1
|
Carvalho MBD, Jorge GMCP, Zanardo LW, Hamada LM, Izabel LDS, Santoro S, Magdalon J. The role of FGF19 in metabolic regulation: insights from preclinical models to clinical trials. Am J Physiol Endocrinol Metab 2024; 327:E279-E289. [PMID: 39017679 DOI: 10.1152/ajpendo.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Fibroblast growth factor 19 (FGF19) is a hormone synthesized in enterocytes in response to bile acids. This review explores the pivotal role of FGF19 in metabolism, addressing the urgent global health concern of obesity and its associated pathologies, notably type 2 diabetes. The intriguing inverse correlation between FGF19 and body mass or visceral adiposity, as well as its rapid increase following bariatric surgery, emphasizes its potential as a therapeutic target. This article meticulously examines the impact of FGF19 on metabolism by gathering evidence primarily derived from studies conducted in animal models or cell lines, using both FGF19 treatment and genetic modifications. Overall, these studies demonstrate that FGF19 has antidiabetic and antiobesogenic effects. A thorough examination across metabolic tissues, including the liver, adipose tissue, skeletal muscle, and the central nervous system, is conducted, unraveling the intricate interplay of FGF19 across diverse organs. Moreover, we provide a comprehensive overview of clinical trials involving an FGF19 analog called aldafermin, emphasizing promising results in diseases such as nonalcoholic steatohepatitis and diabetes. Therefore, we aim to foster a deeper understanding of FGF19 role and encourage further exploration of its clinical applications, thereby advancing the field and offering innovative approaches to address the escalating global health challenge of obesity and related metabolic conditions.
Collapse
Affiliation(s)
- Marcela Botelho de Carvalho
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Luiza Wolf Zanardo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Leticia Miho Hamada
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Larissa Dos Santos Izabel
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Juliana Magdalon
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
2
|
Shah H, Kramer A, Mullins CA, Mattern M, Gannaban RB, Townsend RL, Campagna SR, Morrison CD, Berthoud HR, Shin AC. Reduction of Plasma BCAAs following Roux-en-Y Gastric Bypass Surgery Is Primarily Mediated by FGF21. Nutrients 2023; 15:1713. [PMID: 37049555 PMCID: PMC10096671 DOI: 10.3390/nu15071713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Type 2 diabetes (T2D) is a challenging health concern worldwide. A lifestyle intervention to treat T2D is difficult to adhere, and the effectiveness of approved medications such as metformin, thiazolidinediones (TZDs), and sulfonylureas are suboptimal. On the other hand, bariatric procedures such as Roux-en-Y gastric bypass (RYGB) are being recognized for their remarkable ability to achieve diabetes remission, although the underlying mechanism is not clear. Recent evidence points to branched-chain amino acids (BCAAs) as a potential contributor to glucose impairment and insulin resistance. RYGB has been shown to effectively lower plasma BCAAs in insulin-resistant or T2D patients that may help improve glycemic control, but the underlying mechanism for BCAA reduction is not understood. Hence, we attempted to explore the mechanism by which RYGB reduces BCAAs. To this end, we randomized diet-induced obese (DIO) mice into three groups that underwent either sham or RYGB surgery or food restriction to match the weight of RYGB mice. We also included regular chow-diet-fed healthy mice as an additional control group. Here, we show that compared to sham surgery, RYGB in DIO mice markedly lowered serum BCAAs most likely by rescuing BCAA breakdown in both liver and white adipose tissues. Importantly, the restored BCAA metabolism following RYGB was independent of caloric intake. Fasting insulin and HOMA-IR were decreased as expected, and serum valine was strongly associated with insulin resistance. While gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are postulated to mediate various surgery-induced metabolic benefits, mice lacking these hormonal signals (GLP-1R/Y2R double KO) were still able to effectively lower plasma BCAAs and improve glucose tolerance, similar to mice with intact GLP-1 and PYY signaling. On the other hand, mice deficient in fibroblast growth factor 21 (FGF21), another candidate hormone implicated in enhanced glucoregulatory action following RYGB, failed to decrease plasma BCAAs and normalize hepatic BCAA degradation following surgery. This is the first study using an animal model to successfully recapitulate the RYGB-led reduction of circulating BCAAs observed in humans. Our findings unmasked a critical role of FGF21 in mediating the rescue of BCAA metabolism following surgery. It would be interesting to explore the possibility of whether RYGB-induced improvement in glucose homeostasis is partly through decreased BCAAs.
Collapse
Affiliation(s)
- Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Alyssa Kramer
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Marie Mattern
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - R. Leigh Townsend
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Christopher D. Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Qi Z, Xia J, Xue X, Liu W, Huang Z, Zhang X, Zou Y, Liu J, Liu J, Li X, Cao L, Li L, Cui Z, Ji B, Zhang Q, Ding S, Liu W. Codon-optimized FAM132b gene therapy prevents dietary obesity by blockading adrenergic response and insulin action. Int J Obes (Lond) 2022; 46:1970-1982. [PMID: 35922561 DOI: 10.1038/s41366-022-01189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND FAM132b (myonectin) has been identified as a muscle-derived myokine with exercise and has hormone activity in circulation to regulate iron homeostasis and lipid metabolism via unknown receptors. Here, we aim to explore the potential of adeno-associated virus to deliver FAM132b in vivo to develop a gene therapy against obesity. METHODS Adeno-associated virus AAV9 were engineered to induce overexpression of FAM132b with two mutations, A136T and P159A. Then, AAV9 was delivered into high-fat diet mice through tail vein, and glucose homeostasis and obesity development of mice were observed. Methods of structural biology were used to predict the action site or receptor of the FAM132b mutant. RESULTS Treatment of high-fat diet-fed mice with AAV9 improved glucose intolerance and insulin resistance, and resulted in reductions in body weight, fat depot, and adipocyte size. Codon-optimized FAM132b (coFAM132b) reduced the glycemic response to epinephrine (EPI) in the whole body and increased the lipolytic response to EPI in adipose tissues. However, FAM132b knockdown by shRNA significantly increased the glycemic response to EPI in vivo and reduced adipocyte response to EPI and adipose tissue browning. Structural analysis predicted that the FAM132b mutant with A136T and P159A may form a weak bond with β2 adrenergic receptor (ADRB2) and may have more affinity for insulin and insulin-receptor complexes. CONCLUSIONS Our study underscores the potential of FAM132b gene therapy with codon optimization to treat obesity by modulating the adrenergic response and insulin action. Both structural biological analysis and in vivo experiments suggest that the adrenergic response and insulin action are most likely blockaded by FAM132b mutants.
