1
|
Wei L, Song L, Dunker AK, Foster JA, Uversky VN, Goh GKM. A Comparative Experimental and Computational Study on the Nature of the Pangolin-CoV and COVID-19 Omicron. Int J Mol Sci 2024; 25:7537. [PMID: 39062780 PMCID: PMC11277539 DOI: 10.3390/ijms25147537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The relationship between pangolin-CoV and SARS-CoV-2 has been a subject of debate. Further evidence of a special relationship between the two viruses can be found by the fact that all known COVID-19 viruses have an abnormally hard outer shell (low M disorder, i.e., low content of intrinsically disordered residues in the membrane (M) protein) that so far has been found in CoVs associated with burrowing animals, such as rabbits and pangolins, in which transmission involves virus remaining in buried feces for a long time. While a hard outer shell is necessary for viral survival, a harder inner shell could also help. For this reason, the N disorder range of pangolin-CoVs, not bat-CoVs, more closely matches that of SARS-CoV-2, especially when Omicron is included. The low N disorder (i.e., low content of intrinsically disordered residues in the nucleocapsid (N) protein), first observed in pangolin-CoV-2017 and later in Omicron, is associated with attenuation according to the Shell-Disorder Model. Our experimental study revealed that pangolin-CoV-2017 and SARS-CoV-2 Omicron (XBB.1.16 subvariant) show similar attenuations with respect to viral growth and plaque formation. Subtle differences have been observed that are consistent with disorder-centric computational analysis.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China;
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China;
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - James A. Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA;
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | | |
Collapse
|
2
|
Arienzo A, Gallo V, Tomassetti F, Pitaro N, Pitaro M, Antonini G. A narrative review of alternative transmission routes of COVID 19: what we know so far. Pathog Glob Health 2023; 117:681-695. [PMID: 37350182 PMCID: PMC10614718 DOI: 10.1080/20477724.2023.2228048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
The Coronavirus disease 19 (COVID-19) pandemics, caused by severe acute respiratory syndrome coronaviruses, SARS-CoV-2, represent an unprecedented public health challenge. Beside person-to-person contagion via airborne droplets and aerosol, which is the main SARS-CoV-2's route of transmission, alternative modes, including transmission via fomites, food and food packaging, have been investigated for their potential impact on SARS-CoV-2 diffusion. In this context, several studies have demonstrated the persistence of SARS-CoV-2 RNA and, in some cases, of infectious particles on exposed fomites, food and water samples, confirming their possible role as sources of contamination and transmission. Indeed, fomite-to-human transmission has been demonstrated in a few cases where person-to-person transmission had been excluded. In addition, recent studies supported the possibility of acquiring COVID-19 through the fecal-oro route; the occurrence of COVID-19 gastrointestinal infections, in the absence of respiratory symptoms, also opens the intriguing possibility that these cases could be directly related to the ingestion of contaminated food and water. Overall, most of the studies considered these alternative routes of transmission of low epidemiological relevance; however, it should be considered that they could play an important role, or even be prevalent, in settings characterized by different environmental and socio-economic conditions. In this review, we discuss the most recent findings regarding SARS-CoV-2 alternative transmission routes, with the aim to disclose what is known about their impact on COVID-19 spread and to stimulate research in this field, which could potentially have a great impact, especially in low-resource contexts.
Collapse
Affiliation(s)
| | | | | | | | - Michele Pitaro
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Giovanni Antonini
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| |
Collapse
|
3
|
Koirala P, Dhakal S, Malla B, Ghimire A, Siddiqui MA, Dawadi P. SARS-CoV-2 Burden in Wastewater and its Elimination Using Disinfection. Microbiol Insights 2023; 16:11786361231201598. [PMID: 37745090 PMCID: PMC10517603 DOI: 10.1177/11786361231201598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Background Pathogenic viruses have been abundant and diverse in wastewater, reflecting the pattern of infection in humans. Human feces, urine, and perhaps other washouts that frequently circulate in sewage systems may contaminate wastewater with SARS-CoV-2. It's crucial to effectively disinfect wastewater since poorly handled wastewater could put the population at risk of infection. Aims To emphasize the presence and spread of SARS-CoV-2 in sewage (wastewater) through viral shedding from the patients to detect the virus in the population using wastewater-based epidemiology. Also, to effectively manage the transmission of SARS-CoV-2 and reduce the spread of the virus in the population using disinfectants is highlighted. Methods We evaluated articles from December 2019 to August 2022 that addressed SARS-CoV-2 shedding in wastewater and surveillance through wastewater-based epidemiology. We included the papers on wastewater disinfection for the elimination of SARS-CoV-2. Google Scholar, PubMed, and Research4Life are the three electronic databases from which all of the papers were retrieved. Results It is possible for viral shedding to get into the wastewater. The enumeration of viral RNA from it can be used to monitor virus circulation in the human community. SARS-CoV-2 can be removed from wastewater by using modern disinfection techniques such as sodium hypochlorite, liquid chlorine, chlorine dioxide, peracetic acid, and ultraviolet light. Conclusion SARS-CoV-2 burden estimates at the population level can be obtained via longitudinal examination of wastewater, and SARS-CoV-2 can be removed from the wastewater through disinfection.
Collapse
Affiliation(s)
- Prashanna Koirala
- National Animal Breeding and Genetics Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Sandesh Dhakal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bikram Malla
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Archana Ghimire
- Department of Development Education, School of Education, Kathmandu University, Hattiban, Lalitpur, Nepal
| | - Mohammad Ataullah Siddiqui
- Molecular Biotechnology Unit, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
4
|
Tiwari A, Phan N, Tandukar S, Ashoori R, Thakali O, Mousazadesh M, Dehghani MH, Sherchan SP. Persistence and occurrence of SARS-CoV-2 in water and wastewater environments: a review of the current literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85658-85668. [PMID: 34652622 PMCID: PMC8518268 DOI: 10.1007/s11356-021-16919-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/01/2021] [Indexed: 04/15/2023]
Abstract
As the world continues to cope with the COVID-19 pandemic, emerging evidence indicates that respiratory transmission may not the only pathway in which the virus can be spread. This review paper aims to summarize current knowledge surrounding possible fecal-oral transmission of SARS-CoV-2. It covers recent evidence of proliferation of SARS-CoV-2 in the gastrointestinal tract, as well as presence and persistence of SARS-CoV-2 in water, and suggested future directions. Research indicates that SARS-CoV-2 can actively replicate in the human gastrointestinal system and can subsequently be shed via feces. Several countries have reported SARS-CoV-2 RNA fractions in wastewater systems, and various factors such as temperature and presence of solids have been shown to affect the survival of the virus in water. The detection of RNA does not guarantee infectivity, as current methods such as RT-qPCR are not yet able to distinguish between infectious and non-infectious particles. More research is needed to determine survival time and potential infectivity, as well as to develop more accurate methods for detection and surveillance.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, 70701, Kuopio, Finland
| | - Nati Phan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA
| | | | - Razieh Ashoori
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ocean Thakali
- University of Yamanashi, Takeda, Kofu, Yamanashi, 4-3-11 400-8511, Japan
| | - Milad Mousazadesh
- Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
da Silva MG, Carniel ADS. Study of the correlation between Covid-19 cases and deaths and basic sanitation in Brazil: Is this a possible secondary route of virus transmission? JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100149. [PMID: 36619828 PMCID: PMC9396440 DOI: 10.1016/j.hazadv.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
People with COVID-19 may excrete viable SARS-CoV-2 virus through urine and faeces, which has raised concerns about the possibility of transmission of COVID-19 via water contaminated or sewage. These concerns are especially exacerbated in underdeveloped countries like Brazil, where untreated sewage is usually discharged to surface water or soil. Because of that, a hypothesis emerged that was addressed in this study, which seeks to understand whether access to basic sanitation services can influence the proliferation of the virus. A correlation study was carried out between the cases of COVID-19 and the indicators of basic sanitation from all regions of Brazil. The results showed that there was a correlation only with the water supply indicator. A hypothesis that would explain the presented correlation would be the inefficiency of the water treatment systems in Brazil, not totally inactivating the virus, or possible contamination of the water distribution networks by sanitary sewage. In general, the data presented reinforce the need to expand and monitor basic sanitation services, especially to ensure the effective and efficient disinfection of drinking water. This monitoring could be useful for early warning surveillance of the spread of the virus.
Collapse
|
6
|
Dhulipala S, Uversky VN. Looking at the Pathogenesis of the Rabies Lyssavirus Strain Pasteur Vaccins through a Prism of the Disorder-Based Bioinformatics. Biomolecules 2022; 12:1436. [PMID: 36291645 PMCID: PMC9599798 DOI: 10.3390/biom12101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Rabies is a neurological disease that causes between 40,000 and 70,000 deaths every year. Once a rabies patient has become symptomatic, there is no effective treatment for the illness, and in unvaccinated individuals, the case-fatality rate of rabies is close to 100%. French scientists Louis Pasteur and Émile Roux developed the first vaccine for rabies in 1885. If administered before the virus reaches the brain, the modern rabies vaccine imparts long-lasting immunity to the virus and saves more than 250,000 people every year. However, the rabies virus can suppress the host's immune response once it has entered the cells of the brain, making death likely. This study aimed to make use of disorder-based proteomics and bioinformatics to determine the potential impact that intrinsically disordered protein regions (IDPRs) in the proteome of the rabies virus might have on the infectivity and lethality of the disease. This study used the proteome of the Rabies lyssavirus (RABV) strain Pasteur Vaccins (PV), one of the best-understood strains due to its use in the first rabies vaccine, as a model. The data reported in this study are in line with the hypothesis that high levels of intrinsic disorder in the phosphoprotein (P-protein) and nucleoprotein (N-protein) allow them to participate in the creation of Negri bodies and might help this virus to suppress the antiviral immune response in the host cells. Additionally, the study suggests that there could be a link between disorder in the matrix (M) protein and the modulation of viral transcription. The disordered regions in the M-protein might have a possible role in initiating viral budding within the cell. Furthermore, we checked the prevalence of functional disorder in a set of 37 host proteins directly involved in the interaction with the RABV proteins. The hope is that these new insights will aid in the development of treatments for rabies that are effective after infection.
