1
|
Gomez-Pinedo U, Matías-Guiu JA, Torre-Fuentes L, Montero-Escribano P, Hernández-Lorenzo L, Pytel V, Maietta P, Alvarez S, Sanclemente-Alamán I, Moreno-Jimenez L, Ojeda-Hernandez D, Villar-Gómez N, Benito-Martin MS, Selma-Calvo B, Vidorreta-Ballesteros L, Madrid R, Matías-Guiu J. Variant rs4149584 (R92Q) of the TNFRSF1A gene in patients with familial multiple sclerosis. Neurologia 2025; 40:10-21. [PMID: 35963536 DOI: 10.1016/j.nrleng.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Genomic studies have identified numerous genetic variants associated with susceptibility to multiple sclerosis (MS); however, each one explains only a small percentage of the risk of developing the disease. These variants are located in genes involved in specific pathways, which supports the hypothesis that the risk of developing MS may be linked to alterations in these pathways, rather than in specific genes. We analyzed the role of the TNFRSF1A gene, which encodes one of the TNF-α receptors involved in a signaling pathway previously linked to autoimmune disease. METHODS We included 138 individuals from 23 families including at least 2 members with MS, and analyzed the presence of exonic variants of TNFRSF1A through whole-exome sequencing. We also conducted a functional study to analyze the pathogenic mechanism of variant rs4149584 (-g.6442643C > G, NM_001065.4:c.362 G > A, R92Q) by plasmid transfection into human oligodendroglioma (HOG) cells, which behave like oligodendrocyte lineage cells; protein labeling was used to locate the protein within cells. We also analyzed the ability of transfected HOG cells to proliferate and differentiate into oligodendrocytes. RESULTS Variant rs4149584 was found in 2 patients with MS (3.85%), one patient with another autoimmune disease (7.6%), and in 5 unaffected individuals (7.46%). The 2 patients with MS and variant rs4149584 were homozygous carriers and belonged to the same family, whereas the remaining individuals presented the variant in heterozygosis. The study of HOG cells transfected with the mutation showed that the protein does not reach the cell membrane, but rather accumulates in the cytoplasm, particularly in the endoplasmic reticulum and near the nucleus; this suggests that, in the cells presenting the mutation, TNFRSF1 does not act as a transmembrane protein, which may alter its signaling pathway. The study of cell proliferation and differentiation found that transfected cells continue to be able to differentiate into oligodendrocytes and are probably still capable of producing myelin, although they present a lower rate of proliferation than wild-type cells. CONCLUSIONS Variant rs4149584 is associated with risk of developing MS. We analyzed its functional role in oligodendrocyte lineage cells and found an association with MS in homozygous carriers. However, the associated molecular alterations do not influence the differentiation into oligodendrocytes; we were therefore unable to confirm whether this variant alone is pathogenic in MS, at least in heterozygosis.
Collapse
Affiliation(s)
- U Gomez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.
| | - J A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - L Torre-Fuentes
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - P Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - L Hernández-Lorenzo
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - V Pytel
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - I Sanclemente-Alamán
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - L Moreno-Jimenez
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - D Ojeda-Hernandez
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - N Villar-Gómez
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - M S Benito-Martin
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - B Selma-Calvo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - L Vidorreta-Ballesteros
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | | | - J Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Heesbeen EJ, Bijlsma EY, Risseeuw TA, Hessel EVS, Groenink L. A systematic approach to identify gaps in neuroimmunology: TNF-α and fear learning deficits, a worked example. Brain Behav Immun 2025; 123:752-764. [PMID: 39442635 DOI: 10.1016/j.bbi.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The pathophysiology of several neurodegenerative and neuropsychiatric disorders is linked to an altered immune system. However, it is often unclear how the immune system specifically affects these disorders since neuroimmune interactions are very complex. In this paper, we introduce an adjusted version of the adverse outcome pathway (AOP) approach from toxicology to the field of neuroimmunology. A review of the effect of TNF-α on fear learning deficits is used as a worked example to demonstrate how an AOP approach can help identify gaps of knowledge and crucial steps in the pathophysiology of neuroimmunological disorders. METHODS The AOP was constructed in five steps. First, the adverse outcome was formulated clearly and specifically. Second, the link between the molecular initiating event and the adverse outcome was established with a preliminary literature search in the Medline database. Third, a systematic literature search was performed in which we identified 95 relevant articles. Fourth, the main biological processes and relevant key events were identified. Fifth, the links between key events were determined and an AOP network was constructed. RESULTS We identified three pathways through which TNF-α may affect fear learning. First, TNF-α receptor activation increases NF-κB levels which increases oxidative stress levels and reduces the activity of glutamate transporters. This alters the synaptic plasticity which is associated with impaired fear acquisition, consolidation, and fear extinction. Second, activation of TNF-α receptors increases the expression and capacity of the serotonin transporter which is linked to impaired fear acquisition, expression, and extinction. Third, TNF-α receptor 1 activation can induce necroptosis, leading to neuroinflammation which is linked to fear learning deficits. CONCLUSION To successfully apply the AOP approach in neuroimmunology we recommend defining adverse outcomes more precisely, establishing stronger connections between key events from various biological processes, incorporating feedforward and feedback loops, and identifying more mechanistic knowledge in later key events. These adjustments are needed to map the complex processes within the field of neuroimmunology and to identify gaps of knowledge.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the).
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Tristan A Risseeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Ellen V S Hessel
- Public Health and Health Services, RIVM National Institute for Public Health and the Environment, Bilthoven, Netherlands (the)
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| |
Collapse
|
3
|
Nguyen KL, Bhatt IJ, Gupta S, Showkat N, Swanson KA, Fischer R, Kontermann RE, Pfizenmaier K, Bracchi-Ricard V, Bethea JR. Tumor necrosis factor receptor 2 activation elicits sex-specific effects on cortical myelin proteins and functional recovery in a model of multiple sclerosis. Brain Res Bull 2024; 207:110885. [PMID: 38246200 PMCID: PMC10923072 DOI: 10.1016/j.brainresbull.2024.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.
Collapse
MESH Headings
- Humans
- Male
- Female
- Mice
- Animals
- Multiple Sclerosis
- Receptors, Tumor Necrosis Factor, Type II/agonists
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/therapeutic use
- Tumor Necrosis Factor Inhibitors/therapeutic use
- Mice, Inbred C57BL
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Myelin Proteins
- Tumor Necrosis Factor-alpha/metabolism
- Mice, Knockout
Collapse
Affiliation(s)
- Kayla L Nguyen
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052, United States.
| | - Ishaan J Bhatt
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Shruti Gupta
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Nazaf Showkat
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Kathryn A Swanson
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | | | - John R Bethea
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052, United States.
| |
Collapse
|
4
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
5
|
Sibilia F, Sheikh-Bahaei N, Mack WJ, Choupan J. Perivascular spaces in Alzheimer's disease are associated with inflammatory, stress-related, and hypertension biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543504. [PMID: 37333097 PMCID: PMC10274635 DOI: 10.1101/2023.06.02.543504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Perivascular spaces (PVS) are fluid-filled spaces surrounding the brain vasculature. Literature suggests that PVS may play a significant role in aging and neurological disorders, including Alzheimer's disease (AD). Cortisol, a stress hormone, has been implicated in the development and progression of AD. Hypertension, a common condition in older adults, has been found to be a risk factor for AD. Hypertension may contribute to PVS enlargement, impairing the clearance of waste products from the brain and promoting neuroinflammation. This study aims to understand the potential interactions between PVS, cortisol, hypertension, and inflammation in the context of cognitive impairment. Using MRI scans acquired at 1.5T, PVS were quantified in a cohort of 465 individuals with cognitive impairment. PVS was calculated in the basal ganglia and centrum semiovale using an automated segmentation approach. Levels of cortisol and angiotensin-converting enzyme (ACE) (an indicator of hypertension) were measured from plasma. Inflammatory biomarkers, such as cytokines and matrix metalloproteinases, were analyzed using advanced laboratory techniques. Main effect and interaction analyses were performed to examine the associations between PVS severity, cortisol levels, hypertension, and inflammatory biomarkers. In the centrum semiovale, higher levels of inflammation reduced cortisol associations with PVS volume fraction. For ACE, an inverse association with PVS was seen only when interacting with TNFr2 (a transmembrane receptor of TNF). There was also a significant inverse main effect of TNFr2. In the PVS basal ganglia, a significant positive association was found with TRAIL (a TNF receptor inducing apoptosis). These findings show for the first time the intricate relationships between PVS structure and the levels of stress-related, hypertension, and inflammatory biomarkers. This research could potentially guide future studies regarding the underlying mechanisms of AD pathogenesis and the potential development of novel therapeutic strategies targeting these inflammation factors.
Collapse
Affiliation(s)
- Francesca Sibilia
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- NeuroScope Inc. Scarsdale, New York
| |
Collapse
|
6
|
Pegoretti V, Bauer J, Fischer R, Paro I, Douwenga W, Kontermann RE, Pfizenmaier K, Houben E, Broux B, Hellings N, Baron W, Laman JD, Eisel ULM. Sequential treatment with a TNFR2 agonist and a TNFR1 antagonist improves outcomes in a humanized mouse model for MS. J Neuroinflammation 2023; 20:106. [PMID: 37138340 PMCID: PMC10157968 DOI: 10.1186/s12974-023-02785-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
TNF signaling is an essential regulator of cellular homeostasis. Through its two receptors TNFR1 and TNFR2, soluble versus membrane-bound TNF enable cell death or survival in a variety of cell types. TNF-TNFRs signaling orchestrates important biological functions such as inflammation, neuronal activity as well as tissue de- and regeneration. TNF-TNFRs signaling is a therapeutic target for neurodegenerative diseases such as multiple sclerosis (MS) and Alzheimer's disease (AD), but animal and clinical studies yielded conflicting findings. Here, we ask whether a sequential modulation of TNFR1 and TNFR2 signaling is beneficial in experimental autoimmune encephalomyelitis (EAE), an experimental mouse model that recapitulates inflammatory and demyelinating aspects of MS. To this end, human TNFR1 antagonist and TNFR2 agonist were administered peripherally at different stages of disease development in TNFR-humanized mice. We found that stimulating TNFR2 before onset of symptoms leads to improved response to anti-TNFR1 therapeutic treatment. This sequential treatment was more effective in decreasing paralysis symptoms and demyelination, when compared to single treatments. Interestingly, the frequency of the different immune cell subsets is unaffected by TNFR modulation. Nevertheless, treatment with only a TNFR1 antagonist increases T-cell infiltration in the central nervous system (CNS) and B-cell cuffing at the perivascular sites, whereas a TNFR2 agonist promotes Treg CNS accumulation. Our findings highlight the complicated nature of TNF signaling which requires a timely balance of selective activation and inhibition of TNFRs in order to exert therapeutic effects in the context of CNS autoimmunity.