Collapse
Affiliation(s)
- Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Jie Xia
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xiangli Xue
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Wenbin Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Zhuochun Huang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xue Zhang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Jianchao Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Jiatong Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xingtian Li
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Lu Cao
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Lingxia Li
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Zhiming Cui
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Benlong Ji
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Qiang Zhang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China.,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Shuzhe Ding
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,School of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
4
|
Douton JE, Acharya NK, Stoltzfus B, Sun D, Grigson PS, Nyland JE. Acute glucagon-like peptide-1 receptor agonist liraglutide prevents cue-, stress-, and drug-induced heroin-seeking in rats. Behav Pharmacol 2022; 33:364-378. [PMID: 35695511 PMCID: PMC9308649 DOI: 10.1097/fbp.0000000000000685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Substance use disorder is challenging to treat due to its relapsing nature. In the last decade, opioid use disorder has been a threat to public health, being declared an epidemic by the Centers for Disease Control and Prevention. This is a tragic situation, considering there currently are only three effective, yet not ideal, treatments to prevent relapse to opioids. Recent research has shown that hormones that modulate hunger and satiety also can modulate motivated behavior for drugs of abuse. For example, the short-acting analog of glucagon-like peptide-1 (GLP-1), an incretin hormone that regulates homeostatic feeding, has been shown to reduce responding for rewarding stimuli such as food, cocaine, heroin, and nicotine when administered over several days or weeks. This may serve as an effective adjuvant during treatment; however, whether it would be effective when used acutely to bridge a patient between cessation of use and onset of medication for the treatment of an opioid addiction is unknown. Here, we tested the acute effects of the longer acting GLP-1 analog, liraglutide, on heroin-seeking. In rats with heroin self-administration experience, we found that subcutaneous administration of an acute dose of 0.3-mg/kg liraglutide was effective in preventing drug-seeking after exposure to three major precipitators: drug-associated cues, stress (yohimbine-induced), and the drug itself. Finally, we confirmed that the reduction in drug-seeking is not due to a locomotor impairment, as liraglutide did not significantly alter performance in a rotarod test. As such, acute use of GLP-1 analogs may serve as a new and effective nonopioid bridge to treatment.
Collapse
Affiliation(s)
- Joaquin E Douton
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nikhil K Acharya
- Department of Neural and Behavioral Sciences, Penn State College of Medicine
| | - Brooke Stoltzfus
- Department of Neural and Behavioral Sciences, Penn State College of Medicine
| | - Dongxiao Sun
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine
| | - Jennifer E Nyland
- Department of Neural and Behavioral Sciences, Penn State College of Medicine
| |
Collapse
|
5
|
Landry T, Shookster D, Huang H. Circulating α-klotho regulates metabolism via distinct central and peripheral mechanisms. Metabolism 2021; 121:154819. [PMID: 34153302 PMCID: PMC8277751 DOI: 10.1016/j.metabol.2021.154819] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Emerging evidence implicates the circulating α-klotho protein as a prominent regulator of energy balance and substrate metabolism, with diverse, tissue-specific functions. Despite its well-documented ubiquitous role inhibiting insulin signaling, α-klotho elicits potent antidiabetic and anti-obesogenic effects. α-Klotho facilitates insulin release and promotes β cell health in the pancreas, stimulates lipid oxidation in liver and adipose tissue, attenuates hepatic gluconeogenesis, and increases whole-body energy expenditure. The mechanisms underlying α-klotho's peripheral functions are multifaceted, including hydrolyzing transient receptor potential channels, stimulating integrin β1➔focal adhesion kinase signaling, and activating PPARα via inhibition of insulin-like growth factor receptor 1. Moreover, until recently, potential metabolic roles of α-klotho in the central nervous system remained unexplored; however, a novel α-klotho➔fibroblast growth factor receptor➔PI3kinase signaling axis in the arcuate nucleus of the hypothalamus has been identified as a critical regulator of energy balance and glucose metabolism. Overall, the role of circulating α-klotho in the regulation of metabolism is a new focus of research, but accumulating evidence identifies this protein as an encouraging therapeutic target for Type 1 and 2 Diabetes and obesity. This review analyzes the new literature investigating α-klotho-mediated regulation of metabolism and proposes impactful future directions to progress our understanding of this complex metabolic protein.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Daniel Shookster
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
6
|
Ahrén B, Pacini G. Glucose effectiveness: Lessons from studies on insulin-independent glucose clearance in mice. J Diabetes Investig 2021; 12:675-685. [PMID: 33098240 PMCID: PMC8088998 DOI: 10.1111/jdi.13446] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Besides insulin-mediated transport of glucose into the cells, an important role is also played by the non-insulin-mediated transport. This latter process is called glucose effectiveness (acronym SG ), which is estimated by modeling of glucose and insulin data after an intravenous glucose administration, and accounts for ≈70% of glucose disposal. This review summarizes studies on SG , mainly in humans and rodents with focus on results achieved in model experiments in mice. In humans, SG is reduced in type 2 diabetes, in obesity, in liver cirrhosis and in some elderly populations. In model experiments in mice, SG is independent from glucose levels, but increases when insulin secretion is stimulated, such as after administration of the incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. SG is reduced in insulin resistance induced by high-fat feeding and by exogenous administration of glucagon. Glucose-dependent (insulin-independent) glucose disposal is therefore important for glucose elimination, and it is also well regulated. It might be of pathophysiological relevance for the development of type 2 diabetes, in particular during insulin resistance, and might also be a target for glucose-reducing therapy. Measuring SG is essentially important when carrying out metabolic studies to understand glucose homeostasis.
