1
|
Hsueh WY, Wu YL, Weng MT, Liu SY, Santavanond JP, Liu YC, Lin CI, Lai CN, Lu YR, Hsu JY, Gao HY, Lee JC, Wei SC, Lyu PC, Poon IKH, Hsieh HP, Chiu YH. Novel Naphthyridones Targeting Pannexin 1 for Colitis Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411538. [PMID: 39739600 DOI: 10.1002/advs.202411538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Indexed: 01/02/2025]
Abstract
Pannexin 1 (PANX1) forms cell-surface channels capable of releasing signaling metabolites for diverse patho-physiological processes. While inhibiting dysregulated PANX1 has been proposed as a therapeutic strategy for many pathological conditions, including inflammatory bowel disease (IBD), low efficacy, or poor specificity of classical PANX1 inhibitors introduces uncertainty for their applications in basic and translational research. Here, hit-to-lead optimization is performed and a naphthyridone, compound 12, is identified as a new PANX1 inhibitor with an IC50 of 0.73 µm that does not affect pannexin-homologous LRRC8/SWELL1 channels. Using structure-activity relationship analysis, mutagenesis, cell thermal shift assays, and molecular docking, it is revealed that compound 12 directly engages PANX1 Trp74 residue. Using a dextran sodium sulfate mouse model of IBD, it is found that compound 12 markedly reduced colitis severity, highlighting new PANX1 inhibitors as a proof-of-concept treatment for IBD. These data describe the mechanism of action for a new PANX1 inhibitor, uncover the binding site for future drug design, and present a targeted strategy for treating IBD.
Collapse
Affiliation(s)
- Wen-Yun Hsueh
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350401, Taiwan
| | - Yi-Ling Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, 100229, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, 302058, Taiwan
| | - Shin-Yun Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, 100229, Taiwan
| | - Jascinta P Santavanond
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, VIC, 3086, Australia
| | - Yi-Chung Liu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, 350401, Taiwan
| | - Ching-I Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, 100229, Taiwan
| | - Cheng-Nong Lai
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Ru Lu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jing Yin Hsu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hong-Yu Gao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jinq-Chyi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350401, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, 100229, Taiwan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, VIC, 3086, Australia
| | - Hsing-Pang Hsieh
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350401, Taiwan
| | - Yu-Hsin Chiu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Departments of Medical Science, Life Science, and Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
2
|
Henze E, Burkhardt RN, Fox BW, Schwertfeger TJ, Gelsleichter E, Michalski K, Kramer L, Lenfest M, Boesch JM, Lin H, Schroeder FC, Kawate T. ATP-release pannexin channels are gated by lysophospholipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563601. [PMID: 37961151 PMCID: PMC10634739 DOI: 10.1101/2023.10.23.563601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In addition to its role as cellular energy currency, adenosine triphosphate (ATP) serves as an extracellular messenger that mediates diverse cell-to-cell communication. Compelling evidence supports that ATP is released from cells through pannexins, a family of membrane proteins that form heptameric large-pore channels. However, the activation mechanisms that trigger ATP release by pannexins remain poorly understood. Here, we discover lysophospholipids as endogenous pannexin activators, using activity-guided fractionation of mouse tissue extracts combined with untargeted metabolomics and electrophysiology. We show that lysophospholipids directly and reversibly activate pannexins in the absence of other proteins. Secretomics experiments reveal that lysophospholipid-activated pannexin 1 leads to the release of not only ATP but also other signaling metabolites, such as 5'-methylthioadenosine, which is important for immunomodulation. We also demonstrate that lysophospholipids activate endogenous pannexin 1 in human monocytes, leading to the release of IL-1β through inflammasome activation. Our results provide a connection between lipid metabolism and purinergic signaling, both of which play major roles in immune responses.
Collapse
|
3
|
Molica F, Ehrlich A, Pelli G, Rusiecka OM, Montessuit C, Chanson M, Kwak BR. Cold Exposure Rejuvenates the Metabolic Phenotype of Panx1-/- Mice. Biomolecules 2024; 14:1058. [PMID: 39334824 PMCID: PMC11430693 DOI: 10.3390/biom14091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Pannexin1 (Panx1) ATP channels are important in adipocyte biology, potentially influencing energy storage and expenditure. We compared the metabolic phenotype of young (14 weeks old) and mature (20 weeks old) wild-type (WT) and Panx1-/- mice exposed or not to cold (6 °C) during 28 days, a condition promoting adipocyte browning. Young Panx1-/- mice weighed less and exhibited increased fat mass, improved glucose tolerance, and lower insulin sensitivity than WT mice. Their energy expenditure and respiratory exchange ratio (RER) were increased, and their fatty acid oxidation decreased. These metabolic effects were no longer observed in mature Panx1-/- mice. The exposure of mature mice to cold exacerbated their younger metabolic phenotype. The white adipose tissue (WAT) of cold-exposed Panx1-/- mice contained more small-sized adipocytes, but, in contrast to WT mice, white adipocytes did not increase their expression of Ucp1 nor of other markers of browning adipocytes. Interestingly, Glut4 expression was already enhanced in the WAT of young Panx1-/- mice kept at 22 °C as compared to WT mice. Thus, Panx1 deletion exerts overall beneficial metabolic effects in mice that are pre-adapted to chronic cold exposure. Panx1-/- mice show morphological characteristics of WAT browning, which are exacerbated upon cold exposure, an effect that appears to be associated with Ucp1-independent thermogenesis.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
| | - Avigail Ehrlich
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
| | - Graziano Pelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
| | - Olga M. Rusiecka
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
| | - Christophe Montessuit
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
| | - Marc Chanson
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
| |
Collapse
|
4
|
Lempicki MD, Gray JA, Abuna G, Murata RM, Divanovic S, McNamara CA, Meher AK. BAFF neutralization impairs the autoantibody-mediated clearance of dead adipocytes and aggravates obesity-induced insulin resistance. Front Immunol 2024; 15:1436900. [PMID: 39185417 PMCID: PMC11341376 DOI: 10.3389/fimmu.2024.1436900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
B cell-activating factor (BAFF) is a critical TNF-family cytokine that regulates homeostasis and peripheral tolerance of B2 cells. BAFF overproduction promotes autoantibody generation and autoimmune diseases. During obesity, BAFF is predominantly produced by white adipose tissue (WAT), and IgG autoantibodies against adipocytes are identified in the WAT of obese humans. However, it remains to be determined if the autoantibodies formed during obesity affect WAT remodeling and systemic insulin resistance. Here, we show that IgG autoantibodies are generated in high-fat diet (HFD)-induced obese mice that bind to apoptotic adipocytes and promote their phagocytosis by macrophages. Next, using murine models of obesity in which the gonadal WAT undergoes remodeling, we found that BAFF neutralization depleted IgG autoantibodies, increased the number of dead adipocytes, and exacerbated WAT inflammation and insulin resistance. RNA sequencing of the stromal vascular fraction from the WAT revealed decreased expression of immunoglobulin light-chain and heavy-chain variable genes suggesting a decreased repertoire of B cells after BAFF neutralization. Further, the B cell activation and the phagocytosis pathways were impaired in the WAT of BAFF-neutralized mice. In vitro, plasma IgG fractions from BAFF-neutralized mice reduced the phagocytic clearance of apoptotic adipocytes. Altogether, our study suggests that IgG autoantibodies developed during obesity, at least in part, dampens exacerbated WAT inflammation and systemic insulin resistance.
Collapse
Affiliation(s)
- Melissa D. Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jake A. Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Gabriel Abuna
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Ramiro M. Murata
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Senad Divanovic
- Department of Pediatrics University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
5
|
Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, Wolpe AG, Thomas SH, Yeudall S, Upchurch CM, Okusa MD, Isakson BE, Wolf MJ, Leitinger N. Cardiomyocyte PANX1 Controls Glycolysis and Neutrophil Recruitment in Hypertrophy. Circ Res 2024; 135:503-517. [PMID: 38957990 PMCID: PMC11293983 DOI: 10.1161/circresaha.124.324650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND PANX1 (pannexin 1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, the possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. METHOD We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1MyHC6). RESULTS PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism and resulting glycolytic ATP production, with a concurrent decrease in oxidative phosphorylation, both in vivo and in vitro. In vitro, treatment of H9c2 (H9c2 rat myoblast cell line) cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knockdown of PANX1. To investigate nonischemic heart failure and the preceding cardiac hypertrophy, we administered isoproterenol, and we demonstrated that Panx1MyHC6 mice were protected from systolic and diastolic left ventricle volume increases as a result of cardiomyocyte hypertrophy. Moreover, we found that Panx1MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45+), particularly neutrophils (CD11b+ [integrin subunit alpha M], Ly6g+ [lymphocyte antigen 6 family member G]), to the myocardium. CONCLUSIONS Together, these data demonstrate that PANX1 deficiency in cardiomyocytes increases glycolytic metabolism and protects against cardiac hypertrophy in nonischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in patients with heart failure.
Collapse
Affiliation(s)
- Caitlin M Pavelec
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Alexander P Young
- Cardiovascular Medicine, Department of Medicine (A.P.Y., M.J.W.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Hannah L Luviano
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Emily E Orrell
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Anna Szagdaj
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (N.P., M.D.O.), University of Virginia School of Medicine, Charlottesville
| | - Abigail G Wolpe
- Department of Cell Biology (A.G.W.), University of Virginia School of Medicine, Charlottesville
| | - Samantha H Thomas
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Scott Yeudall
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Clint M Upchurch
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (N.P., M.D.O.), University of Virginia School of Medicine, Charlottesville
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
- Department of Molecular Physiology and Biological Physics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| | - Matthew J Wolf
- Cardiovascular Medicine, Department of Medicine (A.P.Y., M.J.W.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Norbert Leitinger
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
6
|
Hu CQ, Hou T, Xiang R, Li X, Li J, Wang TT, Liu WJ, Hou S, Wang D, Zhao QH, Yu XX, Xu M, Liu XK, Chi YJ, Yang JC. PANX1-mediated ATP release confers FAM3A's suppression effects on hepatic gluconeogenesis and lipogenesis. Mil Med Res 2024; 11:41. [PMID: 38937853 PMCID: PMC11210080 DOI: 10.1186/s40779-024-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet β cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.
