collapse
Affiliation(s)
- Michelle Kira Lee
- Department of Developmental and Cell Biology, 2011 BioSci
3, University of California, Irvine, CA 926970-2300
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 BioSci
3, University of California, Irvine, CA 926970-2300
- Department of Pharmaceutical Sciences, University of
California, Irvine
- Dept of Biomedical Engineering, University of California,
Irvine
| |
Collapse
|
23
|
Lu Z, Zhang C, Han C, An Q, Cheng Y, Chen Y, Meng R, Zhang Y, Su J. Plasticizer Bis(2-ethylhexyl) Phthalate Causes Meiosis Defects and Decreases Fertilization Ability of Mouse Oocytes in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3459-3468. [PMID: 30813722 DOI: 10.1021/acs.jafc.9b00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride (PVC) plastics. Humans and animals are widely and continuously exposed to DEHP, especially with respect to diet, which is associated with reproductive diseases. Nevertheless, the effects and underlying mechanisms of DEHP exposure on oocytes in vivo remain ambiguous. In this study, we found that oral administration of DEHP (40 μg/kg body weight per day for 14 days) markedly reduced the maturation and fertilization of oocytes in vivo. In addition, DEHP caused oxidative stress, increased reactive oxygen species generation, promoted early apoptosis, and resulted in DNA damage in mouse oocytes. Moreover, DEHP exposure caused mitochondrial damage, reduced ATP content, down-regulated actin expression, and disturbed the spindle assembly and chromosome alignment in mouse oocytes. Furthermore, DEHP exposure remarkably impaired the localization and protein level of Juno, the sperm receptor on the membrane of oocytes. The levels of DNA methylation, H3K9me3, and H3K9ac were also altered in the DEHP-exposed mouse oocytes. Thus, our results indicated that DEHP exposure reduced the maturation and fertilization capabilities of mouse oocytes by affecting cytoskeletal dynamics, oxidative stress, early apoptosis, meiotic spindle morphology, mitochondria, ATP content, Juno expression, DNA damage, and epigenetic modifications in mouse oocytes.
Collapse
Affiliation(s)
- Zhenzhen Lu
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Chengtu Zhang
- Xining Animal Husbandry and Veterinary Station , Xining , Qinghai Province 810003 , PR China
| | - Chengquan Han
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Quanli An
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Yuyao Cheng
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Yongzhong Chen
- Xining Animal Husbandry and Veterinary Station , Xining , Qinghai Province 810003 , PR China
| | - Ru Meng
- Xining Animal Husbandry and Veterinary Station , Xining , Qinghai Province 810003 , PR China
| | - Yong Zhang
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Jianmin Su
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| |
Collapse
|
24
|
Heindel JJ. History of the Obesogen Field: Looking Back to Look Forward. Front Endocrinol (Lausanne) 2019; 10:14. [PMID: 30761083 PMCID: PMC6362096 DOI: 10.3389/fendo.2019.00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/10/2019] [Indexed: 01/13/2023] Open
Abstract
The Obesogen field developed from two separate scientific research areas, endocrine disruptors and the Developmental Origins of Health and Disease (DOHaD). Endocrine Disrupting Chemicals (EDCs) are exogenous chemicals or mixtures of chemicals that interfere with the action of hormones. Exposure to EDCs during early development (DOHaD) has been shown to increase susceptibility to a variety of diseases including infertility, asthma, breast and prostate cancer, early puberty, susceptibility to infections, heart disease, autoimmune disease, and attention deficit hyperactivity disorder/learning disability. The effects of EDCs on obesity and fat cell development first gained attention around the turn of the twenty-first century. In 2002 Dr. Paula Baillie-Hamilton wrote the first review article focusing on environmental chemicals and obesity. She suggested that the obesity epidemic correlated with the increased production of chemicals after World War II. Baillie-Hamilton identified studies showing that exposures to a variety of chemicals led to weight gain. Shortly after that a commentary on an article showing that nonylphenol would increase fat cell differentiation in vitro noted the Baillie-Hamilton article and made the point that perhaps obesity was due in part to exposure to EDCs. In 2006 the field of DOHaD/EDCs and obesity made a giant leap forward when Dr. Bruce Blumberg published a paper showing that tributyltin could lead to weight gain in mice and coined the term obesogen for a chemical that caused weight gain and lead to obesity. In 2011, the NIEHS developed the first funding initiative focused on obesogens. In the following years there have been several workshops focused on obesogens. This paper describes these early days that lead to the obesogen hypotheses and the growth of the field for a decade, leading to its prominence today, and provides some insight into where the field is moving.