Collapse
Affiliation(s)
- Surya Dhulipala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
7
|
A Study on the Nature of SARS-CoV-2 Using the Shell Disorder Models: Reproducibility, Evolution, Spread, and Attenuation. Biomolecules 2022; 12:biom12101353. [PMID: 36291562 PMCID: PMC9599796 DOI: 10.3390/biom12101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
The basic tenets of the shell disorder model (SDM) as applied to COVID-19 are that the harder outer shell of the virus shell (lower PID—percentage of intrinsic disorder—of the membrane protein M, PIDM) and higher flexibility of the inner shell (higher PID of the nucleocapsid protein N, PIDN) are correlated with the contagiousness and virulence, respectively. M protects the virion from the anti-microbial enzymes in the saliva and mucus. N disorder is associated with the rapid replication of the virus. SDM predictions are supported by two experimental observations. The first observation demonstrated lesser and greater presence of the Omicron particles in the lungs and bronchial tissues, respectively, as there is a greater level of mucus in the bronchi. The other observation revealed that there are lower viral loads in 2017-pangolin-CoV, which is predicted to have similarly low PIDN as Omicron. The abnormally hard M, which is very rarely seen in coronaviruses, arose from the fecal–oral behaviors of pangolins via exposure to buried feces. Pangolins provide an environment for coronavirus (CoV) attenuation, which is seen in Omicron. Phylogenetic study using M shows that COVID-19-related bat-CoVs from Laos and Omicron are clustered in close proximity to pangolin-CoVs, which suggests the recurrence of interspecies transmissions. Hard M may have implications for long COVID-19, with immune systems having difficulty degrading viral proteins/particles.
Collapse
|
8
|
Naseri K, Aliashrafzadeh H, Otadi M, Ebrahimzadeh F, Badfar H, Alipourfard I. Human Responses in Public Health Emergencies for Infectious Disease Control: An Overview of Controlled Topologies for Biomedical Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6324462. [PMID: 36105443 PMCID: PMC9458400 DOI: 10.1155/2022/6324462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
COVID-19 originated in Wuhan city of Hubei Province in China in December three years ago. Since then, it has spread to more than 210 countries and territories. This disease is caused by Severe Acute Respiratory Syndrome Coronavirus 2. The virus has a size of one to two nanometers and a single-stranded positive RNA. Droplets spread the virus from coughing and sneezing. This condition causes coughing, fever, acute respiratory problems, and even death. According to the WHO, the virus can survive outside the body for several hours. This research aimed to determine how environmental factors influenced the COVID-19 virus's survival and behavior, as well as its transmission, in a complex environment. Based on the results, virus transmissions are influenced by various human and environmental factors such as population distribution, travel, social behavior, and climate change. Environmental factors have not been adequately examined concerning the transmission of this epidemic. Thus, it is necessary to examine various aspects of prevention and control of this disease, including its effects on climate and other environmental factors.
Collapse
Affiliation(s)
- Kamal Naseri
- Department of Architecture and Urban Studies (DAStU), Politecnico di Milano, Milan, Italy
| | | | - Maryam Otadi
- Chemical Engineering Department, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homayoun Badfar
- Department of Mechanical Engineering, Urmia University of Technology (UUT), PO Box: 57166-419, Urmia, Iran
| | - Iraj Alipourfard
- Institute of Biology,Biotechnology and Environmental Protection, Faculty of Natural Sciences, The University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
9
|
Sung YJ, Song S, Sim SJ. A Rapid and High-Throughput Assay for Light Scattering of SARS-CoV-2 Virion-Sized Particulates via Microfluidic Spray Device Reveals the Protection Performance of Face Masks against Virus Infection. NANO LETTERS 2022; 22:6744-6752. [PMID: 35930264 DOI: 10.1021/acs.nanolett.2c02278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To prevent interhuman transmission of viruses, new mask types─claiming improved filtration─require careful performance characterization. Here, a microfluidic spray device that can effectively simulate droplets emitted during coughing or sneezing was developed to spray droplets containing gold nanoparticles (AuNPs) that mimic SARS-CoV-2 to overcome the shortcomings associated with using biosamples. The light scattered by the AuNPs passing through the mask is successfully analyzed by using an automated scattering light mapping system within a duration of 2 min, thereby enabling high-throughput analysis of the filtering efficiency of various types of commercial masks. The differences in efficiency in terms of same mask type from different manufacturers, double masking, and prolonged usage, which are challenging to analyze with conventional testing systems, can also be assessed. AuNP-mediated mask performance evaluation enables the rapid determination of mask efficiency according to particle size and can contribute to the rapid response to counter new emerging infectious biohazards.
Collapse
Affiliation(s)
- Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sojin Song
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Liew OW, Fanusi F, Ng JYX, Ahidjo BA, Ling SSM, Lilyanna S, Chong JPC, Lim AES, Lim WZ, Ravindran S, Chu JJH, Lim SL, Richards AM. Immunoassay-Compatible Inactivation of SARS-CoV-2 in Plasma Samples for Enhanced Handling Safety. ACS OMEGA 2022; 7:25510-25520. [PMID: 35903176 PMCID: PMC9301769 DOI: 10.1021/acsomega.2c02585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) inactivation is an important step toward enhanced biosafety in testing facilities and affords a reduction in the biocontainment level necessary for handling virus-positive biological specimens. Virus inactivation methods commonly employ heat, detergents, or combinations thereof. In this work, we address the dearth of information on the efficacy of SARS-CoV-2 inactivation procedures in plasma and their downstream impact on immunoassays. We evaluated the effects of heat (56 °C for 30 min), detergent (1-5% Triton X-100), and solvent-detergent (SD) combinations [0.3-1% tri-n-butyl phosphate (TNBP) and 1-2% Triton X-100] on 19 immunoassays across different assay formats. Treatments are deemed immunoassay-compatible when the average and range of percentage recovery (treated concentration relative to untreated concentration) lie between 90-110 and 80-120%, respectively. We show that SD treatment (0.3% TNBP/1% Triton-X100) is compatible with more than half of the downstream immunoassays tested and is effective in reducing SARS-CoV-2 infectivity in plasma to below detectable levels in plaque assays. This facile method offers enhanced safety for laboratory workers handling biological specimens in clinical and research settings.
Collapse
Affiliation(s)
- Oi Wah Liew
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Felic Fanusi
- NUS
Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National
University of Singapore, National University
Health System, 14 Medical
Drive, Singapore 117599, Singapore
- Department
of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Jessica Yan Xia Ng
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Bintou Ahmadou Ahidjo
- NUS
Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National
University of Singapore, National University
Health System, 14 Medical
Drive, Singapore 117599, Singapore
- Department
of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Samantha Shi Min Ling
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Shera Lilyanna
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Jenny Pek Ching Chong
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Angeline Eng Siew Lim
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Wei Zheng Lim
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
| | - Sindhu Ravindran
- NUS
Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National
University of Singapore, National University
Health System, 14 Medical
Drive, Singapore 117599, Singapore
| | - Justin Jang Hann Chu
- NUS
Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National
University of Singapore, National University
Health System, 14 Medical
Drive, Singapore 117599, Singapore
- Department
of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
- Infectious
Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Shir Lynn Lim
- Yong
Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore
- Department
of Cardiology, National University Heart
Centre Singapore, 1E
Kent Ridge Road, Singapore 119228, Singapore
| | - Arthur Mark Richards
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, National University Health System, 14 Medical Drive, Singapore 117599, Singapore
- Christchurch
Heart Institute, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
11
|
Dawadi P, Syangtan G, Lama B, Kanel SR, Raj Joshi D, Pokhrel LR, Adhikari R, Joshi HR, Pavel I. Understanding COVID-19 Situation in Nepal and Implications for SARS-CoV-2 Transmission and Management. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221104348. [PMID: 35694428 PMCID: PMC9178984 DOI: 10.1177/11786302221104348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Background The pandemic of Coronavirus Disease 2019 (COVID-19), one of the most infectious diseases in the modern history, is caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and has had a profound health and economic toll, globally. This paper identifies the overall health status associated with COVID-19 pandemic in all 7 provinces of Nepal, a developing country in South Asia, analyzing data from January 2020 to February 2022. It focuses on the SARS-CoV-2 prevalence, transmission through wastewater and other routes, diagnostics, treatment options, and alternative medicines, thereby offering key perspectives for its management. Materials and Methods Studies regarding coronavirus spanning the 2017 to 2022 period were searched on the web, Nepalese database, and Web of Science. Refined criteria included SARS-CoV-2 in wastewater of Nepal or worldwide. Demographic data (sex, age-group, and geographic location) were also obtained from websites and relevant reports of the Ministry of Health and Population (MOHP) of Nepal, ranging from January 2020 to February 2022. Moreover, trends concerning lockdown, business, and border activities in Nepal between February 2020 and October 2020 were evaluated. The viral dissemination pathways, diagnosis, and available treatment options, including the Ayurvedic medicine, were also examined. Results Aerosols generated during the hospital, industrial, recreational, and household activities were found to contribute to the propagation of SARS-CoV-2 into environmental wastewater, thereby putting the surrounding communities at risk of infection. When lockdown ended and businesses opened in October 2020, the number of active cases of COVID-19 increased exponentially. Bagmati Province had the highest number of cases (53.84%), while the remaining 6 provinces tallied 46.16%. Kathmandu district had the highest number of COVID-19 cases (138, 319 cases), while Manang district had the smallest number of infections (81 cases). The male population was found to be predominantly infected (58.7%). The most affected age groups were the 31 to 40 years old males (25.92%) and the 21 to 30 years old females (26.85%). Conclusion The pandemic impacted the public health and economic growth in our study duration. SARS-CoV-2 was prevalent in the wastewater of Nepal. The Terai districts and the megacities were mostly affected by SARS-CoV-2 infections. Working-age groups and males were identified as the highest risk groups. More investigations on the therapeutic and alternative cures are recommended. These findings may guide the researchers and professionals with handling the COVID-19 challenges in developing countries such as Nepal and better prepare for future pandemics.
Collapse
Affiliation(s)
- Prabin Dawadi
- Biological Resources Unit, Nepal Academy of Science and Technology, Lalitpur, Bagmati, Nepal
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Gopiram Syangtan
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
- Shi-Gan International College of Science and Technology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Bhupendra Lama
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Sushil R. Kanel
- Department of Chemistry, Wright State University, Dayton, OH, USA
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Lok R. Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rameshwar Adhikari
- Research Center for Applied Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Hem R. Joshi
- Department of Mathematics, Xavier University, Cincinnati, OH, USA
| | - Ioana Pavel
- Department of Physical and Environmental Sciences, Texas A&M University at Corpus Christi, Corpus Christi, TX, USA
| |
Collapse
|
12
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2. Biomolecules 2022; 12:631. [PMID: 35625559 PMCID: PMC9139003 DOI: 10.3390/biom12050631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Before the SARS-CoV-2 Omicron variant emergence, shell disorder models (SDM) suggested that an attenuated precursor from pangolins may have entered humans in 2017 or earlier. This was based on a shell disorder analysis of SARS-CoV-1/2 and pangolin-Cov-2017. The SDM suggests that Omicron is attenuated with almost identical N (inner shell) disorder as pangolin-CoV-2017 (N-PID (percentage of intrinsic disorder): 44.8% vs. 44.9%-lower than other variants). The outer shell disorder (M-PID) of Omicron is lower than that of other variants and pangolin-CoV-2017 (5.4% vs. 5.9%). COVID-19-related CoVs have the lowest M-PIDs (hardest outer shell) among all CoVs. This is likely to be responsible for the higher contagiousness of SARS-CoV-2 and Omicron, since hard outer shell protects the virion from salivary/mucosal antimicrobial enzymes. Phylogenetic study using M reveals that Omicron branched off from an ancestor of the Wuhan-Hu-1 strain closely related to pangolin-CoVs. M, being evolutionarily conserved in COVID-19, is most ideal for COVID-19 phylogenetic study. Omicron may have been hiding among burrowing animals (e.g., pangolins) that provide optimal evolutionary environments for attenuation and increase shell hardness, which is essential for fecal-oral-respiratory transmission via buried feces. Incoming data support SDM e.g., the presence of fewer infectious particles in the lungs than in the bronchi upon infection.