Collapse
Affiliation(s)
- Cheng-Qing Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital/National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Tao Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Wen-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China
| | - Qing-He Zhao
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao-Xing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital/Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing, 100191, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, the First Hospital of Jilin University, Changchun, 130061, China.
| | - Yu-Jing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Ji-Chun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
7
|
Wei X, Zhang X, Chen R, Li Y, Yang Y, Deng K, Cai Z, Lai H, Shi J. Impact of periodontitis on type 2 diabetes: a bioinformatic analysis. BMC Oral Health 2024; 24:635. [PMID: 38811930 PMCID: PMC11137885 DOI: 10.1186/s12903-024-04408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Periodontitis is strongly associated with type 2 diabetes (T2D) that results in serious complications and mortality. However, the pathogenic role of periodontitis in the development of T2D and the underlain mechanism have not been fully elucidated. METHODS A Mendelian randomization (MR) was performed to estimate the causality between two diseases. Bioinformatics tools, including gene ontology and pathway enrichment analyses, were employed to analyze the common differentially expressed genes (DEGs) in periodontitis and T2D. MR and colocalization analyses were then utilized to investigate the causal associations between potential pathogenic gene expression and the risk of T2D. Single cell-type expression analysis was further performed to detect the cellular localization of these genes. RESULTS Genetically predicted periodontitis was associated with a higher risk of T2D (OR, 1.469; 95% CI, 1.117-1.930; P = 0.006) and insulin resistance (OR 1.034; 95%CI 1.001-1.068; P = 0.041). 79 common DEGs associated with periodontitis and T2D were then identified and demonstrated enrichment mainly in CXC receptor chemokine receptor binding and interleutin-17 signaling pathway. The integration of GWAS with the expression quantitative trait locis of these genes from the peripheral blood genetically prioritized 6 candidate genes, including 2 risk genes (RAP2A, MCUR1) and 4 protective genes (WNK1, NFIX, FOS, PANX1) in periodontitis-related T2D. Enriched in natural killer cells, RAP2A (OR 4.909; 95% CI 1.849-13.039; P = 0.001) demonstrated high risk influence on T2D, and exhibited strong genetic evidence of colocalization (coloc.abf-PPH4 = 0.632). CONCLUSIONS This study used a multi-omics integration method to explore causality between periodontitis and T2D, and revealed molecular mechanisms using bioinformatics tools. Periodontitis was associated with a higher risk of T2D. MCUR1, RAP2A, FOS, PANX1, NFIX and WNK1 may play important roles in the pathogenesis of periodontitis-related T2D, shedding light on the development of potential drug targets.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaomeng Zhang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ruiying Chen
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yuan Li
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yijie Yang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ke Deng
- Division of Periodontology and Implant Dentistry, The Faulty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Zhengzhen Cai
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hongchang Lai
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Junyu Shi
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
8
|
Huang Y, Shi Y, Wang M, Liu B, Chang X, Xiao X, Yu H, Cui X, Bai Y. Pannexin1 Channel-Mediated Inflammation in Acute Ischemic Stroke. Aging Dis 2024; 15:1296-1307. [PMID: 37196132 PMCID: PMC11081155 DOI: 10.14336/ad.2023.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 05/19/2023] Open
Abstract
Emerging evidence suggests that inflammation mediated by the pannexin1 channel contributes significantly to acute ischemic stroke. It is believed that the pannexin1 channel is key in initiating central system inflammation during the early stages of acute ischemic stroke. Moreover, the pannexin1 channel is involved in the inflammatory cascade to maintain the inflammation levels. Specifically, the interaction of pannexin1 channels with ATP-sensitive P2X7 purinoceptors or promotion of potassium efflux mediates the activation of the NLRP3 inflammasome, triggering the release of pro-inflammatory factors such as IL-1 and IL-18, exacerbating and sustaining inflammation of brain. Also, increased release of ATP induced by cerebrovascular injury activates pannexin1 in vascular endothelial cells. This signal directs peripheral leukocytes to migrate into ischemic brain tissue, leading to an expansion of the inflammatory zone. Intervention strategies targeting pannexin1 channels may greatly alleviate inflammation after acute ischemic stroke to improve this patient population's clinical outcomes. In this review, we sought to summarize relevant studies on inflammation mediated by the pannexin1 channel in acute ischemic stroke and discussed the possibility of using brain organoid-on-a-chip technology to screen miRNAs that exclusively target the pannexin1 channel to provide new therapeutic measures for targeted regulation of pannexin1 channel to reduce inflammation in acute ischemic stroke.
Collapse
Affiliation(s)
- Yubing Huang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Mengmeng Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Bingyi Liu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xueqin Chang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xia Xiao
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Huihui Yu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xiaodie Cui
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| |
Collapse
|
9
|
Ghiasi SM, Christensen NM, Pedersen PA, Skovhøj EZ, Novak I. Imaging of extracellular and intracellular ATP in pancreatic beta cells reveals correlation between glucose metabolism and purinergic signalling. Cell Signal 2024; 117:111109. [PMID: 38373668 DOI: 10.1016/j.cellsig.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Adenosine triphosphate (ATP) is a universal energy molecule and yet cells release it and extracellular ATP is an important signalling molecule between cells. Monitoring of ATP levels outside of cells is important for our understanding of physiological and pathophysiological processes in cells/tissues. Here, we focus on pancreatic beta cells (INS-1E) and test the hypothesis that there is an association between intra- and extracellular ATP levels which depends on glucose provision. We imaged real-time changes in extracellular ATP in pancreatic beta cells using two sensors tethered to extracellular aspects of the plasma membrane (eATeam3.10, iATPSnFR1.0). Increase in glucose induced fast micromolar ATP release to the cell surface, depending on glucose concentrations. Chronic pre-treatment with glucose increased the basal ATP signal. In addition, we co-expressed intracellular ATP sensors (ATeam1.30, PercevalHR) in the same cultures and showed that glucose induced fast increases in extracellular and intracellular ATP. Glucose and extracellular ATP stimulated glucose transport monitored by the glucose sensor (FLII12Pglu-700uDelta6). In conclusion, we propose that in beta cells there is a dynamic relation between intra- and extracellular ATP that depends on glucose transport and metabolism and these processes may be tuned by purinergic signalling. Future development of ATP sensors for imaging may aid development of novel approaches to target extracellular ATP in, for example, type 2 diabetes mellitus therapy.
Collapse
Affiliation(s)
- Seyed M Ghiasi
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Nynne M Christensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Per A Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Emil Z Skovhøj
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
10
|
Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, Wolpe AG, Thomas SH, Yeudall S, Upchurch CM, Okusa MD, Isakson BE, Wolf MJ, Leitinger N. Pannexin 1 Channels Control Cardiomyocyte Metabolism and Neutrophil Recruitment During Non-Ischemic Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573679. [PMID: 38234768 PMCID: PMC10793433 DOI: 10.1101/2023.12.29.573679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Pannexin 1 (PANX1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, a possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1 MyHC6 ). PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism both in vivo and in vitro . In vitro , treatment of H9c2 cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knock-down of PANX1. To investigate non-ischemic heart failure and the preceding cardiac hypertrophy we administered isoproterenol, and we demonstrate that Panx1 MyHC6 mice were protected from systolic and diastolic left ventricle volume increases and cardiomyocyte hypertrophy. Moreover, we found that Panx1 MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45 + ), particularly neutrophils (CD11b + , Ly6g + ), to the myocardium. Together these data demonstrate that PANX1 deficiency in cardiomyocytes impacts glycolytic metabolism and protects against cardiac hypertrophy in non-ischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in heart failure patients.
Collapse
|
11
|
McAllister BB, Stokes-Heck S, Harding EK, van den Hoogen NJ, Trang T. Targeting Pannexin-1 Channels: Addressing the 'Gap' in Chronic Pain. CNS Drugs 2024; 38:77-91. [PMID: 38353876 DOI: 10.1007/s40263-024-01061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/22/2024]
Abstract
Chronic pain complicates many diseases and is notoriously difficult to treat. In search of new therapeutic targets, pannexin-1 (Panx1) channels have sparked intense interest as a key mechanism involved in a variety of chronic pain conditions. Panx1 channels are transmembrane proteins that release ions and small molecules, such as adenosine triphosphate (ATP). They are expressed along important nodes of the pain pathway, modulating activity of diverse cell types implicated in the development and progression of chronic pain caused by injury or pathology. This review highlights advances that have unlocked the core structure and machinery controlling Panx1 function with a focus on understanding and treating chronic pain.
Collapse
Affiliation(s)
- Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
12
|
Pfeifer A, Mikhael M, Niemann B. Inosine: novel activator of brown adipose tissue and energy homeostasis. Trends Cell Biol 2024; 34:72-82. [PMID: 37188562 DOI: 10.1016/j.tcb.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Extracellular purinergic molecules act as signaling molecules that bind to cellular receptors and regulate signaling pathways. Growing evidence suggests that purines regulate adipocyte function and whole-body metabolism. Here, we focus on one specific purine: inosine. Brown adipocytes, which are important regulators of whole-body energy expenditure (EE), release inosine when they are stressed or become apoptotic. Unexpectedly, inosine activates EE in neighboring brown adipocytes and enhances differentiation of brown preadipocytes. Increasing extracellular inosine, either directly by increasing inosine intake or indirectly via pharmacological inhibition of cellular inosine transporters, increases whole-body EE and counteracts obesity. Thus, inosine and other closely related purines might be a novel approach to tackle obesity and associated metabolic disorders by enhancing EE.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
| | - Mickel Mikhael
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Birte Niemann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Palacios-Prado N, Vergara T, Sáez JC. Enhanced Methodologies for Investigating the Electrophysiological Characteristics of Endogenous Pannexin 1 Intercellular Cell-Cell Channels. Methods Mol Biol 2024; 2801:135-145. [PMID: 38578419 DOI: 10.1007/978-1-0716-3842-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Gap junctions, pivotal intercellular conduits, serve as communication channels between adjacent cells, playing a critical role in modulating membrane potential distribution across cellular networks. The family of Pannexin (Panx) proteins, in particular Pannexin1 (Panx1), are widely expressed in vertebrate cells and exhibit sequence homology with innexins, the invertebrate gap junction channel constituents. Despite being ubiquitously expressed, detailed functional and pharmacological properties of Panx1 intercellular cell-cell channels require further investigation. In this chapter, we introduce optimized cell culture methodologies and electrophysiology protocols to expedite the exploration of endogenous Panx1 cell-cell channels in TC620 cells, a human oligodendroglioma cell line that naturally expresses Panx1. We anticipate these refined protocols will significantly contribute to future characterizations of Panx1-based intercellular cell-cell channels across diverse cell types and offer valuable insights into both normal cellular physiology and pathophysiology.
