1
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GES. Prostaglandins and non-steroidal anti-inflammatory drugs in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3305-3325. [PMID: 36098621 DOI: 10.1080/02648725.2022.2122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
In response to different viral infections, including SARS-CoV-2 infection, pro-inflammatory, anti-inflammatory cytokines, and bioactive lipids are released from infected and immune cells. One of the most critical bioactive lipids is prostaglandins (PGs) which favor perseverance of inflammation leading to chronic inflammation as PGs act as cytokine amplifiers. PGs trigger the release of pro-inflammatory cytokines, activate Th cells, recruit immune cells, and increase the expression of pro-inflammatory genes. Therefore, PGs may induce acute and chronic inflammations in various inflammatory disorders and viral infections like SARS-CoV-2. PGs are mainly inhibited by non-steroidal anti-inflammatory drugs (NSAIDs) by blocking cyclooxygenase enzymes (COXs), which involve PG synthesis. NSAIDs reduce inflammation by selective or non-selective blocking activity of COX2 or COX1/2, respectively. In the Covid-19 era, there is a tremendous controversy regarding the use of NSAIDs in the management of SARS-CoV-2 infection. As well, the possible role of PGs in the pathogenesis of SARS-CoV-2 infection is not well-defined. Thus, the objective of the present study is to review the potential role of PGs and NSAIDs in Covid-19 in a narrative review regarding the preponderance of assorted views.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Thabat J Al-Maiahy
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira
| | - Athanasios Alexiou
- Department Of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, aghdad, Iraq
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Nobendu Mukerjee
- AFNP Med, Wien, Austria
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, India
| | - Gaber El-Saber Batiha
- Department of Health Sciences, Novel Global Community Educational Foundation, Heber-sham, Australia
| |
Collapse
|
2
|
Meybodi SM, Rabori VS, Salkhorde D, Jafari N, Zeinaly M, Mojodi E, Kesharwani P, Saberiyan M, Sahebkar A. Dexamethasone in COVID-19 treatment: Analyzing monotherapy and combination therapy approaches. Cytokine 2024; 184:156794. [PMID: 39489912 DOI: 10.1016/j.cyto.2024.156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic has prompted the exploration of effective treatment options, with dexamethasone emerging as a key corticosteroid for severe cases. This review evaluates the efficacy and safety of dexamethasone, highlighting its ability to reduce mortality rates, alleviate acute respiratory distress syndrome (ARDS), and mitigate hyperinflammation. While dexamethasone shows therapeutic promise, potential adverse effects-including cardiovascular issues, neuropsychiatric complications, lung infections, and liver damage-necessitate careful monitoring and individualized treatment strategies. The review also addresses the debate over using dexamethasone alone versus in combination with other therapies targeting SARS-CoV-2, examining potential synergistic effects and drug resistance. In summary, dexamethasone is a valuable treatment option for COVID-19 but its risks highlight the need for tailored surveillance approaches. Further research is essential to establish clear guidelines for optimizing treatment and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Darya Salkhorde
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Science, University of Guilan
| | - Elham Mojodi
- Depatment of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Li J, Mao N, Wang Y, Deng S, Chen K. Novel insights into the ROCK-JAK-STAT signaling pathway in upper respiratory tract infections and neurodegenerative diseases. Mol Ther 2024:S1525-0016(24)00738-X. [PMID: 39511889 DOI: 10.1016/j.ymthe.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
Acute upper respiratory tract infections are a major public health issue, with uncontrolled inflammation triggered by upper respiratory viruses being a significant cause of patient deterioration or death. This study focuses on the Janus kinase-signal transducer and activator of transcription Rho-associated coiled-coil containing protein kinase (JAK-STAT-ROCK) signaling pathway, providing an in-depth analysis of the interplay between uncontrolled inflammation after upper respiratory tract infections and the development of neurodegenerative diseases. It offers a conceptual framework for understanding the lung-brain-related immune responses and potential interactions. The relationship between the ROCK-JAK-STAT signaling pathway and inflammatory immunity is a complex and multi-layered research area and exploring potential common targets could open new avenues for the prevention and treatment of related inflammation.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Naihui Mao
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
4
|
Arteaga-Blanco LA, Temerozo JR, Tiné LPS, Dantas-Pereira L, Sacramento CQ, Fintelman-Rodrigues N, Toja BM, Gomes Dias SS, de Freitas CS, Espírito-Santo CC, Silva YP, Frozza RL, Bozza PT, Menna-Barreto RFS, Souza TML, Bou-Habib DC. Extracellular vesicles from primary human macrophages stimulated with VIP or PACAP mediate anti-SARS-CoV-2 activities in monocytes through NF-κB signaling pathway. Microbes Infect 2024; 26:105400. [PMID: 39069117 DOI: 10.1016/j.micinf.2024.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Infection by SARS-CoV-2 is associated with uncontrolled inflammatory response during COVID-19 severe disease, in which monocytes are one of the main sources of pro-inflammatory mediators leading to acute respiratory distress syndrome. Extracellular vesicles (EVs) from different cells play important roles during SARS-CoV-2 infection, but investigations describing the involvement of EVs from primary human monocyte-derived macrophages (MDM) on the regulation of this infection are not available. Here, we describe the effects of EVs released by MDM stimulated with the neuropeptides VIP and PACAP on SARS-CoV-2-infected monocytes. MDM-derived EVs were isolated by differential centrifugation of medium collected from cells cultured for 24 h in serum-reduced conditions. Based on morphological properties, we distinguished two subpopulations of MDM-EVs, namely large (LEV) and small EVs (SEV). We found that MDM-derived EVs stimulated with the neuropeptides inhibited SARS-CoV-2 RNA synthesis/replication in monocytes, protected these cells from virus-induced cytopathic effects and reduced the production of pro-inflammatory mediators. In addition, EVs derived from VIP- and PACAP-treated MDM prevented the SARS-CoV-2-induced NF-κB activation. Overall, our findings suggest that MDM-EVs are endowed with immunoregulatory properties that might contribute to the antiviral and anti-inflammatory responses in SARS-CoV-2-infected monocytes and expand our knowledge of EV effects during COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Luis A Arteaga-Blanco
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil; National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Lucas P S Tiné
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Luíza Dantas-Pereira
- Laboratory of Cellular Biology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Carolina Q Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil; National Institute for Science and Technology on Innovation in Diseases of Neglected Populations, Center for Technological Development in Health, Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil; National Institute for Science and Technology on Innovation in Diseases of Neglected Populations, Center for Technological Development in Health, Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Beatriz M Toja
- Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-902, Brazil
| | - Suelen Silva Gomes Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Caroline S de Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | | | - Ygor P Silva
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Rudimar L Frozza
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Rubem F S Menna-Barreto
- Laboratory of Cellular Biology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Thiago Moreno L Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil; National Institute for Science and Technology on Innovation in Diseases of Neglected Populations, Center for Technological Development in Health, Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil; National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
5
|
Sababathy M, Ramanathan G, Ganesan S, Sababathy S, Yasmin A, Ramasamy R, Foo J, Looi Q, Nur-Fazila S. Multipotent mesenchymal stromal/stem cell-based therapies for acute respiratory distress syndrome: current progress, challenges, and future frontiers. Braz J Med Biol Res 2024; 57:e13219. [PMID: 39417447 PMCID: PMC11484355 DOI: 10.1590/1414-431x2024e13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical, life-threatening condition marked by severe inflammation and impaired lung function. Mesenchymal stromal/stem cells (MSCs) present a promising therapeutic avenue due to their immunomodulatory, anti-inflammatory, and regenerative capabilities. This review comprehensively evaluates MSC-based strategies for ARDS treatment, including direct administration, tissue engineering, extracellular vesicles (EVs), nanoparticles, natural products, artificial intelligence (AI), gene modification, and MSC preconditioning. Direct MSC administration has demonstrated therapeutic potential but necessitates optimization to overcome challenges related to effective cell delivery, homing, and integration into damaged lung tissue. Tissue engineering methods, such as 3D-printed scaffolds and MSC sheets, enhance MSC survival and functionality within lung tissue. EVs and MSC-derived nanoparticles offer scalable and safer alternatives to cell-based therapies. Likewise, natural products and bioactive compounds derived from plants can augment MSC function and resilience, offering complementary strategies to enhance therapeutic outcomes. In addition, AI technologies could aid in optimizing MSC delivery and dosing, and gene editing tools like CRISPR/Cas9 allow precise modification of MSCs to enhance their therapeutic properties and target specific ARDS mechanisms. Preconditioning MSCs with hypoxia, growth factors, or pharmacological agents further enhances their therapeutic potential. While MSC therapies hold significant promise for ARDS, extensive research and clinical trials are essential to determine optimal protocols and ensure long-term safety and effectiveness.
Collapse
Affiliation(s)
- M. Sababathy
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - G. Ramanathan
- Faculty of Computer Science and Information Technology, University Malaya, Kuala Lumpur, Malaysia
| | - S. Ganesan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - S. Sababathy
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Sungai Besi, Kuala Lumpur, Malaysia
| | - A.R. Yasmin
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - R. Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - J.B. Foo
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Q.H. Looi
- My Cytohealth Sdn. Bhd., Bandar Seri Petaling, Kuala Lumpur, Malaysia
| | - S.H. Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Tanrıverdi Ö, Alkan A, Karaoglu T, Kitaplı S, Yildiz A. COVID-19 and Carcinogenesis: Exploring the Hidden Links. Cureus 2024; 16:e68303. [PMID: 39350850 PMCID: PMC11441415 DOI: 10.7759/cureus.68303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has been studied predominantly in terms of its immediate respiratory and systemic effects. However, emerging evidence suggests possible long-term effects, including its role in carcinogenesis. This comprehensive review explores the complex relationship between COVID-19 and cancer development, focusing on immune dysregulation, chronic inflammation, genetic and epigenetic alterations, and the impact of therapeutic interventions. We also focused on the molecular mechanisms by which SARS-CoV-2 may facilitate cancer progression, including the roles of angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and FURIN. Additionally, we examined the possible carcinogenic effects of long-term COVID-19 treatments and the interaction between co-infections and cancer risk. Our findings highlight the need for increased cancer surveillance in COVID-19 survivors. In the post-COVID-19 period, it can be thought that inflammation associated with excessive cytokine release, especially interleukin-6, genetic and epigenetic changes, and co-infections with oncogenic viruses such as Epstein-Barr virus or human papillomavirus may be effective in the development and progression of cancer. Further research is needed to explain the mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Özgür Tanrıverdi
- Medical Oncology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| | - Ali Alkan
- Medical Oncology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| | | | - Sait Kitaplı
- Medical Oncology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| | - Aysegul Yildiz
- Molecular Biology and Genetics, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| |
Collapse
|
7
|
Alzahrani KJ. Repurposing of Anti-Cancer Drugs Against Moderate and Severe COVID Infection: A Network-Based Systems Biological Approach. Niger J Clin Pract 2024; 27:950-957. [PMID: 39212430 DOI: 10.4103/njcp.njcp_873_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The COVID-19 pandemic caused by SARS-CoV-2 is an unparalleled health risk, needing fast antiviral medication development. One of the most effective strategies for developing therapies against novel and emerging viruses is drug repurposing. Recently, systems biology approaches toward the discovery of repurposing medications are gaining prominence. AIM This study aimed to implement a systems biology approach to identify crucial drug targets as well as potential drug candidates against COVID infection. METHODS Our approach utilizes differential gene expression in COVID conditions that enable the construction of a protein-protein interaction (PPI) network. Core clusters were extracted from this network, followed by molecular enrichment analysis. This process identified critical drug targets and potential drug candidates targeting various stages of COVID-19 infection. RESULTS The network was built using the top 200 differently expressed genes in mild, moderate, and severe COVID-19 infections. Top 3 clusters for each disease condition were identified, representing the core mechanism of the network. Molecular enrichment revealed the majority of the pathways in the mild state were associated with transcription regulation, protein folding, angiogenesis, and cytokine-signaling pathways. Whereas, the enriched pathways in moderate and severe disease states were predominately linked with the immune system and apoptotic processes, which include NF-kappaB signaling, cytokine signaling, TNF-mediated signaling, and oxidative stress-induced cell death. Further analysis identifies 28 potential drugs that can be repurposed to treat moderate and severe COVID-19, most of which are currently used in cancer treatment. CONCLUSION Interestingly, some of the proposed drugs have demonstrated inhibitory effects against SARS-CoV-2, as supported by literature evidence. Overall, the drug repurposing method described here will help develop potential antiviral medications to treat emerging COVID strains.