Collapse
Affiliation(s)
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - James A. Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA;
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| |
Collapse
|
13
|
Ninham B, Reines B, Battye M, Thomas P. Pulmonary surfactant and COVID-19: A new synthesis. QRB DISCOVERY 2022; 3:e6. [PMID: 37564950 PMCID: PMC10411325 DOI: 10.1017/qrd.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Chapter 1 COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2; as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected. Chapter 2 For a long time, physical, colloid and surface chemistry have not intersected with physiology and cell biology as much as we might have hoped. The reasons are starting to become clear. The discipline of physical chemistry suffered from serious unrecognised omissions that rendered it ineffective. These foundational defects included omission of specific ion molecular forces and hydration effects. The discipline lacked a predictive theory of self-assembly of lipids and proteins. Worse, theory omitted any role for dissolved gases, O2, N2, CO2, and their existence as stable nanobubbles above physiological salt concentration. Recent developments have gone some way to explaining the foam-like lung surfactant structures and function. It delivers O2/N2 as nanobubbles, and efflux of CO2, and H2O nanobubbles at the alveolar surface. Knowledge of pulmonary surfactant structure allows an explanation of the mechanism of corona virus entry, and differences in infectivity of different variants. CO2 nanobubbles, resulting from metabolism passing through the molecular frit provided by the glycocalyx of venous tissue, forms the previously unexplained foam which is the endothelial surface layer. CO2 nanobubbles turn out to be lethal to viruses, providing a plausible explanation for the origin of 'Long COVID'. Circulating nanobubbles, stable above physiological 0.17 M salt drive various enzyme-like activities and chemical reactions. Awareness of the microstructure of Pulmonary Surfactant and that nanobubbles of (O2/N2) and CO2 are integral to respiratory and circulatory physiology provides new insights to the COVID-19 and other pathogen activity.
Collapse
Affiliation(s)
- Barry Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT2612, Australia
| | - Brandon Reines
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Blvd, Pittsburgh, PA15206, USA
| | | | - Paul Thomas
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| |
Collapse
|
14
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. Computational, Experimental, and Clinical Evidence of a Specific but Peculiar Evolutionary Nature of (COVID-19) SARS-CoV-2. J Proteome Res 2022; 21:874-890. [PMID: 35142523 PMCID: PMC8864774 DOI: 10.1021/acs.jproteome.2c00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 11/30/2022]
Abstract
The shell disorder models have predicted that SARS-CoV-2 is of a specific but peculiar evolutionary nature. All coronaviruses (CoVs) closely related to SARS-CoV-2 have been found to have the hardest outer shells (M protein) among CoVs. This hard shell (low M percentage of intrinsic disorder (PID)) is associated with burrowing animals, for example, pangolins, and is believed to be responsible for the high contagiousness of SARS-CoV-2 because it will be more resistant to antimicrobial enzymes found in saliva/mucus. Incoming clinical and experimental data do support this along with a prediction based on another aspect of the shell (N, inner shell) disorder models that SARS-CoV-1 is more virulent than SARS-CoV-2 because SARS-CoV-2 produces fewer virus copies in vital organs even if large amounts of infections particles are shed orally and nasally. A phylogenetic study using M reveals a closer relationship of SARS-CoV to pangolin-CoVs than the bat-RaTG13 found in Yunnan, China. Previous studies may have been confused by recombinations that were poorly handled. The shell disorder models suggest that a pangolin-CoV strain may have entered the human population in 2017 or before as an attenuated virus, which could explain why SARS-CoV is found to be highly adapted to humans.
Collapse
Affiliation(s)
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics,
Indiana University School of Medicine, Indianapolis, Indiana
46202, United States
| | - James A. Foster
- Department of Biological Sciences,
University of Idaho, Moscow, Idaho 83844, United
States
- Institute for Bioinformatics and Evolutionary Studies,
University of Idaho, Moscow, Idaho 83844, United
States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd
Alzheimer’s Research Institute, Morsani College of Medicine,
University of South Florida, Tampa, Florida 33620,
United States
- Laboratory of New Methods in Biology, Institute for
Biological Instrumentation of the Russian Academy of Sciences, Federal
Research Center “Pushchino Scientific Center for Biological Research of the
Russian Academy of Sciences”, Pushchino, Moscow Region 142290,
Russia
| |
Collapse
|
15
|
Michailidou E, Poulopoulos A, Tzimagiorgis G. Salivary diagnostics of the novel coronavirus SARS-CoV-2 (COVID-19). Oral Dis 2022; 28 Suppl 1:867-877. [PMID: 33211392 PMCID: PMC7753835 DOI: 10.1111/odi.13729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Laboratory testing for the SARS-CoV-2 virus and the consequent respiratory coronavirus disease 2019 (COVID-19) is categorized into methods that detect the viral presence and methods that detect antibodies produced in the host as a response to infection. Methods that detect viral presence into the host excretions measure current infection by SARS-CoV-2, whereas the detection of human antibodies exploited against SARS-CoV-2 evaluates the past exposure to the virus. OBJECTIVE This review provides a comprehensive overview for the use of saliva as a specimen for the detection of SARS-CoV-2, the methods for the salivary diagnostics utilized till very recently, and the arisen considerations for the diagnosis of COVID-19 disease. CONCLUSION The major advantage of using saliva as a specimen for the detection of SARS-CoV-2 is that saliva collection is a non-invasive method which produces no discomfort to the patient and permits the patients to utilize home self-sampling techniques in order to protect health providers from the exposure to the pathogen. There is an urgent need to increase the active research for the detection of SARS-CoV-2 in the saliva because the non-invasive salivary diagnostics may provide a reliable and cost-effective method suitable for the fast and early detection of COVID-19 infection.
Collapse
Affiliation(s)
- Evangelia Michailidou
- Department of Oral Medicine and Maxillofacial PathologySchool of DentistryAristotle UniversityThessalonikiGreece
| | - Athanasios Poulopoulos
- Department of Oral Medicine and Maxillofacial PathologySchool of DentistryAristotle UniversityThessalonikiGreece
| | - Georgios Tzimagiorgis
- Laboratory of Biological ChemistryMedical SchoolAristotle University of ThessalonikiThessalonikiGreece
| |
Collapse
|
16
|
Tenchov R, Zhou QA. Intrinsically Disordered Proteins: Perspective on COVID-19 Infection and Drug Discovery. ACS Infect Dis 2022; 8:422-432. [PMID: 35196007 PMCID: PMC8887652 DOI: 10.1021/acsinfecdis.2c00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/23/2022]
Abstract
Since the beginning of the COVID-19 pandemic caused by SARS-CoV-2, millions of patients have been diagnosed and many of them have died from the disease worldwide. The identification of novel therapeutic targets are of utmost significance for prevention and treatment of COVID-19. SARS-CoV-2 is a single-stranded RNA virus with a 30 kb genome packaged into a membrane-enveloped virion, transcribing several tens of proteins. The belief that the amino acid sequence of proteins determines their 3D structure which, in turn, determines their function has been a central principle of molecular biology for a long time. Recently, it has been increasingly realized, however, that there is a large group of proteins that lack a fixed or ordered 3D structure, yet they exhibit important biological activities─so-called intrinsically disordered proteins and protein regions (IDPs/IDRs). Disordered regions in viral proteins are generally associated with viral infectivity and pathogenicity because they endow the viral proteins the ability to easily and promiscuously bind to host proteins; therefore, the proteome of SARS-CoV-2 has been thoroughly examined for intrinsic disorder. It has been recognized that, in fact, the SARS-CoV-2 proteome exhibits significant levels of structural order, with only the nucleocapsid (N) structural protein and two of the nonstructural proteins being highly disordered. The spike (S) protein of SARS-CoV-2 exhibits significant levels of structural order, yet its predicted percentage of intrinsic disorder is still higher than that of the spike protein of SARS-CoV. Noteworthy, however, even though IDPs/IDRs are not common in the SARS-CoV-2 proteome, the existing ones play major roles in the functioning and virulence of the virus and are thus promising drug targets for rational antiviral drug design. Presented here is a COVID-19 perspective on the intrinsically disordered proteins, summarizing recent results on the SARS-CoV-2 proteome disorder features, their physiological and pathological relevance, and their prominence as prospective drug target sites.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society,
Columbus, Ohio 43210, United States
| | | |
Collapse
|
17
|
Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int J Mol Sci 2022; 23:1716. [PMID: 35163638 PMCID: PMC8835786 DOI: 10.3390/ijms23031716] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The review aims to consolidate research findings on the molecular mechanisms and virulence and pathogenicity characteristics of coronavirus disease (COVID-19) causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and their relevance to four typical stages in the development of acute viral infection. These four stages are invasion; primary blockade of antiviral innate immunity; engagement of the virus's protection mechanisms against the factors of adaptive immunity; and acute, long-term complications of COVID-19. The invasion stage entails the recognition of the spike protein (S) of SARS-CoV-2 target cell receptors, namely, the main receptor (angiotensin-converting enzyme 2, ACE2), its coreceptors, and potential alternative receptors. The presence of a diverse repertoire of receptors allows SARS-CoV-2 to infect various types of cells, including those not expressing ACE2. During the second stage, the majority of the polyfunctional structural, non-structural, and extra proteins SARS-CoV-2 synthesizes in infected cells are involved in the primary blockage of antiviral innate immunity. A high degree of redundancy and systemic action characterizing these pathogenic factors allows SARS-CoV-2 to overcome antiviral mechanisms at the initial stages of invasion. The third stage includes passive and active protection of the virus from factors of adaptive immunity, overcoming of the barrier function at the focus of inflammation, and generalization of SARS-CoV-2 in the body. The fourth stage is associated with the deployment of variants of acute and long-term complications of COVID-19. SARS-CoV-2's ability to induce autoimmune and autoinflammatory pathways of tissue invasion and development of both immunosuppressive and hyperergic mechanisms of systemic inflammation is critical at this stage of infection.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Liliya Solomatina
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Valeriy Chereshnev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| |
Collapse
|
18
|
Falzone YM, Bosco L, Sferruzza G, Russo T, Vabanesi M, Carlo S, Filippi M. Evaluation of the combined effect of mobility and seasonality on the COVID-19 pandemic: a Lombardy-based study. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022212. [PMID: 36043970 PMCID: PMC9534262 DOI: 10.23750/abm.v93i4.12645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022]
Abstract
Restrictions to human mobility had a significant role in limiting SARS-CoV-2 spread. It has been suggested that seasonality might affect viral transmissibility. Our study retrospectively investigates the combined effect that seasonal environmental factors and human mobility played on transmissibility of SARS-CoV-2 in Lombardy, Italy, in 2020. Environmental data were collected from accredited open-source web services. Aggregated mobility data for different points of interests were collected from Google Community Reports. The Reproduction number (Rt), based on the weekly counts of confirmed symptomatic COVID-19, non-imported cases, was used as a proxy for SARS-CoV-2 transmissibility. Assuming a non-linear correlation between selected variables, we used a Generalized Additive Model (GAM) to investigate with univariate and multivariate analyses the association between seasonal environmental factors (UV-index, temperature, humidity, and atmospheric pressure), location-specific mobility indices, and Rt. UV-index was the most effective environmental variable in predicting Rt. An optimal two-week lag-effect between changes in explanatory variables and Rt was selected. The association between Rt variations and individually taken mobility indices differed: Grocery & Pharmacy, Transit Station and Workplaces displayed the best performances in predicting Rt when individually added to the multivariate model together with UV-index, accounting for 85.0%, 85.5% and 82.6% of Rt variance, respectively. According to our results, both seasonality and social interaction policies played a significant role in curbing the pandemic. Non-linear models including UV-index and location-specific mobility indices can predict a considerable amount of SARS-CoV-2 transmissibility in Lombardy during 2020, emphasizing the importance of social distancing policies to keep viral transmissibility under control, especially during colder months.