Collapse
Affiliation(s)
- Nicolás Palacios-Prado
- Laboratorio de Neurobiología, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Teresa Vergara
- Laboratorio de Neurobiología, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
14
|
Cibelli A, Dohare P, Spray DC, Scemes E. Differential activation of mouse and human Panx1 channel variants. PLoS One 2023; 18:e0295710. [PMID: 38100403 PMCID: PMC10723736 DOI: 10.1371/journal.pone.0295710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Pannexins are ubiquitously expressed in human and mouse tissues. Pannexin 1 (Panx1), the most thoroughly characterized member of this family, forms plasmalemmal membrane channels permeable to relatively large molecules, such as ATP. Although human and mouse Panx1 amino acid sequences are conserved in the presently known regulatory sites involved in trafficking and modulation of the channel, differences are reported in the N- and C-termini of the protein, and the mechanisms of channel activation by different stimuli remain controversial. Here we used a neuroblastoma cell line to study the activation properties of endogenous mPanx1 and exogenously expressed hPanx1. Dye uptake and electrophysiological recordings revealed that in contrast to mouse Panx1, the human ortholog is insensitive to stimulation with high extracellular [K+] but responds similarly to activation of the purinergic P2X7 receptor. The two most frequent Panx1 polymorphisms found in the human population, Q5H (rs1138800) and E390D (rs74549886), exogenously expressed in Panx1-null N2a cells revealed that regarding P2X7 receptor mediated Panx1 activation, the Q5H mutant is a gain of function whereas the E390D mutant is a loss of function variant. Collectively, we demonstrate differences in the activation between human and mouse Panx1 orthologs and suggest that these differences may have translational implications for studies where Panx1 has been shown to have significant impact.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Preeti Dohare
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - David C. Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Eliana Scemes
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States of America
| |
Collapse
|
15
|
O'Donnell BL, Penuela S. Skin in the game: pannexin channels in healthy and cancerous skin. Biochem J 2023; 480:1929-1949. [PMID: 38038973 DOI: 10.1042/bcj20230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The skin is a highly organized tissue composed of multiple layers and cell types that require coordinated cell to cell communication to maintain tissue homeostasis. In skin cancer, this organized structure and communication is disrupted, prompting the malignant transformation of healthy cells into melanoma, basal cell carcinoma or squamous cell carcinoma tumours. One such family of channel proteins critical for cellular communication is pannexins (PANX1, PANX2, PANX3), all of which are present in the skin. These heptameric single-membrane channels act as conduits for small molecules and ions like ATP and Ca2+ but have also been shown to have channel-independent functions through their interacting partners or action in signalling pathways. Pannexins have diverse roles in the skin such as in skin development, aging, barrier function, keratinocyte differentiation, inflammation, and wound healing, which were discovered through work with pannexin knockout mice, organotypic epidermis models, primary cells, and immortalized cell lines. In the context of cutaneous cancer, PANX1 is present at high levels in melanoma tumours and functions in melanoma carcinogenesis, and both PANX1 and PANX3 expression is altered in non-melanoma skin cancer. PANX2 has thus far not been implicated in any skin cancer. This review will discuss pannexin isoforms, structure, trafficking, post-translational modifications, interactome, and channel activity. We will also outline the expression, localization, and function of pannexin channels within the diverse cell types of the epidermis, dermis, hypodermis, and adnexal structures of the skin, and how these properties are exploited or abrogated in instances of skin cancer.
Collapse
Affiliation(s)
- Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
16
|
Van Campenhout R, Caufriez A, Tabernilla A, Maerten A, De Boever S, Sanz-Serrano J, Kadam P, Vinken M. Pannexin1 channels in the liver: an open enemy. Front Cell Dev Biol 2023; 11:1220405. [PMID: 37492223 PMCID: PMC10363690 DOI: 10.3389/fcell.2023.1220405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Pannexin1 proteins form communication channels at the cell plasma membrane surface, which allow the transfer of small molecules and ions between the intracellular compartment and extracellular environment. In this way, pannexin1 channels play an important role in various cellular processes and diseases. Indeed, a plethora of human pathologies is associated with the activation of pannexin1 channels. The present paper reviews and summarizes the structure, life cycle, regulation and (patho)physiological roles of pannexin1 channels, with a particular focus on the relevance of pannexin1 channels in liver diseases.
Collapse
|
17
|
Dunaway LS, Billaud M, Macal E, Good ME, Medina CB, Lorenz U, Ravichandran K, Koval M, Isakson BE. Amount of Pannexin 1 in Smooth Muscle Cells Regulates Sympathetic Nerve-Induced Vasoconstriction. Hypertension 2023; 80:416-425. [PMID: 36448464 PMCID: PMC9851955 DOI: 10.1161/hypertensionaha.122.20280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Panx1 (pannexin 1) forms high conductance channels that secrete ATP upon stimulation. The role of Panx1 in mediating constriction in response to direct sympathetic nerve stimulation is not known. Additionally, it is unknown how the expression level of Panx1 in smooth muscle cells (SMCs) influences α-adrenergic responses. We hypothesized that the amount of Panx1 in SMCs dictates the levels of sympathetic constriction and blood pressure. METHODS To test this hypothesis, we used genetically modified mouse models enabling expression of Panx1 in vascular cells to be varied. Electrical field stimulation on isolated arteries and blood pressure were assessed. RESULTS Genetic deletion of SMC Panx1 prevented constriction by electric field stimulation of sympathetic nerves. Conversely, overexpression of Panx1 in SMCs using a ROSA26 transgenic model increased sympathetic nerve-mediated constriction. Connexin 43 hemichannel inhibitors did not alter constriction. Next, we evaluated the effects of altered SMC Panx1 expression on blood pressure. To do this, we created mice combining a global Panx1 deletion, with ROSA26-Panx1 under the control of an inducible SMC specific Cre (Myh11). This resulted in mice that could express only human Panx1, only in SMCs. After tamoxifen, these mice had increased blood pressure that was acutely decreased by the Panx1 inhibitor spironolactone. Control mice genetically devoid of Panx1 did not respond to spironolactone. CONCLUSIONS These data suggest Panx1 in SMCs could regulate the extent of sympathetic nerve constriction and blood pressure. The results also show the feasibility humanized Panx1-mouse models to test pharmacological candidates.
Collapse
Affiliation(s)
- Luke S. Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Marie Billaud
- Department of Surgery, Division of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital, Boston MA, 02115
| | - Edgar Macal
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Miranda E. Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA 02111
| | - Christopher B. Medina
- Center for Cell Clearance, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Ulrike Lorenz
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Kodi Ravichandran
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
18
|
Wakefield B, Penuela S. Potential Implications of Exercise Training on Pannexin Expression and Function. J Vasc Res 2022; 60:114-124. [PMID: 36366809 DOI: 10.1159/000527240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 09/05/2023] Open
Abstract
Pannexins (PANX1, 2, 3) are channel-forming glycoproteins that are expressed throughout the cardiovascular and musculoskeletal system. The canonical function of these proteins is to release nucleotides that act as purinergic signalling at the cell membrane or Ca2+ channels at the endoplasmic reticulum membrane. These two forms of signalling are essential for autocrine and paracrine signalling in health, and alterations in this signalling have been implicated in the pathogenesis of many diseases. Many musculoskeletal and cardiovascular diseases are largely the result of a lack of physical activity which causes altered gene expression. Considering exercise training has been shown to alter a wide array of gene expression in musculoskeletal tissues, understanding the interaction between exercise training, gene function and expression in relevant diseases is warranted. With regards to pannexins, multiple publications have shown that exercise training can influence pannexin expression and may influence the significance of its function in certain diseases. This review further discusses the potential interaction between exercise training and pannexin biology in relevant tissues and disease models. We propose that exercise training in relevant animal and human models will provide a more comprehensive understanding of the implications of pannexin biology in disease.
Collapse
Affiliation(s)
- Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Meter D, Racetin A, Vukojević K, Balog M, Ivić V, Zjalić M, Heffer M, Filipović N. A Lack of GD3 Synthase Leads to Impaired Renal Expression of Connexins and Pannexin1 in St8sia1 Knockout Mice. Int J Mol Sci 2022; 23:ijms23116237. [PMID: 35682927 PMCID: PMC9181035 DOI: 10.3390/ijms23116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to determine the effects of altered ganglioside composition on the expression of Cx37, Cx40, Cx43, Cx45, and Panx1 in different kidney regions of St8sia1 gene knockout mice (St8sia1 KO) lacking the GD3 synthase enzyme. Experiments were performed in twelve male 6-month-old mice: four wild-type (C57BL/6-type, WT) and eight St8sia1 KO mice. After euthanasia, kidney tissue was harvested, embedded in paraffin wax, and processed for immunohistochemistry. The expression of connexins and Panx1 was determined in different regions of the kidney: cortex (CTX.), outer stripe of outer medulla (O.S.), inner stripe of outer medulla (IN.S.), and inner medulla (IN.MED.). We determined significantly lower expression of Cx37, Cx40, Cx45, and Panx1 in different parts of the kidneys of St8sia1 KO mice compared with WT. The most consistent decrease was found in the O.S. where all markers (Cx 37, 40, 45 and Panx1) were disrupted in St8si1 KO mice. In the CTX. region, we observed decrease in the expression of Cx37, Cx45, and Panx1, while reduced expression of Cx37 and Panx1 was more specific to IN.S. The results of the present study suggest that deficiency of GD3 synthase in St8sia1 KO mice leads to disruption of renal Cx expression, which is probably related to alteration of ganglioside composition.
Collapse
Affiliation(s)
- Diana Meter
- Department of Rheumatology and Clinical Immunology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia;
| | - Anita Racetin
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (A.R.); (K.V.)
| | - Katarina Vukojević
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (A.R.); (K.V.)
- Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.B.); (V.I.); (M.H.)
| | - Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.B.); (V.I.); (M.H.)
| | - Milorad Zjalić
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine Rijeka, University of Rijeka, Branchetta brothers 20, 51000 Rijeka, Croatia;
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.B.); (V.I.); (M.H.)
| | - Natalija Filipović
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (A.R.); (K.V.)
