1
|
Adiamah M, Poole B, Lindsey JC, Kohe S, Morcavallo A, Burté F, Hill RM, Blair H, Thompson D, Singh M, Swartz S, Crosier S, Zhang T, Maddocks ODK, Peet A, Chesler L, Hickson I, Maxwell RJ, Clifford SC. MYC-dependent upregulation of the de novo serine and glycine synthesis pathway is a targetable metabolic vulnerability in group 3 medulloblastoma. Neuro Oncol 2024:noae179. [PMID: 39377369 DOI: 10.1093/neuonc/noae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Group 3 medulloblastoma (MBGRP3) represents around 25% of medulloblastomas and is strongly associated with c-MYC (MYC) amplification, which confers significantly worse patient survival. Although elevated MYC expression is a significant molecular feature in MBGRP3, direct targeting of MYC remains elusive, and alternative strategies are needed. The metabolic landscape of MYC-driven MBGRP3 is largely unexplored and may offer novel opportunities for therapies. METHODS To study MYC-induced metabolic alterations in MBGRP3, we depleted MYC in isogenic cell-based model systems, followed by 1H high-resolution magic-angle spectroscopy (HRMAS) and stable isotope-resolved metabolomics, to assess changes in intracellular metabolites and pathway dynamics. RESULTS Steady-state metabolic profiling revealed consistent MYC-dependent alterations in metabolites involved in one-carbon metabolism such as glycine. 13C-glucose tracing further revealed a reduction in glucose-derived serine and glycine (de novo synthesis) following MYC knockdown, which coincided with lower expression and activity of phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in this pathway. Furthermore, MYC-overexpressing MBGRP3 cells were more vulnerable to pharmacological inhibition of PHGDH compared to those with low expression. Using in vivo tumor-bearing genetically engineered and xenograft mouse models, pharmacological inhibition of PHGDH increased survival, implicating the de novo serine/glycine synthesis pathway as a pro-survival mechanism sustaining tumor progression. Critically, in primary human medulloblastomas, increased PHGDH expression correlated strongly with both MYC amplification and poorer clinical outcomes. CONCLUSIONS Our findings support a MYC-induced dependency on the serine/glycine pathway in MBGRP3 that represents a novel therapeutic treatment strategy for this poor prognosis disease group.
Collapse
Affiliation(s)
- Magretta Adiamah
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Bethany Poole
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Janet C Lindsey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Sarah Kohe
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alaide Morcavallo
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, UK
| | - Florence Burté
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Dean Thompson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Mankaran Singh
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Shanel Swartz
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Tong Zhang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Andrew Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, UK
| | - Ian Hickson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Ross J Maxwell
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| |
Collapse
|
2
|
Pascual G, Benitah SA. Lipids in the tumor microenvironment: immune modulation and metastasis. Front Oncol 2024; 14:1435480. [PMID: 39391242 PMCID: PMC11464260 DOI: 10.3389/fonc.2024.1435480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Tumor cells can undergo metabolic adaptations that support their growth, invasion, and metastasis, such as reprogramming lipid metabolism to meet their energy demands and to promote survival in harsh microenvironmental conditions, including hypoxia and acidification. Metabolic rewiring, and especially alterations in lipid metabolism, not only fuel tumor progression but also influence immune cell behavior within the tumor microenvironment (TME), leading to immunosuppression and immune evasion. These processes, in turn, may contribute to the metastatic spread of cancer. The diverse metabolic profiles of immune cell subsets, driven by the TME and tumor-derived signals, contribute to the complex immune landscape in tumors, affecting immune cell activation, differentiation, and effector functions. Understanding and targeting metabolic heterogeneity among immune cell subsets will be crucial for developing effective cancer immunotherapies that can overcome immune evasion mechanisms and enhance antitumor immunity.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Lee G, Wong C, Cho A, West JJ, Crawford AJ, Russo GC, Si BR, Kim J, Hoffner L, Jang C, Jung M, Leone RD, Konstantopoulos K, Ewald AJ, Wirtz D, Jeong S. E-Cadherin Induces Serine Synthesis to Support Progression and Metastasis of Breast Cancer. Cancer Res 2024; 84:2820-2835. [PMID: 38959339 PMCID: PMC11374473 DOI: 10.1158/0008-5472.can-23-3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The loss of E-cadherin, an epithelial cell adhesion molecule, has been implicated in metastasis by mediating the epithelial-mesenchymal transition, which promotes invasion and migration of cancer cells. However, recent studies have demonstrated that E-cadherin supports the survival and proliferation of metastatic cancer cells. Here, we identified a metabolic role for E-cadherin in breast cancer by upregulating the de novo serine synthesis pathway (SSP). The upregulated SSP provided metabolic precursors for biosynthesis and resistance to oxidative stress, enabling E-cadherin+ breast cancer cells to achieve faster tumor growth and enhanced metastases. Inhibition of phosphoglycerate dehydrogenase, a rate-limiting enzyme in the SSP, significantly and specifically hampered proliferation of E-cadherin+ breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. These findings reveal that E-cadherin reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers. Significance: E-Cadherin promotes the progression and metastasis of breast cancer by upregulating the de novo serine synthesis pathway, offering promising targets for inhibiting tumor growth and metastasis in E-cadherin-expressing tumors.
Collapse
Affiliation(s)
- Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Claudia Wong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Cho
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Junior J. West
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ashleigh J. Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriella C. Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Bishwa Ranjan Si
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jungwoo Kim
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lauren Hoffner
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Moonjung Jung
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert D. Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew J. Ewald
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Sivanand S, Gultekin Y, Winter PS, Vermeulen SY, Tchourine KM, Abbott KL, Danai LV, Gourgue F, Do BT, Crowder K, Kunchok T, Lau AN, Darnell AM, Jefferson A, Morita S, Duda DG, Aguirre AJ, Wolpin BM, Henning N, Spanoudaki V, Maiorino L, Irvine DJ, Yilmaz OH, Lewis CA, Vitkup D, Shalek AK, Vander Heiden MG. Cancer tissue of origin constrains the growth and metabolism of metastases. Nat Metab 2024; 6:1668-1681. [PMID: 39160333 PMCID: PMC11450831 DOI: 10.1038/s42255-024-01105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Metastases arise from subsets of cancer cells that disseminate from the primary tumour1,2. The ability of cancer cells to thrive in a new tissue site is influenced by genetic and epigenetic changes that are important for disease initiation and progression, but these factors alone do not predict if and where cancers metastasize3,4. Specific cancer types metastasize to consistent subsets of tissues, suggesting that primary tumour-associated factors influence where cancers can grow. We find primary and metastatic pancreatic tumours have metabolic similarities and that the tumour-initiating capacity and proliferation of both primary-derived and metastasis-derived cells is favoured in the primary site relative to the metastatic site. Moreover, propagating cells as tumours in the lung or the liver does not enhance their relative ability to form large tumours in those sites, change their preference to grow in the primary site, nor stably alter aspects of their metabolism relative to primary tumours. Primary liver and lung cancer cells also exhibit a preference to grow in their primary site relative to metastatic sites. These data suggest cancer tissue of origin influences both primary and metastatic tumour metabolism and may impact where cancer cells can metastasize.
Collapse
Affiliation(s)
- Sharanya Sivanand
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yetis Gultekin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter S Winter
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sidney Y Vermeulen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura V Danai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Florian Gourgue
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kayla Crowder
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Allison N Lau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandria Jefferson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Satoru Morita
- Edwin L Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dan G Duda
- Edwin L Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole Henning
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Preclinical Imaging and Testing Facility, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Virginia Spanoudaki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Preclinical Imaging and Testing Facility, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Ragon Institute of MGH, MITnd Harvard, Cambridge, MA, USA
| | - Omer H Yilmaz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Alex K Shalek
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MITnd Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Pranzini E, Ippolito L, Pardella E, Giannoni E, Chiarugi P. Adapt and shape: metabolic features within the metastatic niche. Trends Endocrinol Metab 2024:S1043-2760(24)00197-8. [PMID: 39122599 DOI: 10.1016/j.tem.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
The success of disseminating cancer cells (DTCs) at specific metastatic sites is influenced by several metabolic factors. Even before DTCs arrival, metabolic conditioning from the primary tumor participates in creating a favorable premetastatic niche at distant organs. In addition, DTCs adjust their metabolism to better survive along the metastatic journey and successfully colonize their ultimate destination. However, the idea that the environment of the target organs may metabolically impact the metastatic fate is often underestimated. Here, we review the coexistence of two distinct strategies by which cancer cells shape and/or adapt to the metabolic profile of colonized tissues, ultimately creating a proper soil for their seeding and proliferation.