Collapse
Affiliation(s)
| | - Luca Bosco
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Sferruzza
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Vabanesi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
19
|
Comment on "SARS-CoV-2 is Present in Peritoneal Fluid in COVID-19 Patients". Ann Surg 2021; 274:e794-e795. [PMID: 33065649 DOI: 10.1097/sla.0000000000004540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Caetano-Anollés K, Hernandez N, Mughal F, Tomaszewski T, Caetano-Anollés G. The seasonal behaviour of COVID-19 and its galectin-like culprit of the viral spike. METHODS IN MICROBIOLOGY 2021; 50:27-81. [PMID: 38620818 PMCID: PMC8590929 DOI: 10.1016/bs.mim.2021.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seasonal behaviour is an attribute of many viral diseases. Like other 'winter' RNA viruses, infections caused by the causative agent of COVID-19, SARS-CoV-2, appear to exhibit significant seasonal changes. Here we discuss the seasonal behaviour of COVID-19, emerging viral phenotypes, viral evolution, and how the mutational landscape of the virus affects the seasonal attributes of the disease. We propose that the multiple seasonal drivers behind infectious disease spread (and the spread of COVID-19 specifically) are in 'trade-off' relationships and can be better described within a framework of a 'triangle of viral persistence' modulated by the environment, physiology, and behaviour. This 'trade-off' exists as one trait cannot increase without a decrease in another. We also propose that molecular components of the virus can act as sensors of environment and physiology, and could represent molecular culprits of seasonality. We searched for flexible protein structures capable of being modulated by the environment and identified a galectin-like fold within the N-terminal domain of the spike protein of SARS-CoV-2 as a potential candidate. Tracking the prevalence of mutations in this structure resulted in the identification of a hemisphere-dependent seasonal pattern driven by mutational bursts. We propose that the galectin-like structure is a frequent target of mutations because it helps the virus evade or modulate the physiological responses of the host to further its spread and survival. The flexible regions of the N-terminal domain should now become a focus for mitigation through vaccines and therapeutics and for prediction and informed public health decision making.
Collapse
Affiliation(s)
| | - Nicolas Hernandez
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Tre Tomaszewski
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
21
|
Islam A, Kalam MA, Sayeed MA, Shano S, Rahman MK, Islam S, Ferdous J, Choudhury SD, Hassan MM. Escalating SARS-CoV-2 circulation in environment and tracking waste management in South Asia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61951-61968. [PMID: 34558044 PMCID: PMC8459815 DOI: 10.1007/s11356-021-16396-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 04/15/2023]
Abstract
The novel coronavirus disease of 2019 (COVID-19) pandemic has caused an exceptional drift of production, utilization, and disposal of personal protective equipment (PPE) and different microplastic objects for safety against the virus. Hence, we reviewed related literature on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detected from household, biomedical waste, and sewage to identify possible health risks and status of existing laws, regulations, and policies regarding waste disposal in South Asian (SA) countries. The SARS-CoV-2 RNA was detected in sewage and wastewater samples of Nepal, India, Pakistan, and Bangladesh. Besides, this review reiterates the enormous amounts of PPE and other single-use plastic wastes generated from healthcare facilities and households in the SA region with inappropriate disposal, landfilling, and/or incineration techniques wind-up polluting the environment. Consequently, the Delta variant (B.1.617.2) of SARS-CoV-2 has been detected in sewer treatment plant in India. Moreover, the overuse of non-biodegradable plastics during the pandemic is deteriorating plastic pollution condition and causes a substantial health risk to the terrestrial and aquatic ecosystems. We recommend making necessary adjustments, adopting measures and strategies, and enforcement of the existing biomedical waste management and sanitation-related policy in SA countries. We propose to adopt the knowledge gaps to improve COVID-19-associated waste management and legislation to prevent further environmental pollution. Besides, the citizens should follow proper disposal procedures of COVID-19 waste to control the environmental pollution.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, 10001-2320, USA.
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, Victoria, 3216, Australia.
| | | | - Md Abu Sayeed
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Shahanaj Shano
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Md Kaisar Rahman
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Shariful Islam
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Jinnat Ferdous
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Shusmita Dutta Choudhury
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| |
Collapse
|
22
|
Termansen MB, Christiansen AV, Frische S. SARS-CoV-2 prevalence and transmission in swimming activities: Results from a retrospective cohort study. Scand J Med Sci Sports 2021; 32:242-254. [PMID: 34606662 PMCID: PMC8662273 DOI: 10.1111/sms.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022]
Abstract
There is an urgent need for research on the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) causing coronavirus disease 2019 (COVID‐19), as the transmissibility differs between settings and populations. Here we report on a questionnaire‐based retrospective cohort study of the prevalence and transmission of SARS‐CoV‐2 among participants in swimming activities in Denmark in the last 5 months of 2020 during the COVID‐19 pandemic. Eight of 162 swimming activities with a SARS‐CoV‐2 positive participant led to transmission to 23 other participants. Overall, the percentage of episodes leading to transmission was 4.9% (competitive swimming 8.9%; recreational swimming 1.3%). Overall, the incidence rate of transmission was 19.5 participants per 100 000 pool activity hours (corresponding values: 43.5 and 4.7 for competitive and recreational swimming, respectively). Compliance with precautionary restrictions was highest regarding hand hygiene (98.1%) and lowest in distancing personal sports bags (69.9%). As a result of low statistical power, the study showed no significant effect of restrictions. Insight into the risk of transmission of SARS‐CoV‐2 during indoor swimming is needed to estimate the efficiency of restrictive measures on this and other sports and leisure activities. Only when we know how the virus spreads through various settings, optimal strategies to handle the COVID‐19 pandemic can be developed.
Collapse
|
23
|
Jaiswal P, Banode P, Agrawal D, Bajaj P, Masurkar D, Gadbail A. The Impact of COVID-19 on General and Dental Health. Open Dent J 2021. [DOI: 10.2174/1874210602115010310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
COVID-19 (Coronavirus disease 2019) is a contagious infection caused by novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). This novel virus was publicly announced as an infectious pathogen by the “Chinese Centre for Disease Control and Prevention” on 8 January 2020. The World Health Organization named COVID-19 a pandemic crisis all over the world on March 11, 2020. Aged people and medically compromised people like patients with diabetes, cardiovascular disease, chronic respiratory disease, and cancer are the vulnerable populations for developing an illness. A guideline has been postulated and described in the form of a journey map to avoid exposure of dental health care professionals to COVID-19. This review provides a comprehensive outlook for the current pandemic situation, its origin, spread, and preventive measures to be utilized in general and in dental practice.
Collapse
|
24
|
Kordyukova LV, Shanko AV. COVID-19: Myths and Reality. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:800-817. [PMID: 34284707 PMCID: PMC8265000 DOI: 10.1134/s0006297921070026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
COVID-19, a new human respiratory disease that has killed nearly 3 million people in a year since the start of the pandemic, is a global public health challenge. Its infectious agent, SARS-CoV-2, differs from other coronaviruses in a number of structural features that make this virus more pathogenic and transmissible. In this review, we discuss some important characteristics of the main SARS-CoV-2 surface antigen, the spike (S) protein, such as (i) ability of the receptor-binding domain (RBD) to switch between the "standing-up" position (open pre-fusion conformation) for receptor binding and the "lying-down" position (closed pre-fusion conformation) for immune system evasion; (ii) advantage of a high binding affinity of the RBD open conformation to the human angiotensin-converting enzyme 2 (ACE2) receptor for efficient cell entry; and (iii) S protein preliminary activation by the intracellular furin-like proteases for facilitation of the virus spreading across different cell types. We describe interactions between the S protein and cellular receptors, co-receptors, and antagonists, as well as a hypothetical mechanism of the homotrimeric spike structure destabilization that triggers the fusion of the viral envelope with the cell membrane at physiological pH and mediates the viral nucleocapsid entry into the cytoplasm. The transition of the S protein pre-fusion conformation to the post-fusion one on the surface of virions after their treatment with some reagents, such as β-propiolactone, is essential, especially in relation to the vaccine production. We also compare the COVID-19 pathogenesis with that of severe outbreaks of "avian" influenza caused by the A/H5 and A/H7 highly pathogenic viruses and discuss the structural similarities between the SARS-CoV-2 S protein and hemagglutinins of those highly pathogenic strains. Finally, we touch on the prospective and currently used COVID-19 antiviral and anti-pathogenetic therapeutics, as well as recently approved conventional and innovative COVID-19 vaccines and their molecular and immunological features.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Andrey V Shanko
- FORT LLC, R&D Department, Moscow, 119435, Russia
- Ivanovsky Institute of Virology, Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia
| |
Collapse
|
25
|
Sánchez-Guillén L, Jimenez-Rodriguez RM. Special surgical approaches during peri-COVID-19 pandemic: Robotic and transanal minimally invasive surgery. World J Gastrointest Surg 2021; 13:529-536. [PMID: 34194611 PMCID: PMC8223704 DOI: 10.4240/wjgs.v13.i6.529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
During the peri-coronavirus disease 2019 pandemic, the need of special care has raised, not only for our patients but also for health care workers. These needs are different regarding the procedure and the approach performed. This is a dynamic review in the use of robotics and transanal approaches for colorectal diseases. We searched PubMed and KSREvidence.com for studies related to coronavirus disease and robotic surgery/transanal mesorectal excision/transanal surgery (primary and systematic reviews). From 147 results in PubMed, 11 were selected for full text screening, and 11 were included in this paper. From 3 results in KSREvidence, no relevant systematic reviews were identified. We also checked the references in identified papers for further relevant studies. European Society of Coloproctology guidelines were including as part of the recommendations available. Robotic and transanal MIS can be performed safely during the pandemic, but particular characteristics of these procedure need to be taken into consideration.