Collapse
|
25
|
Tinkov AA, Ajsuvakova OP, Skalnaya MG, Skalny AV, Aschner M, Suliburska J, Aaseth J. Organotins in obesity and associated metabolic disturbances. J Inorg Biochem 2018; 191:49-59. [PMID: 30458368 DOI: 10.1016/j.jinorgbio.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 01/01/2023]
Abstract
The objective of the present study was to review the mechanisms of organotin-induced adipogenesis, obesity, and associated metabolic disturbances. Peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα) activation is considered as the key mechanism of organotin-induced adipogenesis. Particularly, organotin exposure results in increased adipogenesis both in cell and animal models. Moreover, transgenerational inheritance of organotin-induced obese phenotype was demonstrated in vivo. At the same time, the existing data demonstrate that organotin compounds (OTCs) induces aberrant expression of PPARγ-targeted genes, resulting in altered of adipokine, glucose transporter, proinflammatory cytokines levels, and lipid and carbohydrate metabolism. The latter is generally characterized by hyperglycemia and insulin resistance. Other mechanisms involved in organotin-induced obesity may include estrogen receptor and corticosteroid signaling, altered DNA methylation, and gut dysfunction. In addition to cellular effects, organotin exposure may also affect neural circuits of appetite regulation, being characterized by neuropeptide Y (NPY) up-regulation in parallel with of pro-opiomelanocortin (POMC), Agouti-related protein (AgRP), and cocaine and amphetamine regulated transcript (CART) down-regulation in the arcuate nucleus. These changes result in increased orexigenic and reduced anorexigenic signaling, leading to increased food intake. The existing data demonstrate that organotins are potent adipogenic agents, however, no epidemiologic studies have been performed to reveal the association between organotin exposure and obesity and the existing indirect human data are contradictory.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| | - Olga P Ajsuvakova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | | | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Trace Element Institute for UNESCO, Lyon, France
| | | | | | - Jan Aaseth
- Innlandet Hospital Trust, Kongsvinger, Norway; Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
26
|
Heindel JJ. The developmental basis of disease: Update on environmental exposures and animal models. Basic Clin Pharmacol Toxicol 2018; 125 Suppl 3:5-13. [PMID: 30265444 DOI: 10.1111/bcpt.13118] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
At the Prenatal Programming and Toxicity (PPTox) Conference I in 2008, I presented an overview of the developmental origins of health and disease field focusing on environmental chemical exposures and disease outcomes. At that time, I noted that the field was getting off the ground with a focus on developmental exposure to a small number of endocrine disrupting chemicals (EDCs) and disease outcomes across the lifespan in animal models. In this update, I note that the DOHaD field has changed significantly over the last decade. There are new windows of susceptibility including preconception, prepuberty, a focus on the mother and not just the offspring, and a significant focus on the new field of epigenetic transgenerational inheritance. New disease focus areas have sprung up including obesity, type 2 diabetes and fatty liver disease, all with a connection to developmental exposures to EDCs. There is also a focus on the study of new EDCs, molecular mechanisms, the development of new biomarkers of exposure and disease outcomes and studies focusing on intervention and prevention studies.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Program on Endocrine Disruption Strategies, Commonweal, Bolinas, California
| |
Collapse
|
27
|
Affiliation(s)
- Duk Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
28
|
DEHP deregulates adipokine levels and impairs fatty acid storage in human SGBS-adipocytes. Sci Rep 2018; 8:3447. [PMID: 29472605 PMCID: PMC5823900 DOI: 10.1038/s41598-018-21800-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/12/2018] [Indexed: 12/17/2022] Open
Abstract
DEHP is a plasticizer which has been used in plastic products of everyday use for decades. Studies in mice and murine cell culture models identified DEHP as an endocrine disruptor that may also act as an obesogen. As this is of high concern in respect of the worldwide obesity epidemic, our aim is the translation of these findings into a human model system. On the basis of DOHaD, we investigated the influence of an environmentally relevant dose of DEHP [50 µg/ml] on adipogenesis in the human cell culture model SGBS. Pre-adipocytes were exposed to DEHP and differentiated into mature adipocytes. At different stages of differentiation, markers of adipogenesis like GLUT4, FABP4, LPL and PPARs, and of signaling pathways like AMPK/ACC2, JAK/STAT and MAPK were analyzed. Functional markers like adipokine secretion and triglyceride content as well as ROS production were measured in mature adipocytes. We found significantly lower expression levels of adipogenic markers, a reduction in lipid accumulation, higher leptin- and reduced adiponectin levels in the supernatant of treated adipocytes. Moreover, ROS production was significantly elevated after DEHP-exposure. In conclusion, DEHP led to lower grade of adipogenic differentiation in human SGBS-adipocytes under the chosen conditions.
Collapse
|
29
|
Lee YM, Jacobs Jr. DR, Lee DH. Persistent Organic Pollutants and Type 2 Diabetes: A Critical Review of Review Articles. Front Endocrinol (Lausanne) 2018; 9:712. [PMID: 30542326 PMCID: PMC6277786 DOI: 10.3389/fendo.2018.00712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Low dose persistent organic pollutants (POPs) have emerged as a new risk for type 2 diabetes (T2D). Despite substantial evidence from human and experimental studies, there are several critical issues which have not been properly addressed by POPs researchers. First, as POPs exist as mixtures, findings about POPs from human studies should be interpreted from the viewpoint of lipophilic chemical mixtures which include both measured and unmeasured POPs. Second, as POPs can directly reduce insulin secretion of beta cells, the role of POPs may be more prominent in the development of beta-cell dysfunction-dominant T2D rather than insulin resistance-dominant T2D. Third, there are multidimensional interrelationships between POPs and adipose tissue. Even though POPs are now considered as a new risk factor for T2D, independent of obesity, POPs and obesity are mechanistically linked to each other. POPs are involved in key mechanisms linking obesity and T2D, such as chronic inflammation of adipose tissue and lipotoxicity with ectopic fat accumulation. Also, POPs can explain puzzling human findings which suggest benefits of obesity because healthy adipose tissue can be protective by reducing the amount of POPs reaching other organs. Fourth, non-linear dose-response relationships between POPs and T2D are biologically possible. Although POPs are well-known endocrine disrupting chemicals (EDCs), mitochondrial dysfunction may be a more plausible mechanism due to unpredictability of EDC mixtures. As adipose tissue plays a role as an internal exposure source of POPs, how to manage POPs inside us may be essential to protect against harms of POPs.