Collapse
Affiliation(s)
- Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy.
| |
Collapse
|
6
|
Feng G, Zhang L, Bao W, Ni J, Wang Y, Huang Y, Lyv J, Cao X, Chen T, You K, Khan H, Shen X. Gentisic acid prevents colorectal cancer metastasis via blocking GPR81-mediated DEPDC5 degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155615. [PMID: 38615493 DOI: 10.1016/j.phymed.2024.155615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Metastasis driven by epithelial-mesenchymal transition (EMT) remains a significant contributor to the poor prognosis of colorectal cancer (CRC), and requires more effective interventions. GPR81 signaling has been linked to tumor metastasis, while lacks an efficient specific inhibitor. PURPOSE Our study aimed to investigate the effect and mechanism of Gentisic acid on colorectal cancer (CRC) metastasis. STUDY DESIGN A lung metastasis mouse model induced by tail vein injection and a subcutaneous graft tumor model were used. Gentisic acid (GA) was administered by an intraperitoneal injection. HCT116 was treated with lactate to establish an in vitro model. METHODS MC38 cells with mCherry fluorescent protein were injected into tail vein to investigate lung metastasis ability in vivo. GA was administered by intraperitoneal injection for 3 weeks. The therapeutic effect was evaluated by survival rates, histochemical analysis, RT-qPCR and live imaging. The mechanism was explored using small interfering RNA (siRNA), Western blotting, RT-qPCR and immunofluorescence. RESULTS GA had a therapeutic effect on CRC metastasis and improved survival rates and pathological changes in dose-dependent manner. GA emerged as an GPR81 inhibitor, effectively suppressed EMT and mTOR signaling in CRC induced by lactate both in vivo and in vitro. Mechanistically, GA halted lactate-induce degradation of DEPDC5 through impeding the activation of Chaperone-mediated autophagy (CMA). CONCLUSION CMA-mediated DEPDC5 degradation is crucial for lactate/GPR81-induced CRC metastasis, and GA may be a promising candidate for metastasis by inhibiting GPR81 signaling.
Collapse
Affiliation(s)
- Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Lijie Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weilian Bao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yirui Wang
- Artificial Intelligence Innovation and Incubation (AI³) Institute, Fudan University, Shanghai, China
| | - Yuran Huang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiaren Lyv
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Tongqing Chen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Artificial Intelligence Innovation and Incubation (AI³) Institute, Fudan University, Shanghai, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Lee CM, Hwang Y, Kim M, Park YC, Kim H, Fang S. PHGDH: a novel therapeutic target in cancer. Exp Mol Med 2024; 56:1513-1522. [PMID: 38945960 PMCID: PMC11297271 DOI: 10.1038/s12276-024-01268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 07/02/2024] Open
Abstract
Serine is a key contributor to the generation of one-carbon units for DNA synthesis during cellular proliferation. In addition, it plays a crucial role in the production of antioxidants that prevent abnormal proliferation and stress in cancer cells. In recent studies, the relationship between cancer metabolism and the serine biosynthesis pathway has been highlighted. In this context, 3-phosphoglycerate dehydrogenase (PHGDH) is notable as a key enzyme that functions as the primary rate-limiting enzyme in the serine biosynthesis pathway, facilitating the conversion of 3-phosphoglycerate to 3-phosphohydroxypyruvate. Elevated PHGDH activity in diverse cancer cells is mediated through genetic amplification, posttranslational modification, increased transcription, and allosteric regulation. Ultimately, these characteristics allow PHGDH to not only influence the growth and progression of cancer but also play an important role in metastasis and drug resistance. Consequently, PHGDH has emerged as a crucial focal point in cancer research. In this review, the structural aspects of PHGDH and its involvement in one-carbon metabolism are investigated, and PHGDH is proposed as a potential therapeutic target in diverse cancers. By elucidating how PHGDH expression promotes cancer growth, the goal of this review is to provide insight into innovative treatment strategies. This paper aims to reveal how PHGDH inhibitors can overcome resistance mechanisms, contributing to the development of effective cancer treatments.
Collapse
Affiliation(s)
- Chae Min Lee
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeseong Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minki Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ye-Chan Park
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeonhui Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Krieg S, Fernandes SI, Kolliopoulos C, Liu M, Fendt SM. Metabolic Signaling in Cancer Metastasis. Cancer Discov 2024; 14:934-952. [PMID: 38592405 PMCID: PMC7616057 DOI: 10.1158/2159-8290.cd-24-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Metastases, which are the leading cause of death in patients with cancer, have metabolic vulnerabilities. Alterations in metabolism fuel the energy and biosynthetic needs of metastases but are also needed to activate cell state switches in cells leading to invasion, migration, colonization, and outgrowth in distant organs. Specifically, metabolites can activate protein kinases as well as receptors and they are crucial substrates for posttranslational modifications on histone and nonhistone proteins. Moreover, metabolic enzymes can have moonlighting functions by acting catalytically, mainly as protein kinases, or noncatalytically through protein-protein interactions. Here, we summarize the current knowledge on metabolic signaling in cancer metastasis. SIGNIFICANCE Effective drugs for the prevention and treatment of metastases will have an immediate impact on patient survival. To overcome the current lack of such drugs, a better understanding of the molecular processes that are an Achilles heel in metastasizing cancer cells is needed. One emerging opportunity is the metabolic changes cancer cells need to undergo to successfully metastasize and grow in distant organs. Mechanistically, these metabolic changes not only fulfill energy and biomass demands, which are often in common between cancer and normal but fast proliferating cells, but also metabolic signaling which enables the cell state changes that are particularly important for the metastasizing cancer cells.
Collapse
Affiliation(s)
- Sarah Krieg
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sara Isabel Fernandes
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Constantinos Kolliopoulos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Ming Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Merteroglu M, Santoro MM. Exploiting the metabolic vulnerability of circulating tumour cells. Trends Cancer 2024; 10:541-556. [PMID: 38580535 DOI: 10.1016/j.trecan.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Metastasis has a major part in the severity of disease and lethality of cancer. Circulating tumour cells (CTCs) represent a reservoir of metastatic precursors in circulation, most of which cannot survive due to hostile conditions in the bloodstream. Surviving cells colonise a secondary site based on a combination of physical, metabolic, and oxidative stress protection states required for that environment. Recent advances in CTC isolation methods and high-resolution 'omics technologies are revealing specific metabolic pathways that support this selection of CTCs. In this review, we discuss recent advances in our understanding of CTC biology and discoveries of adaptations in metabolic pathways during their selection. Understanding these traits and delineating mechanisms by which they confer acquired resistance or vulnerability in CTCs is crucial for developing successful prognostic and therapeutic strategies in cancer.
Collapse
|
10
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
11
|
Taunk K, Jajula S, Bhavsar PP, Choudhari M, Bhanuse S, Tamhankar A, Naiya T, Kalita B, Rapole S. The prowess of metabolomics in cancer research: current trends, challenges and future perspectives. Mol Cell Biochem 2024:10.1007/s11010-024-05041-w. [PMID: 38814423 DOI: 10.1007/s11010-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Cancer due to its heterogeneous nature and large prevalence has tremendous socioeconomic impacts on populations across the world. Therefore, it is crucial to discover effective panels of biomarkers for diagnosing cancer at an early stage. Cancer leads to alterations in cell growth and differentiation at the molecular level, some of which are very unique. Therefore, comprehending these alterations can aid in a better understanding of the disease pathology and identification of the biomolecules that can serve as effective biomarkers for cancer diagnosis. Metabolites, among other biomolecules of interest, play a key role in the pathophysiology of cancer whose levels are significantly altered while 'reprogramming the energy metabolism', a cellular condition favored in cancer cells which is one of the hallmarks of cancer. Metabolomics, an emerging omics technology has tremendous potential to contribute towards the goal of investigating cancer metabolites or the metabolic alterations during the development of cancer. Diverse metabolites can be screened in a variety of biofluids, and tumor tissues sampled from cancer patients against healthy controls to capture the altered metabolism. In this review, we provide an overview of different metabolomics approaches employed in cancer research and the potential of metabolites as biomarkers for cancer diagnosis. In addition, we discuss the challenges associated with metabolomics-driven cancer research and gaze upon the prospects of this emerging field.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH12 Simhat, Haringhata, Nadia, West Bengal, 741249, India
| | - Saikiran Jajula
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Praneeta Pradip Bhavsar
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Mahima Choudhari
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Sadanand Bhanuse
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Anup Tamhankar
- Department of Surgical Oncology, Deenanath Mangeshkar Hospital and Research Centre, Erandawne, Pune, Maharashtra, 411004, India
| | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH12 Simhat, Haringhata, Nadia, West Bengal, 741249, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India.
- Amrita School of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, 682041, India.
