1
|
Zhang Q, Cai X, Wu B, Tong B, Xu D, Wang J, Cui B, Yin R, Lin L. S-nitrosylation may inhibit the activity of COP1 in plant photomorphogenesis. Biochem Biophys Res Commun 2024; 719:150096. [PMID: 38749091 DOI: 10.1016/j.bbrc.2024.150096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Protein S-nitrosylation, which is defined by the covalent attachment of nitric oxide (NO) to the thiol group of cysteine residues, is known to play critical roles in plant development and stress responses. NO promotes seedling photomorphogenesis and NO emission is enhanced by light. However, the function of protein S-nitrosylation in plant photomorphogenesis is largely unknown. E3 ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) antagonistically regulate seedling photomorphogenesis. COP1 inhibits plant photomorphogenesis by targeting photomorphogenic promoters like HY5 for 26S proteasome degradation. Here, we report that COP1 is S-nitrosylated in vitro. Mass spectrometry analyses revealed that two evolutionarily well conserved residues, cysteine 425 and cysteine 607, in the WD40 domain of COP1 are S-nitrosylated. S-nitrosylated glutathione (GSNO) is an important physiological NO donor for protein S-nitrosylation. The Arabidopsis (Arabidopsis thaliana) gsnor1-3 mutant, which accumulates higher level of GSNO, accumulated higher HY5 levels than wildtype (WT), indicating that COP1 activity is inhibited. Protein S-nitrosylation can be reversed by Thioredoxin-h5 (TRXh5) in plants. Indeed, COP1 interacts directly with TRXh5 and its close homolog TRXh3. Moreover, catalase 3 (CAT3) acts as a transnitrosylase that transfers NO to its target proteins like GSNO reductase (GSNOR). We found that CAT3 interacts with COP1 in plants. Taken together, our data indicate that the activity of COP1 is likely inhibited by NO via S-nitrosylation to promote the accumulation of HY5 and photomorphogenesis.
Collapse
Affiliation(s)
- Qianwen Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China.
| | - Xiaofeng Cai
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Baoguo Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China.
| | - Boqin Tong
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China.
| | - Dawei Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China.
| | - Jie Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China.
| | - Beimi Cui
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
| | - Ruohe Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Li Lin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
2
|
da Silva RC, Oliveira HC, Igamberdiev AU, Stasolla C, Gaspar M. Interplay between nitric oxide and inorganic nitrogen sources in root development and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154241. [PMID: 38640547 DOI: 10.1016/j.jplph.2024.154241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Nitrogen (N) is an essential nutrient for plants, and the sources from which it is obtained can differently affect their entire development as well as stress responses. Distinct inorganic N sources (nitrate and ammonium) can lead to fluctuations in the nitric oxide (NO) levels and thus interfere with nitric oxide (NO)-mediated responses. These could lead to changes in reactive oxygen species (ROS) homeostasis, hormone synthesis and signaling, and post-translational modifications of key proteins. As the consensus suggests that NO is primarily synthesized in the reductive pathways involving nitrate and nitrite reduction, it is expected that plants grown in a nitrate-enriched environment will produce more NO than those exposed to ammonium. Although the interplay between NO and different N sources in plants has been investigated, there are still many unanswered questions that require further elucidation. By building on previous knowledge regarding NO and N nutrition, this review expands the field by examining in more detail how NO responses are influenced by different N sources, focusing mainly on root development and abiotic stress responses.
Collapse
Affiliation(s)
- Rafael Caetano da Silva
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, State University of Londrina, Londrina, PR, 86057-970, Brazil
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Marilia Gaspar
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
3
|
Ren QW, Liu TY, Lan HJ, Li ZC, Huang MJ, Zhao YT, Chen Y, Liao LN, Ma XH, Liu JZ. Partially knocking out NtPDK1a/1b/1c/1d simultaneously in Nicotiana tabacum using CRISPR/CAS9 technology results in auxin-related developmental defects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112057. [PMID: 38460553 DOI: 10.1016/j.plantsci.2024.112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
The eukaryotic AGC protein kinase subfamily (protein kinase A/ protein kinase G/ protein kinase C-family) is involved in regulating numerous biological processes across kingdoms, including growth and development, and apoptosis. PDK1(3-phosphoinositide-dependent protein kinase 1) is a conserved serine/threonine kinase in eukaryotes, which is both a member of AGC kinase and a major regulator of many other downstream AGC protein kinase family members. Although extensively investigated in model plant Arabidopsis, detailed reports for tobacco PDK1s have been limited. To better understand the functions of PDK1s in tobacco, CRISPR/CAS9 transgenic lines were generated in tetraploid N. tabacum, cv. Samsun (NN) with 5-7 of the 8 copies of 4 homologous PDK1 genes in tobacco genome (NtPDK1a/1b/1c/1d homologs) simultaneously knocked out. Numerous developmental defects were observed in these NtPDK1a/1b/1c/1d CRISPR/CAS9 lines, including cotyledon fusion leaf shrinkage, uneven distribution of leaf veins, convex veins, root growth retardation, and reduced fertility, all of which reminiscence of impaired polar auxin transport. The severity of these defects was correlated with the number of knocked out alleles of NtPDK1a/1b/1c/1d. Consistent with the observation in Arabidopsis, it was found that the polar auxin transport, and not auxin biosynthesis, was significantly compromised in these knockout lines compared with the wild type tobacco plants. The fact that no homozygous plant with all 8 NtPDK1a/1b/1c/1d alleles being knocked out suggested that knocking out 8 alleles of NtPDK1a/1b/1c/1d could be lethal. In conclusion, our results indicated that NtPDK1s are versatile AGC kinases that participate in regulation of tobacco growth and development via modulating polar auxin transport. Our results also indicated that CRISPR/CAS9 technology is a powerful tool in resolving gene redundancy in polyploidy plants.
Collapse
Affiliation(s)
- Qian-Wei Ren
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Tian-Yao Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hu-Jiao Lan
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Zhen-Chao Li
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Min-Jun Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ya-Ting Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yu Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Li-Na Liao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiao-Han Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jian-Zhong Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; Institute of Genetics and Developmental Biology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| |
Collapse
|
4
|
Wang J, Guo X, Chen Y, Liu T, Zhu J, Xu S, Vierling E. Maternal nitric oxide homeostasis impacts female gametophyte development under optimal and stress conditions. THE PLANT CELL 2024; 36:2201-2218. [PMID: 38376990 PMCID: PMC11132896 DOI: 10.1093/plcell/koae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/08/2023] [Indexed: 02/22/2024]
Abstract
In adverse environments, the number of fertilizable female gametophytes (FGs) in plants is reduced, leading to increased survival of the remaining offspring. How the maternal plant perceives internal growth cues and external stress conditions to alter FG development remains largely unknown. We report that homeostasis of the stress signaling molecule nitric oxide (NO) plays a key role in controlling FG development under both optimal and stress conditions. NO homeostasis is precisely regulated by S-nitrosoglutathione reductase (GSNOR). Prior to fertilization, GSNOR protein is exclusively accumulated in sporophytic tissues and indirectly controls FG development in Arabidopsis (Arabidopsis thaliana). In GSNOR null mutants, NO species accumulated in the degenerating sporophytic nucellus, and auxin efflux into the developing FG was restricted, which inhibited FG development, resulting in reduced fertility. Importantly, restoring GSNOR expression in maternal, but not gametophytic tissues, or increasing auxin efflux substrate significantly increased the proportion of normal FGs and fertility. Furthermore, GSNOR overexpression or added auxin efflux substrate increased fertility under drought and salt stress. These data indicate that NO homeostasis is critical to normal auxin transport and maternal control of FG development, which in turn determine seed yield. Understanding this aspect of fertility control could contribute to mediating yield loss under adverse conditions.