Collapse
Affiliation(s)
- Luis Sánchez-Guillén
- Department of Cirugía General, Hospital Universitario de Elche, Elche 03201, Spain
| | - Rosa M Jimenez-Rodriguez
- Department of Surgery, Hospital Universitario Virgen del Rocio, Unidad de Coloproctologia, Sevilla 41013, Spain
| |
Collapse
|
26
|
Selwyn GS, Ye C, Bradfute SB. Anti-SARS-CoV-2 Activity of Surgical Masks Infused with Quaternary Ammonium Salts. Viruses 2021; 13:v13060960. [PMID: 34067345 PMCID: PMC8224633 DOI: 10.3390/v13060960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
The SARS-CoV-2 pandemic has highlighted the need for protective and effective personal protective equipment (PPE). Research has shown that SARS-CoV-2 can survive on personal protective equipment, such as commonly used surgical masks. Methods are needed to inactivate virus on contaminated material. We show here that embedding viral-disinfecting compounds during the manufacturing of surgical masks inactivates a high dose (up to 1 × 105 pfu) of live, authentic SARS-CoV-2 within minutes.
Collapse
Affiliation(s)
- Gary S. Selwyn
- Green Theme Technologies Inc., Rio Rancho, NM 87124, USA
- Correspondence: (G.S.S.); (S.B.B.); Tel.: +1-505-577-4447 (G.S.S.); +1-505-272-9368 (S.B.B.)
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA;
| | - Steven B. Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA;
- Correspondence: (G.S.S.); (S.B.B.); Tel.: +1-505-577-4447 (G.S.S.); +1-505-272-9368 (S.B.B.)
| |
Collapse
|
27
|
Giovannini G, Haick H, Garoli D. Detecting COVID-19 from Breath: A Game Changer for a Big Challenge. ACS Sens 2021; 6:1408-1417. [PMID: 33825440 PMCID: PMC8043202 DOI: 10.1021/acssensors.1c00312] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is probably the most commonly heard word of the last 12 months. The outbreak of this virus (SARS-CoV-2) is strongly compromising worldwide healthcare systems, social behavior, and everyone's lives. The early diagnosis of COVID-19 and isolation of positive cases has proven to be fundamental in containing the spread of the infection. Even though the polymerase chain reaction (PCR) based methods remain the gold standard for SARS-CoV-2 detection, the urgent demand for rapid and wide-scale diagnosis precipitated the development of alternative diagnostic approaches. The millions of tests performed every day worldwide are still insufficient to achieve the desired goal, that of screening the population during daily life. Probably the most appealing approach to consistently monitor COVID-19 spread is the direct detection of SARS-CoV-2 from exhaled breath. For instance, the challenging incorporation of reliable, highly sensitive, and cost-efficient detection methods in masks could represent a breakthrough in the development of portable and noninvasive point-of-care diagnosis for COVID-19. In this perspective paper, we discuss the critical technical aspects related to the application of breath analysis in the diagnosis of viral infection. We believe that, if achieved, it could represent a game-changer in containing the pandemic spread.
Collapse
Affiliation(s)
- Giorgia Giovannini
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Hossam Haick
- Department
of Chemical Engineering, Biomedical Engineering
& The Russell Berrie Nanotechnology Institute (RBNI) Technion
− Israel Institute of Technology, Haifa 32000003, Israel
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163, Genova, Italy
- Faculty
of Science and Technology, Free University
of Bozen, Piazza Università
5, 39100 Bolzano, Italy
| |
Collapse
|
28
|
Dennis D, Radnitz C, Wheaton MG. A Perfect Storm? Health Anxiety, Contamination Fears, and COVID-19: Lessons Learned from Past Pandemics and Current Challenges. Int J Cogn Ther 2021; 14:497-513. [PMID: 33907592 PMCID: PMC8061445 DOI: 10.1007/s41811-021-00109-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/31/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) rapidly spread, becoming a global pandemic with significant health, economic, and social impacts. COVID-19 has caused widespread anxiety, which at healthy levels leads to adaptive, protective behavioral changes. For some individuals, a pandemic outbreak can lead to excessive, maladaptive levels of anxiety, particularly among those with obsessive-compulsive disorder (OCD) and health anxiety. In the present paper, we review past research studies that examined anxiety in response to other disease outbreaks (including Swine Flu, Zika, and Ebola) to serve as a guide for expectable responses to COVID-19. Our review focused on the role of belief-based cognitive variables (obsessive beliefs, contamination cognitions), transdiagnostic processes (disgust sensitivity, anxiety sensitivity, an intolerance of uncertainty), social factors, and environmental/situational variables as contributing factors to excessive concerns about past pandemics. These factors in combination with unique characteristics of the virus (disease, behavioral, social and economic factors) and media consumption might enhance vulnerability to excessive anxiety about COVID-19, in line with a diathesis-stress model. COVID-19 is also unique from past pandemics due to its severity, easy transmissibility, and the nature of prescribed behavioral responses (i.e., hand washing and social distancing). We therefore discuss the ways in which COVID-19 may disproportionately affect individuals with OCD and health anxiety. We conclude with important topics for clinical and research attention to help mental health professionals respond in this time of crisis.
Collapse
Affiliation(s)
- Danielle Dennis
- Fairleigh Dickinson University, Teaneck, NJ USA.,Barnard College of Columbia University, New York City, NY USA
| | | | | |
Collapse
|
29
|
Kumar N, Kaushik R, Tennakoon C, Uversky VN, Longhi S, Zhang KYJ, Bhatia S. Insights into the evolutionary forces that shape the codon usage in the viral genome segments encoding intrinsically disordered protein regions. Brief Bioinform 2021; 22:6231751. [PMID: 33866372 DOI: 10.1093/bib/bbab145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered regions/proteins (IDRs) are abundant across all the domains of life, where they perform important regulatory roles and supplement the biological functions of structured proteins/regions (SRs). Despite the multifunctionality features of IDRs, several interrogations on the evolution of viral genomic regions encoding IDRs in diverse viral proteins remain unreciprocated. To fill this gap, we benchmarked the findings of two most widely used and reliable intrinsic disorder prediction algorithms (IUPred2A and ESpritz) to a dataset of 6108 reference viral proteomes to unravel the multifaceted evolutionary forces that shape the codon usage in the viral genomic regions encoding for IDRs and SRs. We found persuasive evidence that the natural selection predominantly governs the evolution of codon usage in regions encoding IDRs by most of the viruses. In addition, we confirm not only that codon usage in regions encoding IDRs is less optimized for the protein synthesis machinery (transfer RNAs pool) of their host than for those encoding SRs, but also that the selective constraints imposed by codon bias sustain this reduced optimization in IDRs. Our analysis also establishes that IDRs in viruses are likely to tolerate more translational errors than SRs. All these findings hold true, irrespective of the disorder prediction algorithms used to classify IDRs. In conclusion, our study offers a novel perspective on the evolution of viral IDRs and the evolutionary adaptability to multiple taxonomically divergent hosts.
Collapse
Affiliation(s)
- Naveen Kumar
- Diagnostic & Vaccine Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Moscow region, Pushchino 142290, Russia
| | - Sonia Longhi
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Sandeep Bhatia
- Diagnostic & Vaccine Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| |
Collapse
|
30
|
Duval JFL, van Leeuwen HP, Norde W, Town RM. Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Adv Colloid Interface Sci 2021; 290:102400. [PMID: 33713994 PMCID: PMC7931671 DOI: 10.1016/j.cis.2021.102400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.
Collapse
Affiliation(s)
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Willem Norde
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Raewyn M Town
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium..
| |
Collapse
|
31
|
Waman VP, Sen N, Varadi M, Daina A, Wodak SJ, Zoete V, Velankar S, Orengo C. The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Brief Bioinform 2021; 22:742-768. [PMID: 33348379 PMCID: PMC7799268 DOI: 10.1093/bib/bbaa362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 is the causative agent of COVID-19, the ongoing global pandemic. It has posed a worldwide challenge to human health as no effective treatment is currently available to combat the disease. Its severity has led to unprecedented collaborative initiatives for therapeutic solutions against COVID-19. Studies resorting to structure-based drug design for COVID-19 are plethoric and show good promise. Structural biology provides key insights into 3D structures, critical residues/mutations in SARS-CoV-2 proteins, implicated in infectivity, molecular recognition and susceptibility to a broad range of host species. The detailed understanding of viral proteins and their complexes with host receptors and candidate epitope/lead compounds is the key to developing a structure-guided therapeutic design. Since the discovery of SARS-CoV-2, several structures of its proteins have been determined experimentally at an unprecedented speed and deposited in the Protein Data Bank. Further, specialized structural bioinformatics tools and resources have been developed for theoretical models, data on protein dynamics from computer simulations, impact of variants/mutations and molecular therapeutics. Here, we provide an overview of ongoing efforts on developing structural bioinformatics tools and resources for COVID-19 research. We also discuss the impact of these resources and structure-based studies, to understand various aspects of SARS-CoV-2 infection and therapeutic development. These include (i) understanding differences between SARS-CoV-2 and SARS-CoV, leading to increased infectivity of SARS-CoV-2, (ii) deciphering key residues in the SARS-CoV-2 involved in receptor-antibody recognition, (iii) analysis of variants in host proteins that affect host susceptibility to infection and (iv) analyses facilitating structure-based drug and vaccine design against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Antoine Daina
- Molecular Modeling Group at SIB, Swiss Institute of Bioinformatics
| | | | - Vincent Zoete
- Department of Fundamental Oncology at the University of Lausanne and Group leader at SIB
| | | | | |
Collapse
|
32
|
Blondin-Brosseau M, Harlow J, Doctor T, Nasheri N. Examining the persistence of human Coronavirus 229E on fresh produce. Food Microbiol 2021; 98:103780. [PMID: 33875208 PMCID: PMC7909902 DOI: 10.1016/j.fm.2021.103780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Human coronaviruses (HCoVs) are mainly associated with respiratory infections. However, there is evidence that highly pathogenic HCoVs, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East Respiratory Syndrome (MERS-CoV), infect the gastrointestinal (GI) tract and are shed in the fecal matter of the infected individuals. These observations have raised questions regarding the possibility of fecal-oral route as well as foodborne transmission of SARS-CoV-2 and MERS-CoV. Studies regarding the survival of HCoVs on inanimate surfaces demonstrate that these viruses can remain infectious for hours to days, however, there is limited data regarding the viral survival on fresh produce, which is usually consumed raw or with minimal heat processing. To address this knowledge gap, we examined the persistence of HCoV-229E, as a surrogate for highly pathogenic HCoVs, on the surface of commonly consumed fresh produce, including: apples, tomatoes, cucumbers and lettuce. Herein, we demonstrated that viral infectivity declines within a few hours post-inoculation (p.i) on apples and tomatoes, and no infectious virus was detected at 24h p.i, while the virus persists in infectious form for 72h p.i on cucumbers and lettuce. The stability of viral RNA was examined by droplet-digital RT-PCR (ddRT-PCR), and it was observed that there is no considerable reduction in viral RNA within 72h p.i.