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
12
|
Chen S, Xu Y, Zhuo W, Zhang L. The emerging role of lactate in tumor microenvironment and its clinical relevance. Cancer Lett 2024; 590:216837. [PMID: 38548215 DOI: 10.1016/j.canlet.2024.216837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
In recent years, the significant impact of lactate in the tumor microenvironment has been greatly documented. Acting not only as an energy substance in tumor metabolism, lactate is also an imperative signaling molecule. It plays key roles in metabolic remodeling, protein lactylation, immunosuppression, drug resistance, epigenetics and tumor metastasis, which has a tight relation with cancer patients' poor prognosis. This review illustrates the roles lactate plays in different aspects of tumor progression and drug resistance. From the comprehensive effects that lactate has on tumor metabolism and tumor immunity, the therapeutic targets related to it are expected to bring new hope for cancer therapy.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yining Xu
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Lu Zhang
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Cai Z, Li W, Hager S, Wilson JL, Afjehi-Sadat L, Heiss EH, Weichhart T, Heffeter P, Weckwerth W. Targeting PHGDH reverses the immunosuppressive phenotype of tumor-associated macrophages through α-ketoglutarate and mTORC1 signaling. Cell Mol Immunol 2024; 21:448-465. [PMID: 38409249 PMCID: PMC11061172 DOI: 10.1038/s41423-024-01134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) has emerged as a crucial factor in macromolecule synthesis, neutralizing oxidative stress, and regulating methylation reactions in cancer cells, lymphocytes, and endothelial cells. However, the role of PHGDH in tumor-associated macrophages (TAMs) is poorly understood. Here, we found that the T helper 2 (Th2) cytokine interleukin-4 and tumor-conditioned media upregulate the expression of PHGDH in macrophages and promote immunosuppressive M2 macrophage activation and proliferation. Loss of PHGDH disrupts cellular metabolism and mitochondrial respiration, which are essential for immunosuppressive macrophages. Mechanistically, PHGDH-mediated serine biosynthesis promotes α-ketoglutarate production, which activates mTORC1 signaling and contributes to the maintenance of an M2-like macrophage phenotype in the tumor microenvironment. Genetic ablation of PHGDH in macrophages from tumor-bearing mice results in attenuated tumor growth, reduced TAM infiltration, a phenotypic shift of M2-like TAMs toward an M1-like phenotype, downregulated PD-L1 expression and enhanced antitumor T-cell immunity. Our study provides a strong basis for further exploration of PHGDH as a potential target to counteract TAM-mediated immunosuppression and hinder tumor progression.
Collapse
Affiliation(s)
- Zhengnan Cai
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Wan Li
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Sonja Hager
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jayne Louise Wilson
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Leila Afjehi-Sadat
- Research Support Facility, Mass Spectrometry Unit, Faculty of Life Science, University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
15
|
Li L, Qin Y, Chen Y. The enzymes of serine synthesis pathway in cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119697. [PMID: 38382845 DOI: 10.1016/j.bbamcr.2024.119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Metastasis, the major cause of cancer mortality, requires cancer cells to reprogram their metabolism to adapt to and thrive in different environments, thereby leaving metastatic cells metabolic characteristics different from their parental cells. Mounting research has revealed that the de novo serine synthesis pathway (SSP), a glycolytic branching pathway that consumes glucose carbons for serine makeup and α-ketoglutarate generation and thus supports the proliferation, survival, and motility of cancer cells, is one such reprogrammed metabolic pathway. During different metastatic cascades, the SSP enzyme proteins or their enzymatic activity are both dynamically altered; manipulating their expression or catalytic activity could effectively prevent the progression of cancer metastasis; and the SSP enzymatic proteins could even conduce to metastasis via their nonenzymatic functions. In this article we overview the SSP dynamics during cancer metastasis and put the focuses on the regulatory role of the SSP in metastasis and the underlying mechanisms that mainly involve cellular anabolism/catabolism, redox balance, and epigenetics, aiming to provide a theoretical basis for the development of therapeutic strategies for targeting metastatic lesions.
Collapse
Affiliation(s)
- Lei Li
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
16
|
Lee G, Wong C, Cho A, West JJ, Crawford AJ, Russo GC, Si BR, Kim J, Hoffner L, Jang C, Jung M, Leone RD, Konstantopoulos K, Ewald AJ, Wirtz D, Jeong S. Serine synthesis pathway upregulated by E-cadherin is essential for the proliferation and metastasis of breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.541452. [PMID: 37292712 PMCID: PMC10245808 DOI: 10.1101/2023.05.24.541452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The loss of E-cadherin (E-cad), an epithelial cell adhesion molecule, has been implicated in the epithelial-mesenchymal transition (EMT), promoting invasion and migration of cancer cells and, consequently, metastasis. However, recent studies have demonstrated that E-cad supports the survival and proliferation of metastatic cancer cells, suggesting that our understanding of E-cad in metastasis is far from comprehensive. Here, we report that E-cad upregulates the de novo serine synthesis pathway (SSP) in breast cancer cells. The SSP provides metabolic precursors for biosynthesis and resistance to oxidative stress, critically beneficial for E-cad-positive breast cancer cells to achieve faster tumor growth and more metastases. Inhibition of PHGDH, a rate-limiting enzyme in the SSP, significantly and specifically hampered the proliferation of E-cad-positive breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. Our findings reveal that E-cad adhesion molecule significantly reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers.
Collapse
|
17
|
Haitzmann T, Schindlmaier K, Frech T, Mondal A, Bubalo V, Konrad B, Bluemel G, Stiegler P, Lackner S, Hrzenjak A, Eichmann T, Köfeler HC, Leithner K. Serine synthesis and catabolism in starved lung cancer and primary bronchial epithelial cells. Cancer Metab 2024; 12:9. [PMID: 38515202 PMCID: PMC10956291 DOI: 10.1186/s40170-024-00337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Serine and glycine give rise to important building blocks in proliferating cells. Both amino acids are either synthesized de novo or taken up from the extracellular space. In lung cancer, serine synthesis gene expression is variable, yet, expression of the initial enzyme, phosphoglycerate dehydrogenase (PHGDH), was found to be associated with poor prognosis. While the contribution of de novo synthesis to serine pools has been shown to be enhanced by serine starvation, the impact of glucose deprivation, a commonly found condition in solid cancers is poorly understood. Here, we utilized a stable isotopic tracing approach to assess serine and glycine de novo synthesis and uptake in different lung cancer cell lines and normal bronchial epithelial cells in variable serine, glycine, and glucose conditions. Under low glucose supplementation (0.2 mM, 3-5% of normal plasma levels), serine de novo synthesis was maintained or even activated. As previously reported, also gluconeogenesis supplied carbons from glutamine to serine and glycine under these conditions. Unexpectedly, low glucose treatment consistently enhanced serine to glycine conversion, along with an up-regulation of the mitochondrial one-carbon metabolism enzymes, serine hydroxymethyltransferase (SHMT2) and methylenetetrahydrofolate dehydrogenase (MTHFD2). The relative contribution of de novo synthesis greatly increased in low serine/glycine conditions. In bronchial epithelial cells, adaptations occurred in a similar fashion as in cancer cells, but serine synthesis and serine to glycine conversion, as assessed by label enrichments and gene expression levels, were generally lower than in (PHGDH positive) cancer cells. In summary, we found a variable contribution of glucose or non-glucose carbon sources to serine and glycine and a high adaptability of the downstream one-carbon metabolism pathway to variable glucose supply.
Collapse
Affiliation(s)
- Theresa Haitzmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Tobias Frech
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Ayusi Mondal
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | - Visnja Bubalo
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Barbara Konrad
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Gabriele Bluemel
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, 5020, Salzburg, Austria
| | - Philipp Stiegler
- Division of General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036, Graz, Austria
| | - Stefanie Lackner
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010, Graz, Austria
| | - Thomas Eichmann
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
18
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
19
|
Chuang YM, Tzeng SF, Ho PC, Tsai CH. Immunosurveillance encounters cancer metabolism. EMBO Rep 2024; 25:471-488. [PMID: 38216787 PMCID: PMC10897436 DOI: 10.1038/s44319-023-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Tumor cells reprogram nutrient acquisition and metabolic pathways to meet their energetic, biosynthetic, and redox demands. Similarly, metabolic processes in immune cells support host immunity against cancer and determine differentiation and fate of leukocytes. Thus, metabolic deregulation and imbalance in immune cells within the tumor microenvironment have been reported to drive immune evasion and to compromise therapeutic outcomes. Interestingly, emerging evidence indicates that anti-tumor immunity could modulate tumor heterogeneity, aggressiveness, and metabolic reprogramming, suggesting that immunosurveillance can instruct cancer progression in multiple dimensions. This review summarizes our current understanding of how metabolic crosstalk within tumors affects immunogenicity of tumor cells and promotes cancer progression. Furthermore, we explain how defects in the metabolic cascade can contribute to developing dysfunctional immune responses against cancers and discuss the contribution of immunosurveillance to these defects as a feedback mechanism. Finally, we highlight ongoing clinical trials and new therapeutic strategies targeting cellular metabolism in cancer.
Collapse
Affiliation(s)
- Yu-Ming Chuang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| | - Chin-Hsien Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
20
|
Demicco M, Liu XZ, Leithner K, Fendt SM. Metabolic heterogeneity in cancer. Nat Metab 2024; 6:18-38. [PMID: 38267631 DOI: 10.1038/s42255-023-00963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.