Collapse
Affiliation(s)
- Junzhe Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Hainan Yazhou Bay Seed Laboratory, Yazhou, Sanya 572025, China
| | - Xiaolong Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yijin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianxiang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianchu Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengbao Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Elizabeth Vierling
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Dai XY, Lan HJ, Chen Y, Liu TY, Zhao YT, Liu JZ. Knocking out NtSARD1a/1b/1c/1d by CRISPR/CAS9 technology reduces the biosynthesis of salicylic acid (SA) and compromises immunity in tetraploid Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112051. [PMID: 38417717 DOI: 10.1016/j.plantsci.2024.112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Salicylic acid (SA) is a key phyto-hormone that is essential for plant immunity. SARD1 (SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1), a member of the CBP60 (CALMODULIN-BINDING PROTEIN60) gene family, is one of the major transcription factors regulating the expression of the genes in SA biosynthesis. SARD1 has been extensively studied in model plant Arabidopsis. However, the function of SARD1 homologues in SA biosynthesis and immune responses have rarely been investigated in other plant species. In this study, the CRISPR/CAS9 (Clustered Regularly Interspersed Short Palindromic Repeats/CAS9) technology was used in creating transgenic tobacco mutant lines with 6-8 alleles of four NtSARD1 homologous genes (NtSARD1a/1b/1c/1d) knocked out. No significant difference in morphological phenotype was observed between the transgenic knockout lines and the wild type tobacco plants, indicating that knocking out NtSARD1s does not affect the growth and development in tobacco. However, knocking out or partially knocking out of NtSARD1a/b/c/d resulted in a significantly reduced expression of NtICS1, the key gene in SA biosynthesis pathway, and thus the subsequently decreased SA/SAG accumulations in response to Pst DC3000 (Pseudomonas syrangae pv.tomato DC3000) infection, indicating a key role of NtSARD1 genes in SA biosynthesis in tobacco. As a consequence of reduced SA/SAG accumulation, the Pst DC3000-induced expression of NtPR genes as well as the resistance to Pst DC3000 were both significantly reduced in these knockout lines compared with the wild type tobacco plants. Interestingly, the reductions in the SA/SAG level, NtPR gene induction and Pst DC3000 resistance were positively correlated with the number of alleles being knocked out. Furthermore, LUC reporter gene driven by the promoter of NtICS1 containing two G(A/T)AATT(T/G) motifs could be activated by NtSARD1a, suggesting that NtSARD1a could bind to the core G(A/T)AATT(T/G) motifs and thus activate the expression of LUC reporter. Taken together, our results demonstrated that the NtSARD1 proteins play essential roles in SA biosynthesis and immune responses in tobacco. Our results also demonstrated that the CRISPR/CAS9 technology can overcome gene redundancy and is a powerful tool to study gene functions in polyploid plant species.
Collapse
Affiliation(s)
- Xian-Yong Dai
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hu-Jiao Lan
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yu Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Tian-Yao Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ya-Ting Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jian-Zhong Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; Institute of Genetics and Developmental Biology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| |
Collapse
|
6
|
Cui X, Wang J, Li K, Lv B, Hou B, Ding Z. Protein post-translational modifications in auxin signaling. J Genet Genomics 2024; 51:279-291. [PMID: 37451336 DOI: 10.1016/j.jgg.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Protein post-translational modifications (PTMs), such as ubiquitination, phosphorylation, and small ubiquitin-like modifier (SUMO)ylation, are crucial for regulating protein stability, activity, subcellular localization, and binding with cofactors. Such modifications remarkably increase the variety and complexity of proteomes, which are essential for regulating numerous cellular and physiological processes. The regulation of auxin signaling is finely tuned in time and space to guide various plant growth and development. Accumulating evidence indicates that PTMs play critical roles in auxin signaling regulations. Thus, a thorough and systematic review of the functions of PTMs in auxin signal transduction will improve our profound comprehension of the regulation mechanism of auxin signaling and auxin-mediated various processes. This review discusses the progress of protein ubiquitination, phosphorylation, histone acetylation and methylation, SUMOylation, and S-nitrosylation in the regulation of auxin signaling.
Collapse
Affiliation(s)
- Xiankui Cui
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ke Li
- Shandong Academy of Grape, Jinan, Shandong 250100, China
| | - Bingsheng Lv
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| | - Bingkai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
7
|
Zuccarelli R, Rodríguez-Ruiz M, Silva FO, Gomes LDL, Lopes-Oliveira PJ, Zsögön A, Andrade SCS, Demarco D, Corpas FJ, Peres LEP, Rossi M, Freschi L. Loss of S-nitrosoglutathione reductase disturbs phytohormone homeostasis and regulates shoot side branching and fruit growth in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6349-6368. [PMID: 37157899 DOI: 10.1093/jxb/erad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Marta Rodríguez-Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Fernanda O Silva
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Letícia D L Gomes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Patrícia J Lopes-Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Lázaro E P Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Romera FJ, García MJ, Lucena C, Angulo M, Pérez-Vicente R. NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants. Int J Mol Sci 2023; 24:12617. [PMID: 37628796 PMCID: PMC10454737 DOI: 10.3390/ijms241612617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Iron (Fe) is abundant in soils but with a poor availability for plants, especially in calcareous soils. To favor its acquisition, plants develop morphological and physiological responses, mainly in their roots, known as Fe deficiency responses. In dicot plants, the regulation of these responses is not totally known, but some hormones and signaling molecules, such as auxin, ethylene, glutathione (GSH), nitric oxide (NO) and S-nitrosoglutathione (GSNO), have been involved in their activation. Most of these substances, including auxin, ethylene, GSH and NO, increase their production in Fe-deficient roots while GSNO, derived from GSH and NO, decreases its content. This paradoxical result could be explained with the increased expression and activity in Fe-deficient roots of the GSNO reductase (GSNOR) enzyme, which decomposes GSNO to oxidized glutathione (GSSG) and NH3. The fact that NO content increases while GSNO decreases in Fe-deficient roots suggests that NO and GSNO do not play the same role in the regulation of Fe deficiency responses. This review is an update of the results supporting a role for NO, GSNO and GSNOR in the regulation of Fe deficiency responses. The possible roles of NO and GSNO are discussed by taking into account their mode of action through post-translational modifications, such as S-nitrosylation, and through their interactions with the hormones auxin and ethylene, directly related to the activation of morphological and physiological responses to Fe deficiency in dicot plants.