Collapse
Affiliation(s)
- Valentina Pegoretti
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jan Bauer
- Division of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Iskra Paro
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Wanda Douwenga
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Evelien Houben
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Bieke Broux
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Niels Hellings
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Wia Baron
- Department Biomedical Sciences of Cells and Systems (BSCS), Section Molecular Neurobiology, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Jon D Laman
- Department Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
7
|
Decandia D, Gelfo F, Landolfo E, Balsamo F, Petrosini L, Cutuli D. Dietary Protection against Cognitive Impairment, Neuroinflammation and Oxidative Stress in Alzheimer's Disease Animal Models of Lipopolysaccharide-Induced Inflammation. Int J Mol Sci 2023; 24:ijms24065921. [PMID: 36982996 PMCID: PMC10051444 DOI: 10.3390/ijms24065921] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is a rapidly growing epidemic with a heavy social and economic burden. Evidence suggests that systemic inflammation, dysregulation of the immune response and the resulting neuroinflammation and neurodegeneration play a significant role in AD pathogenesis. Currently, given that there is no fully convincing cure for AD, the interest in lifestyle factors (such as diet), which potentially delay onset and reduce the severity of symptoms, is increasing. This review is aimed at summarizing the effects of dietary supplementation on cognitive decline, neuroinflammation and oxidative stress in AD-like animal models with a focus on neuroinflammation induced by lipopolysaccharide (LPS) injection, which mimics systemic inflammation in animals. The compounds reviewed include curcumin, krill oil, chicoric acid, plasmalogens, lycopene, tryptophan-related dipeptides, hesperetin and selenium peptides. Despite the heterogeneity of these compounds, there is a strong consensus on their counteracting action on LPS-induced cognitive deficits and neuroinflammatory responses in rodents by modulating cell-signaling processes, such as the NF-κB pathway. Overall, dietary interventions could represent an important resource to oppose AD due to their influence in neuroprotection and immune regulation.
Collapse
Affiliation(s)
- Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
8
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Qin J, Ma Z, Chen X, Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front Neurol 2023; 14:1103416. [PMID: 36959826 PMCID: PMC10027711 DOI: 10.3389/fneur.2023.1103416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Microglia are the principal resident immune cells in the central nervous system (CNS) and play important roles in the development of CNS disorders. In recent years, there have been significant developments in our understanding of microglia, and we now have greater insight into the temporal and spatial patterns of microglia activation in a variety of CNS disorders, as well as the interactions between microglia and neurons. A variety of signaling pathways have been implicated. However, to date, all published clinical trials have failed to demonstrate efficacy over placebo. This review summarizes the results of recent important studies and attempts to provide a mechanistic view of microglia activation, inflammation, tissue repair, and CNS disorders.
Collapse
|
10
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
11
|
Koshal P, Matera I, Abruzzese V, Ostuni A, Bisaccia F. The Crosstalk between HepG2 and HMC-III Cells: In Vitro Modulation of Gene Expression with Conditioned Media. Int J Mol Sci 2022; 23:ijms232214443. [PMID: 36430920 PMCID: PMC9696318 DOI: 10.3390/ijms232214443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies have postulated an inverse correlation between developing cancer and neurodegeneration. It is known that the secretome plays a vital role in cell-cell communication in health and disease; the microglia is the resident macrophage of the central nervous system which maintains neuronal integrity by adapting as the microenvironment changes. The present study aimed to identify, in a cell model, biomarkers that link neurodegenerative diseases to cancer or vice versa. Real-time PCR and western blot analysis were used to characterize the effects on gene and protein expression of human hepatoblastoma (HepG2) and human microglia (HMC-III) cells after exchanging part of their conditioned medium. Biomarkers of the endoplasmic reticulum, and mitophagy and inflammatory processes were evaluated. In both cell types, we observed the activation of cytoprotective mechanisms against any potential pro-oxidant or pro-inflammatory signals present in secretomes. In contrast, HepG2 but not HMC-III cells seem to trigger autophagic processes following treatment with conditioned medium of microglia, thus suggesting a cell-specific adaptive response.
Collapse
|
12
|
Raffaele S, Fumagalli M. Dynamics of Microglia Activation in the Ischemic Brain: Implications for Myelin Repair and Functional Recovery. Front Cell Neurosci 2022; 16:950819. [PMID: 35899017 PMCID: PMC9309466 DOI: 10.3389/fncel.2022.950819] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is a neurological disorder representing a leading cause of death and permanent disability world-wide, for which effective regenerative treatments are missing. Oligodendrocyte degeneration and consequent myelin disruption are considered major contributing factors to stroke-associated neurological deficits. Therefore, fostering myelin reconstruction by oligodendrocyte precursor cells (OPCs) has emerged as a promising therapeutic approach to enhance functional recovery in stroke patients. A pivotal role in regulating remyelination is played by microglia, the resident immune cells of the brain. Early after stroke, microglial cells exert beneficial functions, promoting OPC recruitment toward the ischemic lesion and preserving myelin integrity. However, the protective features of microglia are lost during disease progression, contributing to remyelination failure. Unveiling the mechanisms driving the pro-remyelination properties of microglia may provide important opportunities for both reducing myelin damage and promoting its regeneration. Here, we summarize recent evidence describing microglia activation kinetics in experimental models of ischemic injury, focusing on the contribution of these innate immune cells to myelin damage and repair. Some molecular signals regulating the pro-regenerative functions of microglia after stroke have been highlighted to provide new possible therapeutic targets involved in the protective functions of these cells. Finally, we analyzed the impact of microglia-to-OPCs communication via extracellular vesicles on post-stroke remyelination and functional recovery. The results collected in this review underline the importance of supporting the pro-remyelination functions of microglial cells after stroke.
Collapse
|
13
|
Mensink M, Tran TNM, Zaal EA, Schrama E, Berkers CR, Borst J, de Kivit S. TNFR2 Costimulation Differentially Impacts Regulatory and Conventional CD4 + T-Cell Metabolism. Front Immunol 2022; 13:881166. [PMID: 35844585 PMCID: PMC9282886 DOI: 10.3389/fimmu.2022.881166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
CD4+ conventional T cells (Tconvs) mediate adaptive immune responses, whereas regulatory T cells (Tregs) suppress those responses to safeguard the body from autoimmunity and inflammatory diseases. The opposing activities of Tconvs and Tregs depend on the stage of the immune response and their environment, with an orchestrating role for cytokine- and costimulatory receptors. Nutrient availability also impacts T-cell functionality via metabolic and biosynthetic processes that are largely unexplored. Many data argue that costimulation by Tumor Necrosis Factor Receptor 2 (TNFR2) favors support of Treg over Tconv responses and therefore TNFR2 is a key clinical target. Here, we review the pertinent literature on this topic and highlight the newly identified role of TNFR2 as a metabolic regulator for thymus-derived (t)Tregs. We present novel transcriptomic and metabolomic data that show the differential impact of TNFR2 on Tconv and tTreg gene expression and reveal distinct metabolic impact on both cell types.
Collapse
Affiliation(s)
- Mark Mensink
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Thi Ngoc Minh Tran
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Esther A. Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ellen Schrama
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Celia R. Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Sander de Kivit
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
The Inflammatory Response after Moderate Contusion Spinal Cord Injury: A Time Study. BIOLOGY 2022; 11:biology11060939. [PMID: 35741460 PMCID: PMC9220050 DOI: 10.3390/biology11060939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The neuroinflammatory response is a rather complex event in spinal cord injury (SCI) and has the capacity to exacerbate cell damage but also to contribute to the repair of the injury. This complexity is thought to depend on a variety of inflammatory mediators, of which tumor necrosis factor (TNF) plays a key role. Evidence indicates that TNF can be both protective and detrimental in SCI. In the present study, we studied the temporal and cellular expression of TNF and its receptors after SCI in mice. We found TNF to be significantly increased in both the acute and the delayed phases after SCI, alongside a robust neuroinflammatory response. As we could verify some of our results in human postmortem tissue, our results imply that diminishing the detrimental immune signaling after SCI could also enhance recovery in humans. Abstract Spinal cord injury (SCI) initiates detrimental cellular and molecular events that lead to acute and delayed neuroinflammation. Understanding the role of the inflammatory response in SCI requires insight into the temporal and cellular synthesis of inflammatory mediators. We subjected C57BL/6J mice to SCI and investigated inflammatory reactions. We examined activation, recruitment, and polarization of microglia and infiltrating immune cells, focusing specifically on tumor necrosis factor (TNF) and its receptors TNFR1 and TNFR2. In the acute phase, TNF expression increased in glial cells and neuron-like cells, followed by infiltrating immune cells. TNFR1 and TNFR2 levels increased in the delayed phase and were found preferentially on neurons and glial cells, respectively. The acute phase was dominated by the infiltration of granulocytes and macrophages. Microglial/macrophage expression of Arg1 increased from 1–7 days after SCI, followed by an increase in Itgam, Cx3cr1, and P2ry12, which remained elevated throughout the study. By 21 and 28 days after SCI, the lesion core was populated by galectin-3+, CD68+, and CD11b+ microglia/macrophages, surrounded by a glial scar consisting of GFAP+ astrocytes. Findings were verified in postmortem tissue from individuals with SCI. Our findings support the consensus that future neuroprotective immunotherapies should aim to selectively neutralize detrimental immune signaling while sustaining pro-regenerative processes.
Collapse
|
15
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Lambuk L, Ahmad S, Sadikan MZ, Nordin NA, Kadir R, Nasir NAA, Chen X, Boer J, Plebanski M, Mohamud R. Targeting Differential Roles of Tumor Necrosis Factor Receptors as a Therapeutic Strategy for Glaucoma. Front Immunol 2022; 13:857812. [PMID: 35651608 PMCID: PMC9149562 DOI: 10.3389/fimmu.2022.857812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is an irreversible sight-threatening disorder primarily due to elevated intraocular pressure (IOP), leading to retinal ganglion cell (RGC) death by apoptosis with subsequent loss of optic nerve fibers. A considerable amount of empirical evidence has shown the significant association between tumor necrosis factor cytokine (TNF; TNFα) and glaucoma; however, the exact role of TNF in glaucoma progression remains unclear. Total inhibition of TNF against its receptors can cause side effects, although this is not the case when using selective inhibitors. In addition, TNF exerts its antithetic roles via stimulation of two receptors, TNF receptor I (TNFR1) and TNF receptor II (TNFR2). The pro-inflammatory responses and proapoptotic signaling pathways predominantly mediated through TNFR1, while neuroprotective and anti-apoptotic signals induced by TNFR2. In this review, we attempt to discuss the involvement of TNF receptors (TNFRs) and their signaling pathway in ocular tissues with focus on RGC and glial cells in glaucoma. This review also outlines the potential application TNFRs agonist and/or antagonists as neuroprotective strategy from a therapeutic standpoint. Taken together, a better understanding of the function of TNFRs may lead to the development of a treatment for glaucoma.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jennifer Boer
- School of Health and Biomedical Sciences, Royal Melbourne Institute Technology (RMIT) University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, Royal Melbourne Institute Technology (RMIT) University, Bundoora, VIC, Australia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
17
|
Puy L, Perbet R, Figeac M, Duchêne B, Deramecourt V, Cordonnier C, Bérézowski V. Brain Peri-Hematomal Area, a Strategic Interface for Blood Clearance: A Human Neuropathological and Transcriptomic Study. Stroke 2022; 53:2026-2035. [DOI: 10.1161/strokeaha.121.037751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Enhancing the blood clearance process is a promising therapeutic strategy for intracerebral hemorrhage (ICH). We aimed to investigate the kinetic of this process after ICH in human brain tissue through the monocyte-macrophage scavenger receptor (CD163)/HO-1 (hemoxygenase-1) pathway.