Collapse
Affiliation(s)
- Bo Ahrén
- Department of Clinical Sciences LundLund UniversityLundSweden
| | - Giovanni Pacini
- Metabolic UnitInstitute of Neurosciences (IN‐CNR)PadovaItaly
| |
Collapse
|
7
|
Landry T, Li P, Shookster D, Jiang Z, Li H, Laing BT, Bunner W, Langton T, Tong Q, Huang H. Centrally circulating α-klotho inversely correlates with human obesity and modulates arcuate cell populations in mice. Mol Metab 2020; 44:101136. [PMID: 33301986 PMCID: PMC7777546 DOI: 10.1016/j.molmet.2020.101136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Our laboratory recently identified the centrally circulating α-klotho protein as a novel hypothalamic regulator of food intake and glucose metabolism in mice. The current study aimed to investigate novel molecular effectors of central α-klotho in the arcuate nucleus of the hypothalamus (ARC), while further deciphering its role regulating energy balance in both humans and mice. Methods Cerebrospinal fluid (CSF) was collected from 22 adults undergoing lower limb orthopedic surgeries, and correlations between body weight and α-klotho were determined using an α-klotho enzyme-linked immunosorbent assay (ELISA) kit. To investigate the effects of α-klotho on energy expenditure (EE), 2-day intracerebroventricular (ICV) treatment was performed in diet-induced obesity (DIO) mice housed in TSE Phenomaster indirect calorimetry metabolic cages. Immunohistochemical staining for cFOS and patch clamp electrophysiology were used to determine the effects of central α-klotho on proopiomelanocortin (POMC) and tyrosine hydroxylase (TH) neurons. Additional stainings were performed to determine novel roles for central α-klotho to regulate non-neuronal cell populations in the ARC. Lastly, ICV pretreatment with fibroblast growth factor receptor (FGFR) or PI3kinase inhibitors was performed to determine the intracellular signaling involved in α-klotho-mediated regulation of ARC nuclei. Results Obese/overweight human subjects had significantly lower CSF α-klotho concentrations compared to lean counterparts (1,044 ± 251 vs. 1616 ± 218 pmol/L, respectively). Additionally, 2 days of ICV α-klotho treatment increased EE in DIO mice. α-Klotho had no effects on TH neuron activity but elicited varied responses in POMC neurons, with 44% experiencing excitatory and 56% experiencing inhibitory effects. Inhibitor experiments identified an α-klotho→FGFR→PI3kinase signaling mechanism in the regulation of ARC POMC and NPY/AgRP neurons. Acute ICV α-klotho treatment also increased phosphorylated ERK in ARC astrocytes via FGFR signaling. Conclusion Our human CSF data provide the first evidence that impaired central α-klotho function may be involved in the pathophysiology of obesity. Furthermore, results in mouse models identify ARC POMC neurons and astrocytes as novel molecular effectors of central α-klotho. Overall, the current study highlights prominent roles of α-klotho→FGFR→PI3kinase signaling in the homeostatic regulation of ARC neurons and whole-body energy balance. Human CSF α-klotho concentrations exhibit a strong, inverse correlation with body weight and BMI. ICV α-klotho treatment increases energy expenditure in DIO mice. α-Klotho.→FGFR→PI3kinase signaling modulates ARC NPY/AgRP and POMC neurons. α-Klotho.→FGFR→ERK signaling regulates ARC astrocytes.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Peixin Li
- Department of Comprehensive Surgery, Medical and Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Daniel Shookster
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Zhiying Jiang
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hongli Li
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brenton Thomas Laing
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Wyatt Bunner
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Theodore Langton
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
8
|
Landry T, Laing BT, Li P, Bunner W, Rao Z, Prete A, Sylvestri J, Huang H. Central α-Klotho Suppresses NPY/AgRP Neuron Activity and Regulates Metabolism in Mice. Diabetes 2020; 69:1368-1381. [PMID: 32332158 PMCID: PMC7306125 DOI: 10.2337/db19-0941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
α-Klotho is a circulating factor with well-documented antiaging properties. However, the central role of α-klotho in metabolism remains largely unexplored. The current study investigated the potential role of central α-klotho to modulate neuropeptide Y/agouti-related peptide (NPY/AgRP)-expressing neurons, energy balance, and glucose homeostasis. Intracerebroventricular administration of α-klotho suppressed food intake, improved glucose profiles, and reduced body weight in mouse models of type 1 and 2 diabetes. Furthermore, central α-klotho inhibition via an anti-α-klotho antibody impaired glucose tolerance. Ex vivo patch clamp electrophysiology and immunohistochemical analysis revealed that α-klotho suppresses NPY/AgRP neuron activity, at least in part, by enhancing miniature inhibitory postsynaptic currents. Experiments in hypothalamic GT1-7 cells observed that α-klotho induces phosphorylation of AKTser473, ERKthr202/tyr204, and FOXO1ser256 as well as blunts AgRP gene transcription. Mechanistically, fibroblast growth factor receptor 1 (FGFR1) inhibition abolished the downstream signaling of α-klotho, negated its ability to modulate NPY/AgRP neurons, and blunted its therapeutic effects. Phosphatidylinositol 3 kinase (PI3K) inhibition also abolished α-klotho's ability to suppress food intake and improve glucose clearance. These results indicate a prominent role of hypothalamic α-klotho/FGFR1/PI3K signaling in the modulation of NPY/AgRP neuron activity and maintenance of energy homeostasis, thus providing new insight into the pathophysiology of metabolic disease.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Brenton Thomas Laing
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Peixin Li
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Wyatt Bunner
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Zhijian Rao
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Amber Prete
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Julia Sylvestri
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| |
Collapse
|
9
|