Collapse
Affiliation(s)
- Francisco Javier Romera
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - María José García
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| | - Macarena Angulo
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| |
Collapse
|
9
|
Jing H, Yang X, Emenecker RJ, Feng J, Zhang J, Figueiredo MRAD, Chaisupa P, Wright RC, Holehouse AS, Strader LC, Zuo J. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J Genet Genomics 2023; 50:473-485. [PMID: 37187411 PMCID: PMC11070147 DOI: 10.1016/j.jgg.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. Auxin signaling is activated through the phytohormone-induced proteasomal degradation of the Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) family of transcriptional repressors. Notably, many auxin-modulated physiological processes are also regulated by nitric oxide (NO) that executes its biological effects predominantly through protein S-nitrosylation at specific cysteine residues. However, little is known about the molecular mechanisms in regulating the interactive NO and auxin networks. Here, we show that NO represses auxin signaling by inhibiting IAA17 protein degradation. NO induces the S-nitrosylation of Cys-70 located in the intrinsically disordered region of IAA17, which inhibits the TIR1-IAA17 interaction and consequently the proteasomal degradation of IAA17. The accumulation of a higher level of IAA17 attenuates auxin response. Moreover, an IAA17C70W nitrosomimetic mutation renders the accumulation of a higher level of the mutated protein, thereby causing partial resistance to auxin and defective lateral root development. Taken together, these results suggest that S-nitrosylation of IAA17 at Cys-70 inhibits its interaction with TIR1, thereby negatively regulating auxin signaling. This study provides unique molecular insights into the redox-based auxin signaling in regulating plant growth and development.
Collapse
Affiliation(s)
- Hongwei Jing
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biology, Duke University, Durham, NC 27008, USA.
| | - Xiaolu Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
10
|
Qin G, Qu M, Jia B, Wang W, Luo Z, Song CP, Tao WA, Wang P. FAT-switch-based quantitative S-nitrosoproteomics reveals a key role of GSNOR1 in regulating ER functions. Nat Commun 2023; 14:3268. [PMID: 37277371 PMCID: PMC10241878 DOI: 10.1038/s41467-023-39078-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/26/2023] [Indexed: 06/07/2023] Open
Abstract
Reversible protein S-nitrosylation regulates a wide range of biological functions and physiological activities in plants. However, it is challenging to quantitively determine the S-nitrosylation targets and dynamics in vivo. In this study, we develop a highly sensitive and efficient fluorous affinity tag-switch (FAT-switch) chemical proteomics approach for S-nitrosylation peptide enrichment and detection. We quantitatively compare the global S-nitrosylation profiles in wild-type Arabidopsis and gsnor1/hot5/par2 mutant using this approach, and identify 2,121 S-nitrosylation peptides in 1,595 protein groups, including many previously unrevealed S-nitrosylated proteins. These are 408 S-nitrosylated sites in 360 protein groups showing an accumulation in hot5-4 mutant when compared to wild type. Biochemical and genetic validation reveal that S-nitrosylation at Cys337 in ER OXIDOREDUCTASE 1 (ERO1) causes the rearrangement of disulfide, resulting in enhanced ERO1 activity. This study offers a powerful and applicable tool for S-nitrosylation research, which provides valuable resources for studies on S-nitrosylation-regulated ER functions in plants.
Collapse
Affiliation(s)
- Guochen Qin
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, 261000, Weifang, Shandong, China
| | - Menghuan Qu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bei Jia
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Zhuojun Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
11
|
Parveen N, Kandhol N, Sharma S, Singh VP, Chauhan DK, Ludwig-Müller J, Corpas FJ, Tripathi DK. Auxin Crosstalk with Reactive Oxygen and Nitrogen Species in Plant Development and Abiotic Stress. PLANT & CELL PHYSIOLOGY 2023; 63:1814-1825. [PMID: 36208156 DOI: 10.1093/pcp/pcac138] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The phytohormone auxin acts as an important signaling molecule having regulatory functions during the growth and development of plants. Reactive oxygen species (ROS) are also known to perform signaling functions at low concentrations; however, over-accumulation of ROS due to various environmental stresses damages the biomolecules and cell structures and leads to cell death, and therefore, it can be said that ROS act as a double-edged sword. Nitric oxide (NO), a gaseous signaling molecule, performs a wide range of favorable roles in plants. NO displays its positive role in photomorphogenesis, root growth, leaf expansion, seed germination, stomatal closure, senescence, fruit maturation, mitochondrial activity and metabolism of iron. Studies have revealed the early existence of these crucial molecules during evolution. Moreover, auxin, ROS and NO together show their involvement in various developmental processes and abiotic stress tolerance. Redox signaling is a primary response during exposure of plants to stresses and shows a link with auxin signaling. This review provides updated information related to crosstalk between auxin, ROS and NO starting from their evolution during early Earth periods and their interaction in plant growth and developmental processes as well as in the case of abiotic stresses to plants.
Collapse
Affiliation(s)
- Nishat Parveen
- Department of Botany, D D Pant Interdisciplinary Research Laboratory, University of Allahabad, Prayagraj-211002, India
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj-211004, India
| | - Vijay Pratap Singh
- Department of Botany, Plant Physiology Laboratory, CMP, Degree Collage, University of Allahabad, Prayagraj-211002, India
| | - Devendra Kumar Chauhan
- Department of Botany, D D Pant Interdisciplinary Research Laboratory, University of Allahabad, Prayagraj-211002, India
| | - Jutta Ludwig-Müller
- Department of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Professor Albareda, 1, Granada 18008, Spain
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| |
Collapse
|
12
|
Treffon P, Rossi J, Gabellini G, Trost P, Zaffagnini M, Vierling E. Quantitative Proteome Profiling of a S-Nitrosoglutathione Reductase (GSNOR) Null Mutant Reveals a New Class of Enzymes Involved in Nitric Oxide Homeostasis in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:787435. [PMID: 34956283 PMCID: PMC8695856 DOI: 10.3389/fpls.2021.787435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is a short-lived radical gas that acts as a signaling molecule in all higher organisms, and that is involved in multiple plant processes, including germination, root growth, and fertility. Regulation of NO-levels is predominantly achieved by reaction of oxidation products of NO with glutathione to form S-nitrosoglutathione (GSNO), the principal bioactive form of NO. The enzyme S-nitrosoglutathione reductase (GSNOR) is a major route of NADH-dependent GSNO catabolism and is critical to NO homeostasis. Here, we performed a proteomic analysis examining changes in the total leaf proteome of an Arabidopsis thaliana GSNOR null mutant (hot5-2/gsnor1-3). Significant increases or decreases in proteins associated with chlorophyll metabolism and with redox and stress metabolism provide insight into phenotypes observed in hot5-2/gsnor1-3 plants. Importantly, we identified a significant increase in proteins that belong to the aldo-keto reductase (AKR) protein superfamily, AKR4C8 and 9. Because specific AKRs have been linked to NO metabolism in mammals, we expressed and purified A. thaliana AKR4C8 and 9 and close homologs AKR4C10 and 11 and determined that they have NADPH-dependent activity in GSNO and S-nitroso-coenzyme A (SNO-CoA) reduction. Further, we found an increase of NADPH-dependent GSNO reduction activity in hot5-2/gsnor1-3 mutant plants. These data uncover a new, NADPH-dependent component of NO metabolism that may be integrated with NADH-dependent GSNOR activity to control NO homeostasis in plants.