Methods:
We led a cross-sectional post-mortem study including 22 consecutive ICH cases (2005–2019) from the Lille Neurobank. Cases were grouped according to the time of death: ≤72 hours, 4 to 7 days, 8 to 15 days, 16 to 90 days, and >90 days after ICH onset. Paraffin-embedded tissue was extracted from 4 strategic areas, including hematoma core and peri-hematomal area to perform histological investigations. Additionally, we extracted RNA from the peri-hematomal area of 6 cases to perform transcriptomic analysis.
Results:
We included 19 ICH cases (median age: 79 [71–89] years; median delay ICH-death: 13 [5–41] days). The peri-hematomal area concentrated most of reactive microglia, CD163/HO-1 and iron deposits as compared with other brain areas. We found a surge in the blood clearance process from day 8 to day 15 after ICH onset. Transcriptomic analysis showed that HO-1 was the most upregulated gene (2.81±0.39, adjusted
P
=1.11×10
–10
) and CD163 the sixth (1.49±0.29, adjusted
P
=1.68×10
–
5
). We also identified several upregulated genes that exert a beneficial role in terminating inflammation and enhancing tissue repair.
Conclusions:
We provide histological and transcriptomic-based evidence in humans for the key role of peri-hematomal area in endogenous blood clearance process through the CD163/HO-1 pathway, especially from day 8 after ICH and favored by an anti-inflammatory environment. Our findings contribute to identify innovative therapeutic strategies for ICH.
Collapse
Affiliation(s)
- Laurent Puy
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
| | - Romain Perbet
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown (R.P.)
- Harvard Medical School, Boston, MA (R.P.)
| | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, France (M.F.)
| | - Bélinda Duchêne
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France (B.D.)
| | - Vincent Deramecourt
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
- Université d’Artois, Lens, France (V.B.)
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
| | - Vincent Bérézowski
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
| |
Collapse
|
18
|
Standiford MM, Grund EM, Howe CL. Citrullinated myelin induces microglial TNFα and inhibits endogenous repair in the cuprizone model of demyelination. J Neuroinflammation 2021; 18:305. [PMID: 34961522 PMCID: PMC8711191 DOI: 10.1186/s12974-021-02360-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Microglia are the primary phagocytes of the central nervous system and are responsible for removing damaged myelin following demyelination. Previous investigations exploring the consequences of myelin phagocytosis on microglial activation overlooked the biochemical modifications present on myelin debris. Such modifications, including citrullination, are increased within the inflammatory environment of multiple sclerosis lesions. METHODS Mouse cortical myelin isolated by ultracentrifugation was citrullinated ex vivo by incubation with the calcium-dependent peptidyl arginine deiminase PAD2. Demyelination was induced by 6 weeks of cuprizone (0.3%) treatment and spontaneous repair was initiated by reversion to normal chow. Citrullinated or unmodified myelin was injected into the primary motor cortex above the cingulum bundle at the time of reversion to normal chow and the consequent impact on remyelination was assessed by measuring the surface area of myelin basic protein-positive fibers in the cortex 3 weeks later. Microglial responses to myelin were characterized by measuring cytokine release, assessing flow cytometric markers of microglial activation, and RNAseq profiling of transcriptional changes. RESULTS Citrullinated myelin induced a unique microglial response marked by increased tumor necrosis factor α (TNFα) production both in vitro and in vivo. This response was not induced by unmodified myelin. Injection of citrullinated myelin but not unmodified myelin into the cortex of cuprizone-demyelinated mice significantly inhibited spontaneous remyelination. Antibody-mediated neutralization of TNFα blocked this effect and restored remyelination to normal levels. CONCLUSIONS These findings highlight the role of post-translation modifications such as citrullination in the determination of microglial activation in response to myelin during demyelination. The inhibition of endogenous repair induced by citrullinated myelin and the reversal of this effect by neutralization of TNFα may have implications for therapeutic approaches to patients with inflammatory demyelinating disorders.
Collapse
Affiliation(s)
- Miranda M Standiford
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA.,Translational Neuroimmunology Lab, Mayo Clinic, Rochester, MN, 55905, USA.,Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, MA, 02142, USA
| | - Ethan M Grund
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA.,Translational Neuroimmunology Lab, Mayo Clinic, Rochester, MN, 55905, USA
| | - Charles L Howe
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, MN, 55905, USA. .,Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA. .,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
19
|
Ferreira ÉC, Oliveira ACDR, Garcia CG, Cossenza M, Gonçalves-de-Albuquerque CF, Castro-Faria-Neto HC, Giestal-de-Araujo E, Dos Santos AA. PMA treatment fosters rat retinal ganglion cell survival via TNF signaling. Neurosci Lett 2021; 763:136197. [PMID: 34437989 DOI: 10.1016/j.neulet.2021.136197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
An insult can trigger a protective response or even cell death depending on different factors that include the duration and magnitude of the event and the ability of the cell to activate protective intracellular signals, including inflammatory cytokines. Our previous work showed that the treatment of Lister Hooded rat retinal cell cultures with 50 ng/mL phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, increases the survival of retinal ganglion cells (RGCs) kept in culture for 48 h after axotomy. Here we aim to analyze how PMA modulates the levels of TNF-α and IL-1β (both key inflammatory mediators) and the impact of this modulation on RGCs survival. We hypothesize that the increase in RGCs survival mediated by PMA treatment depends upon modulation of the levels of IL-1β and TNF-α. The effect of PMA treatment was assayed on cell viability, caspase 3 activation, TNF-α and IL-1β release and TNF receptor type I (TNFRI) and TNF receptor type II (TNFRII) levels. PMA treatment increases IL-1β and TNF-α levels in 15 min in culture and increases the release of both cytokines after 30 min and 24 h, respectively. Both IL-1β and TNF-α levels decrease after 48 h of PMA treatment. PMA treatment also induces an increase in TNFRII levels while decreasing TNFRI after 24 h. PMA also inhibited caspase-3 activation, and decreased ROS production and EthD-1/calcein ratio in retinal cell cultures leading to an increase in cell viability. The neutralization of IL-1β (anti-IL1β 0,1ng/mL), the neutralization of TNF-α (anti-TNF-α 0,1ng/mL) and the TNF-α inhibition using a recombinant soluble TNFRII abolished PMA effect on RGCs survival. These data suggest that PMA treatment induces IL1β and TNF-α release and modulation of TNFRI/TNFRII expression promoting RGCs survival after axotomy.
Collapse
Affiliation(s)
- Érica Camila Ferreira
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | | | - Carlos Gustavo Garcia
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Universidade Anhanguera, Av. Visconde do Rio Branco, 123, Niterói, Rio de Janeiro CEP 24020-000, Brazil
| | - Marcelo Cossenza
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Departamento de Fisiologia e Farmacologia, Laboratório de Interações Neuroquímicas e Laboratório de Farmacologia Molecular, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP: 24020-150, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro CEP 21040900, Brazil; Departamento de Bioquímica - Laboratório de Imunofarmacologia, Instituto Biomédico, UNIRIO Rua Frei Caneca 94, Rio de Janeiro, RJ CEP 20211030, Brazil
| | - Hugo Caire Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro CEP 21040900, Brazil; INCT-NIM - Instituto Oswaldo Cruz-FIOCRUZ, Manguinhos, RJ CEP:21040-360, Brazil
| | - Elizabeth Giestal-de-Araujo
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Departamento de Neurobiologia, Laboratório de Cultura de Tecidos Hertha Meyer, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP: 24020-140, Brazil; INCT-NIM - Instituto Oswaldo Cruz-FIOCRUZ, Manguinhos, RJ CEP:21040-360, Brazil
| | - Aline Araujo Dos Santos
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Departamento de Fisiologia e Farmacologia, Laboratório de Interações Neuroquímicas e Laboratório de Farmacologia Molecular, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP: 24020-150, Brazil.
| |
Collapse
|
20
|
Enhanced Microglia Activation and Glioma Tumor Progression by Inflammagen Priming in Mice with Tumor Necrosis Factor Receptor Type 2 Deficiency. Life (Basel) 2021; 11:life11090961. [PMID: 34575110 PMCID: PMC8465392 DOI: 10.3390/life11090961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the fact that accumulation of microglia, the resident macrophages of the central nervous system (CNS) are the main feature of glioblastoma, the role of microglia in the progression of glioma is still arguable. Based on the correlation of inflammation with tumor progression, in this study, we attempt to determine if peripheral inflammation aggravates glioma expansion and the activation of microglia associated with the tumor. Experimental animals were administered intraperitoneally by inflammagen lipopolysaccharide (LPS) for 7 days (LPS priming) before intracerebral implantation of glioma cells. Moreover, a reduced level of tumor necrosis factor receptor type 2 (TNFR2) that is restricted to immune cells, neurons, and microglia has been found in patients with glioblastoma through the clinic analysis of monocyte receptor expression. Thus, in addition to wildtype (WT) mice, heterogeneous TNFR2 gene deficiency (TNFR2+/−) mice and homogeneous TNFR2 gene knockout (TNFR2−/−) mice were used in this study. The results show that peripheral challenge by LPS, Iba1+- or CD11b+-microglia increase in numbers in the cortex and hippocampus of TNFR2−/− mice, when compared to WT or TNFR2+/− mice. We further conducted the intracerebral implantation of rodent glioma cells into the animals and found that the volumes of tumors formed by rat C6 glioma cells or mouse GL261 glioma cells were significantly larger in the cortex of TNFR2−/− mice when compared to that measured in LPS-primed WT or LPS-primed TNFR2+/− mice. Ki67+-cells were exclusively clustered in the tumor of LPS-primed TNFR2−/− mice. Microglia were also extensively accumulated in the tumor formed in LPS-primed TNFR2−/− mice. Accordingly, our findings demonstrate that aggravation of microglia activation by peripheral inflammatory challenge and a loss of TNFR2 function might lead to the promotion of glioma growth.