Collapse
Affiliation(s)
- K J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
8
|
Singh M, Verma H, Gera N, Baddipadige R, Choudhary S, Bhandu P, Silakari O. Evaluation of Cordyceps militaris steroids as anti-inflammatory agents to combat the Covid-19 cytokine storm: a bioinformatics and structure-based drug designing approach. J Biomol Struct Dyn 2024; 42:5159-5177. [PMID: 37551029 DOI: 10.1080/07391102.2023.2245039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/08/2023] [Indexed: 08/09/2023]
Abstract
Since the SARS-CoV-2 epidemic, researchers have been working on figuring out ways to tackle multi-organ failure and hyperinflation, which are brought on by a cytokine storm. Angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike glycoprotein's cellular receptor, is involved in complicated molecular processes that result in hyperinflammation. Cordyceps militaris is one of the traditional Chinese medicines that is used as an immune booster, and it has exhibited efficacy in lowering blood glucose levels, seminal emissions, and infertility. In the current study, we explored the potential of Cordyceps militaris steroids as key agents in managing the anger of cytokine storm in Covid-19 using network ethnopharmacological techniques and structure-based drug designing approaches. The steroids present in Cordyceps militaris were initially screened against the targets involved in inflammatory pathways. The results revealed that out of 16 steroids, 5 may be effective against 17 inflammatory pathways by targeting 11 pathological proteins. Among the five steroids, beta-sitosterol, Cholest-5-en-3β-ol, 3β, and 7α-Dihydroxycholest-5-ene were found to interact with thrombin (F2), an important protein reported to reduce the severity of inflammatory mediators and Cholest-4-en-3-one was found to target Glucocorticoid receptor (NR3C1). The top docked steroid displayed key interactions with both targets, which retained key interactions throughout the 100 ns simulation period. These compounds were also shown high binding free energy scores in water swap studies. Based on obtained results the current study suggests the use of Cordyceps militaris as an add-on therapy that may reduce the progression of inflammatory co-morbidities among patients infected with SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manmeet Singh
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Narendra Gera
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Raju Baddipadige
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Shalki Choudhary
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Priyanka Bhandu
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
9
|
Mangaloiu DV, Tilișcan C, Răriș AD, Negru AR, Molagic V, Vișan CA, Stratan LM, Mihai N, Aramă ȘS, Aramă V. Pericardial and Pleural Effusions in Non-ICU Hospitalized Patients with COVID-19-A Retrospective Single-Center Study. J Clin Med 2024; 13:3749. [PMID: 38999316 PMCID: PMC11242538 DOI: 10.3390/jcm13133749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Pericardial and pleural effusions are two complications recently described in patients hospitalized with COVID-19 infections. There are several mechanisms that have been proposed and refer to SARS-CoV-2's capacity to bind to cell surfaces via various receptors and its broad tissue tropism that might cause significant complications. The aim of the present study is to evaluate the incidence of pericardial and pleural effusions during COVID-19 infection as well as to determine the risk factors associated with these complications. Methods: We conducted a retrospective single-center study that included 346 patients admitted to the National Institute of Infectious Disease "Prof. Dr. Matei Bals" (Bucharest, Romania), from 1 January to 25 May 2021, during the third wave of the pandemic. Socio-demographic and anthropometric data were collected for each patient. The patients were evaluated clinically, biologically, and radiologically within 48 h of admission. Patients were divided into 3 groups: (1) patients with pericardial effusions-18; (2) patients with pleural effusions-28; (3) patients without pericardial/pleural effusions-294. Results: After exclusion criteria were applied, 337 patients were analyzed. The median age of the participants was 58.26 ± 14.58 years. More than half of the hospitalized patients had associated respiratory failure (61.5%), of which 2.7% had a critical form of the disease and 58.8% had a severe form. The cumulative percentage for pericardial and pleural effusions for the study group was 12.8% (43 patients out of 337). The prevalence of pericardial effusion was 5.3%, twice more frequent among male respondents. Pleural effusion was identified in 8.3% patients. Most patients had unilateral effusion (17), compared to 11 patients who had bilateral involvement. Based on laboratory results, patients with pericardial and pleural effusions exhibited increased levels of C reactive protein, erythrocyte sedimentation rate, NT proBNP, and a higher value of neutrophil/lymphocyte count ratio. In contrast to patients without pleural and pericardial effusions, those with these symptoms experienced a higher frequency of severe or critical illness and longer hospital stays. Conclusions: Pericardial and pleural effusions can complicate COVID-19 infections. In our study, the prevalence of pericardial and pleural effusions in hospitalized patients was low, being associated with the same comorbidities and a number of clinical and biological parameters.
Collapse
Affiliation(s)
- David V Mangaloiu
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Balş", 021105 Bucharest, Romania
| | - Cătălin Tilișcan
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Balş", 021105 Bucharest, Romania
| | - Alexandra D Răriș
- Emergency Clinical Hospital for Children Marie Curie, 041451 Bucharest, Romania
| | - Anca R Negru
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Balş", 021105 Bucharest, Romania
| | - Violeta Molagic
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Balş", 021105 Bucharest, Romania
| | - Constanta A Vișan
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Balş", 021105 Bucharest, Romania
| | - Laurențiu M Stratan
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Balş", 021105 Bucharest, Romania
| | - Nicoleta Mihai
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Balş", 021105 Bucharest, Romania
| | - Ștefan S Aramă
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Balş", 021105 Bucharest, Romania
| | - Victoria Aramă
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Balş", 021105 Bucharest, Romania
| |
Collapse
|
10
|
Murphy SL, Balzer NR, Ranheim T, Sagen EL, Huse C, Bjerkeli V, Michelsen AE, Finbråten AK, Heggelund L, Dyrhol-Riise AM, Tveita A, Holten AR, Trøseid M, Ueland T, Ulas T, Aukrust P, Barratt-Due A, Halvorsen B, Dahl TB. Extracellular matrix remodelling pathway in peripheral blood mononuclear cells from severe COVID-19 patients: an explorative study. Front Immunol 2024; 15:1379570. [PMID: 38957465 PMCID: PMC11217192 DOI: 10.3389/fimmu.2024.1379570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
There is a reciprocal relationship between extracellular matrix (ECM) remodelling and inflammation that could be operating in the progression of severe COVID-19. To explore the immune-driven ECM remodelling in COVID-19, we in this explorative study analysed these interactions in hospitalised COVID-19 patients. RNA sequencing and flow analysis were performed on peripheral blood mononuclear cells. Inflammatory mediators in plasma were measured by ELISA and MSD, and clinical information from hospitalised COVID-19 patients (N=15) at admission was included in the analysis. Further, we reanalysed two publicly available datasets: (1) lung tissue RNA-sequencing dataset (N=5) and (2) proteomics dataset from PBCM. ECM remodelling pathways were enriched in PBMC from COVID-19 patients compared to healthy controls. Patients treated at the intensive care unit (ICU) expressed distinct ECM remodelling gene profiles compared to patients in the hospital ward. Several markers were strongly correlated to immune cell subsets, and the dysregulation in the ICU patients was positively associated with plasma levels of inflammatory cytokines and negatively associated with B-cell activating factors. Finally, our analysis of publicly accessible datasets revealed (i) an augmented ECM remodelling signature in inflamed lung tissue compared to non-inflamed tissue and (ii) proteomics analysis of PBMC from severe COVID-19 patients demonstrated an up-regulation in an ECM remodelling pathway. Our results may suggest the presence of an interaction between ECM remodelling, inflammation, and immune cells, potentially initiating or perpetuating pulmonary pathology in severe COVID-19.
Collapse
Affiliation(s)
- Sarah Louise Murphy
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nora Reka Balzer
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ellen Lund Sagen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camilla Huse
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Vigdis Bjerkeli
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Lars Heggelund
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Anders Tveita
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Aleksander Rygh Holten
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Thomas Ulas
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Andreas Barratt-Due
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
11
|
Lindo J, Nogueira C, Soares R, Cunha N, Almeida MR, Rodrigues L, Coelho P, Rodrigues F, Cunha RA, Gonçalves T. Genetic Polymorphisms of P2RX7 but Not of ADORA2A Are Associated with the Severity of SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:6135. [PMID: 38892324 PMCID: PMC11173306 DOI: 10.3390/ijms25116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
SARS-CoV-2 infection ranges from mild to severe presentations, according to the intensity of the aberrant inflammatory response. Purinergic receptors dually control the inflammatory response: while adenosine A2A receptors (A2ARs) are anti-inflammatory, ATP P2X7 receptors (P2X7Rs) exert pro-inflammatory effects. The aim of this study was to assess if there were differences in allelic and genotypic frequencies of a loss-of-function SNP of ADORA2A (rs2298383) and a gain-of-function single nucleotide polymorphism (SNP) of P2RX7 (rs208294) in the severity of SARS-CoV-2-associated infection. Fifty-five individuals were enrolled and categorized according to the severity of the infection. Endpoint genotyping was performed in blood cells to screen for both SNPs. The TT genotype (vs. CT + CC) and the T allele (vs. C allele) of P2RX7 SNP were found to be associated with more severe forms of COVID-19, whereas the association between ADORA2A SNP and the severity of infection was not significantly different. The T allele of P2RX7 SNP was more frequent in people with more than one comorbidity and with cardiovascular conditions and was associated with colorectal cancer. Our findings suggest a more prominent role of P2X7R rather than of A2AR polymorphisms in SARS-CoV-2 infection, although larger population-based studies should be performed to validate our conclusions.
Collapse
Affiliation(s)
- Jorge Lindo
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Célia Nogueira
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Rui Soares
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
- Clinical Pathology Service, Portuguese Oncology Institute of Coimbra, 3004-011 Coimbra, Portugal;
| | - Nuno Cunha
- Clinical Pathology Service, Portuguese Oncology Institute of Coimbra, 3004-011 Coimbra, Portugal;
| | - Maria Rosário Almeida
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Lisa Rodrigues
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Patrícia Coelho
- IPCB/ESALD—Instituto Politécnico de Castelo Branco, Escola Superior de Saúde Dr. Lopes Dias, SPRINT-IPCB—Sport Physical Activity and Health Research & Innovation Center, 6000-767 Castelo Branco, Portugal; (P.C.); (F.R.)
| | - Francisco Rodrigues
- IPCB/ESALD—Instituto Politécnico de Castelo Branco, Escola Superior de Saúde Dr. Lopes Dias, SPRINT-IPCB—Sport Physical Activity and Health Research & Innovation Center, 6000-767 Castelo Branco, Portugal; (P.C.); (F.R.)
| | - Rodrigo A. Cunha
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Gonçalves
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
12
|
Anastassopoulou C, Ferous S, Medić S, Siafakas N, Boufidou F, Gioula G, Tsakris A. Vaccines for the Elderly and Vaccination Programs in Europe and the United States. Vaccines (Basel) 2024; 12:566. [PMID: 38932295 PMCID: PMC11209271 DOI: 10.3390/vaccines12060566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The share of the elderly population is growing worldwide as life expectancy increases. Immunosenescence and comorbidities increase infectious diseases' morbidity and mortality in older adults. Here, we aimed to summarize the latest findings on vaccines for the elderly against herpes zoster, influenza, respiratory syncytial virus (RSV), COVID-19, and pneumococcal disease and to examine vaccine recommendation differences for this age group in Europe and the United States. PubMed was searched using the keywords "elders" and "vaccine" alongside the disease/pathogen in question and paraphrased or synonymous terms. Vaccine recommendations were also sought in the European and US Centers for Disease Control and Prevention databases. Improved vaccines, tailored for the elderly, mainly by using novel adjuvants or by increasing antigen concentration, are now available. Significant differences exist between immunization policies, especially between European countries, in terms of the recipient's age, number of doses, vaccination schedule, and implementation (mandatory or recommended). Understanding the factors that influence the immune response to vaccination in the elderly may help to design vaccines that offer long-term protection for this vulnerable age group. A consensus-based strategy in Europe could help to fill the gaps in immunization policy in the elderly, particularly regarding vaccination against RSV and pneumococcus.