Collapse
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - David R. Jacobs Jr.
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, DaeguSouth Korea
- *Correspondence: Duk-Hee Lee
| |
Collapse
|
30
|
Ruden DM, Gurdziel K, Aschner M. Frontiers in Toxicogenomics in the Twenty-First Century-the Grand Challenge: To Understand How the Genome and Epigenome Interact with the Toxic Environment at the Single-Cell, Whole-Organism, and Multi-Generational Level. Front Genet 2017; 8:173. [PMID: 29170679 PMCID: PMC5684185 DOI: 10.3389/fgene.2017.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Douglas M. Ruden
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C. S. Mott Center for Human Health and Development, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C. S. Mott Center for Human Health and Development, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
31
|
Feroe A, Broene R, Albuquerque D, Ruiz P. Endocrine Disrupting Chemicals, Transgenerational Epigenetics and Metabolic Diseases. EC ENDOCRINOLOGY AND METABOLIC RESEARCH 2017; 21:31-51. [PMID: 34734213 PMCID: PMC8563023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exposure to environmental chemicals can produce effects on the endocrine system through epigenetic mechanisms. These can considerably decrease or increase the sensitivity of multiple hormones depending on the dose, route, or time of exposure. The exposure of endocrine disrupting chemicals (EDCs) during the in utero period could be a critical window, altering the epigenome profile. Recently, several researchers suggest a role of EDCs in the obesity epidemic. In this brief review, we focused on how four EDCs (bisphenol A, dichlorodiphenyltrichloroethane, di-(2-ethylhexyl) phthalate and tributyltin) may underlay transgenerational epigenetic effects. We also discuss the adipogenesis signaling pathway and the impact of exposure to individual or mixtures of EDCs on the developing endocrine system. Understanding the molecular determinants of epigenetic memory across generations will provide essential insight into how environmental exposure can affect the health of individuals, as well as subsequent generations.
Collapse
Affiliation(s)
| | - Richard Broene
- Department of Chemistry, Bowdoin College, Brunswick, ME, USA
| | - David Albuquerque
- Research Center for Anthropology and Health, University of Coimbra, Coimbra, Portugal
| | - Patricia Ruiz
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia
| |
Collapse
|
32
|
Ceja-Galicia ZA, Daniel A, Salazar AM, Pánico P, Ostrosky-Wegman P, Díaz-Villaseñor A. Effects of arsenic on adipocyte metabolism: Is arsenic an obesogen? Mol Cell Endocrinol 2017; 452:25-32. [PMID: 28495457 DOI: 10.1016/j.mce.2017.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
Abstract
The environmental obesogen model proposes that in addition to a high-calorie diet and diminished physical activity, other factors such as environmental pollutants and chemicals are involved in the development of obesity. Although arsenic has been recognized as a risk factor for Type 2 Diabetes with a specific mechanism, it is still uncertain whether arsenic is also an obesogen. The impairment of white adipose tissue (WAT) metabolism is crucial in the onset of obesity, and distinct studies have evaluated the effects of arsenic on it, however only in some of them for obesity-related purposes. Thus, the known effects of arsenic on WAT/adipocytes were integrated based on the diverse metabolic and physiological processes that occur in WAT and are altered in obesity, specifically: adipocyte growth, adipokine secretion, lipid metabolism, and glucose metabolism. The currently available information suggests that arsenic can negatively affect WAT metabolism, resulting in arsenic being a potential obesogen.
Collapse
Affiliation(s)
- Zeltzin A Ceja-Galicia
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Maestría en Ciencias de la Producción y Salud Animal, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Alberto Daniel
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Maestría en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Pablo Pánico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Andrea Díaz-Villaseñor
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
33
|
Nadal A, Quesada I, Tudurí E, Nogueiras R, Alonso-Magdalena P. Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol 2017; 13:536-546. [PMID: 28524168 DOI: 10.1038/nrendo.2017.51] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Energy balance involves the adjustment of food intake, energy expenditure and body fat reserves through homeostatic pathways. These pathways include a multitude of biochemical reactions, as well as hormonal cues. Dysfunction of this homeostatic control system results in common metabolism-related pathologies, which include obesity and type 2 diabetes mellitus. Metabolism-disrupting chemicals (MDCs) are a particular class of endocrine-disrupting chemicals that affect energy homeostasis. MDCs affect multiple endocrine mechanisms and thus different cell types that are implicated in metabolic control. MDCs affect gene expression and the biosynthesis of key enzymes, hormones and adipokines that are essential for controlling energy homeostasis. This multifaceted spectrum of actions precludes compensatory responses and favours metabolic disorders. Herein, we review the main mechanisms used by MDCs to alter energy balance. This work should help to identify new MDCs, as well as novel targets of their action.