Collapse
Affiliation(s)
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Tanushka Doctor
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
33
|
Hou W, Kang W, Li Y, Shan Y, Wang S, Liu F. Dynamic Dissection of Dynein and Kinesin-1 Cooperatively Mediated Intercellular Transport of Porcine Epidemic Diarrhea Coronavirus along Microtubule Using Single Virus Tracking. Virulence 2021; 12:615-629. [PMID: 33538234 PMCID: PMC7872075 DOI: 10.1080/21505594.2021.1878748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is now clear that the intercellular transport on microtubules by dynein and kinesin-1 motors has an important role in the replication and spread of many viruses. Porcine epidemic diarrhea virus (PEDV) is an enveloped, single-stranded RNA virus of the Coronavirus family, which can infect swine of all ages and cause severe economic losses in the swine industry. Elucidating the molecular mechanisms of the intercellular transport of PEDV through microtubule, dynein and kinesin-1 will be crucial for understanding its pathogenesis. Here, we demonstrate that microtubule, dynein, and kinesin-1 are involved in PEDV infection and can influence PEDV fusion and accumulation in the perinuclear region but cannot affect PEDV attachment or internalization. Furthermore, we adopted a single-virus tracking technique to dynamically observe PEDV intracellular transport with five different types: unidirectional movement toward microtubule plus ends; unidirectional movement toward microtubule minus ends; bidirectional movement along the same microtubule; bidirectional movement along different microtubules and motionless state. Among these types, the functions of dynein and kinesin-1 in PEDV intercellular transport were further analyzed by single-virus tracking and found that dynein and kinesin-1 mainly transport PEDV to the minus and plus ends of the microtubules, respectively; meanwhile, they also can transport PEDV to the opposite ends of the microtubules different from their conventional transport directions and also coordinate the bidirectional movement of PEDV along the same or different microtubules through their cooperation. These results provided deep insights and references to understand the pathogenesis of PEDV as well as to develop vaccines and treatments.
Collapse
Affiliation(s)
- Wei Hou
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Wenjie Kang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Yangyang Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China.,Computational Optics Laboratory, Jiangnan University , Wuxi, Jiangsu, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Gwenzi W. Leaving no stone unturned in light of the COVID-19 faecal-oral hypothesis? A water, sanitation and hygiene (WASH) perspective targeting low-income countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141751. [PMID: 32911161 PMCID: PMC7438205 DOI: 10.1016/j.scitotenv.2020.141751] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 05/16/2023]
Abstract
The human coronavirus disease (COVID-19) is now a global pandemic. Social distancing, hand hygiene and the use of personal protective equipment dominate the current fight against COVID-19. In developing countries, the need for clean water provision, sanitation and hygiene has only received limited attention. The current perspective examines the latest evidence on the occurrence, persistence and faecal-oral transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent causing COVID-19. Evidence shows that SARS-CoV-2 proliferate in the human gastrointestinal system, and is shed via faeces. SARS-CoV-2 can survive and remain viable for up to 6 to 9 days on surfaces. Recent wastewater-based epidemiological studies from several countries also detected SARS-CoV-2 RNA in raw wastewaters. Shell disorder analysis shows that SARS-CoV-2 has a rigid outer shell conferring resilience, and a low shell disorder conferring moderate potential for faecal-oral transmission. Taken together, these findings point to potential faecal-oral transmission of SARS-CoV-2, which may partly explain its rapid transmission. Three potential mechanisms may account for SARS-CoV-2 faecal-oral transmission: (1) untreated contaminated drinking water, (2) raw and poorly cooked marine and aquatic foods from contaminated sources, (3) raw wastewater-based vegetatble production systems (e.g., salads) and aquaculture, and (4) vector-mediated transmission from faecal sources to foods, particularly those from open markets and street vending. SARS-CoV-2 faecal-oral transmission could be particularly high in developing countries due to several risk factors, including; (1) poor drinking water, wastewater and sanitation infrastructure, (2) poor hygiene and food handling practices, (3) unhygienic and rudimentary funeral practices, including home burials close to drinking water sources, and (4) poor social security and health care systems with low capacity to cope with disease outbreaks. Hence, clean drinking water provision, proper sanitation, food safety and hygiene could be critical in the current fight against COVID-19. Future research directions on COVID-19 faecal-oral transmission are highlighted.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
35
|
Goh GKM, Uversky VN. Shell disorder and the HIV vaccine mystery: lessons from the legendary Oswald Avery. J Biomol Struct Dyn 2021; 40:5702-5711. [PMID: 33410379 DOI: 10.1080/07391102.2020.1870562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The search for a human immunodeficiency virus (HIV) vaccine has spanned nearly four decades without much success. A much needed paradigm shift can be found in the abnormally high levels of intrinsic disorder in the outer shells of HIVs, the hepatitis C virus (HCV), and herpes simplex viruses (HSVs), for which successful vaccines have not been established. On the other hand, this feature (high levels of intrinsic disorder in the outer shells) is completely absent in classic viruses for which effective vaccines are found, such as the rabies virus. The motions arising from the disordered outer shell result in the inability of antibodies to bind tightly to the polysaccharides on the viral surface proteins, and, therefore, induce inadequate immune response. Experiments conducted by the legendary Avery Oswald in the 1920s form the theoretical underpinning of this new model. Failures of the vaccines based on the HIV glycoprotein Gp120 and other vaccines can be traced back to the lack of understanding of the important roles of shell disorder in a "Trojan-horse" immune evasion mechanism utilized by the virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
36
|
Gwenzi W. Dangerous liaisons? As the COVID-19 wave hits Africa with potential for novel transmission dynamics: a perspective. ZEITSCHRIFT FUR GESUNDHEITSWISSENSCHAFTEN = JOURNAL OF PUBLIC HEALTH 2021; 30:1353-1366. [PMID: 33425657 PMCID: PMC7778499 DOI: 10.1007/s10389-020-01467-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| |
Collapse
|
37
|
Route of SARS-CoV-2 in sewerage and wastewater treatment plants. ENVIRONMENTAL AND HEALTH MANAGEMENT OF NOVEL CORONAVIRUS DISEASE (COVID-19 ) 2021. [PMCID: PMC8237645 DOI: 10.1016/b978-0-323-85780-2.00005-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The detection of SARS-CoV-2 in the stool of COVID-19 positive persons raises the question of potential fecal-oral transmission. The virus is transported from feces to the sewer system where a dilution of about 103 times occurs, due to the discharge of drinking water, rainwater, or infiltrations. A progressive decay of SARS-CoV-2 occurs along the sewerage network and in wastewater treatment plants due to the presence of pollutants, solids, and detergents. The fragile envelope makes SARS-CoV-2 more rapidly inactivated than enteric viruses. In WWTPs, primary treatment and activated sludge process contribute partially to the virus reduction, while SARS-CoV-2 is more susceptible to disinfection such as chlorination, ozonation, or UV light. Potential sewage-associated transmission of COVID-19 may occur during flooding events in urban areas when untreated wastewater is spread or from the overload of untreated blackwater in the combined sewer systems.
Collapse
|
38
|
SanJuan-Reyes S, Gómez-Oliván LM, Islas-Flores H. COVID-19 in the environment. CHEMOSPHERE 2021; 263:127973. [PMID: 32829224 PMCID: PMC7426221 DOI: 10.1016/j.chemosphere.2020.127973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 05/02/2023]
Abstract
In recent months, the presence of an emerging disease of infectious etiology has paralyzed everyone, already being a public health problem due to its high rate of infection, a life-threatening disease. The WHO has named it COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV2). New studies provide information of the role of the environment in COVID-19 transmission process, mortality related to this infectious disease and the impact on human health. The following review aims to analyze information on the implications of COVID-19 infection on human health and the impact of its presence on the environment, from its transmission capacity and the role of air pollutants and climatological factors to reducing the air pollution during confinement. Likewise, it provides a vision of the impact on the environment and human health of exposure to disinfectants and the presence of COVID-19 in wastewater, among other actions.
Collapse
Affiliation(s)
- Sindy SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan S/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan S/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan S/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
39
|
Ozga D, Krupa S, Witt P, Mędrzycka-Dąbrowska W. Nursing Interventions to Prevent Delirium in Critically Ill Patients in the Intensive Care Unit during the COVID19 Pandemic-Narrative Overview. Healthcare (Basel) 2020; 8:healthcare8040578. [PMID: 33371277 PMCID: PMC7766119 DOI: 10.3390/healthcare8040578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023] Open
Abstract
It has become a standard measure in recent years to utilise evidence-based practice, which is associated with a greater need to implement and use advanced, reliable methods of summarising the achievements of various scientific disciplines, including such highly specialised approaches as personalised medicine. The aim of this paper was to discuss the current state of knowledge related to improvements in "nursing" involving management of delirium in intensive care units during the SARS-CoV-2 pandemic. This narrative review summarises the current knowledge concerning the challenges associated with assessment of delirium in patients with COVID-19 by ICU nurses, and the role and tasks in the personalised approach to patients with COVID-19.
Collapse
Affiliation(s)
- Dorota Ozga
- Institute of Health Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (D.O.); (S.K.)
| | - Sabina Krupa
- Institute of Health Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (D.O.); (S.K.)
| | - Paweł Witt
- Department of Pediatric Anesthesiology and Intensive Care, Medical University of Warsaw, 02-091 Warszawa, Poland;
| | - Wioletta Mędrzycka-Dąbrowska
- Department of Anaesthesiology Nursing & Intensive Care, Medical University in Gdansk, 80-211 Gdańsk, Poland
- Correspondence:
| |
Collapse
|
40
|
Morphogenetic (Mucin Expression) as Well as Potential Anti-Corona Viral Activity of the Marine Secondary Metabolite Polyphosphate on A549 Cells. Mar Drugs 2020; 18:md18120639. [PMID: 33327522 PMCID: PMC7764923 DOI: 10.3390/md18120639] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
The mucus layer of the nasopharynx and bronchial epithelium has a barrier function against inhaled pathogens such as the coronavirus SARS-CoV-2. We recently found that inorganic polyphosphate (polyP), a physiological, metabolic energy (ATP)-providing polymer released from blood platelets, blocks the binding of the receptor binding domain (RBD) to the cellular ACE2 receptor in vitro. PolyP is a marine natural product and is abundantly present in marine bacteria. Now, we have approached the in vivo situation by studying the effect of polyP on the human alveolar basal epithelial A549 cells in a mucus-like mucin environment. These cells express mucins as well as the ectoenzymes alkaline phosphatase (ALP) and adenylate kinase (ADK), which are involved in the extracellular production of ATP from polyP. Mucin, integrated into a collagen-based hydrogel, stimulated cell growth and attachment. The addition of polyP to the hydrogel significantly increased cell attachment and also the expression of the membrane-tethered mucin MUC1 and the secreted mucin MUC5AC. The increased synthesis of MUC1 was also confirmed by immunostaining. This morphogenetic effect of polyP was associated with a rise in extracellular ATP level. We conclude that the nontoxic and non-immunogenic polymer polyP could possibly also exert a protective effect against SARS-CoV-2-cell attachment; first, by stimulating the innate antiviral response by strengthening the mucin barrier with its antimicrobial proteins, and second, by inhibiting virus attachment to the cells, as deduced from the reduction in the strength of binding between the viral RBD and the cellular ACE2 receptor.