Collapse
Affiliation(s)
- Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.F.); (A.T.)
| | - Stefanos Ferous
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.F.); (A.T.)
| | - Snežana Medić
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Nikolaos Siafakas
- Clinical Microbiology Laboratory, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Georgia Gioula
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.F.); (A.T.)
| |
Collapse
|
13
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
14
|
Wan L, Li Y, Liao W, Lei L, Zhao M, Zeng J, Zhao Z, Tang J. Synergistic inhibition effects of andrographolide and baicalin on coronavirus mechanisms by downregulation of ACE2 protein level. Sci Rep 2024; 14:4287. [PMID: 38383655 PMCID: PMC10882053 DOI: 10.1038/s41598-024-54722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The SARS-CoV-2 virus, belonging to the Coronavirus genus, which poses a threat to human health worldwide. Current therapies focus on inhibiting viral replication or using anti-inflammatory/immunomodulatory compounds to enhance host immunity. This makes the active ingredients of traditional Chinese medicine compounds ideal therapies due to their proven safety and minimal toxicity. Previous research suggests that andrographolide and baicalin inhibit coronaviruses; however, their synergistic effects remain unclear. Here, we studied the antiviral mechanisms of their synergistic use in vitro and in vivo. We selected the SARS-CoV-2 pseudovirus for viral studies and found that synergistic andrographolide and baicalein significantly reduced angiotensin-converting enzyme 2 protein level and viral entry of SARS-CoV-2 into cells compared to singal compound individually and inhibited the major protease activity of SARS-CoV-2. This mechanism is essential to reduce the pathogenesis of SARS-CoV-2. In addition, their synergistic use in vivo also inhibited the elevation of pro-inflammatory cytokines, including IL-6 and TNF-α-the primary cytokines in the development of acute respiratory distress syndrome (the main cause of COVID-19 deaths). In conclusion, this study shows that synergistic andrographolide and baicalein treatment acts as potent inhibitors of coronavirus mechanisms in vitro and in vivo-and is more effective together than in isolation.
Collapse
Affiliation(s)
- Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yuchen Li
- Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lizhen Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Si Chuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Department of Digestive, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Si Chuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Si Chuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
15
|
Zhang X, Che X, Zhang S, Wang R, Li M, Jin Y, Wang T, Song Y. Mesenchymal stem cell-derived extracellular vesicles for human diseases. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:64-82. [PMID: 39698413 PMCID: PMC11648454 DOI: 10.20517/evcna.2023.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 12/20/2024]
Abstract
Stem cell therapy is a novel approach for treating various severe and intractable diseases, including autoimmune disorders, organ transplants, tumors, and neurodegenerative diseases. Nevertheless, the extensive utilization of stem cells is constrained by potential tumorigenicity, challenges in precise differentiation, rejection concerns, and ethical considerations. Extracellular vesicles possess the ability to carry diverse bioactive factors from stem cells and deliver them to specific target cells or tissues. Moreover, they offer the advantage of low immunogenicity. Consequently, they have the potential to facilitate the therapeutic potential of stem cells, mitigating the risks associated with direct stem cell application. Therefore, the use of stem cell extracellular vesicles in clinical diseases has received increasing attention. This review summarizes advances in the use of extracellular vesicles from mesenchymal stem cells (MSC). MSC extracellular vesicles are used in the treatment of inflammatory diseases such as rheumatoid arthritis, liver injury, COVID-19, and allergies; in the repair of tissue damage in heart disease, kidney injury, and osteoarthritic diseases; as a carrier in the treatment of tumors; and as a regenerative agent in neurodegenerative disorders such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
- Authors contributed equally
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
- Authors contributed equally
| | - Sibo Zhang
- The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning, China
- Authors contributed equally
| | - Runze Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Mo Li
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Yi Jin
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Tianlu Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Yingqiu Song
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| |
Collapse
|
16
|
Chen CJ, Kao HY, Huang CH, Li CJ, Hung CH, Yong SB. New insight into the intravenous immunoglobulin treatment in Multisystem Inflammatory Syndrome in children and adults. Ital J Pediatr 2024; 50:18. [PMID: 38273368 PMCID: PMC10809493 DOI: 10.1186/s13052-024-01585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/07/2024] [Indexed: 01/27/2024] Open
Abstract
Within 6 months of the coronavirus pandemic, a new disease entity associated with a multisystem hyperinflammation syndrome as a result of a previous infection with the SARS-CoV-2 virus is increasingly being identified in children termed Multisystem Inflammatory Syndrome in Children (MIS-C) and more recently in adults(MIS-A). Due to its clinical similarity with Kawasaki Disease, some institutions have used intravenous immunoglobulins and steroids as first line agents in the management of the disease. We seek to find how effective intravenous immunoglobulin therapy is across these two disease entities. A comprehensive English literature search was conducted across PubMed, MEDLINE, and EMBASE databases using the keywords multisystem inflammatory syndrome in children/adults and treatment. All major online libraries concerning the diagnosis and treatment of MIS-C and MIS-A were searched. Relevant papers were read, reviewed, and analyzed. The use of intravenous immunoglobulins (IVIG) and steroids for the treatment of multisystemic inflammatory syndrome in children(MIS-C) is well established and recommended by multiple pediatric governing institutions. However, there is still no optimal treatment guideline or consensus on the use of IVIG in adults. The use of IVIG in both the child and adult populations may lower the risk of treatment failure and the need for adjunctive immunomodulatory therapy. Despite the promising results of IVIG use for the management of MIS-C and MIS-A, considering the pathophysiological differences between MIS-C and MIS-A, healthcare professionals need to further assess the differences in disease risk and treatment. The optimal dose, frequency, and duration of treatment are still unknown, more research is needed to establish treatment guidelines.
Collapse
Affiliation(s)
- Chih-Jen Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsu-Yen Kao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Hua Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, 813, Kaohsiung, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, 804, Kaohsiung, Taiwan
| | - Cheng-Hsien Hung
- Department of Pharmacy, Chang Bing Show Chwan Memorial Hospital, 50544, No.6, Lugong Rd., Lukang Township, Changhua, Taiwan.
| | - Su-Boon Yong
- Department of Allergy and Immunology, China Medical University Children's Hospital, No. 2, Yuh‑Der Road, 404, Taichung City, Taiwan.
| |
Collapse
|
17
|
Degenfeld-Schonburg L, Sadovnik I, Smiljkovic D, Peter B, Stefanzl G, Gstoettner C, Jaksch P, Hoetzenecker K, Aigner C, Radtke C, Arock M, Sperr WR, Valent P. Coronavirus Receptor Expression Profiles in Human Mast Cells, Basophils, and Eosinophils. Cells 2024; 13:173. [PMID: 38247864 PMCID: PMC10814915 DOI: 10.3390/cells13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
A major problem in SARS-CoV-2-infected patients is the massive tissue inflammation in certain target organs, including the lungs. Mast cells (MC), basophils (BA), and eosinophils (EO) are key effector cells in inflammatory processes. These cells have recently been implicated in the pathogenesis of SARS-CoV-2 infections. We explored coronavirus receptor (CoV-R) expression profiles in primary human MC, BA, and EO, and in related cell lines (HMC-1, ROSA, MCPV-1, KU812, and EOL-1). As determined using flow cytometry, primary MC, BA, and EO, and their corresponding cell lines, displayed the CoV-R CD13 and CD147. Primary skin MC and BA, as well as EOL-1 cells, also displayed CD26, whereas primary EO and the MC and BA cell lines failed to express CD26. As assessed using qPCR, most cell lines expressed transcripts for CD13, CD147, and ABL2, whereas ACE2 mRNA was not detectable, and CD26 mRNA was only identified in EOL-1 cells. We also screened for drug effects on CoV-R expression. However, dexamethasone, vitamin D, and hydroxychloroquine did not exert substantial effects on the expression of CD13, CD26, or CD147 in the cells. Together, MC, BA, and EO express distinct CoV-R profiles. Whether these receptors mediate virus-cell interactions and thereby virus-induced inflammation remains unknown at present.
Collapse
Affiliation(s)
- Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Peter
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clemens Gstoettner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria (C.A.)
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria (C.A.)
| | - Clemens Aigner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria (C.A.)
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Michel Arock
- Laboratory of Hematology, Pitié-Salpêtrière Hospital, 75651 Paris, France;
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (L.D.-S.)
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
18
|
Liu Y, Lu T, Li C, Wang X, Chen F, Yue L, Jiang C. Comparative transcriptome analysis of SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E identifying potential IFN/ISGs targets for inhibiting virus replication. Front Med (Lausanne) 2023; 10:1267903. [PMID: 38143441 PMCID: PMC10739311 DOI: 10.3389/fmed.2023.1267903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Since its outbreak in December 2019, SARS-CoV-2 has spread rapidly across the world, posing significant threats and challenges to global public health. SARS-CoV-2, together with SARS-CoV and MERS-CoV, is a highly pathogenic coronavirus that contributes to fatal pneumonia. Understanding the similarities and differences at the transcriptome level between SARS-CoV-2, SARS-CoV, as well as MERS-CoV is critical for developing effective strategies against these viruses. Methods In this article, we comparatively analyzed publicly available transcriptome data of human cell lines infected with highly pathogenic SARS-CoV-2, SARS-CoV, MERS-CoV, and lowly pathogenic HCoV-229E. The host gene expression profiles during human coronavirus (HCoV) infections were generated, and the pathways and biological functions involved in immune responses, antiviral efficacy, and organ damage were intensively elucidated. Results Our results indicated that SARS-CoV-2 induced a stronger immune response versus the other two highly pathogenic HCoVs. Specifically, SARS-CoV-2 induced robust type I and type III IFN responses, marked by higher upregulation of type I and type III IFNs, as well as numerous interferon-stimulated genes (ISGs). Further Ingenuity Pathway Analysis (IPA) revealed the important role of ISGs for impeding SARS-CoV-2 infection, and the interferon/ISGs could be potential targets for therapeutic interventions. Moreover, our results uncovered that SARS-CoV-2 infection was linked to an enhanced risk of multi-organ toxicity in contrast to the other two highly pathogenic HCoVs. Discussion These findings provided valuable insights into the pathogenic mechanism of SARS-CoV-2, which showed a similar pathological feature but a lower fatality rate compared to SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
- Yuzhuang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tianyi Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiaotong Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Liya Yue
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
19
|
Xu W, Nian W. A rare adverse effects of COVID-19 vaccine in a patient with a latent tumor: A case report and literature review. Front Oncol 2023; 13:1269735. [PMID: 38115902 PMCID: PMC10728639 DOI: 10.3389/fonc.2023.1269735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
The 2019 novel coronavirus infection has done significant damage to the world. The effectiveness and safety of the vaccine, the most critical measure to control the epidemic, has attracted attention. In this case, we report the diagnosis and treatment of a rare patient with adverse effects of the COVID-19 vaccine who had G6PD deficiency by genetic tests. We discuss the possible impact of G6PD deficiency on COVID-19 infection and potential vaccine adverse effects. Patients with severe G6PD deficiency should be monitored for vaccine safety. This article may complement a rare mechanism of vaccine side effects and chemotherapy-related side effects.
Collapse
Affiliation(s)
| | - Weiqi Nian
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
20
|
Walters ET, Palackic A, Franco-Mesa C, Shah NR, Erickson MJ, Wolf SE. The impact of COVID-19 on clinical outcomes of burn patients. BURNS & TRAUMA 2023; 11:tkad042. [PMID: 38074193 PMCID: PMC10699731 DOI: 10.1093/burnst/tkad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/30/2023] [Accepted: 07/20/2023] [Indexed: 02/12/2024]
Abstract
Background Multiple studies have shown the SARS-CoV-2 virus (COVID-19) to be associated with deleterious outcomes in a wide range of patients. The impact of COVID-19 has not been well investigated among burned patients. We suspect that patients will have worsened respiratory and thrombotic complications, ultimately leading to increased mortality. The objective of this study is to determine the impact a concurrent infection of COVID-19 has on clinical outcomes after a burn injury. Methods This is a retrospective, propensity matched, cohort study. We examined a de-identified database of electronic medical records of over 75 million patients across 75 health care associations in the United States for patients treated for thermal burns from 1 January 2020, to 31 July 2021, and those who also were diagnosed with COVID-19 infection within one day before or after injury based on International Classification of Disease, tenth revision (ICD-10) codes. Study participants included adults who were treated for a burn injury during the study period. Results We included 736 patients with burn injury and concomitant COVID-19 infection matched to 736 patients with burn injury and no concurrent COVID-19 infection (total 1472 patients, mean age 36.3 ± 24.3). We found no significant increase in mortality observed for patients with concurrent COVID-19 (OR 1.203, 95% CI 0.517-2.803; p = 0.6675). We did observe significant increase in infections (OR 3.537, 95% CI 2.798-4.471; p = 0.0001), thrombotic complications (OR 2.342, 95% CI 1.351-4.058; p = 0.0018), as was the incidence of hypertrophic scarring (OR 3.368, 95% CI 2.326-4.877; p = 0.0001). Conclusions We observed that concurrent COVID-19 infection was associated with an increase in infections, thrombosis and hypertrophic scarring but no increase in mortality in our cohort of burn patients.