- Correspondence:
| |
Collapse
|
20
|
Musovic S, Komai AM, Said MK, Shrestha MM, Wu Y, Wernstedt Asterholm I, Olofsson CS. Noradrenaline and ATP regulate adiponectin exocytosis in white adipocytes: Disturbed adrenergic and purinergic signalling in obese and insulin-resistant mice. Mol Cell Endocrinol 2022; 549:111619. [PMID: 35337901 DOI: 10.1016/j.mce.2022.111619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 01/19/2023]
Abstract
White adipocyte adiponectin exocytosis is triggered by cAMP and a concomitant increase of cytosolic Ca2+ potentiates its release. White adipose tissue is richly innervated by sympathetic nerves co-releasing noradrenaline (NA) and ATP, which may act on receptors in the adipocyte plasma membrane to increase cAMP via adrenergic receptors and Ca2+ via purinergic receptors. Here we determine the importance of NA and ATP for the regulation of white adipocyte adiponectin exocytosis, at the cellular and molecular level, and we specifically detail the ATP signalling pathway. We demonstrate that tyrosine hydroxylase (enzyme involved in catecholamine synthesis) is dramatically reduced in inguinal white adipose tissue (IWAT) isolated from mice with diet-induced obesity; this is associated with diminished levels of NA in IWAT and with a reduced ratio of high-molecular-weight (HMW) to total adiponectin in serum. Adiponectin exocytosis (measured as an increase in plasma membrane capacitance and as secreted product) is triggered by NA or ATP alone in cultured and primary mouse IWAT adipocytes, and enhanced by a combination of the two secretagogues. The ATP-induced adiponectin exocytosis is largely Ca2+-dependent and activated via purinergic P2Y2 receptors (P2Y2Rs) and the Gq11/PLC pathway. Adiponectin release induced by the nucleotide is abrogated in adipocytes isolated from obese and insulin-resistant mice, and this is associated with ∼70% reduced abundance of P2Y2Rs. The NA-triggered adiponectin exocytosis is likewise abolished in "obese adipocytes", concomitant with a 50% lower gene expression of beta 3 adrenergic receptors (β3ARs). An increase in intracellular Ca2+ is not required for the NA-stimulated adiponectin secretion. Collectively, our data suggest that sympathetic innervation is a principal regulator of adiponectin exocytosis and that disruptions of this control are associated with the obesity-associated reduction of circulating levels of HMW/total adiponectin.
Collapse
Affiliation(s)
- Saliha Musovic
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| | - Ali M Komai
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| | - Marina Kalds Said
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| | - Man Mohan Shrestha
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| | - Yanling Wu
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden.
| |
Collapse
|
21
|
Nadeali Z, Mohammad-Rezaei F, Aria H, Nikpour P. Possible role of pannexin 1 channels and purinergic receptors in the pathogenesis and mechanism of action of SARS-CoV-2 and therapeutic potential of targeting them in COVID-19. Life Sci 2022; 297:120482. [PMID: 35288174 PMCID: PMC8915746 DOI: 10.1016/j.lfs.2022.120482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023]
Abstract
Identifying signaling pathways and molecules involved in SARS-CoV-2 pathogenesis is pivotal for developing new effective therapeutic or preventive strategies for COVID-19. Pannexins (PANX) are ATP-release channels in the plasma membrane essential in many physiological and immune responses. Activation of pannexin channels and downstream purinergic receptors play dual roles in viral infection, either by facilitating viral replication and infection or inducing host antiviral defense. The current review provides a hypothesis demonstrating the possible contribution of the PANX1 channel and purinergic receptors in SARS-CoV-2 pathogenesis and mechanism of action. Moreover, we discuss whether targeting these signaling pathways may provide promising preventative therapies and treatments for patients with progressive COVID-19 resulting from excessive pro-inflammatory cytokines and chemokines production. Several inhibitors of this pathway have been developed for the treatment of other viral infections and pathological consequences. Specific PANX1 inhibitors could be potentially included as part of the COVID-19 treatment regimen if, in future, studies demonstrate the role of PANX1 in COVID-19 pathogenesis. Of note, any ATP therapeutic modulation for COVID-19 should be carefully designed and monitored because of the complex role of extracellular ATP in cellular physiology.
Collapse
Affiliation(s)
- Zakiye Nadeali
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mohammad-Rezaei
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Aria
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Wakefield CB, Lee VR, Johnston D, Boroumand P, Pillon NJ, Sayedyahossein S, O'Donnell BL, Tang J, Sanchez-Pupo RE, Barr KJ, Gros R, Flynn L, Borradaile NM, Klip A, Beier F, Penuela S. Pannexin 3 deletion reduces fat accumulation and inflammation in a sex-specific manner. Int J Obes (Lond) 2022; 46:726-738. [PMID: 34897286 DOI: 10.1038/s41366-021-01037-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pannexin 3 (PANX3) is a channel-forming glycoprotein that enables nutrient-induced inflammation in vitro, and genetic linkage data suggest that it regulates body mass index. Here, we characterized inflammatory and metabolic parameters in global Panx3 knockout (KO) mice in the context of forced treadmill running (FEX) and high-fat diet (HFD). METHODS C57BL/6N (WT) and KO mice were randomized to either a FEX running protocol or no running (SED) from 24 until 30 weeks of age. Body weight was measured biweekly, and body composition was measured at 24 and 30 weeks of age. Male WT and KO mice were fed a HFD from 12 to 28 weeks of age. Metabolic organs were analyzed for a panel of inflammatory markers and PANX3 expression. RESULTS In females there were no significant differences in body composition between genotypes, which could be due to the lack of PANX3 expression in female white adipose tissue, while male KOs fed a chow diet had lower body weight and lower fat mass at 24 and 30 weeks of age, which was reduced to the same extent as 6 weeks of FEX in WT mice. In addition, male KO mice exhibited significantly lower expression of multiple pro-inflammatory genes in white adipose tissue compared to WT mice. While on a HFD body weight differences were insignificant, multiple inflammatory genes were significantly different in quadriceps muscle and white adipose tissue resulting in a more anti-inflammatory phenotype in KO mice compared to WT. The lower fat mass in male KO mice may be due to significantly fewer adipocytes in their subcutaneous fat compared to WT mice. Mechanistically, adipose stromal cells (ASCs) cultured from KO mice grow significantly slower than WT ASCs. CONCLUSION PANX3 is expressed in male adult mouse adipose tissue and may regulate adipocyte numbers, influencing fat accumulation and inflammation.
Collapse
Affiliation(s)
- C Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON, N6G 2V4, Canada
| | - Vanessa R Lee
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nicolas J Pillon
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Samar Sayedyahossein
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Justin Tang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Rafael E Sanchez-Pupo
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Kevin J Barr
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Lauren Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON, N6G 2V4, Canada
- Department of Chemical and Biomedical Engineering, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Nica M Borradaile
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Frank Beier
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON, N6G 2V4, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON, N6G 2V4, Canada.
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
23
|
Harcha PA, López-López T, Palacios AG, Sáez PJ. Pannexin Channel Regulation of Cell Migration: Focus on Immune Cells. Front Immunol 2022; 12:750480. [PMID: 34975840 PMCID: PMC8716617 DOI: 10.3389/fimmu.2021.750480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The role of Pannexin (PANX) channels during collective and single cell migration is increasingly recognized. Amongst many functions that are relevant to cell migration, here we focus on the role of PANX-mediated adenine nucleotide release and associated autocrine and paracrine signaling. We also summarize the contribution of PANXs with the cytoskeleton, which is also key regulator of cell migration. PANXs, as mechanosensitive ATP releasing channels, provide a unique link between cell migration and purinergic communication. The functional association with several purinergic receptors, together with a plethora of signals that modulate their opening, allows PANX channels to integrate physical and chemical cues during inflammation. Ubiquitously expressed in almost all immune cells, PANX1 opening has been reported in different immunological contexts. Immune activation is the epitome coordination between cell communication and migration, as leukocytes (i.e., T cells, dendritic cells) exchange information while migrating towards the injury site. In the current review, we summarized the contribution of PANX channels during immune cell migration and recruitment; although we also compile the available evidence for non-immune cells (including fibroblasts, keratinocytes, astrocytes, and cancer cells). Finally, we discuss the current evidence of PANX1 and PANX3 channels as a both positive and/or negative regulator in different inflammatory conditions, proposing a general mechanism of these channels contribution during cell migration.
Collapse
Affiliation(s)
- Paloma A Harcha
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Vliora M, Grillo E, Corsini M, Ravelli C, Nintou E, Karligiotou E, Flouris AD, Mitola S. Irisin regulates thermogenesis and lipolysis in 3T3-L1 adipocytes. Biochim Biophys Acta Gen Subj 2022; 1866:130085. [PMID: 35016977 DOI: 10.1016/j.bbagen.2022.130085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adipose tissue plays a pivotal role in the development and progression of the metabolic syndrome which along with its complications is an epidemic of the 21st century. Irisin is an adipo-myokine secreted mainly by skeletal muscle and targeting, among others, adipose tissue. In brown adipose tissue it upregulates uncoupling protein-1 (UCP1) which is responsible for mitochondrial non-shivering thermogenesis. METHODS Here we analyzed the effects of irisin on the metabolic activity of 3T3-L1 derived adipocytes through a mitochondrial flux assay. We also assessed the effects of irisin on the intracellular signaling through Western Blot. Finally, the gene expression of ucp1 and lipolytic genes was examined through RT-qPCR. RESULTS Irisin affects mitochondrial respiration and lipolysis in a time-dependent manner through the regulation of PI3K-AKT pathway. Irisin also induces the expression of UCP1 and the regulation of NF-κB, and CREB and ERK pathways. CONCLUSION Our data supports the role of irisin in the induction of non-shivering thermogenesis, the regulation of energy expenditure and lipolysis in adipocytes. GENERAL SIGNIFICANCE Irisin may be an attractive therapeutic target in the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eleni Nintou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Eleni Karligiotou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
25
|
Muñoz MF, Griffith TN, Contreras JE. Mechanisms of ATP release in pain: role of pannexin and connexin channels. Purinergic Signal 2021; 17:549-561. [PMID: 34792743 PMCID: PMC8677853 DOI: 10.1007/s11302-021-09822-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.
Collapse
Affiliation(s)
- Manuel F. Muñoz
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| |
Collapse
|
26
|
Luetić M, Kretzschmar G, Grobe M, Jerčić L, Bota I, Ivić V, Balog M, Zjalić M, Vitlov Uljević M, Heffer M, Gaspar R, Tabi T, Vukojević K, Vari SG, Filipović N. Sex-specific effects of metformin and liraglutide on renal pathology and expression of connexin 45 and pannexin 1 following long-term high-fat high-sugar diet. Acta Histochem 2021; 123:151817. [PMID: 34808525 DOI: 10.1016/j.acthis.2021.151817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023]
Abstract
The comparative effects of the two commonly used antidiabetic drugs metformin and liraglutide on renal pathology and expression of connexin 45 (Cx45) and pannexin 1 (Panx1) in adult obese rats fed high-fat high-sugar diet (HFHSD) were studied. Considering recent data on the profound influence of sex on metformin and liraglutide effects, we compared the effects of both drugs between male and female animals. 44-week-old Sprague-Dawley rats were separated into 4 groups that were fed: standard diet, HFHSD, HFHSD treated with metformin (s.c., 50 mg/kg/day) and HFHSD treated with liraglutide (s.c., 0.3 mg/kg/day). Treatment with metformin or liraglutide lasted for 14 weeks. Histology and immunohistochemistry were performed to quantify renal pathological changes and Cx45 and Panx1 expression. HFHSD caused thickening of the Bowman's capsule (BC). Both metformin and liraglutide failed to ameliorate the BC thickening; metformin even worsened it. Effects on the tubulointerstitial fibrosis score, BC thickness and Cx45 and Panx1 expression were sex-dependent. We found a 50% increase in mitochondria in proximal tubules of metformin- and liraglutide-treated HFHSD-fed rats, but these effects were not dependent on the sex. This is a first study showing that the effects of metformin and liraglutide on kidney pathology in rats fed HFHSD are mostly sex-dependent and that these effects are not necessarily beneficial. Both drugs changed the Cx45 and Panx 1 expression; hence their effects could be related to amelioration of disruptions in intercellular communication.