Zhao M, Jung Y, Jiang Z, Svensson KJ. Regulation of Energy Metabolism by Receptor Tyrosine Kinase Ligands. Front Physiol 2020; 11:354. [PMID: 32372975 PMCID: PMC7186430 DOI: 10.3389/fphys.2020.00354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic diseases, such as diabetes, obesity, and fatty liver disease, have now reached epidemic proportions. Receptor tyrosine kinases (RTKs) are a family of cell surface receptors responding to growth factors, hormones, and cytokines to mediate a diverse set of fundamental cellular and metabolic signaling pathways. These ligands signal by endocrine, paracrine, or autocrine means in peripheral organs and in the central nervous system to control cellular and tissue-specific metabolic processes. Interestingly, the expression of many RTKs and their ligands are controlled by changes in metabolic demand, for example, during starvation, feeding, or obesity. In addition, studies of RTKs and their ligands in regulating energy homeostasis have revealed unexpected diversity in the mechanisms of action and their specific metabolic functions. Our current understanding of the molecular, biochemical and genetic control of energy homeostasis by the endocrine RTK ligands insulin, FGF21 and FGF19 are now relatively well understood. In addition to these classical endocrine signals, non-endocrine ligands can govern local energy regulation, and the intriguing crosstalk between the RTK family and the TGFβ receptor family demonstrates a signaling network that diversifies metabolic process between tissues. Thus, there is a need to increase our molecular and mechanistic understanding of signal diversification of RTK actions in metabolic disease. Here we review the known and emerging molecular mechanisms of RTK signaling that regulate systemic glucose and lipid metabolism, as well as highlighting unexpected roles of non-classical RTK ligands that crosstalk with other receptor pathways.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Yunshin Jung
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Zewen Jiang
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Katrin J Svensson
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
10
|
Even-Chen O, Barak S. Inhibition of FGF Receptor-1 Suppresses Alcohol Consumption: Role of PI3 Kinase Signaling in Dorsomedial Striatum. J Neurosci 2019; 39:7947-7957. [PMID: 31375540 PMCID: PMC6774404 DOI: 10.1523/jneurosci.0805-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
Excessive alcohol intake leads to mesostriatal neuroadaptations, and to addiction phenotypes. We recently found in rodents that alcohol increases fibroblast growth factor 2 (FGF2) expression in the dorsomedial striatum (DMS), which promotes alcohol consumption. Here, we show that systemic or intra-DMS blockade of the FGF2 receptor, FGF receptor-1 (FGFR1), suppresses alcohol consumption, and that the effects of FGF2-FGFR1 on alcohol drinking are mediated via the phosphoinositide 3 kinase (PI3K) signaling pathway. Specifically, we found that sub-chronic alcohol treatment (7 d × 2.5 g/kg, i.p.) increased Fgfr1 mRNA expression in the dorsal hippocampus and dorsal striatum. However, prolonged and excessive voluntary alcohol consumption in a two-bottle choice procedure increased Fgfr1 expression selectively in DMS. Importantly, systemic administration of the FGFR1 inhibitor PD173074 to mice, as well as its infusion into the DMS of rats, decreased alcohol consumption and preference, with no effects on natural reward consumption. Finally, inhibition of the PI3K, but not of the mitogen-activated protein kinase (MAPK) signaling pathway, blocked the effects of FGF2 on alcohol intake and preference. Our results suggest that activation of FGFR1 by FGF2 in the DMS leads to activation of the PI3K signaling pathway, which promotes excessive alcohol consumption, and that inhibition of FGFR1 may provide a novel therapeutic target for alcohol use disorder.SIGNIFICANCE STATEMENT Long-term alcohol consumption causes neuroadaptations in the mesostriatal reward system, leading to addiction-related behaviors. We recently showed that alcohol upregulates the expression of fibroblast growth factor 2 (FGF2) in dorsomedial striatum (DMS) or rats and mice, and in turn, FGF2 increases alcohol consumption. Here, we show that long-term alcohol intake also increases the expression of the FGF2 receptor, FGFR1 in the DMS. Importantly, inhibition of FGFR1 activity by a selective receptor antagonist reduces alcohol drinking, when given systemically or directly into the DMS. We further show that the effects of FGF2-FGFR1 on alcohol drinking are mediated via activation of the PI3K intracellular signaling pathway, providing an insight on the mechanism for this effect.
Collapse
Affiliation(s)
| | - Segev Barak
- School of Psychological Sciences, and
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
11
|
Hultman K, Scarlett JM, Baquero AF, Cornea A, Zhang Y, Salinas CBG, Brown J, Morton GJ, Whalen EJ, Grove KL, Koegler FH, Schwartz MW, Mercer AJ. The central fibroblast growth factor receptor/beta klotho system: Comprehensive mapping in Mus musculus and comparisons to nonhuman primate and human samples using an automated in situ hybridization platform. J Comp Neurol 2019; 527:2069-2085. [PMID: 30809795 DOI: 10.1002/cne.24668] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022]
Abstract
Central activation of fibroblast growth factor (FGF) receptors regulates peripheral glucose homeostasis and reduces food intake in preclinical models of obesity and diabetes. The current work was undertaken to advance our understanding of the receptor expression, as sites of ligand action by FGF19, FGF21, and FGF1 in the mammalian brain remains unresolved. Recent advances in automated RNAscope in situ hybridization and droplet digital PCR (ddPCR) technology allowed us to interrogate central FGFR/beta klotho (Klb) system at the cellular level in the mouse, with relevant comparisons to nonhuman primate and human brain. FGFR1-3 gene expression was broadly distributed throughout the CNS in Mus musculus, with FGFR1 exhibiting the greatest heterogeneity. FGFR4 expression localized only in the medial habenula and subcommissural organ of mice. Likewise, Klb mRNA was restricted to the suprachiasmatic nucleus (SCh) and select midbrain and hindbrain nuclei. ddPCR in the rodent hypothalamus confirmed that, although expression levels are indeed low for Klb, there is nonetheless a bonafide subpopulation of Klb+ cells in the hypothalamus. In NHP and human midbrain and hindbrain, Klb + cells are quite rare, as is expression of FGFR4. Collectively, these data provide the most robust central map of the FGFR/Klb system to date and highlight central regions that may be of critical importance to assess central ligand effects with pharmacological dosing, such as the putative interactions between the endocrine FGFs and FGFR1/Klb, or FGF19 with FGFR4.