Collapse
Affiliation(s)
- Patrick Treffon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Giuseppe Gabellini
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
13
|
Costa JH, Aziz S, Noceda C, Arnholdt-Schmitt B. Major Complex Trait for Early De Novo Programming 'CoV-MAC-TED' Detected in Human Nasal Epithelial Cells Infected by Two SARS-CoV-2 Variants Is Promising to Help in Designing Therapeutic Strategies. Vaccines (Basel) 2021; 9:1399. [PMID: 34960145 PMCID: PMC8708361 DOI: 10.3390/vaccines9121399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Early metabolic reorganization was only recently recognized as an essentially integrated part of immunology. In this context, unbalanced ROS/RNS levels connected to increased aerobic fermentation, which is linked to alpha-tubulin-based cell restructuring and control of cell cycle progression, were identified as a major complex trait for early de novo programming ('CoV-MAC-TED') during SARS-CoV-2 infection. This trait was highlighted as a critical target for developing early anti-viral/anti-SARS-CoV-2 strategies. To obtain this result, analyses had been performed on transcriptome data from diverse experimental cell systems. A call was released for wide data collection of the defined set of genes for transcriptome analyses, named 'ReprogVirus', which should be based on strictly standardized protocols and data entry from diverse virus types and variants into the 'ReprogVirus Platform'. This platform is currently under development. However, so far, an in vitro cell system from primary target cells for virus attacks that could ideally serve for standardizing the data collection of early SARS-CoV-2 infection responses has not been defined. RESULTS Here, we demonstrate transcriptome-level profiles of the most critical 'ReprogVirus' gene sets for identifying 'CoV-MAC-TED' in cultured human nasal epithelial cells infected by two SARS-CoV-2 variants differing in disease severity. Our results (a) validate 'Cov-MAC-TED' as a crucial trait for early SARS-CoV-2 reprogramming for the tested virus variants and (b) demonstrate its relevance in cultured human nasal epithelial cells. CONCLUSION In vitro-cultured human nasal epithelial cells proved to be appropriate for standardized transcriptome data collection in the 'ReprogVirus Platform'. Thus, this cell system is highly promising to advance integrative data analyses with the help of artificial intelligence methodologies for designing anti-SARS-CoV-2 strategies.
Collapse
Affiliation(s)
- José Hélio Costa
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil;
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
| | - Shahid Aziz
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil;
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
- Plant Molecular and Cellular Biotechnology/Industrial Biotechnology and Bioproducts, Department of Life and Agricultural Sciences, Universidad de las Fuerzas Armadas-ESPE, Quito 171103, Ecuador
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil;
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
| |
Collapse
|
14
|
Tivendale ND, Belt K, Berkowitz O, Whelan J, Millar AH, Huang S. Knockdown of Succinate Dehydrogenase Assembly Factor 2 Induces Reactive Oxygen Species-Mediated Auxin Hypersensitivity Causing pH-Dependent Root Elongation. PLANT & CELL PHYSIOLOGY 2021; 62:1185-1198. [PMID: 34018557 DOI: 10.1093/pcp/pcab061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Metabolism, auxin signaling and reactive oxygen species (ROS) all contribute to plant growth, and each is linked to plant mitochondria and the process of respiration. Knockdown of mitochondrial succinate dehydrogenase assembly factor 2 (SDHAF2) in Arabidopsis thaliana lowered succinate dehydrogenase activity and led to pH-inducible root inhibition when the growth medium pH was poised at different points between 7.0 and 5.0, but this phenomenon was not observed in wildtype (WT). Roots of sdhaf2 mutants showed high accumulation of succinate, depletion of citrate and malate and up-regulation of ROS-related and stress-inducible genes at pH 5.5. A change of oxidative status in sdhaf2 roots at low pH was also evidenced by low ROS staining in root tips and altered root sensitivity to H2O2. sdhaf2 had low auxin activity in root tips via DR5-GUS staining but displayed increased indole-3-acetic acid (IAA, auxin) abundance and IAA hypersensitivity, which is most likely caused by the change in ROS levels. On this basis, we conclude that knockdown of SDHAF2 induces pH-related root elongation and auxin hyperaccumulation and hypersensitivity, mediated by altered ROS homeostasis. This observation extends the existing evidence of associations between mitochondrial function and auxin by establishing a cascade of cellular events that link them through ROS formation, metabolism and root growth at different pH values.
Collapse
Affiliation(s)
- Nathan D Tivendale
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Katharina Belt
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University,Plaenty Rd and Kingsburg Dr, Bundoora, VIC 3083, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University,Plaenty Rd and Kingsburg Dr, Bundoora, VIC 3083, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
15
|
Yan Y, Shi Q, Gong B. S-nitrosoglutathione Reductase-Mediated Nitric Oxide Affects Axillary Buds Outgrowth of Solanum lycopersicum L. by Regulating Auxin and Cytokinin Signaling. PLANT & CELL PHYSIOLOGY 2021; 62:458-471. [PMID: 33493306 DOI: 10.1093/pcp/pcab002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Auxin and cytokinin are two kinds of important phytohormones that mediate outgrowth of axillary buds in plants. How nitric oxide and its regulator of S-nitrosoglutathione reductase (GSNOR) take part in auxin and cytokinin signaling for controlling axillary buds outgrowth remains elusive. We investigated the roles of GSNOR during tomato axillary bud outgrowth by using physiological, biochemical and genetic approaches. GSNOR negatively regulated NO homeostasis. Suppression of GSNOR promoted axillary bud outgrowth by inhibiting the expression of FZY in both apical and axillary buds. Meanwhile, AUX1 and PIN1 were down-regulated in apical buds but up-regulated in axillary buds in GSNOR-suppressed plants. Thus, reduced IAA accumulation was shown in both apical buds and axillary buds of GSNOR-suppressed plants. GSNOR-mediated changes of NO and auxin affected cytokinin biosynthesis, transport, and signaling. And a decreased ratio of auxin: cytokinin was shown in axillary buds of GSNOR-suppressed plants, leading to bud dormancy breaking. We also found that the original NO signaling was generated by nitrate reductase (NR) catalyzing nitrate as substrate. NR-mediated NO reduced the GSNOR activity through S-nitrosylation of Cys-10, then induced a further NO burst, which played the above roles to promote axillary buds outgrowth. Together, GSNOR-mediated NO played important roles in controlling axillary buds outgrowth by altering the homeostasis and signaling of auxin and cytokinin in tomato plants.