Collapse
Affiliation(s)
- Martina Luetić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital Centre Split, Spinčićeva 1, Split 21000, Croatia
| | - Genia Kretzschmar
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Maximilian Grobe
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Leo Jerčić
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Ivana Bota
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Vedrana Ivić
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Marta Balog
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Milorad Zjalić
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Marija Vitlov Uljević
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Marija Heffer
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér. 12., H-6720 Szeged, Hungary
| | - Tamas Tabi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Katarina Vukojević
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia; University of Split School of Medicine, Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Sandor G Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Natalija Filipović
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia.
| |
Collapse
|
27
|
Activation of Cx43 Hemichannels Induces the Generation of Ca 2+ Oscillations in White Adipocytes and Stimulates Lipolysis. Int J Mol Sci 2021; 22:ijms22158095. [PMID: 34360859 PMCID: PMC8347185 DOI: 10.3390/ijms22158095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to investigate the mechanisms of Ca2+ oscillation generation upon activation of connexin-43 and regulation of the lipolysis/lipogenesis balance in white adipocytes through vesicular ATP release. With fluorescence microscopy it was revealed that a decrease in the concentration of extracellular calcium ([Ca2+]ex) results in two types of Ca2+ responses in white adipocytes: Ca2+ oscillations and transient Ca2+ signals. It was found that activation of the connexin half-channels is involved in the generation of Ca2+ oscillations, since the blockers of the connexin hemichannels-carbenoxolone, octanol, proadifen and Gap26-as well as Cx43 gene knockdown led to complete suppression of these signals. The activation of Cx43 in response to the reduction of [Ca2+]ex was confirmed by TIRF microscopy. It was shown that in response to the activation of Cx43, ATP-containing vesicles were released from the adipocytes. This process was suppressed by knockdown of the Cx43 gene and by bafilomycin A1, an inhibitor of vacuolar ATPase. At the level of intracellular signaling, the generation of Ca2+ oscillations in white adipocytes in response to a decrease in [Ca2+]ex occurred due to the mobilization of the Ca2+ ions from the thapsigargin-sensitive Ca2+ pool of IP3R as a result of activation of the purinergic P2Y1 receptors and phosphoinositide signaling pathway. After activation of Cx43 and generation of the Ca2+ oscillations, changes in the expression levels of key genes and their encoding proteins involved in the regulation of lipolysis were observed in white adipocytes. This effect was accompanied by a decrease in the number of adipocytes containing lipid droplets, while inhibition or knockdown of Cx43 led to inhibition of lipolysis and accumulation of lipid droplets. In this study, we investigated the mechanism of Ca2+ oscillation generation in white adipocytes in response to a decrease in the concentration of Ca2+ ions in the external environment and established an interplay between periodic Ca2+ modes and the regulation of the lipolysis/lipogenesis balance.
Collapse
|
28
|
Jorquera G, Meneses-Valdés R, Rosales-Soto G, Valladares-Ide D, Campos C, Silva-Monasterio M, Llanos P, Cruz G, Jaimovich E, Casas M. High extracellular ATP levels released through pannexin-1 channels mediate inflammation and insulin resistance in skeletal muscle fibres of diet-induced obese mice. Diabetologia 2021; 64:1389-1401. [PMID: 33710396 DOI: 10.1007/s00125-021-05418-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Skeletal muscle is a key target organ for insulin's actions and is the main regulator of blood glucose. In obese individuals and animal models, there is a chronic low-grade inflammatory state affecting highly metabolic organs, leading to insulin resistance. We have described that adult skeletal muscle fibres can release ATP to the extracellular medium through pannexin-1 (PANX1) channels. Besides, it is known that high extracellular ATP concentrations can act as an inflammatory signal. Here, we propose that skeletal muscle fibres from obese mice release high levels of ATP, through PANX1 channels, promoting inflammation and insulin resistance in muscle cells. METHODS C57BL/6J mice were fed with normal control diet (NCD) or high-fat diet (HFD) for 8 weeks. Muscle fibres were isolated from flexor digitorum brevis (FDB) muscle. PANX1-knockdown FDB fibres were obtained by in vivo electroporation of a short hairpin RNA Panx1 plasmid. We analysed extracellular ATP levels in a luciferin/luciferase assay. Gene expression was studied with quantitative real-time PCR (qPCR). Protein levels were evaluated by immunoblots, ELISA and immunofluorescence. Insulin sensitivity was analysed in a 2-NBDG (fluorescent glucose analogue) uptake assay, immunoblots and IPGTT. RESULTS HFD-fed mice showed significant weight gain and insulin resistance compared with NCD-fed mice. IL-6, IL-1β and TNF-α protein levels were increased in FDB muscle from obese mice. We observed high levels of extracellular ATP in muscle fibres from obese mice (197 ± 55 pmol ATP/μg RNA) compared with controls (32 ± 10 pmol ATP/μg RNA). ATP release in obese mice fibres was reduced by application of 100 μmol/l oleamide (OLE) and 5 μmol/l carbenoxolone (CBX), both PANX1 blockers. mRNA levels of genes linked to inflammation were reduced using OLE, CBX or 2 U/ml ATPase apyrase in muscle fibres from HFD-fed mice. In fibres from mice with pannexin-1 knockdown, we observed diminished extracellular ATP levels (78 ± 10 pmol ATP/μg RNA vs 252 ± 37 pmol ATP/μg RNA in control mice) and a lower expression of inflammatory markers. Moreover, a single pulse of 300 μmol/l ATP to fibres from control mice reduced insulin-mediated 2-NBDG uptake and promoted an elevation in mRNA levels of inflammatory markers. PANX-1 protein levels were increased two- to threefold in skeletal muscle from obese mice compared with control mice. Incubation with CBX increased Akt activation and 2-NBDG uptake in HFD fibres after insulin stimulation, rescuing the insulin resistance condition. Finally, in vivo treatment of HFD-fed mice with CBX (i.p. injection of 10 mg/kg each day) for 14 days, compared with PBS, reduced extracellular ATP levels in skeletal muscle fibres (51 ± 10 pmol ATP/μg RNA vs 222 ± 28 pmol ATP/μg RNA in PBS-treated mice), diminished inflammation and improved glycaemic management. CONCLUSIONS/INTERPRETATION In this work, we propose a novel mechanism for the development of inflammation and insulin resistance in the skeletal muscle of obese mice. We found that high extracellular ATP levels, released by overexpressed PANX1 channels, lead to an inflammatory state and insulin resistance in skeletal muscle fibres of obese mice.
Collapse
Affiliation(s)
- Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Roberto Meneses-Valdés
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Giovanni Rosales-Soto
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias de la Educación, Universidad San Sebastián, sede Bellavista, Santiago, Chile
| | | | - Cristian Campos
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mónica Silva-Monasterio
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paola Llanos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Enrique Jaimovich
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mariana Casas
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
29
|
Sandhu B, Perez-Matos MC, Tran S, Singhal G, Syed I, Feldbrügge L, Mitsuhashi S, Pelletier J, Huang J, Yalcin Y, Csizmadia E, Tiwari-Heckler S, Enjyoji K, Sévigny J, Maratos-Flier E, Robson SC, Jiang ZG. Global deletion of NTPDase3 protects against diet-induced obesity by increasing basal energy metabolism. Metabolism 2021; 118:154731. [PMID: 33631144 PMCID: PMC8052311 DOI: 10.1016/j.metabol.2021.154731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3), also known as CD39L3, is the dominant ectonucleotidase expressed by beta cells in the islet of Langerhans and on nerves. NTPDase3 catalyzes the conversion of extracellular ATP and ADP to AMP and modulates purinergic signaling. Previous studies have shown that NTPDase3 decreases insulin release from beta-cells in vitro. This study aims to determine the impact of NTPDase3 in diet-induced obesity (DIO) and metabolism in vivo. METHODS We developed global NTPDase3 deficient (Entpd3-/-) and islet beta-cell-specific NTPDase-3 deficient mice (Entpd3flox/flox,InsCre) using Ins1-Cre targeted gene editing to compare metabolic phenotypes with wildtype (WT) mice on a high-fat diet (HFD). RESULTS Entpd3-/- mice exhibited similar growth rates compared to WT on chow diet. When fed HFD, Entpd3-/- mice demonstrated significant resistance to DIO. Entpd3-/- mice consumed more calories daily and exhibited less fecal calorie loss. Although Entpd3-/- mice had no increases in locomotor activity, the mice exhibited a significant increase in basal metabolic rate when on the HFD. This beneficial phenotype was associated with improved glucose tolerance, but not higher insulin secretion. In fact, Entpd3flox/flox,InsCre mice demonstrated similar metabolic phenotypes and insulin secretion compared to matched controls, suggesting that the expression of NTPDase3 in beta-cells was not the primary protective factor. Instead, we observed a higher expression of uncoupling protein 1 (UCP-1) in brown adipose tissue and an augmented browning in inguinal white adipose tissue with upregulation of UCP-1 and related genes involved in thermogenesis in Entpd3-/- mice. CONCLUSIONS Global NTPDase3 deletion in mice is associated with resistance to DIO and obesity-associated glucose intolerance. This outcome is not driven by the expression of NTPDase3 in pancreatic beta-cells, but rather likely mediated through metabolic changes in adipocytes.