Collapse
Affiliation(s)
- Angel Nadal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| | - Ivan Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| | - Eva Tudurí
- Instituto de Investigaciones Sanitarias (IDIS), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Avda. Barcelona s/n, 15706 Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Instituto de Investigaciones Sanitarias (IDIS), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Avda. Barcelona s/n, 15706 Santiago de Compostela, Spain
- Department of Physiology, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela, Calle San Francisco s/n, 15706 Santiago de Compostela, Spain
| | - Paloma Alonso-Magdalena
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| |
Collapse
|
34
|
Rajamani U, Gross AR, Ocampo C, Andres AM, Gottlieb RA, Sareen D. Endocrine disruptors induce perturbations in endoplasmic reticulum and mitochondria of human pluripotent stem cell derivatives. Nat Commun 2017; 8:219. [PMID: 28794470 PMCID: PMC5550485 DOI: 10.1038/s41467-017-00254-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 06/15/2017] [Indexed: 01/15/2023] Open
Abstract
Persistent exposure to man-made endocrine disrupting chemicals during fetal endocrine development may lead to disruption of metabolic homeostasis contributing to childhood obesity. Limited cellular platforms exist to test endocrine disrupting chemical-induced developmental abnormalities in human endocrine tissues. Here we use an human-induced pluripotent stem cell-based platform to demonstrate adverse impacts of obesogenic endocrine disrupting chemicals in the developing endocrine system. We delineate the effects upon physiological low-dose exposure to ubiquitous endocrine disrupting chemicals including, perfluoro-octanoic acid, tributyltin, and butylhydroxytoluene, in endocrine-active human-induced pluripotent stem cell-derived foregut epithelial cells and hypothalamic neurons. Endocrine disrupting chemicals induce endoplasmic reticulum stress, perturb NF-κB, and p53 signaling, and diminish mitochondrial respiratory gene expression, spare respiratory capacity, and ATP levels. As a result, normal production and secretion of appetite control hormones, PYY, α-MSH, and CART, are hampered. Blocking NF-κB rescues endocrine disrupting chemical-induced aberrant mitochondrial phenotypes and endocrine dysregulation, but not ER-stress and p53-phosphorylation changes.Harmful chemicals that disrupt the endocrine system and hormone regulation have been associated with obesity. Here the authors apply a human pluripotent stem cell-based platform to study the effects of such compounds on developing gut endocrine and neuroendocrine systems.
Collapse
Affiliation(s)
- Uthra Rajamani
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Andrew R Gross
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Camille Ocampo
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, University of California, Los Angeles, CA, 90048, USA
| | - Allen M Andres
- Metabolism and Mitochondrial Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Roberta A Gottlieb
- Metabolism and Mitochondrial Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dhruv Sareen
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Medicine, University of California, Los Angeles, CA, 90048, USA.
- iPSC Core, The David Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
35
|
Bray GA, Kim KK, Wilding JPH. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev 2017; 18:715-723. [PMID: 28489290 DOI: 10.1111/obr.12551] [Citation(s) in RCA: 747] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
Abstract
This paper considers the argument for obesity as a chronic relapsing disease process. Obesity is viewed from an epidemiological model, with an agent affecting the host and producing disease. Food is the primary agent, particularly foods that are high in energy density such as fat, or in sugar-sweetened beverages. An abundance of food, low physical activity and several other environmental factors interact with the genetic susceptibility of the host to produce positive energy balance. The majority of this excess energy is stored as fat in enlarged, and often more numerous fat cells, but some lipid may infiltrate other organs such as the liver (ectopic fat). The enlarged fat cells and ectopic fat produce and secrete a variety of metabolic, hormonal and inflammatory products that produce damage in organs such as the arteries, heart, liver, muscle and pancreas. The magnitude of the obesity and its adverse effects in individuals may relate to the virulence or toxicity of the environment and its interaction with the host. Thus, obesity fits the epidemiological model of a disease process except that the toxic or pathological agent is food rather than a microbe. Reversing obesity will prevent most of its detrimental effects.
Collapse
Affiliation(s)
- G A Bray
- Pennington Biomedical Research Center of Louisiana State University, Baton Rouge, Louisiana, USA
| | - K K Kim
- National University of Korea, Seoul, Korea
| | - J P H Wilding
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,Clinical Sciences Centre, University Hospital Aintree, Liverpool, UK
| | | |
Collapse
|
36
|
Persistent organic pollutants alter DNA methylation during human adipocyte differentiation. Toxicol In Vitro 2017; 40:79-87. [DOI: 10.1016/j.tiv.2016.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/17/2016] [Accepted: 12/18/2016] [Indexed: 12/02/2022]
|
37
|
Zhang J, Choudhury M. The plasticizer BBP selectively inhibits epigenetic regulator sirtuin during differentiation of C3H10T1/2 stem cell line. Toxicol In Vitro 2017; 39:75-83. [DOI: 10.1016/j.tiv.2016.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/04/2023]
|
38
|
Lee YM, Kim KS, Jacobs DR, Lee DH. Persistent organic pollutants in adipose tissue should be considered in obesity research. Obes Rev 2017; 18:129-139. [PMID: 27911986 DOI: 10.1111/obr.12481] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Although low doses of persistent organic pollutants (POPs), strong lipophilic chemicals with long half-lives, have been linked to various endocrine, immune, nervous and reproductive system diseases, few obesity studies have considered adipose tissue as an important POPs exposure source. Because the toxicodynamics of POPs relate directly to the dynamics of adiposity, POPs might explain puzzling findings in obesity research. In two people exposed to the same amounts of environmental POPs, the one having more adipose tissue may be advantaged because POPs storage in adipose tissue can reduce burden on other critical organs. Therefore, adipose tissue can play a protective role against the POPs effects. However, two situations increase the POPs release from adipose tissue into the circulation, thereby increasing the risk that they will reach critical organs: (i) weight loss and (ii) insulin resistance. In contrast, weight gain reduces this possibility. Therefore, avoiding harmful health effects of POPs may mostly contradict conventional judgments about obesity and weight change. These contradictory situations can explain the obesity paradox, the adverse effects of intensive intentional weight loss and the protective effects of obesity against dementia. Future studies should consider that adipose tissue is widely contaminated with POPs in modern society.