Collapse
Affiliation(s)
- Elliot T Walters
- Department of Surgery, University of Texas Medical Branch, 301 University, Galveston, TX, USA
| | - Alen Palackic
- Department of Surgery, University of Texas Medical Branch, 301 University, Galveston, TX, USA
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Camila Franco-Mesa
- Department of Surgery, University of Texas Medical Branch, 301 University, Galveston, TX, USA
| | - Nikhil R Shah
- Department of Surgery, University of Texas Medical Branch, 301 University, Galveston, TX, USA
| | - Michael J Erickson
- Department of Surgery, University of Texas Medical Branch, 301 University, Galveston, TX, USA
| | - Steven E Wolf
- Department of Surgery, University of Texas Medical Branch, 301 University, Galveston, TX, USA
| |
Collapse
|
21
|
Rezaeian S, Razmjooei F, Pourmokhtari M, Abdoli A, Mofazzal Jahromi MA, Bagheri K. Hematological, inflammatory, and novel biomarkers assessment as an eminent strategy for clinical management of COVID-19. Heliyon 2023; 9:e22896. [PMID: 38076059 PMCID: PMC10703635 DOI: 10.1016/j.heliyon.2023.e22896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Different biomarkers have been suggested as novel biomarkers of coronavirus disease 2019 (COVID-19) theragnosis. With the aim of having a better clinical management of COVID-19, we decided to determine the relationship between hematological, inflammatory, and novel biomarkers with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) immunoglobulin (Ig)M and IgG antibodies. METHODS Blood samples from 127 confirmed COVID-19 patients aged 11-84 years old were collected and tested for SARS-CoV-2 IgM and IgG antibodies alongside with hematological, inflammatory, and novel biomarkers. The Spearman correlation test was utilized to analyze the correlation between these biomarkers with SARS-CoV-2 IgM and IgG antibodies. RESULTS The SARS-CoV-2 IgM antibody significantly correlated with erythrocyte sedimentation rate (ESR) (r = 0.329, p = 0.000), C-reactive protein (CRP) (r = 0.459, p = 0.000), interleukin (IL)-6 (r = 0.345, p = 0.000), IL-8 (r = 0.263, p = 0.003), neutrophil to lymphocyte ratio (NLR) (r = 0.182, p = 0.040), derived NLR (dNLR) (r = 0.197, p = 0.026), neutrophil to monocyte ratio (NMR) (r = 0.184, p = 0.038), and CRP to lymphocyte ratio (CLR) (r = 0.495, p = 0.000). Also, we find significant correlation between SARS-CoV-2 IgG antibody with hemoglobin (Hb) (r = -0.257, p = 0.004), hematocrit (Hct) (r = -0.227, p = 0.010), mean corpuscular Hb concentration (MCHC) (r = -0.212, p = 0.017), lymphocyte count (r = -0.211, p = 0.017), platelet count (r = 0.179, p = 0.044), ESR (r = 0.461, p = 0.000), CRP (r = 0.344, p = 0.000), IL-6 (r = 0.178, p = 0.046), IL-8 (r = 0.237, p = 0.007), platelet to lymphocyte ratio (PLR) (r = 0.295, p = 0.001), and CLR (r = 0.376, p = 0.000). CONCLUSION Hematological biomarkers (Hb, Hct, MCHC, lymphocyte count, and platelet count), inflammatory biomarkers (ESR, CRP, IL-6, and IL-8), and novel biomarkers (dNLR, NLR, NMR, PLR, and CLR) are valuable indicators for clinical management of COVID-19.
Collapse
Affiliation(s)
- Sanaz Rezaeian
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fatemeh Razmjooei
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Masoome Pourmokhtari
- Department of Orthopedics, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mirza Ali Mofazzal Jahromi
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Kambiz Bagheri
- Department of Immunology, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
22
|
Huot N, Planchais C, Rosenbaum P, Contreras V, Jacquelin B, Petitdemange C, Lazzerini M, Beaumont E, Orta-Resendiz A, Rey FA, Reeves RK, Le Grand R, Mouquet H, Müller-Trutwin M. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells. Nat Immunol 2023; 24:2068-2079. [PMID: 37919524 PMCID: PMC10681903 DOI: 10.1038/s41590-023-01661-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence. Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation. However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition. Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France.
| | - Cyril Planchais
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Pierre Rosenbaum
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Vanessa Contreras
- Université Paris-Saclay, INSERM, CEA, Immunologie des Maladies Virales, Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Beatrice Jacquelin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Caroline Petitdemange
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Marie Lazzerini
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Emma Beaumont
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Félix A Rey
- Institut Pasteur, Université Paris-Cité, Structural Virology Unit, CNRS UMR3569, Paris, France
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Ragon Institute of Massachusetts General Hospital, MIT, Cambridge, MA, USA
- Duke Research and Discovery at RTP, Duke University Health System, Durham, NC, USA
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Immunologie des Maladies Virales, Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Hugo Mouquet
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| |
Collapse
|
23
|
Okewunmi JO, Duey AH, Zubizarreta N, Kodali H, Poeran J, Hayden BL, Moucha CS, Chen DD. Did the COVID-19 Pandemic Coincide With an Increase in Osteonecrosis as Indication for Total Hip Arthroplasty in Older Patients? J Arthroplasty 2023; 38:2634-2637. [PMID: 37315633 PMCID: PMC10260267 DOI: 10.1016/j.arth.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head is a common indication for total hip arthroplasty (THA). It is unclear to what extent the COVID-19 pandemic has impacted its incidence. Theoretically, the combination of microvascular thromboses and corticosteroid use in patients who have COVID-19 may increase the risk of osteonecrosis. We aimed to (1) assess recent osteonecrosis trends and (2) investigate if a history of COVID-19 diagnosis is associated with osteonecrosis. METHODS This retrospective cohort study utilized a large national database between 2016 and 2021. Osteonecrosis incidence in 2016 to 2019 was compared to 2020 to 2021. Secondly, utilizing a cohort from April 2020 through December 2021, we investigated whether a prior COVID-19 diagnosis was associated with osteonecrosis. For both comparisons, Chi-square tests were applied. RESULTS Among 1,127,796 THAs performed between 2016 and 2021, we found an osteonecrosis incidence of 1.6% (n = 5,812) in 2020 to 2021 compared to 1.4% (n = 10,974) in 2016 to 2019; P < .0001. Furthermore, using April 2020 to December 2021 data from 248,183 THAs, we found that osteonecrosis was more common among those who had a history of COVID-19 (3.9%; 130 of 3,313) compared to patients who had no COVID-19 history (3.0%; 7,266 of 244,870); P = .001). CONCLUSION Osteonecrosis incidence was higher in 2020 to 2021 compared to previous years and a previous COVID-19 diagnosis was associated with a greater likelihood of osteonecrosis. These findings suggest a role of the COVID-19 pandemic on an increased osteonecrosis incidence. Continued monitoring is necessary to fully understand the impact of the COVID-19 pandemic on THA care and outcomes.
Collapse
Affiliation(s)
- Jeffrey O Okewunmi
- Department of Orthopaedic Surgery, Brown University, Providence, Rhode Island; Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Akiro H Duey
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicole Zubizarreta
- Department of Population Health Science and Policy, Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hanish Kodali
- Department of Population Health Science and Policy, Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jashvant Poeran
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Population Health Science and Policy, Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brett L Hayden
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Calin S Moucha
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Darwin D Chen
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
24
|
Xu J, Zhang W, Cai Y, Lin J, Yan C, Bai M, Cao Y, Ke S, Liu Y. Nomogram-based prediction model for survival of COVID-19 patients: A clinical study. Heliyon 2023; 9:e20137. [PMID: 37809383 PMCID: PMC10559916 DOI: 10.1016/j.heliyon.2023.e20137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
The study aim to construct an effective model for predicting the survival period of COVID-19 patients. METHODS Clinical data of 386 COVID-19 patients were collected from December 2022 to January 2023. The patients were randomly divided into training and validation cohorts in a 7:3 ratio. LASSO regression and multivariate Cox regression analyses were used to identify prognostic factors, and a nomogram was constructed. Nomogram was evaluated using decision curve analysis, receiver operating characteristic curve, consistency index (c-index), and calibration curve. RESULTS 86 patients (22.3%) died. A new nomogram for predicting the survival was established based on age, resting oxygen saturation, Blood urea nitrogen (BUN), c-reactive protein-to-albumin ratio (CAR), and pneumonia visual score. The decision curve indicated high clinical applicability. The nomogram c-indexes in the training and validation cohorts were 0.846 and 0.81, respectively. The area under the curves (AUCs) for the 15-day and 30-day survival probabilities were 0.906 and 0.869 in the training cohort, and 0.851 and 0.843 in the validation cohort. The calibration curves demonstrated consistency between predicted and actual survival probabilities. CONCLUSIONS Our nomogram has the capacity to assist clinical practitioners in estimating the survival rate of COVID-19 patients, thereby facilitating more optimal management strategies and therapeutic interventions with substantial clinical applicability.
Collapse
Affiliation(s)
- Jinxin Xu
- Department of Thoracic Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Wenshan Zhang
- Department of Thoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yingjie Cai
- Department of Thoracic Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Jingping Lin
- Zhongshan Hospital Xiamen University, Xiamen, China
| | - Chun Yan
- Department of Thoracic Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Meirong Bai
- Department of Thoracic Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yunpeng Cao
- Department of Thoracic Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yali Liu
- Department of Thoracic Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Li J, Guo S, Tan Y, Zhang J, Wu Z, Stalin A, Zhang F, Huang Z, Wu C, Liu X, Huang J, Wu J. Integrated network pharmacology analysis and in vitro validation revealed the underlying mechanism of Xiyanping injection in treating coronavirus disease 2019. Medicine (Baltimore) 2023; 102:e34866. [PMID: 37653800 PMCID: PMC10470725 DOI: 10.1097/md.0000000000034866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide, leading to a pandemic. In China, Xiyanping injection (XYP) has been recommended as a drug for COVID-19 treatment in the Guideline on Diagnosis and Treatment of COVID-19 by the National Health Commission of the People Republic of China and National Administration of Traditional Chinese Medicine (Trial eighth Edition). However, the relevant mechanisms at the molecular-level need to be further elucidated. METHODS In this study, XYP related active ingredients, potential targets and COVID-19 related genes were searched in public databases. Protein-protein interaction network and module analyzes were used to screen for key targets. gene ontology and Kyoto encyclopedia of genes and genomes were performed to investigate the potentially relevant signaling pathways. Molecular docking was performed using Autodock Tools and Vina. For the validation of potential mechanism, PolyI:C was used to induce human lung epithelial cells for an inflammation model. Subsequently, CCK-8 assays, enzyme-linked immunosorbent assay, reverse transcription quantitative polymerase chain reaction and western blot were employed to determine the effect of XYP on the expression of key genes. RESULTS Seven effective active ingredients in XYP were searched for 123 targets in the relevant databases. Furthermore, 6446 COVID-19 disease targets were identified. Sodium 9-dehydro-17-hydro-andrographolide-19-yl sulfate was identified as the vital active compounds, and IL-6, TNF, IL-1β, CXCL8, STAT3, MAPK1, MAPK14, and MAPK8 were considered as the key targets. In addition, molecular docking revealed that the active compound and the targets showed good binding affinities. The enrichment analysis predicted that the XYP could regulate the IL-17, Toll-like receptor, PI3K-Akt and JAK-STAT signaling pathways. Consistently, further in vitro experiments demonstrated that XYP could slow down the cytokine storm in the lung tissue of COVID-19 patients by down-regulating IL-6, TNF-α, IL-1β, CXCL8, and p-STAT3. CONCLUSION Through effective network pharmacology analysis and molecular docking, this study suggests that XYP contains many effective compounds that may target COVID-19 related signaling pathways. Moreover, the in vitro experiment confirmed that XYP could inhibit the cytokine storm by regulating genes or proteins related to immune and inflammatory responses.