Collapse
Affiliation(s)
| | - Jarrad M Scarlett
- Diabetes & Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington.,Department of Pediatric Gastroenterology & Hepatology, Seattle Children's Hospital, Seattle, Washington
| | - Arian F Baquero
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Anda Cornea
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Yu Zhang
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | | | - Jenny Brown
- Diabetes & Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Gregory J Morton
- Diabetes & Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Erin J Whalen
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Kevin L Grove
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Frank H Koegler
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Michael W Schwartz
- Diabetes & Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Aaron J Mercer
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| |
Collapse
|
12
|
Scarlett JM, Muta K, Brown JM, Rojas JM, Matsen ME, Acharya NK, Secher A, Ingvorsen C, Jorgensen R, Høeg-Jensen T, Stefanovski D, Bergman RN, Piccinini F, Kaiyala KJ, Shiota M, Morton GJ, Schwartz MW. Peripheral Mechanisms Mediating the Sustained Antidiabetic Action of FGF1 in the Brain. Diabetes 2019; 68:654-664. [PMID: 30523024 PMCID: PMC6385755 DOI: 10.2337/db18-0498] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
We recently reported that in rodent models of type 2 diabetes (T2D), a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1) induces remission of hyperglycemia that is sustained for weeks. To clarify the peripheral mechanisms underlying this effect, we used the Zucker diabetic fatty fa/fa rat model of T2D, which, like human T2D, is characterized by progressive deterioration of pancreatic β-cell function after hyperglycemia onset. We report that although icv FGF1 injection delays the onset of β-cell dysfunction in these animals, it has no effect on either glucose-induced insulin secretion or insulin sensitivity. These observations suggest that FGF1 acts in the brain to stimulate insulin-independent glucose clearance. On the basis of our finding that icv FGF1 treatment increases hepatic glucokinase gene expression, we considered the possibility that increased hepatic glucose uptake (HGU) contributes to the insulin-independent glucose-lowering effect of icv FGF1. Consistent with this possibility, we report that icv FGF1 injection increases liver glucokinase activity by approximately twofold. We conclude that sustained remission of hyperglycemia induced by the central action of FGF1 involves both preservation of β-cell function and stimulation of HGU through increased hepatic glucokinase activity.
Collapse
Affiliation(s)
- Jarrad M Scarlett
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
- Gastroenterology and Hepatology, Department of Pediatrics, University of Washington, Seattle, WA
| | - Kenjiro Muta
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Jenny M Brown
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Jennifer M Rojas
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
- Department of Physiology, Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Miles E Matsen
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Nikhil K Acharya
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | | | | | | | | | - Darko Stefanovski
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Francesca Piccinini
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Karl J Kaiyala
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Gregory J Morton
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Muta K, Matsen ME, Acharya NK, Stefanovski D, Bergman RN, Schwartz MW, Morton GJ. Glucoregulatory responses to hypothalamic preoptic area cooling. Brain Res 2019; 1710:136-145. [PMID: 30610874 DOI: 10.1016/j.brainres.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 11/26/2022]
Abstract
Normal glucose homeostasis depends on the capacity of pancreatic β-cells to adjust insulin secretion in response to a change of tissue insulin sensitivity. In cold environments, for example, the dramatic increase of insulin sensitivity required to ensure a sufficient supply of glucose to thermogenic tissues is offset by a proportionate reduction of insulin secretion, such that overall glucose tolerance is preserved. That these cold-induced changes of insulin secretion and insulin sensitivity are dependent on sympathetic nervous system (SNS) outflow suggests a key role for thermoregulatory neurons in the hypothalamic preoptic area (POA) in this metabolic response. As these POA neurons are themselves sensitive to changes in local hypothalamic temperature, we hypothesized that direct cooling of the POA would elicit the same glucoregulatory responses that we observed during cold exposure. To test this hypothesis, we used a thermode to cool the POA area, and found that as predicted, short-term (8-h) intense POA cooling reduced glucose-stimulated insulin secretion (GSIS), yet glucose tolerance remained unchanged due to an increase of insulin sensitivity. Longer-term (24-h), more moderate POA cooling, however, failed to inhibit GSIS and improved glucose tolerance, an effect associated with hyperthermia and activation of the hypothalamic-pituitary-adrenal axis, indicative of a stress response. Taken together, these findings suggest that POA cooling is sufficient to recapitulate key glucoregulatory responses to cold exposure.