Collapse
Affiliation(s)
- Yanyan Yan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, P.R. China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, P.R. China
| | - Biao Gong
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, P.R. China
| |
Collapse
|
16
|
Arnholdt-Schmitt B, Mohanapriya G, Bharadwaj R, Noceda C, Macedo ES, Sathishkumar R, Gupta KJ, Sircar D, Kumar SR, Srivastava S, Adholeya A, Thiers KL, Aziz S, Velada I, Oliveira M, Quaresma P, Achra A, Gupta N, Kumar A, Costa JH. From Plant Survival Under Severe Stress to Anti-Viral Human Defense - A Perspective That Calls for Common Efforts. Front Immunol 2021; 12:673723. [PMID: 34211468 PMCID: PMC8240590 DOI: 10.3389/fimmu.2021.673723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named 'ReprogVirus'. This approach was recently applied and published. It resulted in identifying 'CoV-MAC-TED', a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a 'ReprogVirus Platform' to support anti-viral strategy design through common efforts.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Gunasekaran Mohanapriya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Revuru Bharadwaj
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Elisete Santos Macedo
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Ramalingam Sathishkumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Sarma Rajeev Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gual Pahari, Gurugram, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gual Pahari, Gurugram, India
| | - KarineLeitão Lima Thiers
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Shahid Aziz
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Isabel Velada
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and its Applications, Universidade de Évora, Évora, Portugal
| | - Paulo Quaresma
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- NOVA LINCS – Laboratory for Informatics and Computer Science, University of Évora, Évora, Portugal
| | - Arvind Achra
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Microbiology, Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Nidhi Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Ashwani Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Hargovind Khorana Chair, Jayoti Vidyapeeth Womens University, Jaipur, India
| | - José Hélio Costa
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
17
|
Rasool G, Buchholz G, Yasmin T, Shabbir G, Abbasi NA, Malik SI. Overexpression of SlGSNOR impairs in vitro shoot proliferation and developmental architecture in tomato but confers enhanced disease resistance. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153433. [PMID: 33990008 DOI: 10.1016/j.jplph.2021.153433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The pervasive presence of nitric oxide (NO) in cells and its role in modifying cystein residues through protein S-nitrosylation is a remarkable redox based signalling mechanism regulating a variety of cellular processes. S-NITROSOGLUTATHIONE REDUCTASE (GSNOR) governs NO bioavailability by the breakdown of S-nitrosoglutathione (GSNO), fine-tunes NO signalling and controls total cellular S-nitrosylated proteins. Most of the published data on GSNOR functional analysis is based on the model plant Arabidopsis with no previous report for its effect on in vitro regeneration of tissue cultured plants. Moreover, the effect of GSNOR overexpression (O.E) on tomato growth, development and disease resistance remains enigmatic. Here we show that SlGSNOR O.E in tomato alters multiple developmental programs from in vitro culture establishment to plant growth and fruit set. Moreover, constitutive SlGSNOR O.E in tomato showed enhanced resistance against early blight (EB) disease caused by Alternaria solani and reduction in hypersensitive response (HR)-mediated cell death after Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) infiltrations. High GSNOR transcript levels led to the inhibition of in vitro shoot proliferation in transformed explants as revealed by the fluorescence microscopy after YFP labelling. Transgenic tomato lines overexpressing SlGSNOR showed defective phenotypes exhibiting stunted plant growth and bushy-type plants due to loss of apical dominance, along with reduced seed germination and delayed flowering. Furthermore, SlGSNOR O.E plants exhibited altered leaf arrangement, fruit shape and modified locules number in tomato fruit. These findings give a novel insight into a multifaceted regulatory role of SlGSNOR in tomato plant development, reproduction and response to pathogens.
Collapse
Affiliation(s)
- Ghulam Rasool
- Department of Plant Breeding and Genetics, Faculty of Crop and Food Sciences, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Guenther Buchholz
- RLP AgroScience GmbH, AlPlanta - Institute for Plant Research, Neustadt, Germany
| | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Ghulam Shabbir
- Department of Plant Breeding and Genetics, Faculty of Crop and Food Sciences, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Nadeem Akthar Abbasi
- Department of Horticulture, Faculty of Crop and Food Sciences, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Saad Imran Malik
- Department of Plant Breeding and Genetics, Faculty of Crop and Food Sciences, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan.
| |
Collapse
|
18
|
Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Sanz L, Lorenzo O. Nitric Oxide Alters the Pattern of Auxin Maxima and PIN-FORMED1 During Shoot Development. FRONTIERS IN PLANT SCIENCE 2021; 12:630792. [PMID: 34122465 PMCID: PMC8189175 DOI: 10.3389/fpls.2021.630792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/01/2021] [Indexed: 05/27/2023]
Abstract
Hormone patterns tailor cell fate decisions during plant organ formation. Among them, auxins and cytokinins are critical phytohormones during early development. Nitric oxide (NO) modulates root architecture by the control of auxin spatial patterns. However, NO involvement during the coordination of shoot organogenesis remains unclear. Here, we explore the effect of NO during shoot development by using a phenotypic, cellular, and genetic analysis in Arabidopsis thaliana and get new insights into the characterization of NO-mediated leaf-related phenotypes. NO homeostasis mutants are impaired in several shoot architectural parameters, including phyllotactic patterns, inflorescence stem elongation, silique production, leaf number, and margin. Auxin distribution is a key feature for tissue differentiation and need to be controlled at different levels (i.e., synthesis, transport, and degradation mechanisms). The phenotypes resulting from the introduction of the cue1 mutation in the axr1 auxin resistant and pin1 backgrounds exacerbate the relationship between NO and auxins. Using the auxin reporter DR5:GUS, we observed an increase in auxin maxima under NO-deficient mutant backgrounds and NO scavenging, pointing to NO-ASSOCIATED 1 (NOA1) as the main player related to NO production in this process. Furthermore, polar auxin transport is mainly regulated by PIN-FORMED 1 (PIN1), which controls the flow along leaf margin and venations. Analysis of PIN1 protein levels shows that NO controls its accumulation during leaf development, impacting the auxin mediated mechanism of leaf building. With these findings, we also provide evidence for the NO opposite effects to determine root and shoot architecture, in terms of PIN1 accumulation under NO overproduction.
Collapse
|
19
|
Li ZC, Ren QW, Guo Y, Ran J, Ren XT, Wu NN, Xu HY, Liu X, Liu JZ. Dual Roles of GSNOR1 in Cell Death and Immunity in Tetraploid Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2021; 12:596234. [PMID: 33643341 PMCID: PMC7902495 DOI: 10.3389/fpls.2021.596234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
S-nitrosoglutathione reductase 1 (GSNOR1) is the key enzyme that regulates cellular homeostasis of S-nitrosylation. Although extensively studied in Arabidopsis, the roles of GSNOR1 in tetraploid Nicotiana species have not been investigated previously. To study the function of NtGSNOR1, we knocked out two NtGSNOR1 genes simultaneously in Nicotiana tabacum using clustered regularly interspaced short palindromic repeats (CRISPR)/caspase 9 (Cas9) technology. To our surprise, spontaneous cell death occurred on the leaves of the CRISPR/Cas9 lines but not on those of the wild-type (WT) plants, suggesting that NtGSNOR1 negatively regulates cell death. The natural cell death on the CRISPR/Cas9 lines could be a result from interactions between overaccumulated nitric oxide (NO) and hydrogen peroxide (H2O2). This spontaneous cell death phenotype was not affected by knocking out two Enhanced disease susceptibility 1 genes (NtEDS11a/1b) and thus was independent of the salicylic acid (SA) pathway. Unexpectedly, we found that the NtGSNOR1a/1b knockout plants displayed a significantly (p < 0.001) enhanced resistance to paraquat-induced cell death compared to WT plants, suggesting that NtGSNOR1 functions as a positive regulator of the paraquat-induced cell death. The increased resistance to the paraquat-induced cell death of the NtGSNOR1a/1b knockout plants was correlated with the reduced level of H2O2 accumulation. Interestingly, whereas the N gene-mediated resistance to Tobacco mosaic virus (TMV) was significantly enhanced (p < 0.001), the resistance to Pseudomonas syringae pv. tomato DC3000 was significantly reduced (p < 0.01) in the NtGSNOR1a/1b knockout lines. In summary, our results indicate that NtGSNOR1 functions as both positive and negative regulator of cell death under different conditions and displays distinct effects on resistance against viral and bacterial pathogens.