Collapse
|
41
|
Lermyte F. Roles, Characteristics, and Analysis of Intrinsically Disordered Proteins: A Minireview. Life (Basel) 2020; 10:E320. [PMID: 33266184 PMCID: PMC7761095 DOI: 10.3390/life10120320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a growing understanding that a significant fraction of the eukaryotic proteome is intrinsically disordered, and that these conformationally dynamic proteins play a myriad of vital biological roles in both normal and pathological states. In this review, selected examples of intrinsically disordered proteins are highlighted, with particular attention for a few which are relevant in neurological disorders and in viral infection. Next, the underlying causes for the intrinsic disorder are discussed, along with computational methods used to predict whether a given amino acid sequence is likely to adopt a folded or unfolded state in the solution. Finally, biophysical methods for the analysis of intrinsically disordered proteins will be discussed, as well as the unique challenges they pose in this context due to their highly dynamic nature.
Collapse
Affiliation(s)
- Frederik Lermyte
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
42
|
Naidu SAG, Clemens RA, Pressman P, Zaigham M, Kadkhoda K, Davies KJA, Naidu AS. COVID-19 during Pregnancy and Postpartum. J Diet Suppl 2020; 19:115-142. [PMID: 33164601 DOI: 10.1080/19390211.2020.1834049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) triggered by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has been declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Oxidative stress and its related metabolic syndromes are potential risk factors in the susceptibility to, and severity of COVID-19. In concert with the earliest reports of COVID-19, obstetricians started to diagnose and treat SARS-CoV-2 infections during pregnancy ("COVID-19-Pregnancy"). High metabolic demand to sustain normal fetal development increases the burden of oxidative stress in pregnancy. Intracellular redox changes intertwined with acute phase responses at the maternal-fetal interface could amplify during pregnancy. Interestingly, mother-to-fetus transmission of SARS-CoV-2 has not been detected in most of the COVID-19-Pregnancy cases. This relative absence of vertical transmission may be related to the presence of lactoferrin in the placenta, amniotic fluid, and lacteal secretions. However, the cytokine-storm induced during COVID-19-Pregnancy may cause severe inflammatory damage to the fetus, and if uncontrolled, may later result in autism spectrum-like disorders and brain development abnormalities in neonates. Considering this serious health threat to child growth and development, the prevention of COVID-19 during pregnancy should be considered a high priority. This review summarizes the intricate virulence factors of COVID-19 and elucidate its pathobiological spectrum during pregnancy and postpartum periods with a focus on the putative and complex roles of endogenous and exogenous lactoferrin in conferring immunological advantage to the host.
Collapse
Affiliation(s)
| | - Roger A Clemens
- University of Southern California, School of Pharmacy, Los Angeles, CA, USA
| | | | - Mehreen Zaigham
- Department of Obstetrics & Gynecology, Skåne University Hospital, Malmö, Sweden
| | - Kamran Kadkhoda
- Immunopathology Laboratory, Robert J. Tomisch Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, USA.,Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA, USA.,Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
43
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. A Novel Strategy for the Development of Vaccines for SARS-CoV-2 (COVID-19) and Other Viruses Using AI and Viral Shell Disorder. J Proteome Res 2020; 19:4355-4363. [PMID: 33006287 PMCID: PMC7640981 DOI: 10.1021/acs.jproteome.0c00672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 12/29/2022]
Abstract
A model that predicts levels of coronavirus (CoV) respiratory and fecal-oral transmission potentials based on the shell disorder has been built using neural network (artificial intelligence, AI) analysis of the percentage of disorder (PID) in the nucleocapsid, N, and membrane, M, proteins of the inner and outer viral shells, respectively. Using primarily the PID of N, SARS-CoV-2 is grouped as having intermediate levels of both respiratory and fecal-oral transmission potentials. Related studies, using similar methodologies, have found strong positive correlations between virulence and inner shell disorder among numerous viruses, including Nipah, Ebola, and Dengue viruses. There is some evidence that this is also true for SARS-CoV-2 and SARS-CoV, which have N PIDs of 48% and 50%, and case-fatality rates of 0.5-5% and 10.9%, respectively. The underlying relationship between virulence and respiratory potentials has to do with the viral loads of vital organs and body fluids, respectively. Viruses can spread by respiratory means only if the viral loads in saliva and mucus exceed certain minima. Similarly, a patient is likelier to die when the viral load overwhelms vital organs. Greater disorder in inner shell proteins has been known to play important roles in the rapid replication of viruses by enhancing the efficiency pertaining to protein-protein/DNA/RNA/lipid bindings. This paper suggests a novel strategy in attenuating viruses involving comparison of disorder patterns of inner shells (N) of related viruses to identify residues and regions that could be ideal for mutation. The M protein of SARS-CoV-2 has one of the lowest M PID values (6%) in its family, and therefore, this virus has one of the hardest outer shells, which makes it resistant to antimicrobial enzymes in body fluid. While this is likely responsible for its greater contagiousness, the risks of creating an attenuated virus with a more disordered M are discussed.
Collapse
Affiliation(s)
| | - A. Keith Dunker
- Center
for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - James A. Foster
- Department
of Biological Sciences, University of Idaho, Moscow, Idaho 83844, United States
- Institute
for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844, United States
| | - Vladimir N. Uversky
- Department
of Molecular Medicine, USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
- Laboratory
of New Methods in Biology, Institute for Biological Instrumentation
of the Russian Academy of Sciences, Federal
Research Center “Pushchino Scientific Center for Biological
Research of the Russian Academy of Sciences”, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
44
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. Shell Disorder Analysis Suggests That Pangolins Offered a Window for a Silent Spread of an Attenuated SARS-CoV-2 Precursor among Humans. J Proteome Res 2020; 19:4543-4552. [PMID: 32790362 PMCID: PMC7640969 DOI: 10.1021/acs.jproteome.0c00460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 02/06/2023]
Abstract
A model to predict the relative levels of respiratory and fecal-oral transmission potentials of coronaviruses (CoVs) by measuring the percentage of protein intrinsic disorder (PID) of the M (Membrane) and N (Nucleoprotein) proteins in their outer and inner shells, respectively, was built before the MERS-CoV outbreak. With MPID = 8.6% and NPID = 50.2%, the 2003 SARS-CoV falls into group B, which consists of CoVs with intermediate levels of both fecal-oral and respiratory transmission potentials. Further validation of the model came with MERS-CoV (MPID = 9%, NPID = 44%) and SARS-CoV-2 (MPID = 5.5%, NPID = 48%) falling into the groups C and B, respectively. Group C contains CoVs with higher fecal-oral but lower respiratory transmission potentials. Unlike SARS-CoV, SARS-CoV-2 with MPID = 5.5% has one of the hardest outer shells among CoVs. Because the hard shell is able to resist the antimicrobial enzymes in body fluids, the infected person is able to shed large quantities of viral particles via saliva and mucus, which could account for the higher contagiousness of SARS-COV-2. Further searches have found that high rigidity of the outer shell is characteristic for the CoVs of burrowing animals, such as rabbits (MPID = 5.6%) and pangolins (MPID = 5-6%), which are in contact with the buried feces. A closer inspection of pangolin-CoVs from 2017 to 2019 reveals that pangolins provided a unique window of opportunity for the entry of an attenuated SARS-CoV-2 precursor into the human population in 2017 or earlier, with the subsequent slow and silent spread as a mild cold that followed by its mutations into the current more virulent form. Evidence of this lies in both the genetic proximity of the pangolin-CoVs to SARS-CoV-2 (∼90%) and differences in N disorder. A 2017 pangolin-CoV strain shows evidence of higher levels of attenuation and higher fecal-oral transmission associated with lower human infectivity via having lower NPID (44.8%). Our shell disorder model predicts this to be a SARS-CoV-2 vaccine strain, as lower inner shell disorder is associated with the lesser virulence in a variety of viruses.