Collapse
Affiliation(s)
- Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
21
|
Huang X, Yang X, Xiang L, Chen Y. Serine metabolism in macrophage polarization. Inflamm Res 2024; 73:83-98. [PMID: 38070057 DOI: 10.1007/s00011-023-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE Emerging studies have revealed that macrophages possess different dependences on the uptake, synthesis, and metabolism of serine for their activation and functionalization, necessitating our insight into how serine availability and utilization impact macrophage activation and inflammatory responses. METHODS This article summarizes the reports published domestically and internationally about the serine uptake, synthesis, and metabolic flux by the macrophages polarizing with distinct stimuli and under different pathologic conditions, and particularly analyzes how altered serine metabolism rewires the metabolic behaviors of polarizing macrophages and their genetic and epigenetic reprogramming. RESULTS Macrophages dynamically change serine metabolism to orchestrate their anabolism, redox balance, mitochondrial function, epigenetics, and post-translation modification, and thus match the distinct needs for both classical and alternative activation. CONCLUSION Serine metabolism coordinates multiple metabolic pathways to tailor macrophage polarization and their responses to different pathogenic attacks and thus holds the potential as therapeutic target for types of acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Xue Yang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Li Xiang
- Hengyang Medical School, Hengyang, China
| | - Yuping Chen
- Hengyang Medical School, Hengyang, China.
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
22
|
Vogel FCE, Chaves-Filho AB, Schulze A. Lipids as mediators of cancer progression and metastasis. NATURE CANCER 2024; 5:16-29. [PMID: 38273023 DOI: 10.1038/s43018-023-00702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Metastasis formation is a complex process, involving multiple crucial steps, which are controlled by different regulatory mechanisms. In this context, the contribution of cancer metabolism to the metastatic cascade is being increasingly recognized. This Review focuses on changes in lipid metabolism that contribute to metastasis formation in solid tumors. We discuss the molecular mechanisms by which lipids induce a pro-metastatic phenotype and explore the role of lipids in response to oxidative stress and as signaling molecules. Finally, we reflect on potential avenues to target lipid metabolism to improve the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Felix C E Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Adriano B Chaves-Filho
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
23
|
Karno B, Edwards DN, Chen J. Metabolic control of cancer metastasis: role of amino acids at secondary organ sites. Oncogene 2023; 42:3447-3456. [PMID: 37848626 PMCID: PMC11323979 DOI: 10.1038/s41388-023-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most cancer-related deaths are caused by the metastases, which commonly develop at multiple organ sites including the brain, bone, and lungs. Despite longstanding observations that the spread of cancer is not random, our understanding of the mechanisms that underlie metastatic spread to specific organs remains limited. However, metabolism has recently emerged as an important contributor to metastasis. Amino acids are a significant nutrient source to cancer cells and their metabolism which can serve to fuel biosynthetic pathways capable of facilitating cell survival and tumor expansion while also defending against oxidative stress. Compared to the primary tumor, each of the common metastatic sites exhibit vastly different nutrient compositions and environmental stressors, necessitating the need of cancer cells to metabolically thrive in their new environment during colonization and outgrowth. This review seeks to summarize the current literature on amino acid metabolism pathways that support metastasis to common secondary sites, including impacts on immune responses. Understanding the role of amino acids in secondary organ sites may offer opportunities for therapeutic inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Breelyn Karno
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Deanna N Edwards
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jin Chen
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
25
|
Tombari C, Zannini A, Bertolio R, Pedretti S, Audano M, Triboli L, Cancila V, Vacca D, Caputo M, Donzelli S, Segatto I, Vodret S, Piazza S, Rustighi A, Mantovani F, Belletti B, Baldassarre G, Blandino G, Tripodo C, Bicciato S, Mitro N, Del Sal G. Mutant p53 sustains serine-glycine synthesis and essential amino acids intake promoting breast cancer growth. Nat Commun 2023; 14:6777. [PMID: 37880212 PMCID: PMC10600207 DOI: 10.1038/s41467-023-42458-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
Reprogramming of amino acid metabolism, sustained by oncogenic signaling, is crucial for cancer cell survival under nutrient limitation. Here we discovered that missense mutant p53 oncoproteins stimulate de novo serine/glycine synthesis and essential amino acids intake, promoting breast cancer growth. Mechanistically, mutant p53, unlike the wild-type counterpart, induces the expression of serine-synthesis-pathway enzymes and L-type amino acid transporter 1 (LAT1)/CD98 heavy chain heterodimer. This effect is exacerbated by amino acid shortage, representing a mutant p53-dependent metabolic adaptive response. When cells suffer amino acids scarcity, mutant p53 protein is stabilized and induces metabolic alterations and an amino acid transcriptional program that sustain cancer cell proliferation. In patient-derived tumor organoids, pharmacological targeting of either serine-synthesis-pathway and LAT1-mediated transport synergizes with amino acid shortage in blunting mutant p53-dependent growth. These findings reveal vulnerabilities potentially exploitable for tackling breast tumors bearing missense TP53 mutations.
Collapse
Affiliation(s)
- Camilla Tombari
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149, Trieste, Italy
| | - Alessandro Zannini
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149, Trieste, Italy
| | - Rebecca Bertolio
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149, Trieste, Italy
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Milan, Italy
| | - Matteo Audano
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Milan, Italy
| | - Luca Triboli
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149, Trieste, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133, Palermo, Italy
| | - Davide Vacca
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133, Palermo, Italy
| | - Manuel Caputo
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149, Trieste, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ilenia Segatto
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Simone Vodret
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149, Trieste, Italy
| | - Silvano Piazza
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149, Trieste, Italy
| | - Alessandra Rustighi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149, Trieste, Italy
| | - Fiamma Mantovani
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Barbara Belletti
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Gustavo Baldassarre
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133, Palermo, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149, Trieste, Italy.
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
26
|
Planque M, Igelmann S, Ferreira Campos AM, Fendt SM. Spatial metabolomics principles and application to cancer research. Curr Opin Chem Biol 2023; 76:102362. [PMID: 37413787 DOI: 10.1016/j.cbpa.2023.102362] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Mass spectrometry imaging (MSI) is an emerging technology in cancer metabolomics. Desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI) MSI are complementary techniques to identify hundreds of metabolites in space with close to single-cell resolution. This technology leap enables research focusing on tumor heterogeneity, cancer cell plasticity, and the communication signals between cancer and stromal cells in the tumor microenvironment (TME). Currently, unprecedented knowledge is generated using spatial metabolomics in fundamental cancer research. Yet, also translational applications are emerging, including the assessment of spatial drug distribution in organs and tumors. Moreover, clinical research investigates the use of spatial metabolomics as a rapid pathology tool during cancer surgeries. Here, we summarize MSI applications, the knowledge gained by this technology in space, future directions, and developments needed.
Collapse
Affiliation(s)
- Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sebastian Igelmann
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ana Margarida Ferreira Campos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
27
|
Zheng P, Mao Z, Luo M, Zhou L, Wang L, Liu H, Liu W, Wei S. Comprehensive bioinformatics analysis of the solute carrier family and preliminary exploration of SLC25A29 in lung adenocarcinoma. Cancer Cell Int 2023; 23:222. [PMID: 37775731 PMCID: PMC10543265 DOI: 10.1186/s12935-023-03082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
According to the latest epidemiological investigation, lung adenocarcinoma (LUAD) is one of the most fatal cancer among both men and women. Despite continuous advancements in treatment approaches in recent years, the prognosis for LUAD remains relatively poor. Given the crucial role of the solute carrier (SLC) family in maintaining cellular energy metabolism stability, we conducted a comprehensive analysis of the association between SLC genes and LUAD prognosis. In the present study, we identified 71 genes among the SLC family members, of which 32 were downregulated and 39 were upregulated in LUAD samples. Based on these differentially expressed genes, a prognostic risk scoring model was established that was composed of five genes (SLC16A7, SLC16A4, SLC16A3, SLC12A8, and SLC25A15) and clinical characteristics; this model could effectively predict the survival and prognosis of patients in the cohort. Notably, SLC2A1, SLC25A29, and SLC27A4 were identified as key genes associated with survival and tumor stage. Further analysis revealed that SLC25A29 was underexpressed in LUAD tissue and regulated the phenotype of endothelial cells. Endothelial cell proliferation and migration increased and apoptosis decreased with a decrease in SLC25A29 expression. Investigation of the upstream regulatory mechanisms of SLC25A29 revealed that SLC25A29 expression gradually decreased as the lactate concentration increased. This phenomenon suggested that the expression of SLC25A29 may be related to lactylation modification. ChIP-qPCR experiments confirmed the critical regulatory role played by H3K14la and H3K18la modifications in the promoter region of SLC25A29. In conclusion, this study confirmed the role of SLC family genes in LUAD prognosis and revealed the role of SLC25A29 in regulating endothelial cell phenotypes. These study results provided important clues to further understand LUAD pathogenesis and develop appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Miao Luo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
28
|
Li AM, He B, Karagiannis D, Li Y, Jiang H, Srinivasan P, Ramirez Y, Zhou MN, Curtis C, Gruber JJ, Lu C, Rankin EB, Ye J. Serine starvation silences estrogen receptor signaling through histone hypoacetylation. Proc Natl Acad Sci U S A 2023; 120:e2302489120. [PMID: 37695911 PMCID: PMC10515173 DOI: 10.1073/pnas.2302489120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Loss of estrogen receptor (ER) pathway activity promotes breast cancer progression, yet how this occurs remains poorly understood. Here, we show that serine starvation, a metabolic stress often found in breast cancer, represses estrogen receptor alpha (ERα) signaling by reprogramming glucose metabolism and epigenetics. Using isotope tracing and time-resolved metabolomic analyses, we demonstrate that serine is required to maintain glucose flux through glycolysis and the TCA cycle to support acetyl-CoA generation for histone acetylation. Consequently, limiting serine depletes histone H3 lysine 27 acetylation (H3K27ac), particularly at the promoter region of ER pathway genes including the gene encoding ERα, ESR1. Mechanistically, serine starvation impairs acetyl-CoA-dependent gene expression by inhibiting the entry of glycolytic carbon into the TCA cycle and down-regulating the mitochondrial citrate exporter SLC25A1, a critical enzyme in the production of nucleocytosolic acetyl-CoA from glucose. Consistent with this model, total H3K27ac and ERα expression are suppressed by SLC25A1 inhibition and restored by acetate, an alternate source of acetyl-CoA, in serine-free conditions. We thus uncover an unexpected role for serine in sustaining ER signaling through the regulation of acetyl-CoA metabolism.