Collapse
Affiliation(s)
- Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Fanqin Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Bergantini L, d’Alessandro M, Gangi S, Bianchi F, Cameli P, Perea B, Meocci M, Fabbri G, Marrucci S, Ederbali M, Bargagli E. Predictive Role of Cytokine and Adipokine Panel in Hospitalized COVID-19 Patients: Evaluation of Disease Severity, Survival and Lung Sequelae. Int J Mol Sci 2023; 24:12994. [PMID: 37629176 PMCID: PMC10455616 DOI: 10.3390/ijms241612994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) may determine a multisystemic chronic syndrome after resolution of SARS-CoV-2 infection in a significant percentage of patients. Persistent cytokine dysregulation can contribute to long-lasting inflammation and tissue damage, resulting in the diverse, often debilitating symptoms experienced by some patients (so-called long COVID syndrome). The aim of our study was to evaluate the value of a panel of serum biomarkers of severity and prognosis in patients hospitalized for COVID-19 and also as predictive factors for the development of post-COVID lung sequelae after discharge from the hospital. All blood sampling was performed in the first 24 h after admission to the hospital. Serum analyte concentrations of IL-4, IL-2, CXCL10 (IP-10), IL-1β, TNF-α, CCL2 (MCP-1), IL-17A, IL-6, IL-10, IFN-γ, IL-12p70 and TGF-β1 were quantified by bead-based multiplex LEGENDplex™ analysis and commercially available ELISA kits. A total of 108 COVID-19 patients were enrolled in the study. Comparative analysis of these proteins showed higher levels of TGF-β and IL-6 and lower levels of RBP-4 and IL-10 in the severe group. Age, adiponectin, IL-8 and IL-32 resulted as the best predictors for survival. Moreover, IL-1β, IL17A, TNF-α, TGF-β, IL-4 and IL-6 were significantly higher in patients who showed HRCT evidence of fibrotic interstitial alterations at follow-up than patients who did not. The initial inflammatory status of patients on admission to the hospital with COVID-19, as reflected by the present panel of adipose tissue-related biomarkers and cytokines, offered insights into medium-term prognosis.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Miriana d’Alessandro
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Sara Gangi
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Francesco Bianchi
- Pneumology Department, Azienda USL Toscana Sud-Est, “Misericordia” Hospital, 58100 Grosseto, Italy
| | - Paolo Cameli
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Beatrice Perea
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Martina Meocci
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Gaia Fabbri
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Sofia Marrucci
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Moftah Ederbali
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Elena Bargagli
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| |
Collapse
|
27
|
Das S, Sharma T, Bhardwaj A, Srivastava RK. COVID-19 induced ARDS: immunopathology and therapeutics. EXPLORATION OF IMMUNOLOGY 2023:255-275. [DOI: 10.37349/ei.2023.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/14/2023] [Indexed: 01/03/2025]
Abstract
The coronavirus disease-2019 (COVID-19) pandemic is a significant threat in the modern era. Clinical studies show that the most common symptom of severe COVID-19 is viral pneumonia-induced acute respiratory distress syndrome (ARDS). The underlying mechanisms by which severe respiratory disease syndrome-coronavirus-2 (SARS-CoV-2) results in ARDS and how certain host factors confer an increased risk of developing severe disease remain unknown. Therefore, identifying the distinctive features of this severe and fatal disease and the therapeutic approaches to COVID-19-induced ARDS remains an immediate need to serve as a basis for best practice models of standardized ARDS treatment. This review article aims to comprehensively discuss the immunopathology of ARDS and provides an overview of the precise role of both the innate and adaptive immune system, with emphasis on the current treatment strategies being tested in the COVID-19-induced ARDS patients. This knowledge will supposedly help in revealing further mechanistic insights into understanding COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Sneha Das
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Tamanna Sharma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Asha Bhardwaj
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K. Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
28
|
Cortés P, Travers P, Zeng JJ, Ball CT, Lynch SA, Gómez V. Metabolic Unhealthiness is Associated With Increased Risk of Critical COVID-19 Pneumonia and Inpatient Mortality in Hospitalized Patients with Obesity or Overweight. Cureus 2023; 15:e42205. [PMID: 37602105 PMCID: PMC10439786 DOI: 10.7759/cureus.42205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Background and aims Being metabolically unhealthy (MU) is defined as having either hypertension, hyperlipidemia, type 2 diabetes mellitus/pre-diabetes, or fatty liver disease. We aimed to determine if MU was associated with severe COVID-19 pneumonia (severe disease). Methods We performed a single-center retrospective study between March 2020 and August 2021 for patients with overweight or obesity hospitalized with COVID-19 pneumonia. Logistic regression analysis was utilized to derive a risk score for severe disease. The accuracy of the model was assessed using the area under the receiver operating characteristic curve (AUROCC) and bootstrap resampling. Results A total of 334 of 450 patients hospitalized with COVID-19 pneumonia (74.2%) were MU. Patients who were MU had higher in-hospital mortality (10.5% vs. 2.6%) and longer length of hospitalization (median 6 vs. 4 days). MU was not associated with severe disease, p=0.311. On multivariable analysis, older age, male sex, and Asian race were associated with severe disease. Not being vaccinated was associated with doubled odds of severe disease. The AUROCC of the final model was 0.66 (95% CI: 0.60 to 0.71). The risk score at the lowest quintile had a 33.1% to 65.5% predicted risk and a 58.7% observed risk of severe disease, whereas, at the highest quintile, there was an 85.7% to 97.7% predicted risk and an 89.7% observed risk of severe disease. Conclusion Being MU was not a predictor of severe disease, even though mortality was higher despite having higher rates of vaccination. This risk score may help to predict severe disease in hospitalized patients with obesity or overweight. External validation is recommended.
Collapse
Affiliation(s)
- Pedro Cortés
- Internal Medicine, Mayo Clinic, Jacksonville, USA
| | - Paul Travers
- Internal Medicine, Mayo Clinic, Jacksonville, USA
| | - Jennifer J Zeng
- Neuroscience, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, USA
| | - Colleen T Ball
- Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, USA
| | | | | |
Collapse
|
29
|
Ginting B, Chiari W, Duta TF, Hudaa S, Purnama A, Harapan H, Rizki DR, Puspita K, Idroes R, Meriatna M, Iqhrammullah M. COVID-19 pandemic sheds a new research spotlight on antiviral potential of essential oils - A bibliometric study. Heliyon 2023; 9:e17703. [PMID: 37456016 PMCID: PMC10338973 DOI: 10.1016/j.heliyon.2023.e17703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Background Essential oils are thought as potential therapies in managing coronavirus disease 2019 (COVID-19). Many researchers have put their efforts to tackle the pandemic by exploring antiviral candidates which consequently changes the research landscape. Herein, we aimed to assess the effect of COVID-19 pandemic toward the landscape of essential oil research. Methods This study employed bibliometric analysis based on the metadata of published literature indexed in the Scopus database. The search was performed on December 15th, 2022 by using keyword 'essential oil' and its synonyms. We grouped the data based on publication year; pre-COVID-19 (2014-2019) and during COVID-19 (2020-2024, some studies have been published earlier). Further, we separated the COVID-19-focused research from COVID-19 (2020-2024) by introducing a new keyword 'COVID-19' during the search. All metadata were processed using VoSviewer and Biblioshiny for network visualization analysis. Selections of frequently occurring keywords, clusters of keyword co-occurrence, and the list of most impactful papers were performed by two independent reviewers. Results Metadata from a total of 35,262 publications were included for bibliometric analysis, comprised of three groups of datasets namely pre-COVID-19 (n = 18,670), COVID-19 (n = 16,592), and COVID-19-focused (n = 281). Five research topics clusters were found from pre-COVID-19 dataset, eight - from COVID-19 dataset, and nine - from COVID-19-focused dataset. COVID-19 cluster containing the keyword 'antiviral' emerged in the COVID-19 dataset, whereas none of the previous research topic clusters contained the keyword 'antiviral'. Antiviral, angiotensin-converting enzyme 2 (ACE2) inhibitory, and anti-inflammation activities were among the top occurring keywords in studies covering both essential oil and COVID-19. Studies on essential oil used for managing COVID-19 were most reported by authors from the United States (documents = 37, citations = 405), Australia (documents = 16, citations = 115) and Italy (documents = 23, citations = 366). Conclusion A significant increase was found during COVID-19 pandemic for publications covering essential oil themes, but only a small portion was occupied by COVID-19 research. The COVID-19 pandemic does not alter the ongoing progress of essential oil research but rather offers a new spotlight on the antiviral potential of essential oils. Hence, the COVID-19 pandemic has provided an opportunity to investigate deeper the antiviral potential of essential oils.
Collapse
Affiliation(s)
- Binawati Ginting
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Williams Chiari
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
| | - Teuku Fais Duta
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Syihaabul Hudaa
- Department of Management, Institut Teknologi dan Bisnis Ahmad Dahlan Jakarta, Banten, 15419, Indonesia
| | - Agnia Purnama
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Diva Rayyan Rizki
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Kana Puspita
- Department of Chemistry Education, Faculty of Education and Teacher Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Herbal Medicine Research Center, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Meriatna Meriatna
- Department of Chemical Engineering, Faculty of Engineering, Universitas Malikussaleh, Aceh Utara, 24355, Indonesia
| | - Muhammad Iqhrammullah
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, 23243, Indonesia
- Faculty of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh, 23245, Indonesia
| |
Collapse
|
30
|
Taveira N. Antivirals and Vaccines. Int J Mol Sci 2023; 24:10315. [PMID: 37373462 DOI: 10.3390/ijms241210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
New antivirals are urgently needed to treat respiratory diseases caused by RNA viruses [...].
Collapse
Affiliation(s)
- Nuno Taveira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
31
|
Darif D, Ejghal R, Desterke C, Outlioua A, Hammi I, Lemrani M, Hilali F, Guessous F, Zaid Y, Akarid K. Type I and III interferons are good markers to monitor COVID-19 pathophysiology. Cytokine 2023; 165:156172. [PMID: 36924609 PMCID: PMC10008794 DOI: 10.1016/j.cyto.2023.156172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
The COVID-19 pandemic has caused millions of deaths and has resulted in disastrous societal and economic impacts worldwide. During SARS-CoV-2 infection, abnormal levels of pro-inflammatory cytokines have been observed and were associated to the severity of the disease. Type I (-α/β) and Type III (IFN-λ) interferons are family members of cytokines that play an important role in fighting viral replication during the early phases of infection. The location and timing of the IFNs production have been shown to be decisive for the COVID-19 outcome. Despite the effectiveness of COVID-19 vaccines and with the emergence of new SARS-CoV-2 variants, a better understanding of the involvement of IFNs as players in antiviral immunity in the COVID-19 pathophysiology is necessary to implement additional potent prophylactic and/or therapeutic approaches. In this study, we investigated the role of type I and III IFN in COVID-19 pathophysiology. We first analyzed the IFN-α, IFN-β and IFN- λ mRNA expression in nasopharyngeal swabs and blood samples from Moroccan patients infected with SARS-CoV-2 and secondly correlated these IFNs expressions with COVID-19 clinical and biological parameters. Our results showed that in the upper airways of patients with mild, non-severe, or severe COVID-19 manifestations, the IFN- α, - β and - λ are expressed in the same manner as in controls. However, in blood samples their expression was downregulated in all groups. Univariate linear models with interferons as predictors to evaluate clinical-biological parameters highlighted that the main clinical-biological relations were found when testing: FiO2, Lymphocyte values and virus load. Furthermore, the multivariate models confirmed that quantifications of interferons during COVID-19 are good biological markers for tracking COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Dounia Darif
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Rajaâ Ejghal
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Christophe Desterke
- INSERM UMRS-1311, Faculty of Medicine, University of Paris Saclay, Villejuif, France
| | - Ahmed Outlioua
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ikram Hammi
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Meryem Lemrani
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Farida Hilali
- Research and Biosafety Laboratory, Mohamed V Military Teaching Hospital, Mohamed V University, Rabat, Morocco
| | - Fadila Guessous
- Faculty of Medicine, Department of Biological Sciences, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco; Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Younes Zaid
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Khadija Akarid
- Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco.
| |
Collapse
|
32
|
Adin DB, Spalla M, Walden H, Gruntmeir J, Hernandez JA, Long M. Angiotensin-converting enzyme 2 in dogs with Dirofilaria immitis. Parasit Vectors 2023; 16:145. [PMID: 37106412 PMCID: PMC10139826 DOI: 10.1186/s13071-023-05649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Infection by the canine heartworm, Dirofilaria immitis, causes significant cardiopulmonary disease, with progression impacted by increasing parasite numbers and duration of infection. The renin-angiotensin-aldosterone system (RAAS) is an important mediator of cardiac and pulmonary disease. Angiotensin-converting enzyme 2 (ACE2) mitigates the maladaptive effects of angiotensin II by converting it to angiotensin (1-7). We hypothesized that circulating ACE2 activity would be altered in dogs with high heartworm infection intensities relative to dogs without heartworms. METHODS Frozen serum samples (-80 °C) from 30 dogs euthanized at Florida shelters were analyzed for ACE2 activity using liquid chromatography-mass spectrometry/mass spectroscopy and a kinetics approach with and without an ACE2 inhibitor. A convenience sample of 15 dogs without heartworms (HW0) and 15 dogs with > 50 heartworms (HW>50) was included. Heartworm number and microfilariae presence were determined at necropsy. The effects of heartworm status, body weight, and sex on ACE2 were evaluated using regression analysis. Values of P < 0.05 were considered significant. RESULTS All HW0 dogs were D. immitis microfilariae-negative and all HW>50 dogs were D. immitis microfilariae-positive with a median adult worm count of 74 (minimum = 63, maximum = 137). The ACE2 activity of HW>50 dogs (median = 28.2 ng/ml; minimum = 13.6, maximum = 76.2) was not different from HW0 dogs (median 31.9 ng/ml; minimum = 14.1, maximum = 139.1; P = 0.53). The ACE2 activity was higher in dogs with high body weight (median 34.2 ng/ml minimum = 14.1, maximum = 76.2) than in dogs with low weight (median 27.5 ng/ml; minimum = 16.4, maximum = 139.1; P = .044). CONCLUSIONS Heartworm infection did not impact ACE2 activity in shelter dogs with or without heartworms, but heavier dogs had higher ACE2 activity compared to lighter dogs. Comprehensive RAAS evaluation and additional clinical information would aid in understanding how ACE2 activity relates to the entire cascade and clinical status in dogs with heartworm disease.