Collapse
Affiliation(s)
- Kenjiro Muta
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Miles E Matsen
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nikhil K Acharya
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Darko Stefanovski
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gregory J Morton
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Somm E, Jornayvaz FR. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev 2018; 39:960-989. [PMID: 30124818 DOI: 10.1210/er.2018-00134] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Discovered 20 years ago, fibroblast growth factor (FGF)19, and its mouse ortholog FGF15, were the first members of a new subfamily of FGFs able to act as hormones. During fetal life, FGF15/19 is involved in organogenesis, affecting the development of the ear, eye, heart, and brain. At adulthood, FGF15/19 is mainly produced by the ileum, acting on the liver to repress hepatic bile acid synthesis and promote postprandial nutrient partitioning. In rodents, pharmacologic doses of FGF19 induce the same antiobesity and antidiabetic actions as FGF21, with these metabolic effects being partly mediated by the brain. However, activation of hepatocyte proliferation by FGF19 has long been a challenge to its therapeutic use. Recently, genetic reengineering of the molecule has resolved this issue. Despite a global overlap in expression pattern and function, murine FGF15 and human FGF19 exhibit several differences in terms of regulation, molecular structure, signaling, and biological properties. As most of the knowledge originates from the use of FGF19 in murine models, differences between mice and humans in the biology of FGF15/19 have to be considered for a successful translation from bench to bedside. This review summarizes the basic knowledge concerning FGF15/19 in mice and humans, with a special focus on regulation of production, morphogenic properties, hepatocyte growth, bile acid homeostasis, as well as actions on glucose, lipid, and energy homeostasis. Moreover, implications and therapeutic perspectives concerning FGF19 in human diseases (including obesity, type 2 diabetes, hepatic steatosis, biliary disorders, and cancer) are also discussed.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
15
|
Du S, Liu X, Deng K, Zhou W, Lu F, Shi D. The expression pattern of fibroblast growth factor 10 and its receptors during buffalo follicular development. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4934-4941. [PMID: 31949569 PMCID: PMC6962906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/25/2018] [Indexed: 06/10/2023]
Abstract
This study explored the expression and localization of fibroblast growth factor (FGF) 10 and its receptors (FGF receptor 1 and FGF receptor 2, FGFR1 and FGFR2) during buffalo follicular development, laying a foundation for the further study of FGF signaling pathways in follicular development and oogenesis. Granulosa cells and ovarian follicles were extracted from buffalo ovaries, and in vitro maturation culture of oocytes was conducted. Immunohistochemistry was performed to detect the expression of FGF10 and its receptors FGFR1 and FGFR2. In addition, immunofluorescence staining was used to detect the expression of FGF10 in buffalo cumulus oocyte complexes (COCs). Moreover, mRNA levels of FGF10, sub-types of FGFR1 and FGFR2 (FGFR1b and FGFR2b) were measured using qRT-PCR. Immunohistochemistry results showed that FGF10 and its receptors FGFR1 and FGFR2 appeared to have positive responses in buffalo primordial follicles, primary follicles, secondary follicles, and mature follicle oocytes and granulosa cells, and mature follicle basal membrane cells. However, no expression of FGF10 mRNA was detected in granulosa cells from follicles of different diameters, but immunofluorescence results showed that FGF10 could be detected in both cumulus cells and oocytes. With an increase in the vitro maturation time of buffalo COCs, FGF10 and receptor sub-types FGFR1b and FGFR2b mRNA expression also gradually increased, and significantly higher than before maturation. In summary, FGF10 and its receptors may be involved in the process of buffalo follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Shanshan Du
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Xiaohua Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
| | - Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
| | - Wenting Zhou
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
| | - Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
| |
Collapse
|
16
|
Dillon PM, Petroni GR, Horton BJ, Moskaluk CA, Fracasso PM, Douvas MG, Varhegyi N, Zaja-Milatovic S, Thomas CY. A Phase II Study of Dovitinib in Patients with Recurrent or Metastatic Adenoid Cystic Carcinoma. Clin Cancer Res 2017; 23:4138-4145. [PMID: 28377480 PMCID: PMC5540767 DOI: 10.1158/1078-0432.ccr-16-2942] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/28/2016] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Purpose: Genetic and preclinical studies have implicated FGFR signaling in the pathogenesis of adenoid cystic carcinoma (ACC). Dovitinib, a suppressor of FGFR activity, may be active in ACC.Experimental Design: In a two-stage phase II study, 35 patients with progressive ACC were treated with dovitinib 500 mg orally for 5 of 7 days continuously. The primary endpoints were objective response rate and change in tumor growth rate. Progression-free survival, overall survival, metabolic response, biomarker, and quality of life were secondary endpoints.Results: Of 34 evaluable patients, 2 (6%) had a partial response and 22 (65%) had stable disease >4 months. Median PFS was 8.2 months and OS was 20.6 months. The slope of the overall TGR fell from 1.95 to 0.63 on treatment (P < 0.001). Toxicity was moderate; 63% of patients developed grade 3-4 toxicity, 94% required dose modifications, and 21% stopped treatment early. An early metabolic response based on 18FDG-PET scans was seen in 3 of 15 patients but did not correlate with RECIST response. MYB gene translocation was observed and significantly correlated with overexpression of MYB but did not correlate with FGFR1 phosphorylation or clinical response to dovitinib.Conclusions: Dovitinib produced few objective responses in patients with ACC but did suppress the TGR with a PFS that compares favorably with those reported with other targeted agents. Future studies of more potent and selective FGFR inhibitors in biomarker-selected patients will be required to determine whether FGFR signaling is a valid therapeutic target in ACC. Clin Cancer Res; 23(15); 4138-45. ©2017 AACR.
Collapse
Affiliation(s)
- Patrick M Dillon
- UVA Cancer Center at the University of Virginia, Charlottesville, Virginia.