Collapse
Affiliation(s)
- Albert M Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305
| | - Bo He
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Yang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Preethi Srinivasan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Yaniel Ramirez
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Meng-Ning Zhou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | - Christina Curtis
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Joshua J Gruber
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
29
|
Shunxi W, Xiaoxue Y, Guanbin S, Li Y, Junyu J, Wanqian L. Serine Metabolic Reprogramming in Tumorigenesis, Tumor Immunity, and Clinical Treatment. Adv Nutr 2023; 14:1050-1066. [PMID: 37187454 PMCID: PMC10509429 DOI: 10.1016/j.advnut.2023.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Serine has been recently identified as an essential metabolite for oncogenesis, progression, and adaptive immunity. Influenced by many physiologic or tumor environmental factors, the metabolic pathways of serine synthesis, uptake, and usage are heterogeneously reprogrammed and frequently amplified in tumor or tumor-associated cells. The hyperactivation of serine metabolism promotes abnormal cellular nucleotide/protein/lipid synthesis, mitochondrial function, and epigenetic modifications, which drive malignant transformation, unlimited proliferation, metastasis, immunosuppression, and drug resistance of tumor cells. Dietary restriction of serine or phosphoglycerate dehydrogenase depletion mitigates tumor growth and extends the survival of tumor patients. Correspondingly, these findings triggered a boom in the development of novel therapeutic agents targeting serine metabolism. In this study, recent discoveries in the underlying mechanism and cellular function of serine metabolic reprogramming are summarized. The vital role of serine metabolism in oncogenesis, tumor stemness, tumor immunity, and therapeutic resistance is outlined. Finally, some potential tumor therapeutic concepts, strategies, and limitations of targeting the serine metabolic pathway are described in detail. Taken together, this review underscores the importance of serine metabolic reprogramming in tumorigenesis and progression and highlights new opportunities for dietary restriction or selective pharmacologic intervention.
Collapse
Affiliation(s)
- Wang Shunxi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yuan Xiaoxue
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Song Guanbin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Jin Junyu
- Department of Oncology, Chenjiaqiao Hospital, Shapingba, Chongqing, China.
| | - Liu Wanqian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
30
|
Li J, Luo X, Wei M, Li Z, Li Y, Zhao H, Miyagishi M, Kasim V, Wu S. YY2/PHGDH axis suppresses tumorigenesis by inhibiting tumor cell de novo serine biosynthesis. Biomed Pharmacother 2023; 165:115006. [PMID: 37327589 DOI: 10.1016/j.biopha.2023.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Metabolic reprogramming is one of the key features of tumors facilitating their rapid proliferation and adaptation to harsh microenvironments. Yin Yang 2 (YY2) has recently been reported as a tumor suppressor downregulated in various types of tumors; however, the molecular mechanisms underlying its tumor-suppressive activity remain poorly understood. Furthermore, the involvement of YY2 in tumor cell metabolic reprogramming remains unclear. Herein, we aimed to elucidate the novel regulatory mechanism of YY2 in the suppression of tumorigenesis. Using transcriptomic analysis, we uncovered an unprecedented link between YY2 and tumor cell serine metabolism. YY2 alteration could negatively regulate the expression level of phosphoglycerate dehydrogenase (PHGDH), the first enzyme in the serine biosynthesis pathway, and consequently, tumor cell de novo serine biosynthesis. Mechanistically, we revealed that YY2 binds to the PHGDH promoter and suppresses its transcriptional activity. This, in turn, leads to decreased production of serine, nucleotides, and cellular reductants NADH and NADPH, which subsequently suppresses tumorigenic potential. These findings reveal a novel function of YY2 as a regulator of the serine metabolic pathway in tumor cells and provide new insights into its tumor suppressor activity. Furthermore, our findings suggest the potential of YY2 as a target for metabolic-based antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinxin Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mankun Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhuolin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yanjun Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hezhao Zhao
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Makoto Miyagishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China.
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
31
|
Abstract
Amino acid dysregulation has emerged as an important driver of disease progression in various contexts. l-Serine lies at a central node of metabolism, linking carbohydrate metabolism, transamination, glycine, and folate-mediated one-carbon metabolism to protein synthesis and various downstream bioenergetic and biosynthetic pathways. l-Serine is produced locally in the brain but is sourced predominantly from glycine and one-carbon metabolism in peripheral tissues via liver and kidney metabolism. Compromised regulation or activity of l-serine synthesis and disposal occurs in the context of genetic diseases as well as chronic disease states, leading to low circulating l-serine levels and pathogenesis in the nervous system, retina, heart, and aging muscle. Dietary interventions in preclinical models modulate sensory neuropathy, retinopathy, tumor growth, and muscle regeneration. A serine tolerance test may provide a quantitative readout of l-serine homeostasis that identifies patients who may be susceptible to neuropathy or responsive to therapy.
Collapse
Affiliation(s)
- Michal K Handzlik
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| |
Collapse
|
32
|
Li Z, Vacanti NM. A Tale of Three Proteomes: Visualizing Protein and Transcript Abundance Relationships in the Breast Cancer Proteome Portal. J Proteome Res 2023; 22:2727-2733. [PMID: 37493333 DOI: 10.1021/acs.jproteome.3c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Molecular characterization is transforming research on novel therapeutics in breast cancer. High-throughput methodologies are unbiased to hypotheses; thus, data produced are relevant to address unlimited questions and provide resources for the experimental design process. However, the opportunity is often overlooked because data are not readily accessed or analyzed. Herein, the Breast Cancer Proteome Portal, the only online tool for analyzing protein and transcript abundances across the three breast cancer proteomics studies, is presented. The tool is applied to demonstrate that cofunctioning protein abundances are highly correlated and, conversely, high abundance correlation may be an indicator of cofunction. Furthermore, the cofunction-correlation relationship is less resolved at the transcript level. By applying analysis and visualization tools within the Breast Cancer Proteome Portal, insights are garnered about serine synthesis and the compartmentalization of one-carbon metabolism in breast cancer, and a transcription factor tumorigenic regulatory network of glutamine deamination and oxidation is proposed, illustrating that the Breast Cancer Proteome Portal provides an interface for garnering insights from the information-rich studies of the breast cancer proteome.
Collapse
Affiliation(s)
- Zhuoheng Li
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853-0001, United States
| | - Nathaniel M Vacanti
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853-0001, United States
| |
Collapse
|
33
|
Edwards DN. Amino Acid Metabolism in Bone Metastatic Disease. Curr Osteoporos Rep 2023; 21:344-353. [PMID: 37277592 DOI: 10.1007/s11914-023-00797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
PURPOSE OF REVIEW Breast and prostate tumors frequently metastasize to the bone, but the underlying mechanisms for osteotropism remain elusive. An emerging feature of metastatic progression is metabolic adaptation of cancer cells to new environments. This review will summarize the recent advances on how cancer cells utilize amino acid metabolism during metastasis, from early dissemination to interactions with the bone microenvironment. RECENT FINDINGS Recent studies have suggested that certain metabolic preferences for amino acids may be associated with bone metastasis. Once in the bone microenvironment, cancer cells encounter a favorable microenvironment, where a changing nutrient composition of the tumor-bone microenvironment may alter metabolic interactions with bone-resident cells to further drive metastatic outgrowth. Enhanced amino acid metabolic programs are associated with bone metastatic disease and may be further augmented by the bone microenvironment. Additional studies are necessary to fully elucidate the role of amino acid metabolism on bone metastasis.