Collapse
Affiliation(s)
- Darcy B Adin
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| | - Meaghan Spalla
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Heather Walden
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jeff Gruntmeir
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jorge A Hernandez
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Maureen Long
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
33
|
Jacob B, Sawhney M, Sridhar A, Jacob B, Muller J, Abu-Sbaih R, Yao SC. Potential therapeutic effects of adjunct osteopathic manipulative treatments in SARS-CoV-2 patients. J Osteopath Med 2023:jom-2022-0207. [PMID: 37079451 DOI: 10.1515/jom-2022-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/23/2023] [Indexed: 04/21/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) affects various human organ systems, including the lymphatic, pulmonary, gastrointestinal, and neurologic systems. The utilization of osteopathic manipulative treatment (OMT) techniques has been clinically effective in the alleviation of various upper respiratory infection symptoms. Consequently, the use of osteopathic manipulative medicine (OMM) in SARS-CoV-2 patients as adjunct treatment can be beneficial in promoting overall recovery. This paper attempts to address the pathophysiology of SARS-CoV-2 infection at the cellular level and its downstream effects. Subsequently, osteopathic principles were investigated to evaluate potential therapeutic effects, providing a holistic approach in the SARS-CoV-2 treatment. Although the association between the benefits of OMT on clinical improvement during the 1918 Spanish influenza pandemic can be seen, further investigation is required to establish a direct correlation between OMT and symptom management in SARS-CoV-2.
Collapse
Affiliation(s)
- Benna Jacob
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Mehak Sawhney
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aarthi Sridhar
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Berlin Jacob
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Jeffrey Muller
- Department of Clinical Specialties, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Reem Abu-Sbaih
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Sheldon C Yao
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
34
|
Kusraeva DT, Olisova OY, Teplyuk NP, Grabovskaya OV, Kayumova LN, Bobkova AE, Varshavsky VA, Komleva LF, Petrenko EV, Bobrova KY. PYODERMA GANGRENOSUM MIMICKING GRANULOMATOSIS WITH POLYANGIITIS: CACE REPORT AND RIVIEW OF THE LITERATURE. VESTNIK DERMATOLOGII I VENEROLOGII 2023. [DOI: 10.25208/vdv1386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Pyoderma gangrenosum is an autoinflammatory neutrophilic dermatosis. Diagnosis of the disease remains a difficult task to date, due to the lack of a gold standard of examination and differential diagnostic signs. The primary elements in the development of PG may be papules, pustules or bullae the dissection of which subsequently leads to the formation of ulcers with irregular, violaceous, undermined borders. In rare cases, the diagnosis of the disease can also be complicated by the rapid development of internal organs damage symptoms, which must be regarded as extracutaneous manifestations of PG. Extracutaneous lesions can occur before, during or after the appearance of skin rashes, and the detection of sterile neutrophil infiltrates in the defeat of internal organs confirm the concept of PG as a multisystemic disease. The presented case of a rare course of PG with multiple skin lesions and extracutaneous manifestations, simulating systemic vasculitis, emphasizes the importance of a detailed examination of patients in order to make a correct diagnosis and prescribe timely adequate treatment.
Collapse
|
35
|
Gao LJ, He ZM, Li YY, Yang RR, Yan M, Shang X, Cao JM. Role of OAS gene family in COVID-19 induced heart failure. J Transl Med 2023; 21:212. [PMID: 36949448 PMCID: PMC10031198 DOI: 10.1186/s12967-023-04058-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND COVID-19, the current global pandemic caused by SARS-CoV-2 infection, can damage the heart and lead to heart failure (HF) and even cardiac death. The 2',5'-oligoadenylate synthetase (OAS) gene family encode interferon (IFN)-induced antiviral proteins which is associated with the antiviral immune responses of COVID-19. While the potential association of OAS gene family with cardiac injury and failure in COVID-19 has not been determined. METHODS The expression levels and biological functions of OAS gene family in SARS-CoV-2 infected cardiomyocytes dataset (GSE150392) and HF dataset (GSE120852) were determined by comprehensive bioinformatic analysis and experimental validation. The associated microRNAs (miRNAs) were explored from Targetscan and GSE104150. The potential OAS gene family-regulatory chemicals or ingredients were predicted using Comparative Toxicogenomics Database (CTD) and SymMap database. RESULTS The OAS genes were highly expressed in both SARS-CoV-2 infected cardiomyocytes and failing hearts. The differentially expressed genes (DEGs) in the two datasets were enriched in both cardiovascular disease and COVID-19 related pathways. The miRNAs-target analysis indicated that 10 miRNAs could increase the expression of OAS genes. A variety of chemicals or ingredients were predicted regulating the expression of OAS gene family especially estradiol. CONCLUSION OAS gene family is an important mediator of HF in COVID-19 and may serve as a potential therapeutic target for cardiac injury and HF in COVID-19.
Collapse
Affiliation(s)
- Li-Juan Gao
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Zhong-Mei He
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yi-Ying Li
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Rui-Rui Yang
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Min Yan
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xuan Shang
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
36
|
Antiviral Molecular Targets of Essential Oils against SARS-CoV-2: A Systematic Review. Sci Pharm 2023. [DOI: 10.3390/scipharm91010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Essential oils are potential therapeutics for coronavirus disease 2019 (COVID-19), in which some of the volatile compounds of essential oils have been well known for their broad antiviral activities. These therapeutic candidates have been shown to regulate the excessive secretion of pro-inflammatory cytokines, which underlies the pathogenesis of severe COVID-19. We aimed to identify molecular targets of essential oils in disrupting the cell entry and replication of SARS-CoV-2, hence being active as antivirals. Literature searches were performed on PubMed, Scopus, Scillit, and CaPlus/SciFinder (7 December 2022) with a truncated title implying the anti-SARS-CoV-2 activity of essential oil. Data were collected from the eligible studies and described narratively. Quality appraisal was performed on the included studies. A total of eight studies were included in this review; four of which used enzyme inhibition assay, one—pseudo-SARS-CoV-2 culture; two—whole SARS-CoV-2 culture; and one—ACE2-expressing cancer cells. Essential oils may prevent the SARS-CoV-2 infection by targeting its receptors on the cells (ACE2 and TMPRSS2). Menthol, 1,8-cineole, and camphor are among the volatile compounds which serve as potential ACE2 blockers. β-caryophyllene may selectively target the SARS-CoV-2 spike protein and inhibit viral entry. Other interactions with SARS-CoV-2 proteases and RdRp are observed based on molecular docking. In conclusion, essential oils could target proteins related to the SARS-CoV-2 entry and replication. Further studies with improved and uniform study designs should be carried out to optimize essential oils as COVID-19 therapies.
Collapse
|
37
|
Abstract
Coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality in pandemic proportions. Inflammation in response to the infection contributes to the pathogenesis of pneumonia. This review will discuss prior studies on the use of glucocorticoids to treat respiratory infections, the rationale for the use glucocorticoids in COVID-19, and review of existing data. We will also highlight outstanding research questions for future studies.
Collapse
Affiliation(s)
- Francesco Amati
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - John Huston
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale School of Medicine, New Haven, Connecticut
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
38
|
Qin R, He L, Yang Z, Jia N, Chen R, Xie J, Fu W, Chen H, Lin X, Huang R, Luo T, Liu Y, Yao S, Jiang M, Li J. Identification of Parameters Representative of Immune Dysfunction in Patients with Severe and Fatal COVID-19 Infection: a Systematic Review and Meta-analysis. Clin Rev Allergy Immunol 2023; 64:33-65. [PMID: 35040086 PMCID: PMC8763427 DOI: 10.1007/s12016-021-08908-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 01/26/2023]
Abstract
Abnormal immunological indicators associated with disease severity and mortality in patients with COVID-19 have been reported in several observational studies. However, there are marked heterogeneities in patient characteristics and research methodologies in these studies. We aimed to provide an updated synthesis of the association between immune-related indicators and COVID-19 prognosis. We conducted an electronic search of PubMed, Scopus, Ovid, Willey, Web of Science, Cochrane library, and CNKI for studies reporting immunological and/or immune-related parameters, including hematological, inflammatory, coagulation, and biochemical variables, tested on hospital admission of COVID-19 patients with different severities and outcomes. A total of 145 studies were included in the current meta-analysis, with 26 immunological, 11 hematological, 5 inflammatory, 4 coagulation, and 10 biochemical variables reported. Of them, levels of cytokines, including IL-1β, IL-1Ra, IL-2R, IL-4, IL-6, IL-8, IL-10, IL-18, TNF-α, IFN-γ, IgA, IgG, and CD4+ T/CD8+ T cell ratio, WBC, neutrophil, platelet, ESR, CRP, ferritin, SAA, D-dimer, FIB, and LDH were significantly increased in severely ill patients or non-survivors. Moreover, non-severely ill patients or survivors presented significantly higher counts of lymphocytes, monocytes, lymphocyte/monocyte ratio, eosinophils, CD3+ T,CD4+T and CD8+T cells, B cells, and NK cells. The currently updated meta-analysis primarily identified a hypercytokinemia profile with the severity and mortality of COVID-19 containing IL-1β, IL-1Ra, IL-2R, IL-4, IL-6, IL-8, IL-10, IL-18, TNF-α, and IFN-γ. Impaired innate and adaptive immune responses, reflected by decreased eosinophils, lymphocytes, monocytes, B cells, NK cells, T cells, and their subtype CD4+ and CD8+ T cells, and augmented inflammation, coagulation dysfunction, and nonpulmonary organ injury, were marked features of patients with poor prognosis. Therefore, parameters of immune response dysfunction combined with inflammatory, coagulated, or nonpulmonary organ injury indicators may be more sensitive to predict severe patients and those non-survivors.
Collapse
Affiliation(s)
- Rundong Qin
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li He
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruchong Chen
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaxing Xie
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wanyi Fu
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinliu Lin
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Renbin Huang
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tian Luo
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yukai Liu
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyang Yao
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mei Jiang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
Blaskovich MAT, Verderosa AD. Use of Antiviral Agents and other Therapies for COVID-19. Semin Respir Crit Care Med 2023; 44:118-129. [PMID: 36646090 DOI: 10.1055/s-0042-1758837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic led to a remarkably rapid development of a range of effective prophylactic vaccines, including new technologies that had not previously been approved for human use. In contrast, the development of new small molecule antiviral therapeutics has taken years to produce the first approved drugs specifically targeting severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), with the intervening years filled with attempts to repurpose existing drugs and the development of biological therapeutics. This review will discuss the reasons behind this variation in timescale and provide a survey of the many new treatments that are progressing through the clinical pipeline.