Collapse
Affiliation(s)
- Y-M Lee
- Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - K-S Kim
- Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - D R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - D-H Lee
- Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
39
|
Cardoso AM, Alves MG, Mathur PP, Oliveira PF, Cavaco JE, Rato L. Obesogens and male fertility. Obes Rev 2017; 18:109-125. [PMID: 27776203 DOI: 10.1111/obr.12469] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022]
Abstract
In the last decades, several studies evidenced a decrease in male fertility in developed countries. Although the aetiology of this trend in male reproductive health remains a matter of debate, environmental compounds that predispose to weight gain, namely obesogens, are appointed as contributors because of their action as endocrine disruptors. Obesogens favour adipogenesis by an imbalance of metabolic processes and can be found virtually everywhere. These compounds easily accumulate in tissues with high lipid content. Obesogens change the functioning of male reproductive axis, and, consequently, the testicular physiology and metabolism that are pivotal for spermatogenesis. The disruption of these tightly regulated metabolic pathways leads to adverse reproductive outcomes. Notably, adverse effects of obesogens may also promote disturbances in the metabolic performance of the following generations, through epigenetic modifications passed by male gametes. Thus, unveiling the molecular pathways by which obesogens induce toxicity that may end up in epigenetic modifications is imperative. Otherwise, a transgenerational susceptibility to metabolic diseases may be favoured. We present an up-to-date overview of the impact of obesogens on testicular physiology, with a particular focus on testicular metabolism. We also address the effects of obesogens on male reproductive parameters and the subsequent consequences for male fertility.
Collapse
Affiliation(s)
- A M Cardoso
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - M G Alves
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - P P Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India.,KIIT University, Bhubaneswar, India
| | - P F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - J E Cavaco
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - L Rato
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
40
|
Sharma SP, Chung HJ, Kim HJ, Hong ST. Paradoxical Effects of Fruit on Obesity. Nutrients 2016; 8:E633. [PMID: 27754404 PMCID: PMC5084020 DOI: 10.3390/nu8100633] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/30/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
Obesity is exponentially increasing regardless of its preventable characteristics. The current measures for preventing obesity have failed to address the severity and prevalence of obesity, so alternative approaches based on nutritional and diet changes are attracting attention for the treatment of obesity. Fruit contains large amounts of simple sugars (glucose, fructose, sucrose, etc.), which are well known to induce obesity. Thus, considering the amount of simple sugars found in fruit, it is reasonable to expect that their consumption should contribute to obesity rather than weight reduction. However, epidemiological research has consistently shown that most types of fruit have anti-obesity effects. Thus, due to their anti-obesity effects as well as their vitamin and mineral contents, health organizations are suggesting the consumption of fruit for weight reduction purposes. These contradictory characteristics of fruit with respect to human body weight management motivated us to study previous research to understand the contribution of different types of fruit to weight management. In this review article, we analyze and discuss the relationships between fruit and their anti-obesity effects based on numerous possible underlying mechanisms, and we conclude that each type of fruit has different effects on body weight.
Collapse
Affiliation(s)
- Satya P Sharma
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Hea J Chung
- Department of Microbiology, Seonam University Medical School, Namwon 55724, Korea.
| | - Hyeon J Kim
- JINIS BDRD Institute, JINIS Biopharmaceuticals Co., 948-9 Dunsan, Bongdong, Wanju 55321, Korea.
| | - Seong T Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Korea.
| |
Collapse
|
41
|
Janesick AS, Dimastrogiovanni G, Vanek L, Boulos C, Chamorro-García R, Tang W, Blumberg B. On the Utility of ToxCast™ and ToxPi as Methods for Identifying New Obesogens. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1214-26. [PMID: 26757984 PMCID: PMC4977052 DOI: 10.1289/ehp.1510352] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/07/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND In ToxCast™ Phase I, the U.S. EPA commissioned screening of 320 pesticides, herbicides, fungicides, and other chemicals in a series of high-throughput assays. The agency also developed a toxicological prioritization tool, ToxPi, to facilitate using ToxCast™ assays to predict biological function. OBJECTIVES We asked whether top-scoring PPARγ activators identified in ToxCast™ Phase I were genuine PPARγ activators and inducers of adipogenesis. Next, we identified ToxCast™ assays that should predict adipogenesis, developed an adipogenesis ToxPi, and asked how well the ToxPi predicted adipogenic activity. METHODS We used transient transfection to test the ability of ToxCast™ chemicals to modulate PPARγ and RXRα, and differentiation assays employing 3T3-L1 preadipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to evaluate the adipogenic capacity of ToxCast™ chemicals. RESULTS Only 5/21 of the top scoring ToxCast™ PPARγ activators were activators in our assays, 3 were PPARγ antagonists, the remainder were inactive. The bona fide PPARγ activators we identified induced adipogenesis in 3T3-L1 cells and mBMSCs. Only 7 of the 17 chemicals predicted to be active by the ToxPi promoted adipogenesis, 1 inhibited adipogenesis, and 2 of the 7 predicted negatives were also adipogenic. Of these 9 adipogenic chemicals, 3 activated PPARγ, and 1 activated RXRα. CONCLUSIONS ToxCast™ PPARγ and RXRα assays do not correlate well with laboratory measurements of PPARγ and RXRα activity. The adipogenesis ToxPi performed poorly, perhaps due to the performance of ToxCast™ assays. We observed a modest predictive value of ToxCast™ for PPARγ and RXRα activation and adipogenesis and it is likely that many obesogenic chemicals remain to be identified. CITATION Janesick AS, Dimastrogiovanni G, Vanek L, Boulos C, Chamorro-García R, Tang W, Blumberg B. 2016. On the utility of ToxCast™ and ToxPi as methods for identifying new obesogens. Environ Health Perspect 124:1214-1226; http://dx.doi.org/10.1289/ehp.1510352.