Collapse
Affiliation(s)
- Zhen-Chao Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Qian-Wei Ren
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Guo
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Ran
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xiao-Tian Ren
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Ni-Ni Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hui-Yang Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xia Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
20
|
Li B, Sun C, Lin X, Busch W. The Emerging Role of GSNOR in Oxidative Stress Regulation. TRENDS IN PLANT SCIENCE 2021; 26:156-168. [PMID: 33004257 DOI: 10.1016/j.tplants.2020.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 05/19/2023]
Abstract
Oxidative stress is a common event in aerobic organisms and a fundamental and unavoidable cost of the aerobic lifestyle. Reactive oxygen and nitrogen species (ROS/RNS) and iron (Fe) are the most common agents that trigger oxidative stress. A conserved enzyme in the S-nitrosoglutathione (GSNO) metabolism, GSNO reductase (GSNOR), modulates a multitude of abiotic and biotic stress responses. In this review, we focus on the emerging role of GSNOR as a master regulator in oxidative stress through its regulation of the interaction of ROS, RNS, and Fe, and highlight recent discoveries in post-translational modifications of GSNOR and functional variations of natural GSNOR variants during oxidative stress. Recent advances in understanding GSNOR regulation show promise for the modulation of oxidative stress in plants.
Collapse
Affiliation(s)
- Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| | - Wolfgang Busch
- Plant Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
The Physiological Implications of S-Nitrosoglutathione Reductase (GSNOR) Activity Mediating NO Signalling in Plant Root Structures. Antioxidants (Basel) 2020; 9:antiox9121206. [PMID: 33266126 PMCID: PMC7760381 DOI: 10.3390/antiox9121206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Nitrogen remains an important macronutrient in plant root growth due to its application in amino acid production, in addition to its more elusive role in cellular signalling through nitric oxide (NO). NO is widely accepted as an important signalling oxidative radical across all organisms, leading to its study in a wide range of biological pathways. Along with its more stable NO donor, S-nitrosoglutathione (GSNO), formed by NO non-enzymatically in the presence of glutathione (GSH), NO is a redox-active molecule capable of mediating target protein cysteine thiols through the post translational modification, S-nitrosation. S-nitrosoglutathione reductase (GSNOR) thereby acts as a mediator to pathways regulated by NO due to its activity in the irreversible reduction of GSNO to oxidized glutathione (GSSG) and ammonia. GSNOR is thought to be pleiotropic and often acts by mediating the cellular environment in response to stress conditions. Under optimal conditions its activity leads to growth by transcriptional upregulation of the nitrate transporter, NRT2.1, and through its interaction with phytohormones like auxin and strigolactones associated with root development. However, in response to highly nitrosative and oxidative conditions its activity is often downregulated, possibly through an S-nitrosation site on GSNOR at cys271, Though GSNOR knockout mutated plants often display a stunted growth phenotype in all structures, they also tend to exhibit a pre-induced protective effect against oxidative stressors, as well as an improved immune response associated with NO accumulation in roots.
Collapse
|
22
|
Ma M, Wendehenne D, Philippot L, Hänsch R, Flemetakis E, Hu B, Rennenberg H. Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. PLANT, CELL & ENVIRONMENT 2020; 43:2336-2354. [PMID: 32681574 DOI: 10.1111/pce.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is essential for plant growth and development, as well as interactions with abiotic and biotic environments. Its importance for multiple functions in plants means that tight regulation of NO concentrations is required. This is of particular significance in roots, where NO signalling is involved in processes, such as root growth, lateral root formation, nutrient acquisition, heavy metal homeostasis, symbiotic nitrogen fixation and root-mycorrhizal fungi interactions. The NO signal can also be produced in high levels by microbial processes in the rhizosphere, further impacting root processes. To explore these interesting interactions, in the present review, we firstly summarize current knowledge of physiological processes of NO production and consumption in roots and, thereafter, of processes involved in NO homeostasis in root cells with particular emphasis on root growth, development, nutrient acquisition, environmental stresses and organismic interactions.
Collapse
Affiliation(s)
- Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - David Wendehenne
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Robert Hänsch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Institute for Plant Biology, Technische Universität, Braunschweig, Germany
| | - Emmanouil Flemetakis
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Semeradova H, Montesinos JC, Benkova E. All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. PLANT COMMUNICATIONS 2020; 1:100048. [PMID: 33367243 PMCID: PMC7747973 DOI: 10.1016/j.xplc.2020.100048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
Collapse
Affiliation(s)
- Hana Semeradova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Eva Benkova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
24
|
Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113943. [PMID: 32023797 DOI: 10.1016/j.envpol.2020.113943] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Heavy metal (HM) stress is a major hazard, which significantly affects plant growth and development. In order to confront HM stress, plants directly or indirectly regulate the levels of endogenous nitric oxide (NO), a redox-related signaling molecule involved in wide range of plant growth and development as well as in response to HM stress. In addition, there is now compelling experimental evidence that NO usually mediates signaling processes through interactions with different biomolecules like phytohormones to regulate HM tolerance. Apart from phytohormones, NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation in response to HM stress. Recently, the roles of S-nitrosylation as a regulator of plant responses to HM stress and S-nitrosylated candidates have also been established and detected. Here, we describe the roles of NO in confronting HM phytotoxicity in plants with a particular focus on the presentation and discussion of recent data obtained in this field, which involves in the function of various phytohormones and S-nitrosylation during plant responses to HM stress. Additionally, both importance and challenges of future work are outlined in order to further elucidate the specific mechanisms underlying the roles of NO in plant responses to HM stress.
Collapse
Affiliation(s)
- Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, PR China
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China.