Collapse
Affiliation(s)
- Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Anthony D Verderosa
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
40
|
Cytokine Levels and Severity of Illness Scoring Systems to Predict Mortality in COVID-19 Infection. Healthcare (Basel) 2023; 11:healthcare11030387. [PMID: 36766961 PMCID: PMC9914724 DOI: 10.3390/healthcare11030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Various scoring systems and cytokines have been cited as predicting disease severity in COVID-19 infection. This study analyzed the link between mortality rate, levels of cytokines, and scoring systems such as the Glasgow Coma Scale (GCS), Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA), and Charlson Comorbidity Index in patients infected with COVID-19. Adult patients infected with COVID-19 were followed up in the intensive care unit (ICU) and analyzed prospectively. We measured serum cytokine levels (Interleukin-10 (IL-10), Interleukin-8 (IL-8), Interleukin-6 (IL-6), Interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) and High mobility group box 1 (HMGB-1)) and recorded GCS, APACHE II, SOFA, and Charlson comorbidity index scores on admission to the ICU. Receiver operating curve (ROC) analysis was performed to predict mortality from IL-1β, IL-6 IL-10, IL-8, TNF-α, and HMGB-1 values. Study participants were grouped as follows: Group A, survivors, and Group B, deceased, during the 28-day follow-up. The mean age was 65.69 (±13.56) in Group A (n = 36) and 70.85 (±10.06) in Group B (n = 27). The female/male ratio was 23/40. Age, sex, body mass index (BMI), comorbid illnesses, GCS, APACHE II, SOFA, and Charlson scores, duration of hospitalization or ICU admission, therapeutic choices, and lymphocyte, PMNL, NLR, platelet, D-dimer, fibrinogen, GGT, CRP, procalcitonin, and lactate levels were similar between the groups. The frequency of acute kidney injury (AKI) was higher in Group B (p = 0.005). Serum IL-10, IL-8, IL-6, IL-1β, TNF-α, HMGB-1, ferritin, and LDH values were higher, and PaO2/FiO2 was lower in Group B than in Group A. ROC analysis showed that there was an association between serum IL-1β (>1015.7), serum IL-6 (>116.7), serum IL-8 (>258.4), serum IL-10 (>247.5), serum TNF-α (>280.7), and serum HMGB-1 (>23.5) and mortality. AKI gave rise to a greater risk of mortality (odds ratio: 7.081, p = 0.014). Mortality was associated with serum IL-10, IL-8, IL-6, IL-1β, TNF-α, and HMGB-1 but not with GCS, APACHE II, SOFA, or Charlson comorbidity index scores. AKI increased the risk of mortality by seven times. Our findings suggest that cytokine levels (serum IL-10, IL-8, IL-6, IL-1β, TNF-α, and HMGB-1) were predictors of mortality in COVID-19 infection. In addition, our results might give an opinion about the course of COVID-19 infection.
Collapse
|
41
|
Lashgari NA, Roudsari NM, Shamsnia H, Shayan M, Momtaz S, Abdolghaffari AH, Matbou Riahi M, Jamialahmadi T, Guest PC, Reiner Ž, Sahebkar A. Statins: Beneficial Effects in Treatment of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:457-476. [PMID: 37378783 DOI: 10.1007/978-3-031-28012-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The recent viral disease COVID-19 has attracted much attention. The disease is caused by SARS-CoV-19 virus which has different variants and mutations. The mortality rate of SARS-CoV-19 is high and efforts to establish proper therapeutic solutions are still ongoing. Inflammation plays a substantial part in the pathogenesis of this disease causing mainly lung tissue destruction and eventually death. Therefore, anti-inflammatory drugs or treatments that can inhibit inflammation are important options. Various inflammatory pathways such as nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLRs), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways and mediators, such as interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (INF-γ), cause cell apoptosis, reduce respiratory capacity and oxygen supply, eventually inducing respiratory system failure and death. Statins are well known for controlling hypercholesterolemia and may serve to treat COVID-19 due to their pleiotropic effects among which are anti-inflammatory in nature. In this chapter, the anti-inflammatory effects of statins and their possible beneficial effects in COVID-19 treatment are discussed. Data were collected from experimental and clinical studies in English (1998-October 2022) from Google Scholar, PubMed, Scopus, and the Cochrane Library.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedieh Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Matbou Riahi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Kodde C, Bonsignore M, Schöndube D, Bauer T, Hohenstein S, Bollmann A, Meier-Hellmann A, Kuhlen R, Nachtigall I. Mortality in cancer patients with SARS-CoV-2 or seasonal influenza: an observational cohort study from a German-wide hospital network. Infection 2023; 51:119-127. [PMID: 35657531 PMCID: PMC9163872 DOI: 10.1007/s15010-022-01852-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/07/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE At the beginning of the COVID-19 pandemic, SARS-CoV-2 was often compared to seasonal influenza. We aimed to compare the outcome of hospitalized patients with cancer infected by SARS-CoV-2 or seasonal influenza including intensive care unit admission, mechanical ventilation and in-hospital mortality. METHODS We analyzed claims data of patients with a lab-confirmed SARS-CoV-2 or seasonal influenza infection admitted to one of 85 hospitals of a German-wide hospital network between January 2016 and August 2021. RESULTS 29,284 patients with COVID-19 and 7442 patients with seasonal influenza were included. Of these, 360 patients with seasonal influenza and 1625 patients with COVID-19 had any kind of cancer. Cancer patients with COVID-19 were more likely to be admitted to the intensive care unit than cancer patients with seasonal influenza (29.4% vs 24.7%; OR 1.31, 95% CI 1.00-1.73 p < .05). No statistical significance was observed in the mechanical ventilation rate for cancer patients with COVID-19 compared to those with seasonal influenza (17.2% vs 13.6% OR 1.34, 95% CI 0.96-1.86 p = .09). 34.9% of cancer patients with COVID-19 and 17.9% with seasonal influenza died (OR 2.45, 95% CI 1.81-3.32 p < .01). Risk factors among cancer patients with COVID-19 or seasonal influenza for in-hospital mortality included the male gender, age, a higher Elixhauser comorbidity index and metastatic cancer. CONCLUSION Among cancer patients, SARS-CoV-2 was associated with a higher risk for in-hospital mortality than seasonal influenza. These findings underline the need of protective measurements to prevent an infection with either COVID-19 or seasonal influenza, especially in this high-risk population.
Collapse
Affiliation(s)
- Cathrin Kodde
- Department of Respiratory Diseases “Heckeshorn”, Helios Clinic Emil-Von-Behring, Berlin, Germany
| | - Marzia Bonsignore
- Division of Infectious Diseases and Prevention, Helios Hospitals Duisburg, Duisburg, Germany
| | - Daniel Schöndube
- grid.491878.b0000 0004 0542 382XDepartment of Oncology and Hematology, Helios Klinikum Bad Saarow, Bad Saarow, Germany
| | - Torsten Bauer
- Department of Respiratory Diseases “Heckeshorn”, Helios Clinic Emil-Von-Behring, Berlin, Germany
| | - Sven Hohenstein
- grid.9647.c0000 0004 7669 9786Heart Center Leipzig at University of Leipzig and Leipzig Heart Institute, Leipzig, Germany
| | - Andreas Bollmann
- grid.9647.c0000 0004 7669 9786Heart Center Leipzig at University of Leipzig and Leipzig Heart Institute, Leipzig, Germany
| | | | | | - Irit Nachtigall
- Division of Infectious Diseases and Infection Prevention, Helios Hospital Emil-Von-Behring, Berlin, Germany ,grid.6363.00000 0001 2218 4662Institute of Hygiene and Environmental Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
43
|
Fatima I, Duong N. The impact of COVID-19 on liver transplantation: challenges and perspectives. Therap Adv Gastroenterol 2023; 16:17562848231171452. [PMID: 37180361 PMCID: PMC10172841 DOI: 10.1177/17562848231171452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic presented unique challenges to patients with decompensated cirrhosis awaiting transplant, with respect to accessing medical facilities for routine clinic visits, imaging, laboratory workup, or endoscopies. There was a delay in organ procurement that led to a decrease in the number of liver transplants (LTs) and an increase in the morality of waitlisted patients at the beginning of the pandemic. LT numbers later equalized to pre-pandemic numbers due to combined efforts and adaptability of transplant centers as well as dynamic guidelines. Due to being immunosuppressed, the demographics of LT patients were at an increased risk of infection. Although there is a higher rate of mortality and morbidity in patients with chronic liver disease, LT itself is not a risk factor for mortality in COVID-19. There was no difference in overall mortality in LT patients compared to non-LT patients, and mortality risk factors were the same: age, hypertension, diabetes, obesity, and chronic kidney disease. The most common causes of death were respiratory complications. Liver-related deaths were reported in 1.6% of patients. The optimal timing of liver transplantation post-infection depends on various factors, such as the severity of liver injury, the presence of comorbidities, and the progression of the underlying liver disease. There is not enough data available on COVID-19 cholangiopathy and the number of cases that will be seen in the future that will require LT. There are some concerns of lower immunogenicity of COVID-19 vaccines in LT patients but available evidence suggests that the vaccines are safe and well-tolerated.
Collapse
Affiliation(s)
| | - Nikki Duong
- Department of Gastroenterology, Hepatology and
Nutrition, Virginia Commonwealth University Medical Center, Richmond, VA,
USA
| |
Collapse
|
44
|
Soto ME, Fuentevilla-Álvarez G, Palacios-Chavarría A, Vázquez RRV, Herrera-Bello H, Moreno-Castañeda L, Torres-Paz YE, González-Moyotl NJ, Pérez-Torres I, Aisa-Alvarez A, Manzano-Pech L, Pérez-Torres I, Huesca-Gómez C, Gamboa R. Impact on the Clinical Evolution of Patients with COVID-19 Pneumonia and the Participation of the NFE2L2/KEAP1 Polymorphisms in Regulating SARS-CoV-2 Infection. Int J Mol Sci 2022; 24:415. [PMID: 36613859 PMCID: PMC9820269 DOI: 10.3390/ijms24010415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
In patients with severe pneumonia due to COVID-19, the deregulation of oxidative stress is present. Nuclear erythroid factor 2 (NRF2) is regulated by KEAP1, and NRF2 regulates the expression of genes such as NFE2L2-KEAP1, which are involved in cellular defense against oxidative stress. In this study, we analyzed the participation of the polymorphisms of NFE2L2 and KEAP1 genes in the mechanisms of damage in lung disease patients with SARS-CoV-2 infection. Patients with COVID-19 and a control group were included. Organ dysfunction was evaluated using SOFA. SARS-CoV-2 infection was confirmed and classified as moderate or severe by ventilatory status and by the Berlin criteria for acute respiratory distress syndrome. SNPs in the gene locus for NFE2L2, rs2364723C>G, and KEAP1, rs9676881A>G, and rs34197572C>T were determined by qPCR. We analyzed 110 individuals with SARS-CoV-2 infection: 51 with severe evolution and 59 with moderate evolution. We also analyzed 111 controls. Significant differences were found for rs2364723 allele G in severe cases vs. controls (p = 0.02); for the rs9676881 allele G in moderate cases vs. controls (p = 0.04); for the rs34197572 allele T in severe cases vs. controls (p = 0.001); and in severe vs. moderate cases (p = 0.004). Our results showed that NFE2L2 rs2364723C>G allele G had a protective effect against severe COVID-19, while KEAP1 rs9676881A>G allele G and rs34197572C>T minor allele T were associated with more aggressive stages of COVID-19.
Collapse
Affiliation(s)
- María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
- Cardiovascular Line in American British Cowdray (ABC) Medical Center, I.A.P. ABC I.A.P. ABC Sur 136 No. 116 Col. Las Américas, México City 01120, Mexico
| | - Giovanny Fuentevilla-Álvarez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Manuel Carpio y Plutarco Elias Calles, Col. Miguel Hidalgo, México City 11350, Mexico
| | - Adrián Palacios-Chavarría
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, México City 11200, Mexico
| | - Rafael Ricardo Valdez Vázquez
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, México City 11200, Mexico
| | - Héctor Herrera-Bello
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, México City 11200, Mexico
| | - Lidia Moreno-Castañeda
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, México City 11200, Mexico
| | - Yazmín Estela Torres-Paz
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| | - Nadia Janet González-Moyotl
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| | - Idalia Pérez-Torres
- Department of Genetic, Hospital Infantil de México “Federico Gómez”, Doctor Márquez 162, Col. Doctores, México City 06720, Mexico
| | - Alfredo Aisa-Alvarez
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, México City 11200, Mexico
- Critical Care in American British Cowdray (ABC) Medical Center, I.A.P. ABC I.A.P. ABC Sur 136 No. 116 Col. Las Américas, México City 01120, Mexico
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| | - Claudia Huesca-Gómez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| | - Ricardo Gamboa
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| |
Collapse
|
45
|
Siewiera J, Brodaczewska K, Jermakow N, Lubas A, Kłos K, Majewska A, Kot J. Effectiveness of Hyperbaric Oxygen Therapy in SARS-CoV-2 Pneumonia: The Primary Results of a Randomised Clinical Trial. J Clin Med 2022; 12:jcm12010008. [PMID: 36614808 PMCID: PMC9820955 DOI: 10.3390/jcm12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Mortality in COVID-19 is mainly associated with respiratory failure, cytokine storm, and macrophage activation. Oxygenation and anti-inflammatory effects of Hyperbaric Oxygen Therapy (HBOT) suggest that it is a promising adjunct treatment for COVID-19. Repeated sessions of HBO with standard COVID-19 therapy were used to reduce the inflammation and increase oxygenation. We evaluated the safety and efficacy of HBOT in avoiding the replacement ventilation and/or ECMO and its effect on the inflammatory process. Twenty-eight moderate-to-severe COVID-19 patients were randomized into control or HBOT group. HBOT patients participated in 5 hyperbaric sessions (60 min). Before and after each session blood gas levels and vital parameters were monitored. Blood samples were collected for extended biochemical tests, blood morphology and immunological assays. There were 3 deaths in the control, no deaths in the HBOT group. No adverse events leading to discontinuation of HBOT were observed and patients receiving HBOT required lower oxygen delivery. We observed decrease in CRP, ferritin and LDH and increase in CD3 in HBOT group compared to control. This study confirmed the feasibility and safety of HBOT in patients with COVID-19 and indicated HBOT can lead to alleviation of inflammation and partial restoration of T cell responses.