Collapse
|
21
|
Nezametdinova VZ, Yunes RA, Dukhinova MS, Alekseeva MG, Danilenko VN. The Role of the PFNA Operon of Bifidobacteria in the Recognition of Host's Immune Signals: Prospects for the Use of the FN3 Protein in the Treatment of COVID-19. Int J Mol Sci 2021; 22:ijms22179219. [PMID: 34502130 PMCID: PMC8430577 DOI: 10.3390/ijms22179219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Bifidobacteria are some of the major agents that shaped the immune system of many members of the animal kingdom during their evolution. Over recent years, the question of concrete mechanisms underlying the immunomodulatory properties of bifidobacteria has been addressed in both animal and human studies. A possible candidate for this role has been discovered recently. The PFNA cluster, consisting of five core genes, pkb2, fn3, aaa-atp, duf58, tgm, has been found in all gut-dwelling autochthonous bifidobacterial species of humans. The sensory region of the species-specific serine-threonine protein kinase (PKB2), the transmembrane region of the microbial transglutaminase (TGM), and the type-III fibronectin domain-containing protein (FN3) encoded by the I gene imply that the PFNA cluster might be implicated in the interaction between bacteria and the host immune system. Moreover, the FN3 protein encoded by one of the genes making up the PFNA cluster, contains domains and motifs of cytokine receptors capable of selectively binding TNF-α. The PFNA cluster could play an important role for sensing signals of the immune system. Among the practical implications of this finding is the creation of anti-inflammatory drugs aimed at alleviating cytokine storms, one of the dire consequences resulting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Venera Z. Nezametdinova
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Roman A. Yunes
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Marina S. Dukhinova
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Maria G. Alekseeva
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
- Correspondence:
| |
Collapse
|
22
|
Comparative Analysis Identifies Similarities between the Human and Murine Microglial Sensomes. Int J Mol Sci 2021; 22:ijms22031495. [PMID: 33540859 PMCID: PMC7867338 DOI: 10.3390/ijms22031495] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
One of the essential functions of microglia is to continuously sense changes in their environment and adapt to those changes. For this purpose, they use a set of genes termed the sensome. This sensome is comprised of the most abundantly expressed receptors on the surface of microglia. In this study, we updated previously identified mouse microglial sensome by incorporating an additional published RNAseq dataset into the data-analysis pipeline. We also identified members of the human microglial sensome using two independent human microglia RNAseq data sources. Using both the mouse and human microglia sensomes, we identified a key set of genes conserved between the mouse and human microglial sensomes as well as some differences between the species. We found a key set of 57 genes to be conserved in both mouse and human microglial sensomes. We define these genes as the “microglia core sensome”. We then analyzed expression of genes in this core sensome in five different datasets from two neurodegenerative disease models at various stages of the diseases and found that, overall, changes in the level of expression of microglial sensome genes are specific to the disease or condition studied. Our results highlight the relevance of data generated in mice for understanding the biology of human microglia, but also stress the importance of species-specific gene sets for the investigation of diseases involving microglia. Defining this microglial specific core sensome may help identify pathological changes in microglia in humans and mouse models of human disease.
Collapse
|
23
|
Gallego-Delgado P, James R, Browne E, Meng J, Umashankar S, Tan L, Picon C, Mazarakis ND, Faisal AA, Howell OW, Reynolds R. Neuroinflammation in the normal-appearing white matter (NAWM) of the multiple sclerosis brain causes abnormalities at the nodes of Ranvier. PLoS Biol 2020; 18:e3001008. [PMID: 33315860 PMCID: PMC7769608 DOI: 10.1371/journal.pbio.3001008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/28/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023] Open
Abstract
Changes to the structure of nodes of Ranvier in the normal-appearing white matter (NAWM) of multiple sclerosis (MS) brains are associated with chronic inflammation. We show that the paranodal domains in MS NAWM are longer on average than control, with Kv1.2 channels dislocated into the paranode. These pathological features are reproduced in a model of chronic meningeal inflammation generated by the injection of lentiviral vectors for the lymphotoxin-α (LTα) and interferon-γ (IFNγ) genes. We show that tumour necrosis factor (TNF), IFNγ, and glutamate can provoke paranodal elongation in cerebellar slice cultures, which could be reversed by an N-methyl-D-aspartate (NMDA) receptor blocker. When these changes were inserted into a computational model to simulate axonal conduction, a rapid decrease in velocity was observed, reaching conduction failure in small diameter axons. We suggest that glial cells activated by pro-inflammatory cytokines can produce high levels of glutamate, which triggers paranodal pathology, contributing to axonal damage and conduction deficits. Current thinking on the mechanisms by which multiple sclerosis gives rise to cumulative neurological disability revolves largely around focal lesions of inflammation and demyelination. However, some of the debilitating symptoms, such as severe fatigue, might be better explained by a more diffuse pathology. This study shows that paranodes in the white matter become abnormal as a result of neuroinflammation, which may be the result of the action of cytokines that cause glia to release glutamate.
Collapse
Affiliation(s)
- Patricia Gallego-Delgado
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rachel James
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Eleanor Browne
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Joanna Meng
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Swetha Umashankar
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Li Tan
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Carmen Picon
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicholas D. Mazarakis
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - A. Aldo Faisal
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
- Department of Computing, Faculty of Engineering, Imperial College London, London, United Kingdom
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Owain W. Howell
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea, Wales
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
24
|
IL-10 normalizes aberrant amygdala GABA transmission and reverses anxiety-like behavior and dependence-induced escalation of alcohol intake. Prog Neurobiol 2020; 199:101952. [PMID: 33197496 DOI: 10.1016/j.pneurobio.2020.101952] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/13/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022]
Abstract
Alcohol elicits a neuroimmune response in the brain contributing to the development and maintenance of alcohol use disorder (AUD). While pro-inflammatory mediators initiate and drive the neuroimmune response, anti-inflammatory mediators provide an important homeostatic mechanism to limit inflammation and prevent pathological damage. However, our understanding of the role of anti-inflammatory signaling on neuronal physiology in critical addiction-related brain regions and pathological alcohol-dependence induced behaviors is limited, precluding our ability to identify promising therapeutic targets. Here, we hypothesized that chronic alcohol exposure compromises anti-inflammatory signaling in the central amygdala, a brain region implicated in anxiety and addiction, consequently perpetuating a pro-inflammatory state driving aberrant neuronal activity underlying pathological behaviors. We found that alcohol dependence alters the global brain immune landscape increasing IL-10 producing microglia and T-regulatory cells but decreasing local amygdala IL-10 levels. Amygdala IL-10 overexpression decreases anxiety-like behaviors, suggesting its local role in regulating amygdala-mediated behaviors. Mechanistically, amygdala IL-10 signaling through PI3K and p38 MAPK modulates GABA transmission directly at presynaptic terminals and indirectly through alterations in spontaneous firing. Alcohol dependence-induces neuroadaptations in IL-10 signaling leading to an overall IL-10-induced decrease in GABA transmission, which normalizes dependence-induced elevated amygdala GABA transmission. Notably, amygdala IL-10 overexpression abolishes escalation of alcohol intake, a diagnostic criterion of AUD, in dependent mice. This highlights the importance of amygdala IL-10 signaling in modulating neuronal activity and underlying anxiety-like behavior and aberrant alcohol intake, providing a new framework for therapeutic intervention.
Collapse
|
25
|
Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res 2020; 83:100916. [PMID: 33075485 DOI: 10.1016/j.preteyeres.2020.100916] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
The pathophysiology of glaucoma is complex, multifactorial and not completely understood. Elevated intraocular pressure (IOP) and/or impaired retinal blood flow may cause initial optic nerve damage. In addition, age-related oxidative stress in the retina concurrently with chronic mechanical and vascular stress is crucial for the initiation of retinal neurodegeneration. Oxidative stress is closely related to cell senescence, mitochondrial dysfunction, excitotoxicity, and neuroinflammation, which are involved in glaucoma progression. Accumulating evidence from animal glaucoma models and from human ocular samples suggests a dysfunction of the para-inflammation in the retinal ganglion cell layer and the optic nerve head. Moreover, quite similar mechanisms in the anterior chamber could explain the trabecular meshwork dysfunction and the elevated IOP in primary open-angle glaucoma. On the other hand, ocular surface disease due to topical interventions is the most prominent and visible consequence of inflammation in glaucoma, with a negative impact on filtering surgery failure, topical treatment efficacy, and possibly on inflammation in the anterior segment. Consequently, glaucoma appears as an outstanding eye disease where inflammatory changes may be present to various extents and consequences along the eye structure, from the ocular surface to the posterior segment, and the visual pathway. Here we reviewed the inflammatory processes in all ocular structures in glaucoma from the back to the front of the eye and beyond. Our approach was to explain how para-inflammation is necessary to maintain homoeostasis, and to describe abnormal inflammatory findings observed in glaucomatous patients or in animal glaucoma models, supporting the hypothesis of a dysregulation of the inflammatory balance toward a pro-inflammatory phenotype. Possible anti-inflammatory therapeutic approaches in glaucoma are also discussed.
Collapse
Affiliation(s)
- Christophe Baudouin
- Quinze-Vingts National Ophthalmology Hospital, INSERM-DGOS CIC 1423, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de La Vision, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin en Yvelines, Boulogne-Billancourt, France.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | | | | |
Collapse
|
26
|
Gamage R, Wagnon I, Rossetti I, Childs R, Niedermayer G, Chesworth R, Gyengesi E. Cholinergic Modulation of Glial Function During Aging and Chronic Neuroinflammation. Front Cell Neurosci 2020; 14:577912. [PMID: 33192323 PMCID: PMC7594524 DOI: 10.3389/fncel.2020.577912] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex biological process that increases the risk of age-related cognitive degenerative diseases such as dementia, including Alzheimer’s disease (AD), Lewy Body Dementia (LBD), and mild cognitive impairment (MCI). Even non-pathological aging of the brain can involve chronic oxidative and inflammatory stress, which disrupts the communication and balance between the brain and the immune system. There has been an increasingly strong connection found between chronic neuroinflammation and impaired memory, especially in AD. While microglia and astrocytes, the resident immune cells of the central nervous system (CNS), exerting beneficial effects during the acute inflammatory phase, during chronic neuroinflammation they can become more detrimental. Central cholinergic circuits are involved in maintaining normal cognitive function and regulating signaling within the entire cerebral cortex. While neuronal-glial cholinergic signaling is anti-inflammatory and anti-oxidative, central cholinergic neuronal degeneration is implicated in impaired learning, memory sleep regulation, and attention. Although there is evidence of cholinergic involvement in memory, fewer studies have linked the cholinergic anti-inflammatory and anti-oxidant pathways to memory processes during development, normal aging, and disease states. This review will summarize the current knowledge of cholinergic effects on microglia and astroglia, and their role in both anti-inflammatory and anti-oxidant mechanisms, concerning normal aging and chronic neuroinflammation. We provided details on how stimulation of α7 nicotinic acetylcholine (α7nACh) receptors can be neuroprotective by increasing amyloid-β phagocytosis, decreasing inflammation and reducing oxidative stress by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and decreasing the release of pro-inflammatory cytokines. There is also evidence for astroglial α7nACh receptor stimulation mediating anti-inflammatory and antioxidant effects by inhibiting the nuclear factor-κB (NF-κB) pathway and activating the Nrf2 pathway respectively. We conclude that targeting cholinergic glial interactions between neurons and glial cells via α7nACh receptors could regulate neuroinflammation and oxidative stress, relevant to the treatment of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Rashmi Gamage
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ingrid Wagnon
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ilaria Rossetti
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ryan Childs
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
27
|
Raffaele S, Lombardi M, Verderio C, Fumagalli M. TNF Production and Release from Microglia via Extracellular Vesicles: Impact on Brain Functions. Cells 2020; 9:cells9102145. [PMID: 32977412 PMCID: PMC7598215 DOI: 10.3390/cells9102145] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine powerfully influencing diverse processes of the central nervous system (CNS) under both physiological and pathological conditions. Here, we analyze current literature describing the molecular processes involved in TNF synthesis and release from microglia, the resident immune cells of the CNS and the main source of this cytokine both in brain development and neurodegenerative diseases. A special attention has been given to the unconventional vesicular pathway of TNF, based on the emerging role of microglia-derived extracellular vesicles (EVs) in the propagation of inflammatory signals and in mediating cell-to-cell communication. Moreover, we describe the contribution of microglial TNF in regulating important CNS functions, including the neuroinflammatory response following brain injury, the neuronal circuit formation and synaptic plasticity, and the processes of myelin damage and repair. Specifically, the available data on the functions mediated by microglial EVs carrying TNF have been scrutinized to gain insights on possible novel therapeutic strategies targeting TNF to foster CNS repair.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Marta Lombardi
- CNR Institute of Neuroscience, 20129 Milan, Italy; (M.L.); (C.V.)
| | - Claudia Verderio
- CNR Institute of Neuroscience, 20129 Milan, Italy; (M.L.); (C.V.)