| | - Gina R Petroni
- UVA Cancer Center at the University of Virginia, Charlottesville, Virginia
| | - Bethany J Horton
- UVA Cancer Center at the University of Virginia, Charlottesville, Virginia
| | | | - Paula M Fracasso
- UVA Cancer Center at the University of Virginia, Charlottesville, Virginia
| | - Michael G Douvas
- UVA Cancer Center at the University of Virginia, Charlottesville, Virginia
| | - Nikole Varhegyi
- UVA Cancer Center at the University of Virginia, Charlottesville, Virginia
| | | | | |
Collapse
|
17
|
Deem JD, Muta K, Scarlett JM, Morton GJ, Schwartz MW. How Should We Think About the Role of the Brain in Glucose Homeostasis and Diabetes? Diabetes 2017; 66:1758-1765. [PMID: 28603139 PMCID: PMC5482090 DOI: 10.2337/dbi16-0067] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jennifer D Deem
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Kenjiro Muta
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Jarrad M Scarlett
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Gregory J Morton
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Michael W Schwartz
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
18
|
Morton GJ, Muta K, Kaiyala KJ, Rojas JM, Scarlett JM, Matsen ME, Nelson JT, Acharya NK, Piccinini F, Stefanovski D, Bergman RN, Taborsky GJ, Kahn SE, Schwartz MW. Evidence That the Sympathetic Nervous System Elicits Rapid, Coordinated, and Reciprocal Adjustments of Insulin Secretion and Insulin Sensitivity During Cold Exposure. Diabetes 2017; 66:823-834. [PMID: 28115396 PMCID: PMC5360298 DOI: 10.2337/db16-1351] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Dynamic adjustment of insulin secretion to compensate for changes of insulin sensitivity that result from alteration of nutritional or metabolic status is a fundamental aspect of glucose homeostasis. To investigate the role of the brain in this coupling process, we used cold exposure as an experimental paradigm because the sympathetic nervous system (SNS) helps to coordinate the major shifts of tissue glucose utilization needed to ensure that increased thermogenic needs are met. We found that glucose-induced insulin secretion declined by 50% in rats housed at 5°C for 28 h, and yet, glucose tolerance did not change, owing to a doubling of insulin sensitivity. These potent effects on insulin secretion and sensitivity were fully reversed by returning animals to room temperature (22°C) for 4 h or by intravenous infusion of the α-adrenergic receptor antagonist phentolamine for only 30 min. By comparison, insulin clearance was not affected by cold exposure or phentolamine infusion. These findings offer direct evidence of a key role for the brain, acting via the SNS, in the rapid, highly coordinated, and reciprocal changes of insulin secretion and insulin sensitivity that preserve glucose homeostasis in the setting of cold exposure.
Collapse
Affiliation(s)
- Gregory J Morton
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Kenjiro Muta
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Karl J Kaiyala
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA
| | - Jennifer M Rojas
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Jarrad M Scarlett
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA
| | - Miles E Matsen
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Jarrell T Nelson
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Nikhil K Acharya
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Francesca Piccinini
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Darko Stefanovski
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Gerald J Taborsky
- Veterans Affairs Puget Sound Health Care System, Department of Veterans Affairs Medical Center, Seattle, WA
| | - Steven E Kahn
- Veterans Affairs Puget Sound Health Care System, Department of Veterans Affairs Medical Center, Seattle, WA
| | - Michael W Schwartz
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
19
|
Endospanin1 affects oppositely body weight regulation and glucose homeostasis by differentially regulating central leptin signaling. Mol Metab 2016; 6:159-172. [PMID: 28123946 PMCID: PMC5220283 DOI: 10.1016/j.molmet.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/05/2023] Open
Abstract
The hypothalamic arcuate nucleus (ARC) is a major integration center for energy and glucose homeostasis that responds to leptin. Resistance to leptin in the ARC is an important component of the development of obesity and type 2 diabetes. Recently, we showed that Endospanin1 (Endo1) is a negative regulator of the leptin receptor (OBR) that interacts with OBR and retains the receptor inside the cell, leading to a decreased activation of the anorectic STAT3 pathway. Endo1 is up-regulated in the ARC of high fat diet (HFD)-fed mice, and its silencing in the ARC of lean and obese mice prevents and reverses the development of obesity. OBJECTIVE Herein we investigated whether decreased Endo1 expression in the hypothalamic ARC, associated with reduced obesity, could also ameliorate glucose homeostasis accordingly. METHODS We studied glucose homeostasis in lean or obese mice silenced for Endo1 in the ARC via stereotactic injection of shRNA-expressing lentiviral vectors. RESULTS We observed that despite being leaner, Endo1-silenced mice showed impaired glucose homeostasis on HFD. Mechanistically, we show that Endo1 interacts with p85, the regulatory subunit of PI3K, and mediates leptin-induced PI3K activation. CONCLUSIONS Our results thus define Endo1 as an important hypothalamic integrator of leptin signaling, and its silencing differentially regulates the OBR-dependent functions.
Collapse
Key Words
- ARC, arcuate nucleus
- BW, body weight
- CD, chow diet
- DIO, diet-induced obesity
- Diabetes
- Endo1, Endospanin1
- GTT, glucose tolerance test
- HFD, high fat diet
- Insulin
- LIF, leukemia inhibitory factor
- Leptin receptor
- OB-RGRP/Endospanin1
- OBR, leptin receptor
- Obesity
- PLA, proximity ligation assay
- T2D, type 2 diabetes
- ip, intraperitoneal
Collapse
|
20
|
Razzoli M, Bartolomucci A. The Dichotomous Effect of Chronic Stress on Obesity. Trends Endocrinol Metab 2016; 27:504-515. [PMID: 27162125 PMCID: PMC4912918 DOI: 10.1016/j.tem.2016.04.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 11/22/2022]
Abstract
Obesity and metabolic diseases are linked to chronic stress and low socioeconomic status. The mechanistic link between stress and obesity has not been clarified, partly due to the inherent complexity exemplified by the bidirectional effect of stress on eating and body weight. Recent studies focusing on adaptive thermogenesis and brown adipose tissue (BAT) function support a dichotomous relation to explain the impact of stress on obesity: stress promotes obesity in the presence of hyperphagia and unchanged BAT function; stress results in weight loss and/or obesity resistance in the presence of hypophagia, or when hyperphagia is associated with BAT recruitment and enhanced thermogenesis. Mechanistically dissecting the bidirectional effects of stress on metabolic outcomes might open new avenues for innovative pharmacotherapies for the treatment of obesity-associated diseases.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Scarlett JM, Rojas JM, Matsen ME, Kaiyala KJ, Stefanovski D, Bergman RN, Nguyen HT, Dorfman MD, Lantier L, Wasserman DH, Mirzadeh Z, Unterman TG, Morton GJ, Schwartz MW. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med 2016; 22:800-6. [PMID: 27213816 PMCID: PMC4938755 DOI: 10.1038/nm.4101] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/08/2016] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes (T2D) is among the most common and costly disorders worldwide. The goal of current medical management for T2D is to transiently ameliorate hyperglycemia through daily dosing of one or more antidiabetic drugs. Hypoglycemia and weight gain are common side effects of therapy, and sustained disease remission is not obtainable with nonsurgical approaches. On the basis of the potent glucose-lowering response elicited by activation of brain fibroblast growth factor (FGF) receptors, we explored the antidiabetic efficacy of centrally administered FGF1, which, unlike other FGF peptides, activates all FGF receptor subtypes. We report that a single intracerebroventricular injection of FGF1 at a dose one-tenth of that needed for antidiabetic efficacy following peripheral injection induces sustained diabetes remission in both mouse and rat models of T2D. This antidiabetic effect is not secondary to weight loss, does not increase the risk of hypoglycemia, and involves a novel and incompletely understood mechanism for increasing glucose clearance from the bloodstream. We conclude that the brain has an inherent potential to induce diabetes remission and that brain FGF receptors are potential pharmacological targets for achieving this goal.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Blotting, Western
- Body Composition
- Brain/drug effects
- Brain/metabolism
- Carbon Radioisotopes
- Deoxyglucose
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Ependymoglial Cells/drug effects
- Ependymoglial Cells/metabolism
- Fibroblast Growth Factor 1/pharmacology
- Forkhead Box Protein O1/genetics
- Glucose Tolerance Test
- Heart/drug effects
- Heat-Shock Proteins/drug effects
- Heat-Shock Proteins/metabolism
- Hyperglycemia/metabolism
- Hypothalamus/cytology
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Injections, Intraventricular
- Liver/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Obese
- Molecular Chaperones
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Myocardium/metabolism
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/metabolism
- Proto-Oncogene Proteins c-fos/drug effects
- Proto-Oncogene Proteins c-fos/metabolism
- Rats
- Rats, Zucker
- Real-Time Polymerase Chain Reaction
- Receptor, Insulin/antagonists & inhibitors
- Receptor, Insulin/genetics
- Remission Induction
Collapse
Affiliation(s)
- Jarrad M Scarlett
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Jennifer M Rojas
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Miles E Matsen
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Karl J Kaiyala
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Darko Stefanovski
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hong T Nguyen
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Mauricio D Dorfman
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Zaman Mirzadeh
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Terry G Unterman
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
- Medical Service, Jesse Brown Virginia Medical Center, Chicago, Illinois, USA
| | - Gregory J Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael W Schwartz
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
Xu X, Wang L, Zhang Y, Su T, Chen L, Zhang Y, Ma W, Xie Y, Wang T, Yang F, He L, Wang W, Fu X, Hao H, Ma Y. Effects of chronic sleep deprivation on glucose homeostasis in rats. Sleep Biol Rhythms 2016; 14:321-328. [PMID: 27738407 PMCID: PMC5037153 DOI: 10.1007/s41105-016-0061-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that chronic sleep disturbances resulted in metabolic disorders. The purpose of this study was to assess the relationship between chronic sleep deprivation (CSD) and the glucose homeostasis in rats. Twenty-four rats were randomly divided into CSD group and control (CON) group. The CSD rats were intervened by a modified multiple platform method (MMPM) to establish an animal model of chronic sleep disturbances. After 3-month intervention, all rats were subjected to an intraperitoneal glucose tolerance test (IPGTT) and an insulin tolerance test (ITT), and the body weight, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, lipid profile group, and homeostasis model assessment-IR (HOMA-IR) were measured. Both the CSD and CON groups had an attenuation of weight gain after 3-month intervention. The plasma glucose level of CSD group was higher than that of the CON group during the IPGTT (P < 0.01). The CSD rats showed a marked increase in HOMA-IR and ITT compared with the CON group (P < 0.01). There were no significant differences of AST, ALT, creatinine, and most lipid parameters between the CSD and CON groups (P > 0.05). The CSD has a marked effect on glucose homeostasis, comprising glucose intolerance and insulin resistance.
Collapse
Affiliation(s)
- Xiaowen Xu
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Liang Wang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yan Zhang
- Center for Systems Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Tianjiao Su
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Liying Chen
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yan Zhang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Weifeng Ma
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yuanyuan Xie
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Tiantian Wang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Fan Yang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Li He
- Director of Division of Science and Technology, National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing, 100050 China
| | - Wenjiao Wang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Xuemei Fu
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Hongxia Hao
- Center of Health Care, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yuanzheng Ma
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| |
Collapse
|
23
|
Scheja L, Heeren J. Metabolic interplay between white, beige, brown adipocytes and the liver. J Hepatol 2016; 64:1176-1186. [PMID: 26829204 DOI: 10.1016/j.jhep.2016.01.025] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
In mammalian evolution, three types of adipocytes have developed, white, brown and beige adipocytes. White adipocytes are the major constituents of white adipose tissue (WAT), the predominant store for energy-dense triglycerides in the body that are released as fatty acids during catabolic conditions. The less abundant brown adipocytes, the defining parenchymal cells of brown adipose tissue (BAT), internalize triglycerides that are stored intracellularly in multilocular lipid droplets. Beige adipocytes (also known as brite or inducible brown adipocytes) are functionally very similar to brown adipocytes and emerge in specific WAT depots in response to various stimuli including sustained cold exposure. The activation of brown and beige adipocytes (together referred to as thermogenic adipocytes) causes both the hydrolysis of stored triglycerides as well as the uptake of lipids and glucose from the circulation. Together, these fuels are combusted for heat production to maintain body temperature in mammals including adult humans. Given that heating by brown and beige adipocytes is a very-well controlled and energy-demanding process which entails pronounced shifts in energy fluxes, it is not surprising that an intensive interplay exists between the various adipocyte types and parenchymal liver cells, and that this influences systemic metabolic fluxes and endocrine networks. In this review we will emphasize the role of hepatic factors that regulate the metabolic activity of white and thermogenic adipocytes. In addition, we will discuss the relevance of lipids and hormones that are secreted by white, brown and beige adipocytes regulating liver metabolism in order to maintain systemic energy metabolism in health and disease.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|