Collapse
Affiliation(s)
- Amanda Shaine Janesick
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA
| | - Giorgio Dimastrogiovanni
- Department of Environmental Chemistry, IIQAB-CSIC (Superior Council of Scientific Investigations), Barcelona, Spain
| | - Lenka Vanek
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA
| | - Christy Boulos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA
| | - Raquel Chamorro-García
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA
| | - Weiyi Tang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
- Address correspondence to B. Blumberg, Developmental and Cell Biology, U.C. Irvine, 2011 BioSci 3, Irvine, CA 92697-2300 USA. Telephone: (949) 824-8573. E-mail:
| |
Collapse
|
42
|
Abstract
A modern approach to obesity acknowledges the multifactorial determinants of weight gain and the health benefits to be derived from weight loss. Foundational to any weight loss effort is lifestyle change, diet, and increased physical activity. The approach should be a high quality diet to which patients will adhere accompanied by an exercise prescription describing frequency, intensity, type, and time with a minimum of 150 min moderate weekly activity. For patients who struggle with weight loss and who would receive health benefit from weight loss, management of medications that are contributing to weight gain and use of approved medications for chronic weight management along with lifestyle changes are appropriate. Medications approved in the USA or European Union are orlistat, naltrexone/bupropion, and liraglutide; in the USA, lorcaserin and phentermine/topiramate are also available. Surgical management (gastric banding, sleeve gastrectomy, and Roux-en Y gastric bypass) can produce remarkable health improvement and reduce mortality for patients with severe obesity.
Collapse
Affiliation(s)
- George A Bray
- Pennington Biomedical Research Center/LSU, Baton Rouge, LA, USA.
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, CIBEROBN, IdiSNA, Spain
| | - Donna H Ryan
- Pennington Biomedical Research Center/LSU, Baton Rouge, LA, USA
| | - John P H Wilding
- Department of Medicine (Obesity) University of Liverpool, Liverpool, UK
| |
Collapse
|
43
|
Wei Y, Zhu J. Associations between urinary concentrations of 2,5-dichlorophenol and metabolic syndrome among non-diabetic adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:581-588. [PMID: 26330318 DOI: 10.1007/s11356-015-5291-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
We investigated in this study the relationship between exposure to para-dichlorobenzene (p-DCB), measured as urinary concentrations of 2,5-dichlorophenol (2,5-DCP), and metabolic syndrome in non-diabetic adult participants. A nationally representative subsample of 1706 non-diabetic adult participants aged 20-79 years randomly selected for measurement of urinary concentrations of 2,5-DCP in the 2007-2010 US National Health and Nutrition Examination Survey was analyzed. A dose-dependent increase in the prevalence of metabolic syndrome was observed in the study participants across quartiles of urinary 2,5-DCP (p-trend = 0.0025). After adjusting for potential confounders, individuals in the third and fourth quartile of urinary 2,5-DCP had 1.47 (95% CI 1.02, 2.14) and 1.56 (95% CI 1.10, 2.23) increased odds of metabolic syndrome, respectively, compared with individuals with the lowest quartile. Of the five components of metabolic syndrome, waist circumference and HDL-cholesterol showed a significant and monotonic association with urinary 2,5-DCP. Participants with the highest quartile of 2,5-DCP had 3.18 cm (95% CI 1.34, 5.02) higher mean waist circumference and 2.83 mg/dL (95% CI -4.68, -0.98) lower mean HDL-cholesterol than the participants in the lowest quartile. This study suggests a potential relationship between p-DCB exposure and metabolic syndrome in non-diabetic adults. Prospective epidemiological and mechanistic studies are needed to further explore these interactions.
Collapse
Affiliation(s)
- Yudan Wei
- Department of Community Medicine, Mercer University School of Medicine, 1550 College St., Macon, GA, 31207, USA.
| | - Jianmin Zhu
- Department of Mathematics and Computer Science, Fort Valley State University, 1005 State University Dr., Fort Valley, GA, USA
| |
Collapse
|
44
|
Abstract
The prevalence of obesity, metabolic syndrome and type 2 diabetes has dramatically increased worldwide over the last few decades. Although genetic predisposition and lifestyle factors like decreased physical activity and energy-dense diet are well-known factors in the pathophysiology of these conditions, accumulating evidence suggests that the increase in endocrine disrupting chemicals (EDCs) in the environment also explains a substantial part of the incidence of these metabolic diseases. Bisphenol A (BPA) is one of the highest-volume chemicals produced worldwide. Most people are exposed to it daily by consuming food and beverages into which BPA has leached from polycarbonate containers, including reusable bottles and baby bottles. Although initially considered to be a weak environmental estrogen, BPA may be similar in potency to 17β-estradiol in stimulating cellular responses, especially at low but environmentally relevant doses (nM), as more recent studies have demonstrated. In this review, we summarize both epidemiological evidence and in vivo experimental data that point to an association between BPA exposure and the induction of insulin resistance and/or disruption of pancreatic beta cell function and/or obesity. We then discuss the in vitro data and explain the potential mechanisms involved in the metabolic disorders observed after BPA exposure.