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-0250318307
| |
Collapse
|
28
|
Yazdankhah M, Shang P, Ghosh S, Hose S, Liu H, Weiss J, Fitting CS, Bhutto IA, Zigler JS, Qian J, Sahel JA, Sinha D, Stepicheva NA. Role of glia in optic nerve. Prog Retin Eye Res 2020; 81:100886. [PMID: 32771538 DOI: 10.1016/j.preteyeres.2020.100886] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Glial cells are critically important for maintenance of neuronal activity in the central nervous system (CNS), including the optic nerve (ON). However, the ON has several unique characteristics, such as an extremely high myelination level of retinal ganglion cell (RGC) axons throughout the length of the nerve (with virtually all fibers myelinated by 7 months of age in humans), lack of synapses and very narrow geometry. Moreover, the optic nerve head (ONH) - a region where the RGC axons exit the eye - represents an interesting area that is morphologically distinct in different species. In many cases of multiple sclerosis (demyelinating disease of the CNS) vision problems are the first manifestation of the disease, suggesting that RGCs and/or glia in the ON are more sensitive to pathological conditions than cells in other parts of the CNS. Here, we summarize current knowledge on glial organization and function in the ON, focusing on glial support of RGCs. We cover both well-established concepts on the important role of glial cells in ON health and new findings, including novel insights into mechanisms of remyelination, microglia/NG2 cell-cell interaction, astrocyte reactivity and the regulation of reactive astrogliosis by mitochondrial fragmentation in microglia.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher S Fitting
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Imran A Bhutto
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Samuel Zigler
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institut de la Vision, INSERM, CNRS, Sorbonne Université, F-75012, Paris, France
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Veroni C, Serafini B, Rosicarelli B, Fagnani C, Aloisi F, Agresti C. Connecting Immune Cell Infiltration to the Multitasking Microglia Response and TNF Receptor 2 Induction in the Multiple Sclerosis Brain. Front Cell Neurosci 2020; 14:190. [PMID: 32733206 PMCID: PMC7359043 DOI: 10.3389/fncel.2020.00190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Signaling from central nervous system (CNS)-infiltrating lymphocytes and macrophages is critical to activate microglia and cause tissue damage in multiple sclerosis (MS). We combined laser microdissection with high-throughput real time RT-PCR to investigate separately the CNS exogenous and endogenous inflammatory components in postmortem brain tissue of progressive MS cases. A previous analysis of immune infiltrates isolated from the white matter (WM) and the meninges revealed predominant expression of genes involved in antiviral and cytotoxic immunity, including IFNγ and TNF. Here, we assessed the expression of 71 genes linked to IFN and TNF signaling and microglia/macrophage activation in the parenchyma surrounding perivascular cuffs at different stages of WM lesion evolution and in gray matter (GM) lesions underlying meningeal infiltrates. WM and GM from non-neurological subjects were used as controls. Transcriptional changes in the WM indicate activation of a classical IFNγ-induced macrophage defense response already in the normal-appearing WM, amplification of detrimental (proinflammatory/pro-oxidant) and protective (anti-inflammatory/anti-oxidant) responses in actively demyelinating WM lesions and persistence of these dual features at the border of chronic active WM lesions. Transcriptional changes in chronic subpial GM lesions indicate skewing toward a proinflammatory microglia phenotype. TNF receptor 2 (TNFR2) mediating TNF neuroprotective functions was one of the genes upregulated in the MS WM. Using immunohistochemistry we show that TNFR2 is highly expressed in activated microglia in the normal-appearing WM, at the border of chronic active WM lesions, and in foamy macrophages in actively demyelinating WM and GM lesions. In lysolecithin-treated mouse cerebellar slices, a model of demyelination and remyelination, TNFR2 RNA and soluble protein increased immediately after toxin-induced demyelination along with transcripts for microglia/macrophage-derived pro- and anti-inflammatory cytokines. TNFR2 and IL10 RNA and soluble TNFR2 protein remained elevated during remyelination. Furthermore, myelin basic protein expression was increased after selective activation of TNFR2 with an agonistic antibody. This study highlights the key role of cytotoxic adaptive immunity in driving detrimental microglia activation and the concomitant healing response. It also shows that TNFR2 is an early marker of microglia activation and promotes myelin synthesis, suggesting that microglial TNFR2 activation can be exploited therapeutically to stimulate CNS repair.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | - Corrado Fagnani
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Agresti
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
30
|
Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med 2020; 217:jem.20190418. [PMID: 31611251 PMCID: PMC7037253 DOI: 10.1084/jem.20190418] [Citation(s) in RCA: 519] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
The authors review the molecular mechanisms regulating IL-10 production and response and describe classic and novel functions of IL-10 in immune and non-immune cells. They further discuss the therapeutic potential of IL-10 in different diseases and the outstanding questions underlying an effective application of IL-10 in clinical settings. The cytokine IL-10 is a key anti-inflammatory mediator ensuring protection of a host from over-exuberant responses to pathogens and microbiota, while playing important roles in other settings as sterile wound healing, autoimmunity, cancer, and homeostasis. Here we discuss our current understanding of the regulation of IL-10 production and of the molecular pathways associated with IL-10 responses. In addition to IL-10’s classic inhibitory effects on myeloid cells, we also describe the nonclassic roles attributed to this pleiotropic cytokine, including how IL-10 regulates basic processes of neural and adipose cells and how it promotes CD8 T cell activation, as well as epithelial repair. We further discuss its therapeutic potential in the context of different diseases and the outstanding questions that may help develop an effective application of IL-10 in diverse clinical settings.
Collapse
Affiliation(s)
- Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paulo Vieira
- Department of Immunology, Unité Lymphopoièse, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK.,National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
31
|
James RE, Schalks R, Browne E, Eleftheriadou I, Munoz CP, Mazarakis ND, Reynolds R. Persistent elevation of intrathecal pro-inflammatory cytokines leads to multiple sclerosis-like cortical demyelination and neurodegeneration. Acta Neuropathol Commun 2020; 8:66. [PMID: 32398070 PMCID: PMC7218553 DOI: 10.1186/s40478-020-00938-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022] Open
Abstract
Analysis of isolated meninges and cerebrospinal fluid (CSF) of post-mortem MS cases has shown increased gene and protein expression for the pro-inflammatory cytokines: tumour necrosis factor (TNF) and interferon-γ (IFNγ). Here we tested the hypothesis that persistent production of these cytokines in the meningeal compartment and diffusion into underlying GM can drive chronic MS-like GM pathology. Lentiviral transfer vectors were injected into the sagittal sulcus of DA rats to deliver continuous expression of TNF + IFNγ transgenes in the meninges and the resulting neuropathology analysed after 1 and 2 months. Injection of TNF + IFNγ viral vectors, with or without prior MOG immunisation, induced extensive immune cell infiltration (CD4+ and CD8+ T-cells, CD79a + B-cells and macrophages) in the meninges by 28 dpi, which remained at 2 months. Control GFP viral vector did not induce infiltration. Subpial demyelination was seen underlying these infiltrates, which was partly dependant on prior myelin oligodendrocyte glycoprotein (MOG) immunisation. A significant decrease in neuronal numbers was seen at 28 and 56 days in cortical layers II-V that was independent of MOG immunisation. RNA analysis at 28 dpi showed an increase in expression of necroptotic pathway genes, including RIP3, MLKL, cIAP2 and Nox2. PhosphoRIP3+ and phosphoMLKL+ neurons were present in TNF + IFNγ vector injected animals, indicating activation of necroptosis. Our results suggest that persistent expression of TNF in the presence of IFNγ is a potent inducer of meningeal inflammation and can activate TNF signalling pathways in cortical cells leading to neuronal death and subpial demyelination and thus may contribute to clinical progression in MS.
Collapse
|
32
|
Abstract
In humans, various genetic defects or age-related diseases, such as diabetic retinopathies, glaucoma, and macular degeneration, cause the death of retinal neurons and profound vision loss. One approach to treating these diseases is to utilize stem and progenitor cells to replace neurons in situ, with the expectation that new neurons will create new synaptic circuits or integrate into existing ones. Reprogramming non-neuronal cells in vivo into stem or progenitor cells is one strategy for replacing lost neurons. Zebrafish have become a valuable model for investigating cellular reprogramming and retinal regeneration. This review summarizes our current knowledge regarding spontaneous reprogramming of Müller glia in zebrafish and compares this knowledge to research efforts directed toward reprogramming Müller glia in mammals. Intensive research using these animal models has revealed shared molecular mechanisms that make Müller glia attractive targets for cellular reprogramming and highlighted the potential for curing degenerative retinal diseases from intrinsic cellular sources.