Collapse
Affiliation(s)
- Deanna N Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
34
|
Wu D, Zhang K, Khan FA, Wu Q, Pandupuspitasari NS, Tang Y, Guan K, Sun F, Huang C. The emerging era of lactate: A rising star in cellular signaling and its regulatory mechanisms. J Cell Biochem 2023; 124:1067-1081. [PMID: 37566665 DOI: 10.1002/jcb.30458] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Cellular metabolites are ancient molecules with pleiotropic implications in health and disease. Beyond their cognate roles, they have signaling functions as the ligands for specific receptors and the precursors for epigenetic or posttranslational modifications. Lactate has long been recognized as a metabolic waste and fatigue product mainly produced from glycolytic metabolism. Recent evidence however suggests lactate is an unique molecule with diverse signaling attributes in orchestration of numerous biological processes, including tumor immunity and neuronal survival. The copious metabolic and non-metabolic functions of lactate mediated by its bidirectional shuttle between cells or intracellular organelles lead to a phenotype called "lactormone." Importantly, the mechanisms of lactate signaling, via acting as a molecular sensor and a regulator of NAD+ metabolism and AMP-activated protein kinase signaling, and via the newly identified lactate-driven lactylation, have been discovered. Further, we include a brief discussion about the autocrine regulation of efferocytosis by lactate in Sertoli cells which favoraerobic glycolysis. By emphasizing a repertoire of the most recent discovered mechanisms of lactate signaling, this review will open tantalizing avenues for future investigations cracking the regulatory topology of lactate signaling covered in the veil of mystery.
Collapse
Affiliation(s)
- Di Wu
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Kejia Zhang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, Ministry of Research and Technology National Research and Innovation Agency, Jakarta, Indonesia
| | - Qin Wu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, China
| | | | - Yuan Tang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Fei Sun
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| |
Collapse
|
35
|
Couto JP, Vulin M, Jehanno C, Coissieux M, Hamelin B, Schmidt A, Ivanek R, Sethi A, Bräutigam K, Frei AL, Hager C, Manivannan M, Gómez‐Miragaya J, Obradović MMS, Varga Z, Koelzer VH, Mertz KD, Bentires‐Alj M. Nicotinamide N-methyltransferase sustains a core epigenetic program that promotes metastatic colonization in breast cancer. EMBO J 2023; 42:e112559. [PMID: 37259596 PMCID: PMC10308372 DOI: 10.15252/embj.2022112559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Metastatic colonization of distant organs accounts for over 90% of deaths related to solid cancers, yet the molecular determinants of metastasis remain poorly understood. Here, we unveil a mechanism of colonization in the aggressive basal-like subtype of breast cancer that is driven by the NAD+ metabolic enzyme nicotinamide N-methyltransferase (NNMT). We demonstrate that NNMT imprints a basal genetic program into cancer cells, enhancing their plasticity. In line, NNMT expression is associated with poor clinical outcomes in patients with breast cancer. Accordingly, ablation of NNMT dramatically suppresses metastasis formation in pre-clinical mouse models. Mechanistically, NNMT depletion results in a methyl overflow that increases histone H3K9 trimethylation (H3K9me3) and DNA methylation at the promoters of PR/SET Domain-5 (PRDM5) and extracellular matrix-related genes. PRDM5 emerged in this study as a pro-metastatic gene acting via induction of cancer-cell intrinsic transcription of collagens. Depletion of PRDM5 in tumor cells decreases COL1A1 deposition and impairs metastatic colonization of the lungs. These findings reveal a critical activity of the NNMT-PRDM5-COL1A1 axis for cancer cell plasticity and metastasis in basal-like breast cancer.
Collapse
Affiliation(s)
- Joana Pinto Couto
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Milica Vulin
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Charly Jehanno
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Marie‐May Coissieux
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Baptiste Hamelin
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Alexander Schmidt
- Proteomics Core Facility, BiozentrumUniversity of BaselBaselSwitzerland
| | - Robert Ivanek
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Atul Sethi
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Konstantin Bräutigam
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
- Institute of PathologyUniversity of BernBernSwitzerland
| | - Anja L Frei
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
| | - Carolina Hager
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Madhuri Manivannan
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Jorge Gómez‐Miragaya
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Milan MS Obradović
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Zsuzsanna Varga
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
| | - Viktor H Koelzer
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
| | - Kirsten D Mertz
- Institute of PathologyCantonal Hospital BasellandLiestalSwitzerland
| | - Mohamed Bentires‐Alj
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
36
|
Rattigan KM, Zarou MM, Helgason GV. Metabolism in stem cell-driven leukemia: parallels between hematopoiesis and immunity. Blood 2023; 141:2553-2565. [PMID: 36634302 PMCID: PMC10646800 DOI: 10.1182/blood.2022018258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Our understanding of cancer metabolism spans from its role in cellular energetics and supplying the building blocks necessary for proliferation, to maintaining cellular redox and regulating the cellular epigenome and transcriptome. Cancer metabolism, once thought to be solely driven by upregulated glycolysis, is now known to comprise multiple pathways with great plasticity in response to extrinsic challenges. Furthermore, cancer cells can modify their surrounding niche during disease initiation, maintenance, and metastasis, thereby contributing to therapy resistance. Leukemia is a paradigm model of stem cell-driven cancer. In this study, we review how leukemia remodels the niche and rewires its metabolism, with particular attention paid to therapy-resistant stem cells. Specifically, we aim to give a global, nonexhaustive overview of key metabolic pathways. By contrasting the metabolic rewiring required by myeloid-leukemic stem cells with that required for hematopoiesis and immune cell function, we highlight the metabolic features they share. This is a critical consideration when contemplating anticancer metabolic inhibitor options, especially in the context of anticancer immune therapies. Finally, we examine pathways that have not been studied in leukemia but are critical in solid cancers in the context of metastasis and interaction with new niches. These studies also offer detailed mechanisms that are yet to be investigated in leukemia. Given that cancer (and normal) cells can meet their energy requirements by not only upregulating metabolic pathways but also utilizing systemically available substrates, we aim to inform how interlinked these metabolic pathways are, both within leukemic cells and between cancer cells and their niche.
Collapse
Affiliation(s)
- Kevin M. Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martha M. Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - G. Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
37
|
Transcription factor NKX2-1 drives serine and glycine synthesis addiction in cancer. Br J Cancer 2023; 128:1862-1878. [PMID: 36932191 PMCID: PMC10147615 DOI: 10.1038/s41416-023-02216-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND One-third of cancers activate endogenous synthesis of serine/glycine, and can become addicted to this pathway to sustain proliferation and survival. Mechanisms driving this metabolic rewiring remain largely unknown. METHODS NKX2-1 overexpressing and NKX2-1 knockdown/knockout T-cell leukaemia and lung cancer cell line models were established to study metabolic rewiring using ChIP-qPCR, immunoblotting, mass spectrometry, and proliferation and invasion assays. Findings and therapeutic relevance were validated in mouse models and confirmed in patient datasets. RESULTS Exploring T-cell leukaemia, lung cancer and neuroendocrine prostate cancer patient datasets highlighted the transcription factor NKX2-1 as putative driver of serine/glycine metabolism. We demonstrate that transcription factor NKX2-1 binds and transcriptionally upregulates serine/glycine synthesis enzyme genes, enabling NKX2-1 expressing cells to proliferate and invade in serine/glycine-depleted conditions. NKX2-1 driven serine/glycine synthesis generates nucleotides and redox molecules, and is associated with an altered cellular lipidome and methylome. Accordingly, NKX2-1 tumour-bearing mice display enhanced tumour aggressiveness associated with systemic metabolic rewiring. Therapeutically, NKX2-1-expressing cancer cells are more sensitive to serine/glycine conversion inhibition by repurposed anti-depressant sertraline, and to etoposide chemotherapy. CONCLUSION Collectively, we identify NKX2-1 as a novel transcriptional regulator of serine/glycine synthesis addiction across cancers, revealing a therapeutic vulnerability of NKX2-1-driven cancers. Transcription factor NKX2-1 fuels cancer cell proliferation and survival by hyperactivating serine/glycine synthesis, highlighting this pathway as a novel therapeutic target in NKX2-1-positive cancers.