Collapse
Affiliation(s)
- Bynvant Sandhu
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria C Perez-Matos
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stephanie Tran
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Garima Singhal
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ismail Syed
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Linda Feldbrügge
- Department of Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shuji Mitsuhashi
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julie Pelletier
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada
| | - Jinhe Huang
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yusuf Yalcin
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eva Csizmadia
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shilpa Tiwari-Heckler
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Keiichi Enjyoji
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jean Sévigny
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Eleftheria Maratos-Flier
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Z Gordon Jiang
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Senthivinayagam S, Serbulea V, Upchurch CM, Polanowska-Grabowska R, Mendu SK, Sahu S, Jayaguru P, Aylor KW, Chordia MD, Steinberg L, Oberholtzer N, Uchiyama S, Inada N, Lorenz UM, Harris TE, Keller SR, Meher AK, Kadl A, Desai BN, Kundu BK, Leitinger N. Adaptive thermogenesis in brown adipose tissue involves activation of pannexin-1 channels. Mol Metab 2021; 44:101130. [PMID: 33248294 PMCID: PMC7779784 DOI: 10.1016/j.molmet.2020.101130] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/06/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) is specialized in thermogenesis. The conversion of energy into heat in brown adipocytes proceeds via stimulation of β-adrenergic receptor (βAR)-dependent signaling and activation of mitochondrial uncoupling protein 1 (UCP1). We have previously demonstrated a functional role for pannexin-1 (Panx1) channels in white adipose tissue; however, it is not known whether Panx1 channels play a role in the regulation of brown adipocyte function. Here, we tested the hypothesis that Panx1 channels are involved in brown adipocyte activation and thermogenesis. METHODS In an immortalized brown pre-adipocytes cell line, Panx1 currents were measured using patch-clamp electrophysiology. Flow cytometry was used for assessment of dye uptake and luminescence assays for adenosine triphosphate (ATP) release, and cellular temperature measurement was performed using a ratiometric fluorescence thermometer. We used RNA interference and expression plasmids to manipulate expression of wild-type and mutant Panx1. We used previously described adipocyte-specific Panx1 knockout mice (Panx1Adip-/-) and generated brown adipocyte-specific Panx1 knockout mice (Panx1BAT-/-) to study pharmacological or cold-induced thermogenesis. Glucose uptake into brown adipose tissue was quantified by positron emission tomography (PET) analysis of 18F-fluorodeoxyglucose (18F-FDG) content. BAT temperature was measured using an implantable telemetric temperature probe. RESULTS In brown adipocytes, Panx1 channel activity was induced either by apoptosis-dependent caspase activation or by β3AR stimulation via a novel mechanism that involves Gβγ subunit binding to Panx1. Inactivation of Panx1 channels in cultured brown adipocytes resulted in inhibition of β3AR-induced lipolysis, UCP-1 expression, and cellular thermogenesis. In mice, adiponectin-Cre-dependent genetic deletion of Panx1 in all adipose tissue depots resulted in defective β3AR agonist- or cold-induced thermogenesis in BAT and suppressed beigeing of white adipose tissue. UCP1-Cre-dependent Panx1 deletion specifically in brown adipocytes reduced the capacity for adaptive thermogenesis without affecting beigeing of white adipose tissue and aggravated diet-induced obesity and insulin resistance. CONCLUSIONS These data demonstrate that Gβγ-dependent Panx1 channel activation is involved in β3AR-induced thermogenic regulation in brown adipocytes. Identification of Panx1 channels in BAT as novel thermo-regulatory elements downstream of β3AR activation may have therapeutic implications.
Collapse
Affiliation(s)
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | | | - Suresh K Mendu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Srabani Sahu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Prathiba Jayaguru
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mahendra D Chordia
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Limor Steinberg
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nathaniel Oberholtzer
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Seichii Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology and Cancer Biology, Center for Cell Clearance, the Beirne B. Carter Center for Immunology Research, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Susanna R Keller
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Akshaya K Meher
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alexandra Kadl
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bijoy K Kundu
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
31
|
Bhat EA, Sajjad N. Human Pannexin 1 channel: Insight in structure-function mechanism and its potential physiological roles. Mol Cell Biochem 2021; 476:1529-1540. [PMID: 33394272 DOI: 10.1007/s11010-020-04002-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Pannexins, large non-gap junction super family exists in vertebrates, play multiple roles in different cellular functions through their ATP release. Panx1-mediated adenosine 5'-triphosphate (ATP) release plays a vital role in physiological and pathophysiological conditions and is known major extracellular molecule in purinergic signaling. To modulate their function in vivo, a proper regulation of channel is necessary. Post-translational modifications are considered to be some regulating mechanisms for PANX1, while PANX2, PANX3 have been uncharacterized to date. Through their significant evidences, PANXs exclude from gap junction and conduits ATP release and other cellular molecules from cells by various mechanisms. PANX1 is most extensive characterized and implicated in ATP signaling and inflammatory processes. Despite the constant advances, much significance of PANX1 in physiological processes remains elusive. Recently, various research groups along with our group have reported the Cryo-EM structure of Panx1 channel and uncovered the hidden functions in structure-function mechanism as well as to provide the clear understanding in physiological and pathophysiological roles. These research groups reported the novel heptameric structure with contains 4 transmembrane helices (TM), two extracellular loops and one intracellular loop with N and C terminus located at the intracellular side. In addition, the structure contains a large pore of which an inhibitor CBX act as a plug that blocking the passage of substrate. In this context, this review will present current mechanistic understanding in structure and function together with significant physiological roles particularly ATP release in health and disease. As such, this review emphasizes on recent functional properties associated with novel heptameric channel and demystifies channel-mediated ATP release function.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- Life Science Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir, India
| |
Collapse
|
32
|
de Oliveira M, Mathias LS, de Sibio MT, Noronha-Matos JB, Costa MA, Nogueira CR, Correia-de-Sá P. Pitfalls and challenges of the purinergic signaling cascade in obesity. Biochem Pharmacol 2020; 182:114214. [PMID: 32905795 DOI: 10.1016/j.bcp.2020.114214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a worldwide health problem which have reached pandemic proportions, now also including low and middle-income countries. Excessive or abnormal fat deposition in the abdomen especially in the visceral compartment is tightly associated with a high metabolic risk for arterial hypertension, type II diabetes, cardiovascular diseases, musculoskeletal disorders (especially articular degeneration) and some cancers. Contrariwise, accumulation of fat in the subcutaneous compartment has been associated with a neutral metabolic impact, favoring a lower risk of insulin resistance. Obesity results more often from an avoidable imbalance between food consumption and energy expenditure. There are several recommended strategies for dealing with obesity, including pharmacological therapies, but their success remains incomplete and may not compensate the associated adverse effects. Purinergic signaling operated by ATP and its metabolite, adenosine, has attracted increasing attention in obesity. The extracellular levels of purines often reflect the energy status of a given cell population. Adenine nucleotides and nucleosides fine tuning control adipogenesis and mature adipocytes function via the activation of P2 and P1 purinoceptors, respectively. These features make the purinergic signaling cascade a putative target for therapeutic intervention in obesity and related metabolic syndromes. There are, however, gaps in our knowledge regarding the role of purines in adipocyte precursors differentiation and mature adipocytes functions, as well as their impact among distinct adipose tissue deposits (e.g. white vs. brown, visceral vs. subcutaneous), which warrants further investigations before translation to clinical trials can be made.
Collapse
Affiliation(s)
- Miriane de Oliveira
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Lucas Solla Mathias
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Maria Teresa de Sibio
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Célia Regina Nogueira
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
33
|
Ruan Z, Orozco IJ, Du J, Lü W. Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature 2020; 584:646-651. [PMID: 32494015 PMCID: PMC7814660 DOI: 10.1038/s41586-020-2357-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation1, apoptotic cell clearance2 and human oocyte development3. Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angström, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels.
Collapse
Affiliation(s)
- Zheng Ruan
- Van Andel Institute, Grand Rapids, MI, USA
| | | | - Juan Du
- Van Andel Institute, Grand Rapids, MI, USA.
| | - Wei Lü
- Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
34
|
Tam TH, Chan KL, Boroumand P, Liu Z, Brozinick JT, Bui HH, Roth K, Wakefield CB, Penuela S, Bilan PJ, Klip A. Nucleotides released from palmitate-activated murine macrophages attract neutrophils. J Biol Chem 2020; 295:4902-4911. [PMID: 32132172 DOI: 10.1074/jbc.ra119.010868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/27/2020] [Indexed: 01/11/2023] Open
Abstract
Obesity and elevation of circulating free fatty acids are associated with an accumulation and proinflammatory polarization of macrophages within metabolically active tissues, such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high-fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. Here we used a cell culture system as proof of concept to show that, upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we found that palmitate up-regulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, shown previously to allow transfer of nucleotides across membranes. These findings suggest that proinflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity.
Collapse
Affiliation(s)
- Theresa H Tam
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kenny L Chan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhi Liu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | | | | | - Kenneth Roth
- Eli Lilly and Company, Indianapolis, Indiana 46285
| | - C Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
35
|
Tozzi M, Hansen JB, Novak I. Pannexin-1 mediated ATP release in adipocytes is sensitive to glucose and insulin and modulates lipolysis and macrophage migration. Acta Physiol (Oxf) 2020; 228:e13360. [PMID: 31400255 DOI: 10.1111/apha.13360] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
Abstract
AIM Extracellular ATP signalling is involved in many physiological and pathophysiological processes in several tissues, including adipose tissue. Adipocytes have crucial functions in lipid and glucose metabolism and they express purinergic receptors. However, the sources of extracellular ATP in adipose tissue are not well characterized. In the present study, we investigated the mechanism and regulation of ATP release in white adipocytes, and evaluated the role of extracellular ATP as potential autocrine and paracrine signal. METHODS Online ATP release was monitored in C3H10T1/2 cells and freshly isolated murine adipocytes. The ATP release mechanism and its regulation were tested in cells exposed to adrenergic agonists, insulin, glucose load and pharmacological inhibitors. Cell metabolism was monitored using Seahorse respirometry and expression analysis of pannexin-1 was performed on pre- and mature adipocytes. The ATP signalling was evaluated in live cell imaging (Ca2+ , pore formation), glycerol release and its effect on macrophages was tested in co-culture and migration assays. RESULTS Here, we show that upon adrenergic stimulation white murine adipocytes release ATP through the pannexin-1 pore that is regulated by a cAMP-PKA-dependent pathway. The ATP release correlates with increased cell metabolism and is sensitive to glucose. Extracellular ATP induces Ca2+ signalling and lipolysis in adipocytes and promotes macrophage migration. Importantly, ATP release is markedly inhibited by insulin, which operates via the activation of phosphodiesterase 3. CONCLUSIONS Our findings reveal an insulin-pannexin-1-purinergic signalling crosstalk in adipose tissue and we propose that deregulation of this signalling may contribute to adipose tissue inflammation and type 2 diabetes.