Collapse
Affiliation(s)
- Manuela Lahne
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA; , .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA; ,
| | - David R Hyde
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA; , .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA; , .,Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
33
|
Magliozzi R, Howell OW, Durrenberger P, Aricò E, James R, Cruciani C, Reeves C, Roncaroli F, Nicholas R, Reynolds R. Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. J Neuroinflammation 2019; 16:259. [PMID: 31810488 PMCID: PMC6898969 DOI: 10.1186/s12974-019-1650-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background Recent studies of cortical pathology in secondary progressive multiple sclerosis have shown that a more severe clinical course and the presence of extended subpial grey matter lesions with significant neuronal/glial loss and microglial activation are associated with meningeal inflammation, including the presence of lymphoid-like structures in the subarachnoid space in a proportion of cases. Methods To investigate the molecular consequences of pro-inflammatory and cytotoxic molecules diffusing from the meninges into the underlying grey matter, we carried out gene expression profiling analysis of the motor cortex from 20 post-mortem multiple sclerosis brains with and without substantial meningeal inflammation and 10 non-neurological controls. Results Gene expression profiling of grey matter lesions and normal appearing grey matter not only confirmed the substantial pathological cell changes, which were greatest in multiple sclerosis cases with increased meningeal inflammation, but also demonstrated the upregulation of multiple genes/pathways associated with the inflammatory response. In particular, genes involved in tumour necrosis factor (TNF) signalling were significantly deregulated in MS cases compared with controls. Increased meningeal inflammation was found to be associated with a shift in the balance of TNF signalling away from TNFR1/TNFR2 and NFkB-mediated anti-apoptotic pathways towards TNFR1- and RIPK3-mediated pro-apoptotic/pro-necroptotic signalling in the grey matter, which was confirmed by RT-PCR analysis. TNFR1 was found expressed preferentially on neurons and oligodendrocytes in MS cortical grey matter, whereas TNFR2 was predominantly expressed by astrocytes and microglia. Conclusions We suggest that the inflammatory milieu generated in the subarachnoid space of the multiple sclerosis meninges by infiltrating immune cells leads to increased demyelinating and neurodegenerative pathology in the underlying grey matter due to changes in the balance of TNF signalling.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Department of Brain Sciences, Department of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK. .,Neurology Unit, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Policlinico G.B. Rossi, P.le L.A. Scuro, 10, 37134, Verona, Italy.
| | - Owain William Howell
- Department of Brain Sciences, Department of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK.,Institute for Life Sciences, Swansea University, Swansea, Wales
| | - Pascal Durrenberger
- Department of Brain Sciences, Department of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Eleonora Aricò
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Rachel James
- Department of Brain Sciences, Department of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Carolina Cruciani
- Department of Brain Sciences, Department of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | | | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Richard Nicholas
- Department of Brain Sciences, Department of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Richard Reynolds
- Department of Brain Sciences, Department of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
34
|
Ruiz F, Vigne S, Pot C. Resolution of inflammation during multiple sclerosis. Semin Immunopathol 2019; 41:711-726. [PMID: 31732775 PMCID: PMC6881249 DOI: 10.1007/s00281-019-00765-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a frequent autoimmune demyelinating disease of the central nervous system (CNS). There are three clinical forms described: relapsing-remitting multiple sclerosis (RRMS), the most common initial presentation (85%) among which, if not treated, about half will transform, into the secondary progressive multiple sclerosis (SPMS) and the primary progressive MS (PPMS) (15%) that is directly progressive without superimposed clinical relapses. Inflammation is present in all subsets of MS. The relapsing/remitting form could represent itself a particular interest for the study of inflammation resolution even though it remains incomplete in MS. Successful resolution of acute inflammation is a highly regulated process and dependent on mechanisms engaged early in the inflammatory response that are scarcely studied in MS. Moreover, recent classes of disease-modifying treatment (DMTs) that are effective against RRMS act by re-establishing the inflammatory imbalance, taking advantage of the pre-existing endogenous suppressor. In this review, we will discuss the active role of regulatory immune cells in inflammation resolution as well as the role of tissue and non-hematopoietic cells as contributors to inflammation resolution. Finally, we will explore how DMTs, more specifically induction therapies, impact the resolution of inflammation during MS.
Collapse
Affiliation(s)
- F Ruiz
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - S Vigne
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - C Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
35
|
Fischer R, Padutsch T, Bracchi-Ricard V, Murphy KL, Martinez GF, Delguercio N, Elmer N, Sendetski M, Diem R, Eisel ULM, Smeyne RJ, Kontermann RE, Pfizenmaier K, Bethea JR. Exogenous activation of tumor necrosis factor receptor 2 promotes recovery from sensory and motor disease in a model of multiple sclerosis. Brain Behav Immun 2019; 81:247-259. [PMID: 31220564 PMCID: PMC6754799 DOI: 10.1016/j.bbi.2019.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 01/03/2023] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that promotes immune modulation and tissue regeneration and is recognized as a potential therapeutic target for multiple sclerosis (MS). However, TNFR2 also contributes to T effector cell function and macrophage-TNFR2 recently was shown to promote disease development in the experimental autoimmune encephalomyelitis (EAE) model of MS. We here demonstrate that systemic administration of a TNFR2 agonist alleviates peripheral and central inflammation, and reduces demyelination and neurodegeneration, indicating that protective signals induced by TNFR2 exceed potential pathogenic TNFR2-dependent responses. Our behavioral data show that systemic treatment of female EAE mice with a TNFR2 agonist is therapeutic on motor symptoms and promotes long-term recovery from neuropathic pain. Mechanistically, our data indicate that TNFR2 agonist treatment follows a dual mode of action and promotes both suppression of CNS autoimmunity and remyelination. Strategies based on the concept of exogenous activation of TNFR2 therefore hold great promise as a new therapeutic approach to treat motor and sensory disease in MS as well as other inflammatory diseases or neuropathic pain conditions.
Collapse
MESH Headings
- Animals
- Autoimmunity/immunology
- Demyelinating Diseases/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Inflammation/pathology
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Neuralgia/pathology
- Neurodegenerative Diseases/metabolism
- Receptors, Tumor Necrosis Factor, Type II/agonists
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Spinal Cord/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Roman Fischer
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States.
| | - Tanja Padutsch
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | | | - Kayla L Murphy
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - George F Martinez
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Niky Delguercio
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Nicholas Elmer
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Maksim Sendetski
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany; CCU Neurooncoloy, German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, Netherlands
| | - Richard J Smeyne
- Department of Neurosciences, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
36
|
Ribeiro CM, Oliveira SR, Alfieri DF, Flauzino T, Kaimen-Maciel DR, Simão ANC, Maes M, Reiche EMV. Tumor necrosis factor alpha (TNF-α) and its soluble receptors are associated with disability, disability progression and clinical forms of multiple sclerosis. Inflamm Res 2019; 68:1049-1059. [PMID: 31559449 DOI: 10.1007/s00011-019-01286-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/26/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The association between tumor necrosis factor (TNF)-α, soluble TNF receptor (sTNFR)1 and sTNFR2 with clinical characteristics of multiple sclerosis (MS) remains unclear. OBJECTIVE To examine whether TNF-α, sTNFR1 and sTNFR2 are associated with MS diagnosis, disability, disability progression and clinical forms of MS. MATERIALS AND SUBJECTS The study included 147 patients with relapsing-remitting MS (RRMS), 21 with progressive clinical forms (ProgMS) and 70 controls. Expanded Disability Status Scale (EDSS) evaluated disability as mild (EDSS < 3.0) or moderate/high (EDSS ≥ 3.0). Multiple Sclerosis Severity Score (MSSS) evaluated disability progression as no progression (MSSS < 5) and progression (MSSS ≥ 5). Baseline data of subjects and plasma levels of TNF-α, sTNFR1, sTNFR2 were obtained. RESULTS The MS diagnosis explained 44.6% and 12.3% of TNF-α and sTNFR2 levels, respectively. Moderate/high disability and disability progression were best predicted by sTNFR1 and age (positively) and ProgMS were best predicted by sTNFR1 (positively) and sTNFR2 (negatively), coupled with age and sex. A composite score reflecting the sTNFR1/sTNFR2 ratio showed a positive association with ProgMS after adjusting for age and sex. CONCLUSION Increased sTNFR1 and age were positively associated with disability and disability progression, whereas increased sTNFR1 (positively) and sTNFR2 (negatively) were associated with ProgMS, suggesting a distinct role of them in the immunopathological mechanisms of MS.
Collapse
Affiliation(s)
- Claudia Mara Ribeiro
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Paraná, Brazil
| | - Sayonara Rangel Oliveira
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Paraná, Brazil
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Daniela Frizon Alfieri
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Paraná, Brazil
| | - Tamires Flauzino
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Paraná, Brazil
| | | | - Andréa Name Colado Simão
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Paraná, Brazil
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, King Chulalongkorn Memorial Hospital, Chulalongkorn, Bangkok, Thailand
| | - Edna Maria Vissoci Reiche
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Paraná, Brazil.
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
37
|
Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 2019; 76:3055-3081. [PMID: 31236626 PMCID: PMC11105368 DOI: 10.1007/s00018-019-03173-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
'A disintegrin and metalloproteases' (ADAMs) are a family of transmembrane proteins with diverse functions in multicellular organisms. About half of the ADAMs are active metalloproteases and cleave numerous cell surface proteins, including growth factors, receptors, cytokines and cell adhesion proteins. The other ADAMs have no catalytic activity and function as adhesion proteins or receptors. Some ADAMs are ubiquitously expressed, others are expressed tissue specifically. This review highlights functions of ADAMs in the mammalian nervous system, including their links to diseases. The non-proteolytic ADAM11, ADAM22 and ADAM23 have key functions in neural development, myelination and synaptic transmission and are linked to epilepsy. Among the proteolytic ADAMs, ADAM10 is the best characterized one due to its substrates Notch and amyloid precursor protein, where cleavage is required for nervous system development or linked to Alzheimer's disease (AD), respectively. Recent work demonstrates that ADAM10 has additional substrates and functions in the nervous system and its substrate selectivity may be regulated by tetraspanins. New roles for other proteolytic ADAMs in the nervous system are also emerging. For example, ADAM8 and ADAM17 are involved in neuroinflammation. ADAM17 additionally regulates neurite outgrowth and myelination and its activity is controlled by iRhoms. ADAM19 and ADAM21 function in regenerative processes upon neuronal injury. Several ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM30, are potential drug targets for AD. Taken together, this review summarizes recent progress concerning substrates and functions of ADAMs in the nervous system and their use as drug targets for neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Tobias Brummer
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Yuanpeng Zheng
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
- Fondazione Ri.MED, Department of Research, IRCCS-ISMETT, via Tricomi 5, 90127, Palermo, Italy
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany.
- Munich Center for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
38
|
Guergues J, Zhang P, Liu B, Stevens SM. Improved Methodology for Sensitive and Rapid Quantitative Proteomic Analysis of Adult-Derived Mouse Microglia: Application to a Novel In Vitro Mouse Microglial Cell Model. Proteomics 2019; 19:e1800469. [PMID: 30980500 DOI: 10.1002/pmic.201800469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/26/2019] [Indexed: 12/30/2022]
Abstract
Microglia, as the resident brain immune cells, can exhibit a broad range of activation phenotypes, which have been implicated in a multitude of central nervous system disorders. Current widely studied microglial cell lines are mainly derived from neonatal rodent brain that can limit their relevance to homeostatic function and disease-related neuroimmune responses in the adult brain. Recently, an adult mouse brain-derived microglial cell line has been established; however, a comprehensive proteome dataset remains lacking. Here, an optimization method for sensitive and rapid quantitative proteomic analysis of microglia is described that involves suspension trapping (S-Trap) for efficient and reproducible protein extraction from a limited number of microglial cells expected from an adult mouse brain (≈300 000). Using a 2-h gradient on a 75-cm UPLC column with a modified data dependent acquisition method on a hybrid quadrupole-Orbitrap mass spectrometer, 4855 total proteins have been identified where 4698 of which are quantifiable by label-free quantitation with a median and average coefficient of variation (CV) of 6.7% and 10.6%, respectively. This dataset highlights the high depth of proteome coverage and related quantitation precision of the adult-derived microglial proteome including proteins associated with several key pathways related to immune response. Data are available via ProteomeXchange with identifier PXD012006.