Collapse
Affiliation(s)
| | - A. Keith Dunker
- Center
for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - James A. Foster
- Department
of Biological Sciences, University of Idaho, Moscow, Idaho 83844, United States
- Institute
for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844, United States
| | - Vladimir N. Uversky
- Department
of Molecular Medicine, USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
- Laboratory
of New Methods in Biology, Institute for Biological Instrumentation
of the Russian Academy of Sciences, Federal
Research Center “Pushchino Scientific Center for Biological
Research of the Russian Academy of Sciences”, Pushchino, Moscow 119991, Russia
| |
Collapse
|
45
|
Patel KP, Vunnam SR, Patel PA, Krill KL, Korbitz PM, Gallagher JP, Suh JE, Vunnam RR. Transmission of SARS-CoV-2: an update of current literature. Eur J Clin Microbiol Infect Dis 2020; 39:2005-2011. [PMID: 32638221 PMCID: PMC7339796 DOI: 10.1007/s10096-020-03961-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent for the 2019 coronavirus disease (COVID-19) pandemic, has caused a public health emergency. The need for additional research in viral pathogenesis is essential as the number of cases and deaths rise. Understanding the virus and its ability to cause disease has been the main focus of current literature; however, there is much unknown. Studies have revealed new findings related to the full transmission potential of SARS-CoV-2 and its subsequent ability to cause infection by different means. The virus is hypothesized to be of increased virulence compared with previous coronavirus that caused epidemics, in part due to its overall structural integrity and resilience to inactivation. To date, many studies have discussed that the rationale behind its transmission potential is that viral RNA has unexpectedly been detected in multiple bodily fluids, with some samples having remained positive for extended periods of time. Additionally, the receptor by which the virus gains cellular entry, ACE2, has been found to be expressed in different human body systems, thereby potentiating its infection in those locations. In this evidence-based comprehensive review, we discuss various potential routes of transmission of SARS-CoV-2-respiratory/droplet, indirect, fecal-oral, vertical, sexual, and ocular. Understanding these different routes is important as they pertain to clinical practice, especially in taking preventative measures to mitigate the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Kishan P Patel
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Srinivas R Vunnam
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Puja A Patel
- Nova Southeastern University Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL, USA
| | - Kaleigh L Krill
- Department of Medicine, Division of Hospital Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Parker M Korbitz
- University of Nebraska Medical Center College of Medicine, Omaha, NE, USA
| | - John P Gallagher
- University of Nebraska Medical Center College of Medicine, Omaha, NE, USA
| | - Jane E Suh
- Department of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama R Vunnam
- Department of Medicine, Division of Hospital Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| |
Collapse
|
46
|
Tomaszewski T, DeVries RS, Dong M, Bhatia G, Norsworthy MD, Zheng X, Caetano-Anollés G. New Pathways of Mutational Change in SARS-CoV-2 Proteomes Involve Regions of Intrinsic Disorder Important for Virus Replication and Release. Evol Bioinform Online 2020; 16:1176934320965149. [PMID: 33149541 PMCID: PMC7586267 DOI: 10.1177/1176934320965149] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
The massive worldwide spread of the SARS-CoV-2 virus is fueling the COVID-19 pandemic. Since the first whole-genome sequence was published in January 2020, a growing database of tens of thousands of viral genomes has been constructed. This offers opportunities to study pathways of molecular change in the expanding viral population that can help identify molecular culprits of virulence and virus spread. Here we investigate the genomic accumulation of mutations at various time points of the early pandemic to identify changes in mutationally highly active genomic regions that are occurring worldwide. We used the Wuhan NC_045512.2 sequence as a reference and sampled 15 342 indexed sequences from GISAID, translating them into proteins and grouping them by month of deposition. The per-position amino acid frequencies and Shannon entropies of the coding sequences were calculated for each month, and a map of intrinsic disorder regions and binding sites was generated. The analysis revealed dominant variants, most of which were located in loop regions and on the surface of the proteins. Mutation entropy decreased between March and April of 2020 after steady increases at several sites, including the D614G mutation site of the spike (S) protein that was previously found associated with higher case fatality rates and at sites of the NSP12 polymerase and the NSP13 helicase proteins. Notable expanding mutations include R203K and G204R of the nucleocapsid (N) protein inter-domain linker region and G251V of the viroporin encoded by ORF3a between March and April. The regions spanning these mutations exhibited significant intrinsic disorder, which was enhanced and decreased by the N-protein and viroporin 3a protein mutations, respectively. These results predict an ongoing mutational shift from the spike and replication complex to other regions, especially to encoded molecules known to represent major β-interferon antagonists. The study provides valuable information for therapeutics and vaccine design, as well as insight into mutation tendencies that could facilitate preventive control.
Collapse
Affiliation(s)
- Tre Tomaszewski
- Department of Information Sciences, University of Illinois, Urbana, IL, USA
| | - Ryan S DeVries
- Department of Information Sciences, University of Illinois, Urbana, IL, USA
| | - Mengyi Dong
- Department of Food Science & Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Gitanshu Bhatia
- Department of Agricultural & Biological Engineering, University of Illinois, Urbana, IL, USA
| | | | - Xuying Zheng
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
47
|
Zhou H, Jin Q, Lu H. Exposure risk of patients with chronic infectious wounds during the COVID-19 outbreak and its countermeasures. J Orthop Surg Res 2020; 15:452. [PMID: 33008440 PMCID: PMC7530861 DOI: 10.1186/s13018-020-01976-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023] Open
Abstract
Background A large number of cases of pneumonia caused by novel β-coronavirus emerged in Hubei Province, China, at the end of 2019 and demonstrated great potential for transmission. At present, known independent risk factors include age, diabetes, and other chronic diseases, which may be similar to the patients with chronic wound; thus, we try to explore the clinical characteristics, prognostic factors, and management recommendation of patients with chronic infective wounds during the COVID-19 epidemic period. Methods In this single-center, retrospective observational study, we included all cases with chronic infective wounds that came to our hospital between the full outbreak of the COVID-19 in China (January 23, 2020) and the latest date prior to posting (20 April 2020). Demographic data, comorbidities, laboratory and imaging findings, consultation history, and clinical outcomes (lesion cured, uncontrolled, amputated, etc. as of May 10, 2020) were collected for all individuals. Patients were subdivided into gangrene, traumatic infection, and other types of soft tissue infection wound (including bedsores, gout ruptures, stab wounds, and so on) according to the causes of wound, and their disease-related information were compared group by group. Results Among the total 81 patients with chronic infective wounds, 60% were male, with a mean age of 60.8 years (SD 18.6), including 38 (47%) patients with traumatic infection, 29 (36%) gangrene cases, and 14 (17%) other soft tissue infection wounds. Common comorbidities are hypertension (32%), diabetes (32%), cardiovascular disease (24%), and kidney injury (12%), and the patients with gangrenes have the most comorbidities. As of May 10, 2020, there were 78 patients discharged, and their average stay time is 15.8 days (SD 14.2), while people still at the hospital is 39.7 days (SD 8.7) much longer than the discharged and also has more comorbidities. But there is no significant difference in the hospitalization time of three types of wounds. And fortunately, none of all the patients were infected by coronavirus. Conclusion The majority of patients with chronic wounds are severely ill with high risk of infection and poor prognosis; therefore, management of patients with chronic wounds should be improved.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Qianjun Jin
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China.
| |
Collapse
|
48
|
van Doorn AS, Meijer B, Frampton CMA, Barclay ML, de Boer NKH. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther 2020; 52:1276-1288. [PMID: 32852082 PMCID: PMC7461227 DOI: 10.1111/apt.16036] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/04/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Since the start of the COVID-19 pandemic, there have been many scientific reports regarding gastrointestinal manifestations. Several reports indicate the possibility of viral shedding via faeces and the possibility of faecal-oral transmission. AIMS To critically assess the clinical relevance of testing stool samples and anal swabs and provide an overview of the potential faecal-oral transmission of SARS-CoV-2. METHODS A systematic literature search with MeSH terms was performed, scrutinising the Embase database, Google scholar, MEDLINE database through PubMed and The Cochrane Library, including articles from December 2019 until July 7 2020. Data were subsequently analysed with descriptive statistics. RESULTS Ninety-five studies were included in the qualitative analysis. 934/2149 (43%) patients tested positive for SARS-CoV-2 in stool samples or anal swabs, with positive test results up to 70 days after symptom onset. A meta-analysis executed with studies of at least 10 patients revealed a pooled positive proportion of 51.8% (95% CI 43.8 - 59.7%). Positive faecal samples of 282/443 patients (64%) remained positive for SARS-CoV-2 for a mean of 12.5 days, up to 33 days maximum, after respiratory samples became negative for SARS-CoV-2. Viable SARS-CoV-2 was found in 6/17 (35%) patients in whom this was specifically investigated. CONCLUSIONS Viral shedding of SARS-CoV-2 in stool samples occurs in a substantial proportion of patients, making faecal-oral transmission plausible. Furthermore, detection in stool samples or anal swabs can persist long after negative respiratory testing. Therefore, stool sample or anal swab testing should be (re)considered in relation to decisions for isolating or discharging a patient.
Collapse
Affiliation(s)
- Amarylle S. van Doorn
- Departments of Gastroenterology & Clinical PharmacologyChristchurch HospitalCanterbury District Health Board and University of OtagoChristchurchNew Zealand
- Department of Gastroenterology and HepatologyAG&M Research InstituteAmsterdam University Medical CentreVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Berrie Meijer
- Department of Gastroenterology and HepatologyAG&M Research InstituteAmsterdam University Medical CentreVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of Gastroenterology and HepatologyNoordwest Ziekenhuisgroep Alkmaarthe Netherlands
| | - Chris M. A. Frampton
- Department of Biostatistics & MedicineChristchurch HospitalCanterbury District Health Board and University of OtagoChristchurchNew Zealand
| | - Murray L. Barclay
- Departments of Gastroenterology & Clinical PharmacologyChristchurch HospitalCanterbury District Health Board and University of OtagoChristchurchNew Zealand
| | - Nanne K. H. de Boer
- Department of Gastroenterology and HepatologyAG&M Research InstituteAmsterdam University Medical CentreVrije Universiteit AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
49
|
Elrashdy F, Redwan EM, Uversky VN. Why COVID-19 Transmission Is More Efficient and Aggressive Than Viral Transmission in Previous Coronavirus Epidemics? Biomolecules 2020; 10:E1312. [PMID: 32933047 PMCID: PMC7565143 DOI: 10.3390/biom10091312] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a pandemic of coronavirus disease 2019 (COVID-19). The worldwide transmission of COVID-19 from human to human is spreading like wildfire, affecting almost every country in the world. In the past 100 years, the globe did not face a microbial pandemic similar in scale to COVID-19. Taken together, both previous outbreaks of other members of the coronavirus family (severe acute respiratory syndrome (SARS-CoV) and middle east respiratory syndrome (MERS-CoV)) did not produce even 1% of the global harm already inflicted by COVID-19. There are also four other CoVs capable of infecting humans (HCoVs), which circulate continuously in the human population, but their phenotypes are generally mild, and these HCoVs received relatively little attention. These dramatic differences between infection with HCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 raise many questions, such as: Why is COVID-19 transmitted so quickly? Is it due to some specific features of the viral structure? Are there some specific human (host) factors? Are there some environmental factors? The aim of this review is to collect and concisely summarize the possible and logical answers to these questions.
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| |
Collapse
|
50
|
Barik S. Genus-specific pattern of intrinsically disordered central regions in the nucleocapsid protein of coronaviruses. Comput Struct Biotechnol J 2020; 18:1884-1890. [PMID: 32765822 PMCID: PMC7366112 DOI: 10.1016/j.csbj.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
The nucleocapsid protein (N) is an essential structural protein of the coronavirus. N protein binds RNA and also interacts with several proteins in its multitasking role. The central region of N contains segmented intrinsically disordered regions (IDRs). The IDR segments exhibit coronavirus genus-specific arrangements. They may contribute to multitasking and coronaviral host-tropism and transmission.
The nucleocapsid (N) protein is conserved in all four genera of the coronaviruses, namely alpha, beta, gamma, and delta, and is essential for genome functionality. Bioinformatic analysis of coronaviral N sequences revealed two intrinsically disordered regions (IDRs) at the center of the polypeptide. While both IDR structures were found in alpha, beta, and gamma-coronaviruses, the second IDR was absent in deltacoronaviruses. Two novel coronaviruses, currently placed in the Gammacoronavirus genus, appeared intermediate in this regard, as the second IDR structure could be barely discerned with a low probability of disorder. Interestingly, these two are the only coronaviruses thus far isolated from marine mammals, namely beluga whale and bottlenose dolphin, two highly related species; the N proteins of the viruses were also virtually identical, differing by a single amino acid. These two unique viruses remain phylogenetic oddities, since gammacoronaviruses are generally avian (bird) in nature. Lastly, both IDRs, regardless of the coronavirus genus in which they occurred, were rich in Ser and Arg, in agreement with their disordered structure. It is postulated that the central IDRs make cardinal contributions in the multitasking role of the nucleocapsid protein, likely requiring structural plasticity, perhaps also impinging on coronavirus host tropism and cross-species transmission.
Collapse
|