Collapse
|
38
|
Puente-Cobacho B, Varela-López A, Quiles JL, Vera-Ramirez L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 2023; 42:49-85. [PMID: 36701089 PMCID: PMC10014738 DOI: 10.1007/s10555-022-10077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023]
Abstract
Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain. .,Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
39
|
Altea-Manzano P, Doglioni G, Liu Y, Cuadros AM, Nolan E, Fernández-García J, Wu Q, Planque M, Laue KJ, Cidre-Aranaz F, Liu XZ, Marin-Bejar O, Van Elsen J, Vermeire I, Broekaert D, Demeyer S, Spotbeen X, Idkowiak J, Montagne A, Demicco M, Alkan HF, Rabas N, Riera-Domingo C, Richard F, Geukens T, De Schepper M, Leduc S, Hatse S, Lambrechts Y, Kay EJ, Lilla S, Alekseenko A, Geldhof V, Boeckx B, de la Calle Arregui C, Floris G, Swinnen JV, Marine JC, Lambrechts D, Pelechano V, Mazzone M, Zanivan S, Cools J, Wildiers H, Baud V, Grünewald TGP, Ben-David U, Desmedt C, Malanchi I, Fendt SM. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling. NATURE CANCER 2023; 4:344-364. [PMID: 36732635 PMCID: PMC7615234 DOI: 10.1038/s43018-023-00513-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.
Collapse
Affiliation(s)
- Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Yawen Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Alejandro M Cuadros
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | | | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Qi Wu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kathrin Julia Laue
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Florencia Cidre-Aranaz
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joke Van Elsen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ines Vermeire
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sofie Demeyer
- Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium
| | - Xander Spotbeen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jakub Idkowiak
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Aurélie Montagne
- Université Paris Cité, NF-kappaB, Différenciation et Cancer, Paris, France
| | - Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | | | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maxim De Schepper
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sophia Leduc
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yentl Lambrechts
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Vincent Geldhof
- Laboratory for Angiogenesis and Vascular Metabolism, VIB-KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Celia de la Calle Arregui
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Giuseppe Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jan Cools
- Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Véronique Baud
- Université Paris Cité, NF-kappaB, Différenciation et Cancer, Paris, France
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uri Ben-David
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
40
|
Abstract
Tumours exhibit notable metabolic alterations compared with their corresponding normal tissue counterparts. These metabolic alterations can support anabolic growth, enable survival in hostile environments and regulate gene expression programmes that promote malignant progression. Whether these metabolic changes are selected for during malignant transformation or can themselves be drivers of tumour initiation is unclear. However, intriguingly, many of the major bottlenecks for tumour initiation - control of cell fate, survival and proliferation - are all amenable to metabolic regulation. In this article, we review evidence demonstrating a critical role for metabolic pathways in processes that support the earliest stages of tumour development. We discuss how cell-intrinsic factors, such as the cell of origin or transforming oncogene, and cell-extrinsic factors, such as local nutrient availability, promote or restrain tumour initiation. Deeper insight into how metabolic pathways control tumour initiation will improve our ability to design metabolic interventions to limit tumour incidence.
Collapse
Affiliation(s)
- Julia S Brunner
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
41
|
Medeiros HCD, Yang C, Herrera CK, Broadwater D, Ensink E, Bates M, Lunt RR, Lunt SY. Phosphorescent Metal Halide Nanoclusters for Tunable Photodynamic Therapy. Chemistry 2023; 29:e202202881. [PMID: 36351205 PMCID: PMC9898232 DOI: 10.1002/chem.202202881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is currently limited by the inability of photosensitizers (PSs) to enter cancer cells and generate sufficient reactive oxygen species. Utilizing phosphorescent triplet states of novel PSs to generate singlet oxygen offers exciting possibilities for PDT. Here, we report phosphorescent octahedral molybdenum (Mo)-based nanoclusters (NC) with tunable toxicity for PDT of cancer cells without use of rare or toxic elements. Upon irradiation with blue light, these molecules are excited to their singlet state and then undergo intersystem crossing to their triplet state. These NCs display surprising tunability between their cellular cytotoxicity and phototoxicity by modulating the apical halide ligand with a series of short chain fatty acids from trifluoroacetate to heptafluorobutyrate. The NCs are effective in PDT against breast, skin, pancreas, and colon cancer cells as well as their highly metastatic derivatives, demonstrating the robustness of these NCs in treating a wide variety of aggressive cancer cells. Furthermore, these NCs are internalized by cancer cells, remain in the lysosome, and can be modulated by the apical ligand to produce singlet oxygen. Thus, (Mo)-based nanoclusters are an excellent platform for optimizing PSs. Our results highlight the profound impact of molecular nanocluster chemistry in PDT applications.
Collapse
Affiliation(s)
- Hyllana C. D. Medeiros
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Chenchen Yang
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Christopher K. Herrera
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Deanna Broadwater
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Elliot Ensink
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Matthew Bates
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Richard R. Lunt
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
- Department of Physics and AstronomyMichigan State UniversityEast Lansing, MI48824USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
42
|
Zhou X, Tian C, Cao Y, Zhao M, Wang K. The role of serine metabolism in lung cancer: From oncogenesis to tumor treatment. Front Genet 2023; 13:1084609. [PMID: 36699468 PMCID: PMC9868472 DOI: 10.3389/fgene.2022.1084609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolic reprogramming is an important hallmark of malignant tumors. Serine is a non-essential amino acid involved in cell proliferation. Serine metabolism, especially the de novo serine synthesis pathway, forms a metabolic network with glycolysis, folate cycle, and one-carbon metabolism, which is essential for rapidly proliferating cells. Owing to the rapid development in metabolomics, abnormal serine metabolism may serve as a biomarker for the early diagnosis and pathological typing of tumors. Targeting serine metabolism also plays an essential role in precision and personalized cancer therapy. This article is a systematic review of de novo serine biosynthesis and the link between serine and folate metabolism in tumorigenesis, particularly in lung cancer. In addition, we discuss the potential of serine metabolism to improve tumor treatment.
Collapse
|
43
|
Lin YS, Chen YC, Chen TE, Cheng ML, Lynn KS, Shah P, Chen JS, Huang RFS. Probing Folate-Responsive and Stage-Sensitive Metabolomics and Transcriptional Co-Expression Network Markers to Predict Prognosis of Non-Small Cell Lung Cancer Patients. Nutrients 2022; 15:nu15010003. [PMID: 36615660 PMCID: PMC9823804 DOI: 10.3390/nu15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Tumour metabolomics and transcriptomics co-expression network as related to biological folate alteration and cancer malignancy remains unexplored in human non-small cell lung cancers (NSCLC). To probe the diagnostic biomarkers, tumour and pair lung tissue samples (n = 56) from 97 NSCLC patients were profiled for ultra-performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS)-analysed metabolomics, targeted transcriptionomics, and clinical folate traits. Weighted Gene Co-expression Network Analysis (WGCNA) was performed. Tumour lactate was identified as the top VIP marker to predict advance NSCLC (AUC = 0.765, Sig = 0.017, CI 0.58-0.95). Low folate (LF)-tumours vs. adjacent lungs displayed higher glycolytic index of lactate and glutamine-associated amino acids in enriched biological pathways of amino sugar and glutathione metabolism specific to advance NSCLCs. WGCNA classified the green module for hub serine-navigated glutamine metabolites inversely associated with tumour and RBC folate, which module metabolites co-expressed with a predominant up-regulation of LF-responsive metabolic genes in glucose transport (GLUT1), de no serine synthesis (PHGDH, PSPH, and PSAT1), folate cycle (SHMT1/2 and PCFR), and down-regulation in glutaminolysis (SLC1A5, SLC7A5, GLS, and GLUD1). The LF-responsive WGCNA markers predicted poor survival rates in lung cancer patients, which could aid in optimizing folate intervention for better prognosis of NSCLCs susceptible to folate malnutrition.
Collapse
Affiliation(s)
- Yu-Shun Lin
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yen-Chu Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Tzu-En Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ke-Shiuan Lynn
- Department of Mathematics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Pramod Shah
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Praexisio Taiwan Inc., New Taipei City 22180, Taiwan
| | - Jin-Shing Chen
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100225, Taiwan
- Correspondence: (J.-S.C.); (R.-F.S.H.); Tel.: +886-2-2905-2512 (R.-F.S.H.)
| | - Rwei-Fen S. Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (J.-S.C.); (R.-F.S.H.); Tel.: +886-2-2905-2512 (R.-F.S.H.)
| |
Collapse
|
44
|
Nascentes Melo LM, Lesner NP, Sabatier M, Ubellacker JM, Tasdogan A. Emerging metabolomic tools to study cancer metastasis. Trends Cancer 2022; 8:988-1001. [PMID: 35909026 DOI: 10.1016/j.trecan.2022.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
Metastasis is responsible for 90% of deaths in patients with cancer. Understanding the role of metabolism during metastasis has been limited by the development of robust and sensitive technologies that capture metabolic processes in metastasizing cancer cells. We discuss the current technologies available to study (i) metabolism in primary and metastatic cancer cells and (ii) metabolic interactions between cancer cells and the tumor microenvironment (TME) at different stages of the metastatic cascade. We identify advantages and disadvantages of each method and discuss how these tools and technologies will further improve our understanding of metastasis. Studies investigating the complex metabolic rewiring of different cells using state-of-the-art metabolomic technologies have the potential to reveal novel biological processes and therapeutic interventions for human cancers.