Collapse
Affiliation(s)
- Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, Department of Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT, 05446, USA
| | - Ping Zhang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Bin Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Stanley M Stevens
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT, 05446, USA
| |
Collapse
|
39
|
Dual neutralization of TNFR-2 and MMP-2 regulates the severity of S. aureus induced septic arthritis correlating alteration in the level of interferon gamma and interleukin-10 in terms of TNFR2 blocking. Immunol Res 2019; 66:97-119. [PMID: 29218573 DOI: 10.1007/s12026-017-8979-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severity of S. aureus septic arthritis is correlated to prolonged inflammation by inflammatory cytokines like TNF-α, IL-1β, and IL-6 even after successful elimination of bacteria. Role of TNF-α via TNFR2 is not well established in this aspect. IFN-γ induces TNF-α release from the macrophages augmenting the inflammatory arthritis. IL-10 modulates the levels of pro-inflammatory cytokines promoting resolution of inflammation. TNF-α-TNFR2 signaling upregulates both of these cytokines. Higher level of MMP-2 induction by inflammatory cytokines during arthritis promotes tissue destruction. Whether dual neutralization of TNFR-2 and MMP-2 regulates the severity of S. aureus arthritis by modulating local and systemic cytokine milieu mainly due to TNFR-2 blocking was an obvious question. Here, we attempted the effects of neutralization of MMP-2 and TNFR2 on S. aureus arthritis and its impact on pro-inflammatory cytokines and some other parameters related to tissue destruction. Reduction in arthritis index was noticed in infected mice treated with both MMP-2 inhibitor and TNFR2 antibody. Lowest levels of inflammatory cytokines, iNOS, RANKL, NF-κb, JNK kinase, ROS, and MPO, and lysozyme activity were observed in combined neutralization group at 9 and 15 dpi, but at 3 dpi, most of the above parameters remained elevated due to TNFR2 neutralization. Diminished IL-10 and IFN-γ levels as a result of TNFR2 neutralization at early and later phase of infection respectively might be responsible for these contrasting effects. Overall, it can be suggested that administration of MMP-2 inhibitor and TNFR2 antibody in combination is protective against the inflammation and tissue destruction associated with S. aureus infection during the arthritic episode.
Collapse
|
40
|
Coccurello R, Nazio F, Rossi C, De Angelis F, Vacca V, Giacovazzo G, Procacci P, Magnaghi V, Ciavardelli D, Marinelli S. Effects of caloric restriction on neuropathic pain, peripheral nerve degeneration and inflammation in normometabolic and autophagy defective prediabetic Ambra1 mice. PLoS One 2018; 13:e0208596. [PMID: 30532260 PMCID: PMC6287902 DOI: 10.1371/journal.pone.0208596] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/20/2018] [Indexed: 01/14/2023] Open
Abstract
There is a growing interest on the role of autophagy in diabetes pathophysiology, where development of neuropathy is one of the most frequent comorbidities. We have previously demonstrated that neuropathic pain after nerve damage is exacerbated in autophagy-defective heterozygous Ambra1 mice. Here, we show the existence of a prediabetic state in Ambra1 mice, characterized by hyperglycemia, intolerance to glucose and insulin resistance. Thus, we further investigate the hypothesis that prediabetes may account for the exacerbation of allodynia and chronic pain and that counteracting the autophagy deficit may relieve the neuropathic condition. We took advantage from caloric restriction (CR) able to exert a double action: a powerful increase of autophagy and a control on the metabolic status. We found that CR ameliorates neuropathy throughout anti-inflammatory and metabolic mechanisms both in Ambra1 and in WT animals subjected to nerve injury. Moreover, we discovered that nerve lesion represents, per se, a metabolic stressor and CR reinstates glucose homeostasis, insulin resistance, incomplete fatty acid oxidation and energy metabolism. As autophagy inducer, CR promotes and anticipates Schwann cell autophagy via AMP-activated protein kinase (AMPK) that facilitates remyelination in peripheral nerve. In summary, we provide new evidence for the role of autophagy in glucose metabolism and identify in energy depletion by dietary restriction a therapeutic approach in the fight against neuropathic pain.
Collapse
Affiliation(s)
- Roberto Coccurello
- National Research Council–CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
- IRCCS S. Lucia Foundation, Rome, Italy
| | | | - Claudia Rossi
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Centro Scienze dell’Invecchiamento e Medicina Traslazionale—CeSI-MeT, Chieti, Italy
| | | | - Valentina Vacca
- National Research Council–CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
- IRCCS S. Lucia Foundation, Rome, Italy
| | - Giacomo Giacovazzo
- National Research Council–CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
- IRCCS S. Lucia Foundation, Rome, Italy
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Domenico Ciavardelli
- Centro Scienze dell’Invecchiamento e Medicina Traslazionale—CeSI-MeT, Chieti, Italy
- School of Human and Social Science, “Kore” University of Enna, Enna, Italy
| | - Sara Marinelli
- National Research Council–CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
- IRCCS S. Lucia Foundation, Rome, Italy
- * E-mail:
| |
Collapse
|
41
|
Loureiro CM, Shuhama R, Fachim HA, Menezes PR, Del-Ben CM, Louzada-Junior P. Low plasma concentrations of N-methyl-d-aspartate receptor subunits as a possible biomarker for psychosis. Schizophr Res 2018; 202:55-63. [PMID: 29935886 DOI: 10.1016/j.schres.2018.06.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/11/2018] [Accepted: 06/13/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) has been largely implicated in the neurobiology of schizophrenia and other psychosis. Aiming to evaluate their potential as peripheral biomarkers for psychosis, we quantified the plasma concentrations of NR1 and NR2 NMDAR subunits of first-episode psychosis patients in their first contact with mental health services due to psychotic symptoms, compared with siblings and matched community-based controls. METHODS The quantifications of NR1 and NR2 plasma concentrations were performed by ELISA. Data were analysed by nonparametric tests and Receiver Operating Curve (ROC) analysis. RESULTS We included 166 first-episode psychosis patients (mean age = 30.3 ± 12.2 years; 64% men), with the diagnosis of schizophrenia spectrum (n = 84), bipolar disorder (n = 51) and psychotic depression (n = 31), 76 siblings (mean age = 31.5 ± 11.0 years; 30.3% men) and 166 healthy community-based controls (mean age = 31.4 ± 12.0 years; 63.9% men). NMDAR subunits were significantly lower in patients compared with siblings and controls (p < 0.001), except by NR1 plasma concentrations of bipolar patients compared with siblings and controls. NR1 plasma concentrations lower than 17.65 pg/ml (AUC = 0.621) showed sensitivity of 42.8%, specificity of 84.3%, positive predictive value (PPV) of 73.2% and negative predictive value (NPV) of 59.6%. Individuals with NR2 plasma concentrations lower than 2.92 ng/ml (AUC = 0.801) presented a 10.61-fold increased risk of psychosis, with a sensibility of 71.9%, specificity of 80.6%, PPV of 79.0% and NPV of 73.9%. CONCLUSIONS This is the first study reporting the measurement and the reduction of NR1 and NR2 NMDAR subunits plasma concentrations in psychiatric disorders. In particular, the NR2 subunit may be a possible plasma biomarker for psychosis.
Collapse
Affiliation(s)
- C M Loureiro
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| | - R Shuhama
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - H A Fachim
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil; Institute of Neuroscience and Behaviour- INeC, Ribeirão Preto, São Paulo, Brazil
| | - P R Menezes
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil
| | - C M Del-Ben
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - P Louzada-Junior
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
42
|
Ignatowski TA, Spengler RN. Targeting tumor necrosis factor in the brain relieves neuropathic pain. World J Anesthesiol 2018; 7:10-19. [DOI: 10.5313/wja.v7.i2.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/28/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain is a chronic syndrome caused by direct damage to or disease of the somatosensory nervous system. The lack of safe, adequate and sustained pain relief offered by present analgesic treatments is most alarming. While many treatment options are available to manage chronic pain, such as antidepressants, non-steroidal anti-inflammatory agents, opioids, and anticonvulsants, chronic neuropathic pain remains largely unmanaged. Compounding the dilemma of ineffective chronic pain treatments is the need to provide relief from suffering and yet not contribute to the scourge of drug abuse. A recent epidemic of addiction and accidental drug prescription overdoses parallel the increased use of opioid treatment, even though opioids are rarely an effective treatment of relieving chronic pain. To make matters worse, opioids may contribute to exacerbating pain, and side-effects such as cognitive impairment, nausea, constipation, development of tolerance, as well as their potential for addiction and overdose deaths exist. Clearly, there is an urgent need for alternative, non-opiate treatment of chronic pain. Innovative discoveries of pertinent brain mechanisms and functions are key to developing effective, safe treatments. Pioneering work has revealed the essential effects of the pleiotropic mediator tumor necrosis factor (TNF) on brain functioning. These studies establish that TNF inhibits norepinephrine release from hippocampal neurons, and show that excess TNF production within the hippocampus occurs during neuropathic pain, which mobilizes additional mechanisms that further inhibit norepinephrine release. Significantly, it has been verified that elevated levels of TNF in the brain are actually required for neuropathic pain development. Since TNF decreases norepinephrine release in the brain, enhanced TNF levels would prevent engagement of the norepinephrine descending inhibitory neuronal pain pathways. Increased levels of TNF in the brain are therefore critical to the development of neuropathic pain. Therefore, strategies that decrease this enhanced TNF expression in the brain will have superior analgesic efficacy. We propose this novel approach of targeting the pathologically high levels of brain TNF as an effective strategy in the treatment of the devastating syndrome of chronic pain.
Collapse
Affiliation(s)
- Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences and Program for Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, United States
- NanoAxis, LLC, Clarence, NY 14031, United States
| | | |
Collapse
|
43
|
A New Venue of TNF Targeting. Int J Mol Sci 2018; 19:ijms19051442. [PMID: 29751683 PMCID: PMC5983675 DOI: 10.3390/ijms19051442] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.