Collapse
Affiliation(s)
- Nicolas Chevalier
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet 2, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, 151 route de Saint-Antoine de Ginestière, CS 23079, 06202, Nice Cedex 3, France
- Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), Nice, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 "Environnement, Reproduction et Cancers Hormono-Dépendants", Nice, France
| | - Patrick Fénichel
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet 2, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, 151 route de Saint-Antoine de Ginestière, CS 23079, 06202, Nice Cedex 3, France.
- Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), Nice, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 "Environnement, Reproduction et Cancers Hormono-Dépendants", Nice, France.
| |
Collapse
|
45
|
Zhang J, Ali HI, Bedi YS, Choudhury M. The plasticizer BBP selectively inhibits epigenetic regulator sirtuins. Toxicology 2015; 338:130-41. [DOI: 10.1016/j.tox.2015.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/28/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022]
|
46
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
47
|
Abstract
The epidemic of overweight and obesity presents a major challenge to chronic disease prevention and health across the life course around the world. Fueled by economic growth, industrialization, mechanized transport, urbanization, an increasingly sedentary lifestyle, and a nutritional transition to processed foods and high-calorie diets over the last 30 years, many countries have witnessed the prevalence of obesity in its citizens double and even quadruple. A rising prevalence of childhood obesity, in particular, forebodes a staggering burden of disease in individuals and healthcare systems in the decades to come. A complex, multifactorial disease, with genetic, behavioral, socioeconomic, and environmental origins, obesity raises the risk of debilitating morbidity and mortality. Relying primarily on epidemiologic evidence published within the last decade, this non-exhaustive review discusses the extent of the obesity epidemic, its risk factors-known and novel-, sequelae, and economic impact across the globe.
Collapse
Affiliation(s)
- Adela Hruby
- Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA,
| | | |
Collapse
|
48
|
Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for understanding disease cause and prevention. Curr Opin Pediatr 2015; 27:248-53. [PMID: 25635586 PMCID: PMC4535724 DOI: 10.1097/mop.0000000000000191] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Although diseases may appear clinically throughout the lifespan, it is clear that many diseases have origins during development. Altered nutrition, as well as exposure to environmental chemicals, drugs, infections, or stress during specific times of development, can lead to functional changes in tissues, predisposing those tissues to diseases that manifest later in life. This review will focus on the role of altered nutrition and exposures to environmental chemicals during development in the role of disease and dysfunction. RECENT FINDINGS The effects of altered nutrition or exposure to environmental chemicals during development are likely because of altered programming of epigenetic marks, which persist across the lifespan. Indeed some changes can be transmitted to future generations. SUMMARY The evidence in support of the developmental origins of the health and disease paradigm is sufficiently robust and repeatable across species, including humans, to suggest a need for greater emphasis in the clinical area. As a result of these data, obesity, diabetes, cardiovascular morbidity, and neuropsychiatric diseases can all be considered pediatric diseases. Disease prevention must start with improved nutrition and reduced exposure to environmental chemicals during development.
Collapse
Affiliation(s)
- Jerrold J Heindel
- aDivision of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina bDivision of Environmental Health Sciences, School of Public Health, University of Massachusetts, Amherst, Massachusetts, USA
| | | |
Collapse
|
49
|
Legler J, Fletcher T, Govarts E, Porta M, Blumberg B, Heindel JJ, Trasande L. Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab 2015; 100:1278-88. [PMID: 25742518 PMCID: PMC4399302 DOI: 10.1210/jc.2014-4326] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT Obesity and diabetes are epidemic in the European Union (EU). Exposure to endocrine-disrupting chemicals (EDCs) is increasingly recognized as a contributor, independent of diet and physical activity. OBJECTIVE The objective was to estimate obesity, diabetes, and associated costs that can be reasonably attributed to EDC exposures in the EU. DESIGN An expert panel evaluated evidence for probability of causation using weight-of-evidence characterization adapted from that applied by the Intergovernmental Panel on Climate Change. Exposure-response relationships and reference levels were evaluated for relevant EDCs, and biomarker data were organized from peer-reviewed studies to represent European exposure and burden of disease. Cost estimation as of 2010 utilized published cost estimates for childhood obesity, adult obesity, and adult diabetes. Setting, Patients and Participants, and Intervention: Cost estimation was performed from the societal perspective. RESULTS The panel identified a 40% to 69% probability of dichlorodiphenyldichloroethylene causing 1555 cases of overweight at age 10 (sensitivity analysis: 1555-5463) in 2010 with associated costs of €24.6 million (sensitivity analysis: €24.6-86.4 million). A 20% to 39% probability was identified for dichlorodiphenyldichloroethylene causing 28 200 cases of adult diabetes (sensitivity analysis: 28 200-56 400) with associated costs of €835 million (sensitivity analysis: €835 million-16.6 billion). The panel also identified a 40% to 69% probability of phthalate exposure causing 53 900 cases of obesity in older women and €15.6 billion in associated costs. Phthalate exposure was also found to have a 40% to 69% probability of causing 20 500 new-onset cases of diabetes in older women with €607 million in associated costs. Prenatal bisphenol A exposure was identified to have a 20% to 69% probability of causing 42 400 cases of childhood obesity, with associated lifetime costs of €1.54 billion. CONCLUSIONS EDC exposures in the EU contribute substantially to obesity and diabetes, with a moderate probability of >€18 billion costs per year. This is a conservative estimate; the results emphasize the need to control EDC exposures.