| |
Collapse
|
25
|
Matamoros MA, Cutrona MC, Wienkoop S, Begara-Morales JC, Sandal N, Orera I, Barroso JB, Stougaard J, Becana M. Altered Plant and Nodule Development and Protein S-Nitrosylation in Lotus japonicus Mutants Deficient in S-Nitrosoglutathione Reductases. PLANT & CELL PHYSIOLOGY 2020; 61:105-117. [PMID: 31529085 DOI: 10.1093/pcp/pcz182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/08/2019] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) is a crucial signaling molecule that conveys its bioactivity mainly through protein S-nitrosylation. This is a reversible post-translational modification (PTM) that may affect protein function. S-nitrosoglutathione (GSNO) is a cellular NO reservoir and NO donor in protein S-nitrosylation. The enzyme S-nitrosoglutathione reductase (GSNOR) degrades GSNO, thereby regulating indirectly signaling cascades associated with this PTM. Here, the two GSNORs of the legume Lotus japonicus, LjGSNOR1 and LjGSNOR2, have been functionally characterized. The LjGSNOR1 gene is very active in leaves and roots, whereas LjGSNOR2 is highly expressed in nodules. The enzyme activities are regulated in vitro by redox-based PTMs. Reducing conditions and hydrogen sulfide-mediated cysteine persulfidation induced both activities, whereas cysteine oxidation or glutathionylation inhibited them. Ljgsnor1 knockout mutants contained higher levels of S-nitrosothiols. Affinity chromatography and subsequent shotgun proteomics allowed us to identify 19 proteins that are differentially S-nitrosylated in the mutant and the wild-type. These include proteins involved in biotic stress, protein degradation, antioxidant protection and photosynthesis. We propose that, in the mutant plants, deregulated protein S-nitrosylation contributes to developmental alterations, such as growth inhibition, impaired nodulation and delayed flowering and fruiting. Our results highlight the importance of GSNOR function in legume biology.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, 50080 Zaragoza, Spain
| | - Maria C Cutrona
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, 50080 Zaragoza, Spain
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, Center for Advanced Studies in Olive Grove and Olive Oils, Campus Universitario "Las Lagunillas", University of Ja�n, 23071 Ja�n, Spain
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Irene Orera
- Proteomics Unit, Centro Investigaciones Biom�dicas de Arag�n, Instituto Aragon�s de Ciencias de la Salud, 50059 Zaragoza, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, Center for Advanced Studies in Olive Grove and Olive Oils, Campus Universitario "Las Lagunillas", University of Ja�n, 23071 Ja�n, Spain
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Manuel Becana
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
26
|
Oláh D, Feigl G, Molnár Á, Ördög A, Kolbert Z. Strigolactones Interact With Nitric Oxide in Regulating Root System Architecture of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1019. [PMID: 32719710 PMCID: PMC7350899 DOI: 10.3389/fpls.2020.01019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
Both nitric oxide (NO) and strigolactone (SL) are growth regulating signal components in plants; however, regarding their possible interplay our knowledge is limited. Therefore, this study aims to provide new evidence for the signal interplay between NO and SL in the formation of root system architecture using complementary pharmacological and molecular biological approaches in the model Arabidopsis thaliana grown under stress-free conditions. Deficiency of SL synthesis or signaling (max1-1 and max2-1) resulted in elevated NO and S-nitrosothiol (SNO) levels due to decreased S-nitrosoglutathione (GSNO) reductase (GSNOR) protein abundance and activity indicating that there is a signal interaction between SLs and GSNOR-regulated levels of NO/SNO. This was further supported by the down-regulation of SL biosynthetic genes (CCD7, CCD8 and MAX1) in GSNOR-deficient gsnor1-3. Based on the more pronounced sensitivity of gsnor1-3 to exogenous SL (rac-GR24, 2 µM), we suspected that functional GSNOR is needed to control NO/SNO levels during SL-induced primary root (PR) elongation. Additionally, SLs may be involved in GSNO-regulated PR shortening as suggested by the relative insensitivity of max1-1 and max2-1 mutants to exogenous GSNO (250 µM). Collectively, our results indicate a connection between SL and GSNOR-regulated NO/SNO signals in roots of A. thaliana grown in stress-free environment. As this work used max2-1 mutant and rac-GR24 exerting unspecific effects to both SL and karrikin signaling, it cannot be ruled out that karrikins are partly responsible for the observed effects, and this issue needs further clarification in the future.
Collapse
|
27
|
Feng J, Chen L, Zuo J. Protein S-Nitrosylation in plants: Current progresses and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1206-1223. [PMID: 30663237 DOI: 10.1111/jipb.12780] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/14/2019] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule regulating diverse biological processes in all living organisms. A major physiological function of NO is executed via protein S-nitrosylation, a redox-based posttranslational modification by covalently adding a NO molecule to a reactive cysteine thiol of a target protein. S-nitrosylation is an evolutionarily conserved mechanism modulating multiple aspects of cellular signaling. During the past decade, significant progress has been made in functional characterization of S-nitrosylated proteins in plants. Emerging evidence indicates that protein S-nitrosylation is ubiquitously involved in the regulation of plant development and stress responses. Here we review current understanding on the regulatory mechanisms of protein S-nitrosylation in various biological processes in plants and highlight key challenges in this field.
Collapse
Affiliation(s)
- Jian Feng
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Gong B, Yan Y, Zhang L, Cheng F, Liu Z, Shi Q. Unravelling GSNOR-Mediated S-Nitrosylation and Multiple Developmental Programs in Tomato Plants. PLANT & CELL PHYSIOLOGY 2019; 60:2523-2537. [PMID: 31350547 DOI: 10.1093/pcp/pcz143] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/15/2019] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) impacts multiple developmental events and stress responses in plants. S-nitrosylation, regulated by S-nitrosoglutathione reductase (GSNOR), is considered as an important route for NO bioactivity. However, genetic evidence for GSNOR-mediated plant development and S-nitrosylation remains elusive in crop species. Genetic and site-specific nitrosoproteomic approach was used to obtain GSNOR-mediated phenotype and S-nitrosylated network. Knockdown of GSNOR increased the endogenous NO level and S-nitrosylation, resulting in higher germination rate, inhibition of root and hypocotyl growth, decreased photosynthesis, reduced plant growth, altered plant architecture, dysplastic pollen grains, and low fructification rate and fruit yield. For nitrosoproteomic analysis, 395 endogenously S-nitrosylated proteins with 554 S-nitrosylation sites were identified within a wide range of biological processes, especially for energy metabolism. Physiological and exogenous energy-support testing were consistent with the omic result, suggesting that GSNOR-mediated S-nitrosylation of energy metabolism plays key roles in impacting plant growth and development. Taken together, GSNOR is actively involved in the regulation of multiple developmental processes related to agronomically important traits. In addition, our results provide valuable resources and new clues for the study of S-nitrosylation-regulated metabolism in plants.
Collapse
Affiliation(s)
- Biao Gong
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, P.R. China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Yanyan Yan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, P.R. China
| | - Lili Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, P.R. China
| | - Fei Cheng
- Qingdao Agricultural University, Qingdao, P.R. China
| | - Zhen Liu
- Jingjie PTM Biolab Co. Ltd, Hangzhou, P.R. China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, P.R. China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China
| |
Collapse
|
29
|
Jedelská T, Kraiczová VŠ, Berčíková L, Činčalová L, Luhová L, Petřivalský M. Tomato Root Growth Inhibition by Salinity and Cadmium Is Mediated By S-Nitrosative Modifications of ROS Metabolic Enzymes Controlled by S-Nitrosoglutathione Reductase. Biomolecules 2019; 9:E393. [PMID: 31438648 PMCID: PMC6788187 DOI: 10.3390/biom9090393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022] Open
Abstract
S-nitrosoglutathione reductase (GSNOR) exerts crucial roles in the homeostasis of nitric oxide (NO) and reactive nitrogen species (RNS) in plant cells through indirect control of S-nitrosation, an important protein post-translational modification in signaling pathways of NO. Using cultivated and wild tomato species, we studied GSNOR function in interactions of key enzymes of reactive oxygen species (ROS) metabolism with RNS mediated by protein S-nitrosation during tomato root growth and responses to salinity and cadmium. Application of a GSNOR inhibitor N6022 increased both NO and S-nitrosothiol levels and stimulated root growth in both genotypes. Moreover, N6022 treatment, as well as S-nitrosoglutathione (GSNO) application, caused intensive S-nitrosation of important enzymes of ROS metabolism, NADPH oxidase (NADPHox) and ascorbate peroxidase (APX). Under abiotic stress, activities of APX and NADPHox were modulated by S-nitrosation. Increased production of H2O2 and subsequent oxidative stress were observed in wild Solanumhabrochaites, together with increased GSNOR activity and reduced S-nitrosothiols. An opposite effect occurred in cultivated S. lycopersicum, where reduced GSNOR activity and intensive S-nitrosation resulted in reduced ROS levels by abiotic stress. These data suggest stress-triggered disruption of ROS homeostasis, mediated by modulation of RNS and S-nitrosation of NADPHox and APX, underlies tomato root growth inhibition by salinity and cadmium stress.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Veronika Šmotková Kraiczová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