Collapse
|
44
|
Pegoretti V, Baron W, Laman JD, Eisel ULM. Selective Modulation of TNF-TNFRs Signaling: Insights for Multiple Sclerosis Treatment. Front Immunol 2018; 9:925. [PMID: 29760711 PMCID: PMC5936749 DOI: 10.3389/fimmu.2018.00925] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/13/2018] [Indexed: 12/26/2022] Open
Abstract
Autoimmunity develops when self-tolerance mechanisms are failing to protect healthy tissue. A sustained reaction to self is generated, which includes the generation of effector cells and molecules that destroy tissues. A way to restore this intrinsic tolerance is through immune modulation that aims at refurbishing this immunologically naïve or unresponsive state, thereby decreasing the aberrant immune reaction taking place. One major cytokine has been shown to play a pivotal role in several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS): tumor necrosis factor alpha (TNFα) modulates the induction and maintenance of an inflammatory process and it comes in two variants, soluble TNF (solTNF) and transmembrane bound TNF (tmTNF). tmTNF signals via TNFR1 and TNFR2, whereas solTNF signals mainly via TNFR1. TNFR1 is widely expressed and promotes mainly inflammation and apoptosis. Conversely, TNFR2 is restricted mainly to immune and endothelial cells and it is known to activate the pro-survival PI3K-Akt/PKB signaling pathway and to sustain regulatory T cells function. Anti-TNFα therapies are successfully used to treat diseases such as RA, colitis, and psoriasis. However, clinical studies with a non-selective inhibitor of TNFα in MS patients had to be halted due to exacerbation of clinical symptoms. One possible explanation for this failure is the non-selectivity of the treatment, which avoids TNFR2 stimulation and its immune and tissue protective properties. Thus, a receptor-selective modulation of TNFα signal pathways provides a novel therapeutic concept that might lead to new insights in MS pathology with major implications for its effective treatment.
Collapse
Affiliation(s)
- Valentina Pegoretti
- Department of Molecular Neurobiology (GELIFES), University of Groningen, Groningen, Netherlands
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
45
|
Zeng HL, Shi JM. The role of microglia in the progression of glaucomatous neurodegeneration- a review. Int J Ophthalmol 2018; 11:143-149. [PMID: 29376003 DOI: 10.18240/ijo.2018.01.22] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a serious leading cause of irreversible blindness worldwide. Reducing intraocular pressure (IOP) does not always stop glaucomatous neurodegeneration and the optic nerve may continue to be damaged in the normal IOP. Microglial activity has been recognized to play essential roles in pathogenesis of the central nervous system (CNS) as well as retinal ganglion cell (RGC) survival. The relationship between the neurodegeneration and the microglia cells in glaucoma is very complicated and still remains unclear. In the present review, we summarize the recent studies of mechanisms of microglia in glaucoma neurodegeneration, which might provide new ways to treat glaucoma.
Collapse
Affiliation(s)
- Hui-Lan Zeng
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jing-Ming Shi
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
46
|
Haraguchi Y, Mizoguchi Y, Ohgidani M, Imamura Y, Murakawa-Hirachi T, Nabeta H, Tateishi H, Kato TA, Monji A. Donepezil suppresses intracellular Ca 2+ mobilization through the PI3K pathway in rodent microglia. J Neuroinflammation 2017; 14:258. [PMID: 29273047 PMCID: PMC5741946 DOI: 10.1186/s12974-017-1033-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background Microglia are resident innate immune cells which release many factors including proinflammatory cytokines or nitric oxide (NO) when they are activated in response to immunological stimuli. Pathophysiology of Alzheimer’s disease (AD) is related to the inflammatory responses mediated by microglia. Intracellular Ca2+ signaling is important for microglial functions such as release of NO and cytokines. In addition, alteration of intracellular Ca2+ signaling underlies the pathophysiology of AD, while it remains unclear how donepezil, an acetylcholinesterase inhibitor, affects intracellular Ca2+ mobilization in microglial cells. Methods We examined whether pretreatment with donepezil affects the intracellular Ca2+ mobilization using fura-2 imaging and tested the effects of donepezil on phagocytic activity by phagocytosis assay in rodent microglial cells. Results In this study, we observed that pretreatment with donepezil suppressed the TNFα-induced sustained intracellular Ca2+ elevation in both rat HAPI and mouse primary microglial cells. On the other hand, pretreatment with donepezil did not suppress the mRNA expression of both TNFR1 and TNFR2 in rodent microglia we used. Pretreatment with acetylcholine but not donepezil suppressed the TNFα-induced intracellular Ca2+ elevation through the nicotinic α7 receptors. In addition, sigma 1 receptors were not involved in the donepezil-induced suppression of the TNFα-mediated intracellular Ca2+ elevation. Pretreatment with donepezil suppressed the TNFα-induced intracellular Ca2+ elevation through the PI3K pathway in rodent microglial cells. Using DAF-2 imaging, we also found that pretreatment with donepezil suppressed the production of NO induced by TNFα treatment and the PI3K pathway could be important for the donepezil-induced suppression of NO production in rodent microglial cells. Finally, phagocytosis assay showed that pretreatment with donepezil promoted phagocytic activity of rodent microglial cells through the PI3K but not MAPK/ERK pathway. Conclusions These suggest that donepezil could directly modulate the microglial function through the PI3K pathway in the rodent brain, which might be important to understand the effect of donepezil in the brain. Electronic supplementary material The online version of this article (10.1186/s12974-017-1033-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoshinori Haraguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiomi Imamura
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Toru Murakawa-Hirachi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hiromi Nabeta
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hiroshi Tateishi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
47
|
Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis. Proc Natl Acad Sci U S A 2017; 114:11235-11240. [PMID: 28973941 DOI: 10.1073/pnas.1706053114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony-stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF-induced visceral pain in vivo. Finally, administration of G-CSF-neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron-microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain.
Collapse
|
48
|
Oligodendroglial TNFR2 Mediates Membrane TNF-Dependent Repair in Experimental Autoimmune Encephalomyelitis by Promoting Oligodendrocyte Differentiation and Remyelination. J Neurosci 2017; 36:5128-43. [PMID: 27147664 DOI: 10.1523/jneurosci.0211-16.2016] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Tumor necrosis factor (TNF) is associated with the pathophysiology of various neurological disorders, including multiple sclerosis. It exists as a transmembrane form tmTNF, signaling via TNF receptor 2 (TNFR2) and TNFR1, and a soluble form, solTNF, signaling via TNFR1. Multiple sclerosis is associated with the detrimental effects of solTNF acting through TNFR1, while tmTNF promotes repair and remyelination. Here we demonstrate that oligodendroglial TNFR2 is a key mediator of tmTNF-dependent protection in experimental autoimmune encephalomyelitis (EAE). CNP-cre:TNFR2(fl/fl) mice with TNFR2 ablation in oligodendrocytes show exacerbation of the disease with increased axon and myelin pathology, reduced remyelination, and increased loss of oligodendrocyte precursor cells and mature oligodendrocytes. The clinical course of EAE is not improved by the solTNF inhibitor XPro1595 in CNP-cre:TNFR2(fl/fl) mice, indicating that for tmTNF to promote recovery TNFR2 in oligodendrocytes is required. We show that TNFR2 drives differentiation of oligodendrocyte precursor cells, but not proliferation or survival. TNFR2 ablation leads to dysregulated expression of microRNAs, among which are regulators of oligodendrocyte differentiation and inflammation, including miR-7a. Our data provide the first direct in vivo evidence that TNFR2 in oligodendrocytes is important for oligodendrocyte differentiation, thereby sustaining tmTNF-dependent repair in neuroimmune disease. Our studies identify TNFR2 in the CNS as a molecular target for the development of remyelinating agents, addressing the most pressing need in multiple sclerosis therapy nowadays. SIGNIFICANCE STATEMENT Our study, using novel TNF receptor 2 (TNFR2) conditional KO mice with selective TNFR2 ablation in oligodendrocytes, provides the first direct evidence that TNFR2 is an important signal for oligodendrocyte differentiation. Following activation by transmembrane TNF, TNFR2 initiates pathways that drive oligodendrocytes into a reparative mode contributing to remyelination following disease. This identifies TNFR2 as a new molecular target for the development of therapeutic agents in multiple sclerosis.
Collapse
|
49
|
Guruswamy R, ElAli A. Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. Int J Mol Sci 2017; 18:ijms18030496. [PMID: 28245599 PMCID: PMC5372512 DOI: 10.3390/ijms18030496] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke constitutes the major cause of death and disability in the industrialized world. The interest in microglia arose from the evidence outlining the role of neuroinflammation in ischemic stroke pathobiology. Microglia constitute the powerhouse of innate immunity in the brain. Microglial cells are highly ramified, and use these ramifications as sentinels to detect changes in brain homeostasis. Once a danger signal is recognized, cells become activated and mount specialized responses that range from eliminating cell debris to secreting inflammatory signals and trophic factors. Originally, it was suggested that microglia play essentially a detrimental role in ischemic stroke. However, recent reports are providing evidence that the role of these cells is more complex than what was originally thought. Although these cells play detrimental role in the acute phase, they are required for tissue regeneration in the post-acute phases. This complex role of microglia in ischemic stroke pathobiology constitutes a major challenge for the development of efficient immunomodulatory therapies. This review aims at providing an overview regarding the role of resident microglia and peripherally recruited macrophages in ischemic pathobiology. Furthermore, the review will highlight future directions towards the development of novel fine-tuning immunomodulatory therapeutic interventions.
Collapse
Affiliation(s)
- Revathy Guruswamy
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec City, QC G1V 4G2, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada.
| | - Ayman ElAli
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec City, QC G1V 4G2, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada.
| |
Collapse
|
50
|
Valera E, Spencer B, Fields JA, Trinh I, Adame A, Mante M, Rockenstein E, Desplats P, Masliah E. Combination of alpha-synuclein immunotherapy with anti-inflammatory treatment in a transgenic mouse model of multiple system atrophy. Acta Neuropathol Commun 2017; 5:2. [PMID: 28057080 PMCID: PMC5217191 DOI: 10.1186/s40478-016-0409-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/18/2016] [Indexed: 11/10/2022] Open
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by the pathological accumulation of alpha-synuclein (α-syn) in oligodendrocytes. Therapeutic efforts to stop or delay the progression of MSA have yielded suboptimal results in clinical trials, and there are no efficient treatments currently available for MSA patients. We hypothesize that combining therapies targeting different aspects of the disease may lead to better clinical outcomes. To test this hypothesis, we combined the use of a single-chain antibody targeting α-syn modified for improved central nervous system penetration (CD5-D5) with an unconventional anti-inflammatory treatment (lenalidomide) in the myelin basic protein (MBP)-α-syn transgenic mouse model of MSA. While the use of either CD5-D5 or lenalidomide alone had positive effects on neuroinflammation and/or α-syn accumulation in this mouse model of MSA, the combination of both approaches yielded better results than each single treatment. The combined treatment reduced astrogliosis, microgliosis, soluble and aggregated α-syn levels, and partially improved behavioral deficits in MBP-α-syn transgenic mice. These effects were associated with an activation of the Akt signaling pathway, which may mediate cytoprotective effects downstream tumor necrosis factor alpha (TNFα). These results suggest that a strategic combination of treatments may improve the therapeutic outcome in trials for MSA and related neurodegenerative disorders.
Collapse
|