Collapse
Affiliation(s)
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Sabatier
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site, Essen, Germany.
| |
Collapse
|
45
|
Altea-Manzano P, Vandekeere A, Edwards-Hicks J, Roldan M, Abraham E, Lleshi X, Guerrieri AN, Berardi D, Wills J, Junior JM, Pantazi A, Acosta JC, Sanchez-Martin RM, Fendt SM, Martin-Hernandez M, Finch AJ. Reversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells. Mol Cell 2022; 82:4537-4547.e7. [PMID: 36327975 DOI: 10.1016/j.molcel.2022.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/13/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022]
Abstract
Inhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.
Collapse
Affiliation(s)
- Patricia Altea-Manzano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain; Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium
| | - Joy Edwards-Hicks
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Mar Roldan
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain
| | - Emily Abraham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Xhordi Lleshi
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Ania Naila Guerrieri
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Domenica Berardi
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Jimi Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Jair Marques Junior
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Asimina Pantazi
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium
| | - Miguel Martin-Hernandez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain; Biochemistry and Molecular Biology I Department, School of Sciences, University of Granada, Avda Fuentenueva, 18071 Granada, Spain.
| | - Andrew J Finch
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK; Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
46
|
Cuttano R, Afanga MK, Bianchi F. MicroRNAs and Drug Resistance in Non-Small Cell Lung Cancer: Where Are We Now and Where Are We Going. Cancers (Basel) 2022; 14:5731. [PMID: 36497213 PMCID: PMC9740066 DOI: 10.3390/cancers14235731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in the world. The development of drug resistance represents a major challenge for the clinical management of patients. In the last years, microRNAs have emerged as critical modulators of anticancer therapy response. Here, we make a critical appraisal of the literature available on the role of miRNAs in the regulation of drug resistance in non-small cell lung cancer (NSCLC). We performed a comprehensive annotation of miRNAs expression profiles in chemoresistant versus sensitive NSCLC, of the drug resistance mechanisms tuned up by miRNAs, and of the relative experimental evidence in support of these. Furthermore, we described the pros and cons of experimental approaches used to investigate miRNAs in the context of therapeutic resistance, to highlight potential limitations which should be overcome to translate experimental evidence into practice ultimately improving NSCLC therapy.
Collapse
Affiliation(s)
| | | | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
47
|
CD8 + T cell metabolic rewiring defined by scRNA-seq identifies a critical role of ASNS expression dynamics in T cell differentiation. Cell Rep 2022; 41:111639. [PMID: 36384124 DOI: 10.1016/j.celrep.2022.111639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/05/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
T cells dynamically rewire their metabolism during an immune response. We applied single-cell RNA sequencing to CD8+ T cells activated and differentiated in vitro in physiological medium to resolve these metabolic dynamics. We identify a differential time-dependent reliance of activating T cells on the synthesis versus uptake of various non-essential amino acids, which we corroborate with functional assays. We also identify metabolic genes that potentially dictate the outcome of T cell differentiation, by ranking them based on their expression dynamics. Among them, we find asparagine synthetase (Asns), whose expression peaks for effector T cells and decays toward memory formation. Disrupting these expression dynamics by ASNS overexpression promotes an effector phenotype, enhancing the anti-tumor response of adoptively transferred CD8+ T cells in a mouse melanoma model. We thus provide a resource of dynamic expression changes during CD8+ T cell activation and differentiation, and identify ASNS expression dynamics as a modulator of CD8+ T cell differentiation.
Collapse
|
48
|
Jiménez JA, Lawlor ER, Lyssiotis CA. Amino acid metabolism in primary bone sarcomas. Front Oncol 2022; 12:1001318. [PMID: 36276057 PMCID: PMC9581121 DOI: 10.3389/fonc.2022.1001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/19/2022] [Indexed: 12/30/2022] Open
Abstract
Primary bone sarcomas, including osteosarcoma (OS) and Ewing sarcoma (ES), are aggressive tumors with peak incidence in childhood and adolescence. The intense standard treatment for these patients consists of combined surgery and/or radiation and maximal doses of chemotherapy; a regimen that has not seen improvement in decades. Like other tumor types, ES and OS are characterized by dysregulated cellular metabolism and a rewiring of metabolic pathways to support the biosynthetic demands of malignant growth. Not only are cancer cells characterized by Warburg metabolism, or aerobic glycolysis, but emerging work has revealed a dependence on amino acid metabolism. Aside from incorporation into proteins, amino acids serve critical functions in redox balance, energy homeostasis, and epigenetic maintenance. In this review, we summarize current studies describing the amino acid metabolic requirements of primary bone sarcomas, focusing on OS and ES, and compare these dependencies in the normal bone and malignant tumor contexts. We also examine insights that can be gleaned from other cancers to better understand differential metabolic susceptibilities between primary and metastatic tumor microenvironments. Lastly, we discuss potential metabolic vulnerabilities that may be exploited therapeutically and provide better-targeted treatments to improve the current standard of care.
Collapse
Affiliation(s)
- Jennifer A. Jiménez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elizabeth R. Lawlor
- Department of Pediatrics, University of Washington, Seattle, WA, United States,Seattle Children’s Research Institute, Seattle, WA, United States,*Correspondence: Elizabeth R. Lawlor, ; Costas A. Lyssiotis,
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI, United States,*Correspondence: Elizabeth R. Lawlor, ; Costas A. Lyssiotis,
| |
Collapse
|
49
|
Pranzini E, Pardella E, Muccillo L, Leo A, Nesi I, Santi A, Parri M, Zhang T, Uribe AH, Lottini T, Sabatino L, Caselli A, Arcangeli A, Raugei G, Colantuoni V, Cirri P, Chiarugi P, Maddocks ODK, Paoli P, Taddei ML. SHMT2-mediated mitochondrial serine metabolism drives 5-FU resistance by fueling nucleotide biosynthesis. Cell Rep 2022; 40:111233. [PMID: 35977477 DOI: 10.1016/j.celrep.2022.111233] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/31/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
5-Fluorouracil (5-FU) is a key component of chemotherapy for colorectal cancer (CRC). 5-FU efficacy is established by intracellular levels of folate cofactors and DNA damage repair strategies. However, drug resistance still represents a major challenge. Here, we report that alterations in serine metabolism affect 5-FU sensitivity in in vitro and in vivo CRC models. In particular, 5-FU-resistant CRC cells display a strong serine dependency achieved either by upregulating endogenous serine synthesis or increasing exogenous serine uptake. Importantly, regardless of the serine feeder strategy, serine hydroxymethyltransferase-2 (SHMT2)-driven compartmentalization of one-carbon metabolism inside the mitochondria represents a specific adaptation of resistant cells to support purine biosynthesis and potentiate DNA damage response. Interfering with serine availability or affecting its mitochondrial metabolism revert 5-FU resistance. These data disclose a relevant mechanism of mitochondrial serine use supporting 5-FU resistance in CRC and provide perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Ilaria Nesi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Tong Zhang
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK; Novartis Institutes for BioMedical Research, Shanghai, China
| | - Alejandro Huerta Uribe
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Oliver D K Maddocks
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
50
|
Van Nyen T, Planque M, van Wagensveld L, Duarte JAG, Zaal EA, Talebi A, Rossi M, Körner PR, Rizzotto L, Moens S, De Wispelaere W, Baiden-Amissah REM, Sonke GS, Horlings HM, Eelen G, Berardi E, Swinnen JV, Berkers CR, Carmeliet P, Lambrechts D, Davidson B, Agami R, Fendt SM, Annibali D, Amant F. Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers. Nat Commun 2022; 13:4578. [PMID: 35931688 PMCID: PMC9355973 DOI: 10.1038/s41467-022-32272-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12-15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers.
Collapse
Affiliation(s)
- Tom Van Nyen
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Lilian van Wagensveld
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW, School for Oncology and Developmental Biology, Maastricht, The Netherlands
- Department of Research, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands
| | - Joao A G Duarte
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Division of Cell Biology, Metabolism and Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Pierre-René Körner
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Lara Rizzotto
- TRACE PDX Platform, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Stijn Moens
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Wout De Wispelaere
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Regina E M Baiden-Amissah
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Hugo M Horlings
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Emanuele Berardi
- Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Division of Cell Biology, Metabolism and Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Ben Davidson
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
- Erasmus MC, Department of Genetics, Rotterdam University, 3015 GD, Rotterdam, The Netherlands
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Daniela Annibali
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium.
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| | - Frédéric Amant
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium.
- Department of Obstetrics and Gynecology, University Hospitals Leuven and Department of Oncology, 3000, Leuven, Belgium.
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI), University Medical Center (UMC), Amsterdam, The Netherlands.
| |
Collapse
|