Collapse
Affiliation(s)
- Marco Tozzi
- Section for Cell Biology and Physiology, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Jacob B. Hansen
- Section for Cell Biology and Physiology, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology University of Copenhagen Copenhagen Denmark
| |
Collapse
|
36
|
A Genetic Polymorphism in the Pannexin1 Gene Predisposes for The Development of Endothelial Dysfunction with Increasing BMI. Biomolecules 2020; 10:biom10020208. [PMID: 32023876 PMCID: PMC7072696 DOI: 10.3390/biom10020208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 01/07/2023] Open
Abstract
Endothelial dysfunction worsens when body mass index (BMI) increases. Pannexin1 (Panx1) ATP release channels regulate endothelial function and lipid homeostasis in mice. We investigated whether the Panx1-400A>C single nucleotide polymorphism (SNP), encoding for a gain-of-function channel, associates with endothelial dysfunction in non-obese and obese individuals. Myocardial blood flow (MBF) was measured by 13N-ammonia positron emission/computed tomography at rest, during cold pressor test (CPT) or dipyridamole-induced hyperemia. Myocardial flow reserve (MFR) and endothelial function were compared in 43 non-obese (BMI < 30 kg/m2) vs. 29 obese (BMI 30 kg/m2) participants and genotyping for the Panx1-400A>C SNP was performed. Groups comprised subjects homozygous for the C allele (n = 40) vs. subjects with at least one A allele (n = 32). MBF (during CPT or hyperemia), MFR and endothelial function correlated negatively with BMI in the full cohort. BMI correlated negatively with MFR and endothelial function in non-obese Panx1-400C subjects, but not in Panx1-400A individuals nor in obese groups. BMI correlated positively with serum triglycerides, insulin or HOMA. MFR correlated negatively with these factors in non-obese Panx1-400C but not in Panx1-400A individuals. Here, we demonstrated that Panx1-400C SNP predisposes to BMI-dependent endothelial dysfunction in non-obese subjects. This effect may be masked by excessive dysregulation of metabolic factors in obese individuals.
Collapse
|
37
|
PUFAs supplementation affects the renal expression of pannexin 1 and connexins in diabetic kidney of rats. Histochem Cell Biol 2019; 153:165-175. [PMID: 31858211 DOI: 10.1007/s00418-019-01838-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2019] [Indexed: 12/26/2022]
Abstract
In diabetic nephropathy (DN), intercellular communication is disrupted. Connexins (Cx) have a crucial role in that process. Dietary ratios and supplementation with polyunsaturated fatty acids (PUFAs) can alleviate diabetic complications and cause alterations in Cx levels. Although pannexins (Panx) share similarities with members of the Cx family, their function in diabetic nephropathy has still not been fully determined. We studied the influence of PUFA supplementation on the immunoexpression of Px1 and Cx family members in diabetic kidneys of rats. Four groups of rats in experimental DM1 model were supplemented with different dietary n-6/n-3 ratios; ≈7 in control (C) and diabetic groups (STZ), ≈ 60 in the STZ + N6 group and ≈ 1 (containing 16% EPA and 19% DHA) in the STZ + N3 group. Immunoexpression of Cx40, Cx43, Cx45 and Panx1 was evaluated in the renal tissue of diabetic rats using immunohistochemistry. Diabetes significantly decreased the protein expression of Cx40 and Cx43 and increased Panx1 protein expression in the renal cortex (p < 0.05-p < 0.01). There was a significant impact of diet on Cx and Panx1 immunoexpression. Dietary supplementation with a high n-6/n-3 ratio downregulated the protein expression of Cx45 and Panx1 in diabetic rats (p < 0.05-p < 0.01), while Cx43 immunoexpression was increased in diabetic rats fed with high and low n-6/n-3 ratios (p < 0.01-p < 0.001). Hyperglycaemic conditions in DN interfere with cell-to-cell communication and disturb the connection between cells and their immediate environment due to variations in connexin and pannexin immunoexpression. These variations can be regulated by PUFA dietary intake, suggesting their beneficial effect and possible therapeutic option.
Collapse
|
38
|
Takai D, Abe A, Komura JI. Chronic exposure to gamma irradiation at low-dose rates accelerates blood pressure decline associated with aging in female B6C3F 1 mice. Int J Radiat Biol 2018; 95:347-353. [PMID: 30513245 DOI: 10.1080/09553002.2019.1552808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Many studies are focusing on the biological effects of gamma irradiation at low-dose rates. Studies have shown that chronic exposure to gamma irradiation at low-dose rates shortened the lifespan of mice due to neoplasm formation. The aim of this study was to clarify the physiological effects of long-term exposure to gamma irradiation at low-dose rates in mice, measured with noninvasive parameters such as blood pressure. MATERIALS AND METHODS Specific-pathogen-free female B6C3F1 mice were irradiated with gamma rays at a low dose of 20 mGy/day - a dose rate shown to shorten the life span in previous studies. The blood pressure parameters (systolic, diastolic, and mean blood pressure), heart rate, tail blood volume, and blood flow of the mice were measured every 7 weeks. Age-matched, non-irradiated mice were used as controls. RESULTS AND CONCLUSION The blood pressure levels of the irradiated mice decreased at an earlier age compared to the non-irradiated control mice. The expression levels of the marker genes of aging that are also associated with regulation of blood pressure showed significant differences between non-irradiated and irradiated mice. These results indicated that long-term exposure to gamma irradiation at low-dose rates induce the expression levels of Rap1a and reduces Panx1 and Sirt3, which may have contributed to the accelerated blood pressure decline in female mice.
Collapse
Affiliation(s)
- Daisaku Takai
- a Department of Radiobiology , Institute for Environmental Sciences , Takahoko , Rokkasho , Aomori , Japan
| | - Akiko Abe
- b JAC Co. ltd , Meguro , Tokyo , Japan
| | - Jun-Ichiro Komura
- a Department of Radiobiology , Institute for Environmental Sciences , Takahoko , Rokkasho , Aomori , Japan
| |
Collapse
|
39
|
Lee VR, Barr KJ, Kelly JJ, Johnston D, Brown CFC, Robb KP, Sayedyahossein S, Huang K, Gros R, Flynn LE, Penuela S. Pannexin 1 regulates adipose stromal cell differentiation and fat accumulation. Sci Rep 2018; 8:16166. [PMID: 30385873 PMCID: PMC6212408 DOI: 10.1038/s41598-018-34234-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022] Open
Abstract
Pannexin 1 (Panx1) is a channel-forming glycoprotein important in paracrine signaling and cellular development. In this study, we discovered that mice globally lacking Panx1 (KO) have significantly greater total fat mass and reduced lean mass compared to wild type (WT) mice under a normal diet. Despite having higher fat content, Panx1 KO mice on a high fat diet exhibited no differences in weight gain and blood markers of obesity as compared to WT controls, except for an increase in glucose and insulin levels. However, metabolic cage data revealed that these Panx1 KO mice display significantly increased activity levels, higher ambulatory activity, and reduced sleep duration relative to their WT littermates on a high-fat diet. To uncover the cellular mechanism responsible for the increased fat content in the KO, we isolated primary cultures of adipose-derived stromal cells (ASCs) from WT and KO fat pads. In WT ASCs we observed that Panx1 protein levels increase upon induction into an adipogenic lineage. ASCs isolated from Panx1 KO mice proliferate less but demonstrate enhanced adipogenic differentiation with increased intracellular lipid accumulation, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, and adipokine secretion, as compared to WT ASCs. This was consistent with the increased adipocyte size and decreased adipocyte numbers observed in subcutaneous fat of the Panx1 KO mice compared to WT. We concluded that Panx1 plays a key role in adipose stromal cells during the early stages of adipogenic proliferation and differentiation, regulating fat accumulation in vivo.
Collapse
Affiliation(s)
- Vanessa R Lee
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Kevin J Barr
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - John J Kelly
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Danielle Johnston
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Cody F C Brown
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Kevin P Robb
- Biomedical Engineering Graduate Program, University of Western Ontario, London, Ontario, Canada
| | - Samar Sayedyahossein
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Kenneth Huang
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Robert Gros
- Departments of Physiology and Pharmacology, and of Medicine, University of Western Ontario, London, Ontario, Canada
- Molecular Medicine Research Group Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Silvia Penuela
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
40
|
Li G, Zhang Q, Hong J, Ritter JK, Li PL. Inhibition of pannexin-1 channel activity by adiponectin in podocytes: Role of acid ceramidase activation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1246-1256. [PMID: 30077007 DOI: 10.1016/j.bbalip.2018.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 12/19/2022]
Abstract
The pannexin-1 (Panx1) channel has been reported to mediate the release of ATP that is involved in local tissue inflammation, obesity, and many chronic degenerative diseases. It remains unknown whether Panx1 is present in podocytes and whether this channel in podocytes mediates ATP release leading to glomerular inflammation or fibrosis. To answer these questions, we first characterized the expression of Panx channels in podocytes. Among the three known pannexins, Panx1 was the most enriched in podocytes, either cultured or native in mouse glomeruli. Using a Port-a-Patch planar patch-clamp system, we recorded a large voltage-gated outward current through podocyte membrane under the Cs+in/Na+out gradient. Substitution of gluconate or aspartate for chloride in the bath solution blocked voltage-gated outward currents and shifted the reversal potential of Panx1 currents to the right, indicating the anion permeability of this channel. Pharmacologically, the recorded voltage-gated outward currents were substantially attenuated by specific Panx1 channel inhibitors. Given the anti-inflammatory and intracellular ATP restorative effects of adiponectin, we tested whether this adipokine inhibits Panx1 channel activity to block ATP release. Adiponectin blocked Panx1 channel activity in podocytes. Mechanistically, inhibition of acid ceramidase (AC) remarkably enhanced Panx1 channel activity under control conditions and prevented the inhibition of Panx1 channel by adiponectin. Correspondingly, intracellular addition of AC products, sphingosine or sphingosine-1-phosphate (S1P), blocked Panx1 channel activity, while elevation of intracellular ceramide had no effect on Panx1 channel activity. These results suggest that adiponectin inhibits Panx1 channel activity in podocytes through activation of AC and associated elevation of intracellular S1P.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Qinghua Zhang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Jinni Hong
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America.
| |
Collapse
|
41
|
Novak I, Solini A. P2X receptor-ion channels in the inflammatory response in adipose tissue and pancreas — potential triggers in onset of type 2 diabetes? Curr Opin Immunol 2018. [DOI: 10.1016/j.coi.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Wang J, Dahl G. Pannexin1: a multifunction and multiconductance and/or permeability membrane channel. Am J Physiol Cell Physiol 2018; 315:C290-C299. [PMID: 29719171 DOI: 10.1152/ajpcell.00302.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Of the three pannexins in vertebrate proteomes, pannexin1 (Panx1) is the only one well characterized, and it is generally accepted that Panx1 functions as an ATP release channel for signaling to other cells. However, the ATP permeability of the channel is only observed with certain stimuli, including low oxygen, mechanical stress, and elevated extracellular potassium ion concentration. Otherwise, the Panx1 channel is selective for chloride ions and exhibits no ATP permeability when stimulated simply by depolarization to positive potentials. A third, irreversible activation of Panx1 follows cleavage of carboxyterminal amino acids by caspase 3. The selectivity/permeability properties of the caspase cleaved channel are unclear as it reportedly has features of both channel conformations. Here we describe the biophysical properties of the channel formed by the truncation mutant Panx1Δ378, which is identical to the caspase-cleaved protein. Consistent with previous findings for the caspase-activated channel, the Panx1Δ378 channel was constitutively active. However, like the voltage-gated channel, the Panx1Δ378 channel had high chloride selectivity, lacked cation permeability, and did not mediate ATP release unless stimulated by extracellular potassium ions. Thus, the caspase-cleaved Panx1 channel should be impermeable to ATP, contrary to previous claims.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| |
Collapse
|
43
|
Abstract
Adenosine triphosphate (ATP) has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1), volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR) anion channels), and maxi-anion channels (MACs). Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.