Collapse
Affiliation(s)
- Jacek Siewiera
- Department of Hyperbaric Medicine, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Natalia Jermakow
- Department of Hyperbaric Medicine, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Arkadiusz Lubas
- Department of Internal Diseases Nephrology and Dialysis, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Krzysztof Kłos
- Department of Infectious Diseases and Allergology, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
- Postgraduate School of Molecular Medicine (SMM), Warsaw Medical University, 02-091 Warsaw, Poland
- Correspondence:
| | - Jacek Kot
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| |
Collapse
|
46
|
Boshra MS, Abou Warda AE, Sayed MA, Elkomy MH, Alotaibi NH, Mohsen M, Sarhan RM. Effect of Pirfenidone on Risk of Pulmonary Fibrosis in COVID-19 Patients Experiencing Cytokine Storm. Healthcare (Basel) 2022; 10:2387. [PMID: 36553912 PMCID: PMC9777849 DOI: 10.3390/healthcare10122387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Severe stages of COVID-19 infection have been associated with the excessive discharge of pro-inflammatory mediators such as cytokines, resulting in lung deterioration, which progresses rapidly to lung fibrosis leading to acute respiratory distress syndrome. In this investigation, the efficacy and safety of the novel antifibrotic and anti-inflammatory agent, Pirfenidone, were assessed in COVID-19 patients with pulmonary fibrosis secondary to cytokine storm. In this randomized controlled study, we assigned 100 adult COVID-19 patients cytokine storm and admitted to the intensive care isolation unit into either pirfenidone added to the standard therapy (n = 47), or the standard protocol only (n = 53). High-resolution computed tomography of the chest was performed in all patients to evaluate fibrotic lesions and their progression. The results showed that the percentage of patients who developed pulmonary fibrosis during cytokine storm onset in the pirfenidone group relative to the standard group was 29.8% and 35.8%, respectively, with no significant difference between the two groups; while there was a significant increase in the proportion of patients discharged from the isolation unit with pulmonary fibrosis without progression in fibrotic lesions in the pirfenidone group compared to the standard group (21.3% and 5.7%, respectively). Furthermore, there was a significant difference concerning liver enzyme elevation and GIT disturbance incidences in the studied groups (p = 0.006 and 0.01, respectively). Our findings show that Pirfenidone inhibits fibrosis advancement in COVID-19 patients with pulmonary fibrosis and is associated with hepatotoxicity and GI distress. It may be beneficial in patients with mild to moderate COVID-19-induced pulmonary fibrosis; however, additional research is necessary.
Collapse
Affiliation(s)
- Marian S. Boshra
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef P.O. Box 62514, Egypt
| | - Ahmed E. Abou Warda
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza P.O. Box 12585, Egypt
| | | | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Nasser H. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Marwa Mohsen
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef P.O. Box 62514, Egypt
| | - Rania M. Sarhan
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef P.O. Box 62514, Egypt
| |
Collapse
|
47
|
Maranduca MA, Vamesu CG, Tanase DM, Clim A, Drochioi IC, Pinzariu AC, Filip N, Dima N, Tudorancea I, Serban DN, Serban IL. The RAAS Axis and SARS-CoV-2: From Oral to Systemic Manifestations. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1717. [PMID: 36556919 PMCID: PMC9784172 DOI: 10.3390/medicina58121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
One of the essential regulators of arterial blood pressure, the renin-angiotensin-aldosterone system (RAAS) seems to be one of the most complex mechanisms in the human body. Since the discovery of its key components and their actions, new substances and functions are still being unraveled. The main pathway begins with the secretion of renin in the kidney and culminates with the synthesis of angiotensin II (Ang II)-a strong vasoconstrictor-thanks to the angiotensin-converting enzyme (ACE). Research conducted in 2000 identified another enzyme, named ACE2, that converts Ang II into Ang-(1-7), a heptapeptide with opposing effects to those of Ang II: vasodilation and anti-inflammatory properties. This particular enzyme became of paramount importance during the last two decades, as a result of the confrontation of the human race with life-threatening epidemics. Multiple studies have been performed in order to uncover the link between ACE2 and human coronaviruses, the results of which we systemized in order to create an overview of the pathogenic mechanism. Human coronaviruses, such as SARS-CoV and SARS-CoV-2, attach to ACE2 via their spike proteins (S), causing the destruction of the enzyme. Because ACE2 limits the production of Ang II (by converting it into Ang-(1-7)), its destruction leads to a dysregulated inflammatory response. The purpose of this review is to decipher the complex pathophysiological mechanisms underlying the multiorgan complications (oral, cardiac, pulmonary, systemic) that appear as a result of the interaction of the SARS CoV-2 virus with the angiotensin-converting enzyme type 2.
Collapse
Affiliation(s)
- Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
| | - Calin George Vamesu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Maria Tanase
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ilie Cristian Drochioi
- Department of Oral and Maxillofacial Surgery and Reconstructive, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700020 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences II, Discipline of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nicoleta Dima
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Dragomir Nicolae Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
48
|
Cao JF, Gong Y, Wu M, Xiong L, Chen S, Huang H, Zhou X, Peng YC, Shen XF, Qu J, Wang YL, Zhang X. Molecular docking and molecular dynamics study Lianhua Qingwen granules (LHQW) treats COVID-19 by inhibiting inflammatory response and regulating cell survival. Front Cell Infect Microbiol 2022; 12:1044770. [PMID: 36506032 PMCID: PMC9729774 DOI: 10.3389/fcimb.2022.1044770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose 2019 Coronavirus disease (COVID-19) is endangering health of populations worldwide. Latest research has proved that Lianhua Qingwen granules (LHQW) can reduce tissue damage caused by inflammatory reactions and relieve patients' clinical symptoms. However, the mechanism of LHQW treats COVID-19 is currently lacking. Therefore, we employed computer simulations to investigate the mechanism of LHQW treats COVID-19 by modulating inflammatory response. Methods We employed bioinformatics to screen active ingredients in LHQW and intersection gene targets. PPI, GO and KEGG was used to analyze relationship of intersection gene targets. Molecular dynamics simulations validated the binding stability of active ingredients and target proteins. Binding free energy, radius of gyration and the solvent accessible surface area were analyzed by supercomputer platform. Results COVID-19 had 4628 gene targets, LHQW had 1409 gene targets, intersection gene targets were 415. Bioinformatics analysis showed that intersection targets were closely related to inflammation and immunomodulatory. Molecular docking suggested that active ingredients (including: licopyranocoumarin, Glycyrol and 3-3-Oxopropanoic acid) in LHQW played a role in treating COVID-19 by acting on CSF2, CXCL8, CCR5, NLRP3, IFNG and TNF. Molecular dynamics was used to prove the binding stability of active ingredients and protein targets. Conclusion The mechanism of active ingredients in LHQW treats COVID-19 was investigated by computer simulations. We found that active ingredients in LHQW not only reduce cell damage and tissue destruction by inhibiting the inflammatory response through CSF2, CXCL8, CCR5 and IFNG, but also regulate cell survival and growth through NLRP3 and TNF thereby reducing apoptosis.
Collapse
Affiliation(s)
- Jun-Feng Cao
- Chengdu Medical College, Chengdu, China
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| | | | - Mei Wu
- Chengdu Medical College, Chengdu, China
| | - Li Xiong
- Chengdu Medical College, Chengdu, China
| | | | | | | | - Ying-chun Peng
- Chengdu Medical College, Chengdu, China
- The First Affifiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xue-fang Shen
- Chengdu Medical College, Chengdu, China
- The First Affifiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jinyu Qu
- Chengdu Medical College, Chengdu, China
- The First Affifiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi-li Wang
- Chengdu Medical College, Chengdu, China
- The First Affifiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Chengdu Medical College, Chengdu, China
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| |
Collapse
|
49
|
Valorization of Cheese Whey as a Feedstock for Production of Cyclosporin A by Tolypocladium inflatum. FERMENTATION 2022. [DOI: 10.3390/fermentation8120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Food waste-based biorefineries are considered an essential concept for the implementation of a sustainable circular economy. In this study, cheese whey powder (CWP), a dairy industry waste, was utilized to produce cyclosporin A (CsA). As it is difficult to valorize CWP because its components vary depending on the origin, a process for sugar conversion via acid hydrolysis was designed to obtain reproducible results using refined whey powder (WP) of a consistent quality. Acid hydrolysis was carried out using 2% (w/w) HCl and biomass loading of 50 g/L at 121 °C for 20 min. CWP hydrolysates were utilized to ferment Tolypocladium inflatum ATCC 34921. CsA production was found to be 51.3 mg/L at 12 days, a 1.4-fold increase compared to the control (commercial glucose, 36.3 mg/L). Our results showed that 100 g CWP can be converted to 81.8 mg of CsA. This finding demonstrated that CWP can be used as a sustainable feedstock for biorefineries.
Collapse
|
50
|
Cavalcante LTDF, da Fonseca GC, Amado Leon LA, Salvio AL, Brustolini OJ, Gerber AL, Guimarães APDC, Marques CAB, Fernandes RA, Ramos Filho CHF, Kader RL, Pimentel Amaro M, da Costa Gonçalves JP, Vieira Alves-Leon S, Vasconcelos ATR. Buffy Coat Transcriptomic Analysis Reveals Alterations in Host Cell Protein Synthesis and Cell Cycle in Severe COVID-19 Patients. Int J Mol Sci 2022; 23:13588. [PMID: 36362378 PMCID: PMC9659271 DOI: 10.3390/ijms232113588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2023] Open
Abstract
Transcriptome studies have reported the dysregulation of cell cycle-related genes and the global inhibition of host mRNA translation in COVID-19 cases. However, the key genes and cellular mechanisms that are most affected by the severe outcome of this disease remain unclear. For this work, the RNA-seq approach was used to study the differential expression in buffy coat cells of two groups of people infected with SARS-CoV-2: (a) Mild, with mild symptoms; and (b) SARS (Severe Acute Respiratory Syndrome), who were admitted to the intensive care unit with the severe COVID-19 outcome. Transcriptomic analysis revealed 1009 up-regulated and 501 down-regulated genes in the SARS group, with 10% of both being composed of long non-coding RNA. Ribosome and cell cycle pathways were enriched among down-regulated genes. The most connected proteins among the differentially expressed genes involved transport dysregulation, proteasome degradation, interferon response, cytokinesis failure, and host translation inhibition. Furthermore, interactome analysis showed Fibrillarin to be one of the key genes affected by SARS-CoV-2. This protein interacts directly with the N protein and long non-coding RNAs affecting transcription, translation, and ribosomal processes. This work reveals a group of dysregulated processes, including translation and cell cycle, as key pathways altered in severe COVID-19 outcomes.
Collapse
Affiliation(s)
| | | | - Luciane Almeida Amado Leon
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Andreza Lemos Salvio
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | - Otávio José Brustolini
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Ana Paula de Campos Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Carla Augusta Barreto Marques
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Renan Amphilophio Fernandes
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | | | - Rafael Lopes Kader
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Marisa Pimentel Amaro
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Soniza Vieira Alves-Leon
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| |
Collapse
|