Collapse
Affiliation(s)
- Juliette Legler
- Department of Chemistry and Biology (J.L.), Institute for Environmental Studies, VU University, 1081 HV Amsterdam, The Netherlands; London School of Tropical Hygiene (T.F.), London WC1E 7HT, United Kingdom; Environmental Risk and Health (E.G.), Flemish Institute for Technological Research, 2400 Mol, Belgium; School of Medicine (M.P.), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Hospital del Mar Institute of Medical Research (M.P.), 08003 Barcelona, Spain; Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP) (M.P.), 28029 Madrid, Spain; Department of Developmental and Cell Biology (B.B.), University of California, Irvine, Irvine, California 92697; National Institute of Environmental Health Sciences (J.J.H.), Research Triangle Park, North Carolina 27709; New York University (NYU) School of Medicine (L.T.), New York, New York 10016; NYU Wagner School of Public Service (L.T.), New York, New York 10012; NYU Steinhardt School of Culture, Education, and Human Development (L.T.), Department of Nutrition, Food & Public Health, New York, New York 10003; and NYU Global Institute of Public Health (L.T.), New York, New York 10003
| | | | | | | | | | | | | |
Collapse
|
50
|
Legler J, Fletcher T, Govarts E, Porta M, Blumberg B, Heindel JJ, Trasande L. Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab 2015; 100:1278-1288. [PMID: 25742518 PMCID: PMC4399302 DOI: 10.1210/jc.2014-4326#sthash.tw9g4zig.dpuf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/25/2015] [Indexed: 06/07/2023]
Abstract
CONTEXT Obesity and diabetes are epidemic in the European Union (EU). Exposure to endocrine-disrupting chemicals (EDCs) is increasingly recognized as a contributor, independent of diet and physical activity. OBJECTIVE The objective was to estimate obesity, diabetes, and associated costs that can be reasonably attributed to EDC exposures in the EU. DESIGN An expert panel evaluated evidence for probability of causation using weight-of-evidence characterization adapted from that applied by the Intergovernmental Panel on Climate Change. Exposure-response relationships and reference levels were evaluated for relevant EDCs, and biomarker data were organized from peer-reviewed studies to represent European exposure and burden of disease. Cost estimation as of 2010 utilized published cost estimates for childhood obesity, adult obesity, and adult diabetes. Setting, Patients and Participants, and Intervention: Cost estimation was performed from the societal perspective. RESULTS The panel identified a 40% to 69% probability of dichlorodiphenyldichloroethylene causing 1555 cases of overweight at age 10 (sensitivity analysis: 1555-5463) in 2010 with associated costs of €24.6 million (sensitivity analysis: €24.6-86.4 million). A 20% to 39% probability was identified for dichlorodiphenyldichloroethylene causing 28 200 cases of adult diabetes (sensitivity analysis: 28 200-56 400) with associated costs of €835 million (sensitivity analysis: €835 million-16.6 billion). The panel also identified a 40% to 69% probability of phthalate exposure causing 53 900 cases of obesity in older women and €15.6 billion in associated costs. Phthalate exposure was also found to have a 40% to 69% probability of causing 20 500 new-onset cases of diabetes in older women with €607 million in associated costs. Prenatal bisphenol A exposure was identified to have a 20% to 69% probability of causing 42 400 cases of childhood obesity, with associated lifetime costs of €1.54 billion. CONCLUSIONS EDC exposures in the EU contribute substantially to obesity and diabetes, with a moderate probability of >€18 billion costs per year. This is a conservative estimate; the results emphasize the need to control EDC exposures.
Collapse
Affiliation(s)
- Juliette Legler
- Department of Chemistry and Biology (J.L.), Institute for Environmental Studies, VU University, 1081 HV Amsterdam, The Netherlands; London School of Tropical Hygiene (T.F.), London WC1E 7HT, United Kingdom; Environmental Risk and Health (E.G.), Flemish Institute for Technological Research, 2400 Mol, Belgium; School of Medicine (M.P.), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Hospital del Mar Institute of Medical Research (M.P.), 08003 Barcelona, Spain; Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP) (M.P.), 28029 Madrid, Spain; Department of Developmental and Cell Biology (B.B.), University of California, Irvine, Irvine, California 92697; National Institute of Environmental Health Sciences (J.J.H.), Research Triangle Park, North Carolina 27709; New York University (NYU) School of Medicine (L.T.), New York, New York 10016; NYU Wagner School of Public Service (L.T.), New York, New York 10012; NYU Steinhardt School of Culture, Education, and Human Development (L.T.), Department of Nutrition, Food & Public Health, New York, New York 10003; and NYU Global Institute of Public Health (L.T.), New York, New York 10003
| | | | | | | | | | | | | |
Collapse
|