Collapse
|
44
|
Li S, Bjelobaba I, Stojilkovic SS. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:166-173. [PMID: 28389204 PMCID: PMC5628093 DOI: 10.1016/j.bbamem.2017.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 11000 Belgrade, Serbia
| | - Stanko S Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Good ME, Chiu YH, Poon IKH, Medina CB, Butcher JT, Mendu SK, DeLalio LJ, Lohman AW, Leitinger N, Barrett E, Lorenz UM, Desai BN, Jaffe IZ, Bayliss DA, Isakson BE, Ravichandran KS. Pannexin 1 Channels as an Unexpected New Target of the Anti-Hypertensive Drug Spironolactone. Circ Res 2017; 122:606-615. [PMID: 29237722 DOI: 10.1161/circresaha.117.312380] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Resistant hypertension is a major health concern with unknown cause. Spironolactone is an effective antihypertensive drug, especially for patients with resistant hypertension, and is considered by the World Health Organization as an essential medication. Although spironolactone can act at the mineralocorticoid receptor (MR; NR3C2), there is increasing evidence of MR-independent effects of spironolactone. OBJECTIVE Here, we detail the unexpected discovery that Panx1 (pannexin 1) channels could be a relevant in vivo target of spironolactone. METHODS AND RESULTS First, we identified spironolactone as a potent inhibitor of Panx1 in an unbiased small molecule screen, which was confirmed by electrophysiological analysis. Next, spironolactone inhibited α-adrenergic vasoconstriction in arterioles from mice and hypertensive humans, an effect dependent on smooth muscle Panx1, but independent of the MR NR3C2. Last, spironolactone acutely lowered blood pressure, which was dependent on smooth muscle cell expression of Panx1 and independent of NR3C2. This effect, however, was restricted to steroidal MR antagonists as a nonsteroidal MR antagonist failed to reduced blood pressure. CONCLUSIONS These data suggest new therapeutic modalities for resistant hypertension based on Panx1 inhibition.
Collapse
Affiliation(s)
- Miranda E Good
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Yu-Hsin Chiu
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Ivan K H Poon
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Christopher B Medina
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Joshua T Butcher
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Suresh K Mendu
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Leon J DeLalio
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Alexander W Lohman
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Norbert Leitinger
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Eugene Barrett
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Ulrike M Lorenz
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Bimal N Desai
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Iris Z Jaffe
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Douglas A Bayliss
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Brant E Isakson
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.).
| | - Kodi S Ravichandran
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| |
Collapse
|
46
|
Chiu YH, Schappe MS, Desai BN, Bayliss DA. Revisiting multimodal activation and channel properties of Pannexin 1. J Gen Physiol 2017; 150:19-39. [PMID: 29233884 PMCID: PMC5749114 DOI: 10.1085/jgp.201711888] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
Pannexin 1 (Panx1) forms plasma membrane ion channels that are widely expressed throughout the body. Panx1 activation results in the release of nucleotides such as adenosine triphosphate and uridine triphosphate. Thus, these channels have been implicated in diverse physiological and pathological functions associated with purinergic signaling, such as apoptotic cell clearance, blood pressure regulation, neuropathic pain, and excitotoxicity. In light of this, substantial attention has been directed to understanding the mechanisms that regulate Panx1 channel expression and activation. Here we review accumulated evidence for the various activation mechanisms described for Panx1 channels and, where possible, the unitary channel properties associated with those forms of activation. We also emphasize current limitations in studying Panx1 channel function and propose potential directions to clarify the exciting and expanding roles of Panx1 channels.
Collapse
Affiliation(s)
- Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Michael S Schappe
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
47
|
Tozzi M, Novak I. Purinergic Receptors in Adipose Tissue As Potential Targets in Metabolic Disorders. Front Pharmacol 2017; 8:878. [PMID: 29249968 PMCID: PMC5715378 DOI: 10.3389/fphar.2017.00878] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023] Open
Abstract
Extracellular nucleosides and nucleotides, such as adenosine and adenosine triphosphate (ATP), are involved in many physiological and pathological processes in adipose tissue (AT). It is becoming accepted that, in addition to the well-established sympathetic and hormonal system, purinergic receptors contribute significantly to regulation of adipocyte functions. Several receptor subtypes for both adenosine (P1) and ATP (P2X and P2Y) have been characterized in white adipocytes (WA) and brown adipocytes (BA). The effects mediated by adenosine and ATP on adipocytes are multiple and often differing, depending on specific receptors activated. Using a variety of agonists, antagonists and transgenic animals it has been demonstrated that adenosine and P2 receptors are involved in lipolysis, lipogenesis, adipokines secretion, glucose uptake, adipogenesis, cell proliferation, inflammation, and other processes. Given their central role in regulating many AT functions, purinergic receptors are considered potential therapeutic targets in different pathological conditions, such as obesity and type-2 diabetes. To achieve this goal, specific and potent P1 and P2 receptors activators and inhibitors are being developed and show promising results. However, more insight is needed into the function of P2 receptors in brown and beige adipocytes and their potential role in thermogenesis. This review aims at summarizing current knowledge on the patho-/physiological role of P1, P2X, and P2Y receptors in WA and BA and their potential exploitation for pharmacological intervention. Furthermore, we analyze impact of purinergic signaling in AT - in health and metabolic diseases.
Collapse
Affiliation(s)
- Marco Tozzi
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Molica F, Meens MJ, Dubrot J, Ehrlich A, Roth CL, Morel S, Pelli G, Vinet L, Braunersreuther V, Ratib O, Chanson M, Hugues S, Scemes E, Kwak BR. Pannexin1 links lymphatic function to lipid metabolism and atherosclerosis. Sci Rep 2017; 7:13706. [PMID: 29057961 PMCID: PMC5651868 DOI: 10.1038/s41598-017-14130-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 10/06/2017] [Indexed: 12/29/2022] Open
Abstract
Extracellular ATP is a central signaling molecule in inflammatory responses. Pannexin1 (Panx1) channels release ATP in a controlled manner and have been implicated in various inflammatory pathologies, but their role in atherogenesis remains elusive. Using atherosclerosis-susceptible mouse models with ubiquitous deletion of Panx1 (Panx1−/−Apoe−/−) or with Cre recombinase-mediated deletion of Panx1 in endothelial cells and monocytes (Tie2-CreTgPanx1fl/flApoe−/−; Panx1delApoe−/−), we identified a novel role for Panx1 in the lymphatic vasculature. Atherosclerotic lesion development in response to high-cholesterol diet was enhanced in Panx1delApoe−/− mice, pointing to an atheroprotective role for Panx1 in endothelial and/or monocytic cells. Unexpectedly, atherogenesis was not changed in mice with ubiquitous Panx1 deletion, but Panx1−/−Apoe−/− mice displayed reduced body weight, serum cholesterol, triglycerides and free fatty acids, suggesting altered lipid metabolism in these Panx1-deficient mice. Mechanistically, Panx1−/−Apoe−/− mice showed impairment of lymphatic vessel function with decreased drainage of interstitial fluids and reduced dietary fat absorption. Thus, the detrimental effect of Panx1 deletion in endothelial and/or monocytic cells during atherogenesis is counterbalanced by an opposite effect resulting from impaired lymphatic function in ubiquitous Panx1-deficient mice. Collectively, our findings unveil a pivotal role of Panx1 in linking lymphatic function to lipid metabolism and atherosclerotic plaque development.
Collapse
Affiliation(s)
- Filippo Molica
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Merlijn J Meens
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Juan Dubrot
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Avigail Ehrlich
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Christel L Roth
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Sandrine Morel
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Graziano Pelli
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Laurent Vinet
- Geneva University Hospitals, Department of Radiology and Medical Informatics, Geneva, CH-1211, Switzerland.,University of Geneva and Lausanne, School of Pharmaceutical Sciences, Geneva, CH-1211, Switzerland
| | | | - Osman Ratib
- Geneva University Hospitals, Department of Radiology and Medical Informatics, Geneva, CH-1211, Switzerland
| | - Marc Chanson
- Geneva University Hospitals and University of Geneva, Department of Pediatrics and of Cell Physiology and Metabolism, Geneva, CH-1211, Switzerland
| | - Stephanie Hugues
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Eliana Scemes
- Albert Einstein College of Medicine, Department of Neuroscience, New York, NY, 10461, USA
| | - Brenda R Kwak
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland. .,University of Geneva, Department of Medical Specializations - Cardiology, Geneva, CH-1211, Switzerland.
| |
Collapse
|
49
|
Xu J, Chen L, Li L. Pannexin hemichannels: A novel promising therapy target for oxidative stress related diseases. J Cell Physiol 2017; 233:2075-2090. [PMID: 28295275 DOI: 10.1002/jcp.25906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Pannexins, which contain three subtypes: pannexin-1, -2, and -3, are vertebrate glycoproteins that form non-junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
Collapse
Affiliation(s)
- Jin Xu
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Lanfang Li
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|
50
|
A quantized mechanism for activation of pannexin channels. Nat Commun 2017; 8:14324. [PMID: 28134257 PMCID: PMC5290276 DOI: 10.1038/ncomms14324] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022] Open
Abstract
Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels. Pannexins are oligomeric plasma membrane channels that allow permeation of ions and large molecules. Here the authors show that human Pannexin 1 activation is a multistep event, where modification of each monomer opens the channel to a unique conductance state and fine tunes its activity.
Collapse
|