- Present address: Department of Immunology, Faculty of Medicine and Dentistry, Palacký University, CZ-77900 Olomouc, Czech Republic
| | - Lucie Berčíková
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
- Present address: Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
30
|
Zhang J, Huang D, Wang C, Wang B, Fang H, Huo J, Liao W. Recent Progress in Protein S-Nitrosylation in Phytohormone Signaling. PLANT & CELL PHYSIOLOGY 2019; 60:494-502. [PMID: 30668813 DOI: 10.1093/pcp/pcz012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The free radical nitric oxide (NO) is a critical regulator in modulation of wide range of growth and developmental processes as well as environmental responses in plants. In most cases, NO interacts with plant hormones to regulate these processes. It is clear that NO might work through either transcriptional or post-translational level. The redox-based post-translational modification S-nitrosylation has been recognized as a NO-dependent regulatory mechanism in recent years. In general, S-nitrosylation can be understood as a product of reversible reaction where NO moiety group covalently attaches to thiol of cysteine residue resulting in the formation of S-nitrosothiol in target proteins. Recently, the crosstalk between S-nitrosylation and phytohormones has been emerging. Furthermore, several proteins involved in plant hormone signaling have been reported to undergo S-nitrosylation, which might subsequently mediate plant growth and defense response. In this review, we focus on the recent processes in protein S-nitrosylation in phytohormone signaling. In addition, both importance and challenges of future work on protein S-nitrosylation in plant hormone network are also highlighted.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Bo Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Jianqiang Huo
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| |
Collapse
|
31
|
Jahnová J, Luhová L, Petřivalský M. S-Nitrosoglutathione Reductase-The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. PLANTS (BASEL, SWITZERLAND) 2019. [PMID: 30795534 DOI: 10.3390/plants80200482019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
S-nitrosation has been recognized as an important mechanism of protein posttranslational regulations, based on the attachment of a nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-base modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. In plant, S-nitrosation is involved in a wide array of cellular processes during normal development and stress responses. This review summarizes current knowledge on S-nitrosoglutathione reductase (GSNOR), a key enzyme which regulates intracellular levels of S-nitrosoglutathione (GSNO) and indirectly also of protein S-nitrosothiols. GSNOR functions are mediated by its enzymatic activity, which catalyzes irreversible GSNO conversion to oxidized glutathione within the cellular catabolism of nitric oxide. GSNOR is involved in the maintenance of balanced levels of reactive nitrogen species and in the control of cellular redox state. Multiple functions of GSNOR in plant development via NO-dependent and -independent signaling mechanisms and in plant defense responses to abiotic and biotic stress conditions have been uncovered. Extensive studies of plants with down- and upregulated GSNOR, together with application of transcriptomics and proteomics approaches, seem promising for new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
Affiliation(s)
- Jana Jahnová
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
| |
Collapse
|
32
|
S-Nitrosoglutathione Reductase-The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. PLANTS 2019; 8:plants8020048. [PMID: 30795534 PMCID: PMC6409631 DOI: 10.3390/plants8020048] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022]
Abstract
S-nitrosation has been recognized as an important mechanism of protein posttranslational regulations, based on the attachment of a nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-base modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. In plant, S-nitrosation is involved in a wide array of cellular processes during normal development and stress responses. This review summarizes current knowledge on S-nitrosoglutathione reductase (GSNOR), a key enzyme which regulates intracellular levels of S-nitrosoglutathione (GSNO) and indirectly also of protein S-nitrosothiols. GSNOR functions are mediated by its enzymatic activity, which catalyzes irreversible GSNO conversion to oxidized glutathione within the cellular catabolism of nitric oxide. GSNOR is involved in the maintenance of balanced levels of reactive nitrogen species and in the control of cellular redox state. Multiple functions of GSNOR in plant development via NO-dependent and -independent signaling mechanisms and in plant defense responses to abiotic and biotic stress conditions have been uncovered. Extensive studies of plants with down- and upregulated GSNOR, together with application of transcriptomics and proteomics approaches, seem promising for new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
|
33
|
García MJ, Corpas FJ, Lucena C, Alcántara E, Pérez-Vicente R, Zamarreño ÁM, Bacaicoa E, García-Mina JM, Bauer P, Romera FJ. A Shoot Fe Signaling Pathway Requiring the OPT3 Transporter Controls GSNO Reductase and Ethylene in Arabidopsis thaliana Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1325. [PMID: 30254659 PMCID: PMC6142016 DOI: 10.3389/fpls.2018.01325] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/23/2018] [Indexed: 05/12/2023]
Abstract
Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed.
Collapse
Affiliation(s)
- María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - Carlos Lucena
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Ángel M. Zamarreño
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Eva Bacaicoa
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - José M. García-Mina
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Petra Bauer
- Institute of Botany, University of Düsseldorf, Düsseldorf, Germany
| | - Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
34
|
Regulation of SCF TIR1/AFBs E3 ligase assembly by S-nitrosylation of Arabidopsis SKP1-like1 impacts on auxin signaling. Redox Biol 2018; 18:200-210. [PMID: 30031268 PMCID: PMC6076216 DOI: 10.1016/j.redox.2018.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
The F-box proteins (FBPs) TIR1/AFBs are the substrate recognition subunits of SKP1–cullin–F-box (SCF) ubiquitin ligase complexes and together with Aux/IAAs form the auxin co-receptor. Although tremendous knowledge on auxin perception and signaling has been gained in the last years, SCFTIR1/AFBs complex assembly and stabilization are emerging as new layers of regulation. Here, we investigated how nitric oxide (NO), through S-nitrosylation of ASK1 is involved in SCFTIR1/AFBs assembly. We demonstrate that ASK1 is S-nitrosylated and S-glutathionylated in cysteine (Cys) 37 and Cys118 residues in vitro. Both, in vitro and in vivo protein-protein interaction assays show that NO enhances ASK1 binding to CUL1 and TIR1/AFB2, required for SCFTIR1/AFB2 assembly. In addition, we demonstrate that Cys37 and Cys118 are essential residues for proper activation of auxin signaling pathway in planta. Phylogenetic analysis revealed that Cys37 residue is only conserved in SKP proteins in Angiosperms, suggesting that S-nitrosylation on Cys37 could represent an evolutionary adaption for SKP1 function in flowering plants. Collectively, these findings indicate that multiple events of redox modifications might be part of a fine-tuning regulation of SCFTIR1/AFBs for proper auxin signal transduction. ASK1 adaptor protein of the SCFTIR1/AFB E3 ligase complex is redox regulated. NO regulates ASK1 function by S-nitrosylation in Cys37 and Cys118 residues. NO enhances ASK1-CUL1 and ASK1-TIR1/AFB2 protein-protein interactions required for SCFTIR1/AFB2 assembly in vitro and in vivo. S-nitrosylated residues in ASK1 are essential for activation of auxin signaling pathway in plants.
Collapse
|
35
|
Lindermayr C. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase. Free Radic Biol Med 2018; 122:110-115. [PMID: 29203326 DOI: 10.1016/j.freeradbiomed.2017.11.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
Nitric oxide (.NO) acts as signaling molecule in plants being involved in diverse physiological processes such as germination, root growth, stomata closing and response to biotic and abiotic stress. S-Nitrosoglutathione (GSNO) is the storage and transport form of.NO and has a very important function in.NO signaling since it can transfer its.NO moiety to other proteins (trans-nitrosylation). The level of GSNO and thus the level of S-nitrosylated proteins are regulated by GSNO-reductase (GSNOR). In this way, this enzyme regulates the S-nitrosothiol levels and plays a balancing role in fine-tuning.NO signaling. Interestingly, oxidative post-translationally modification of GSNOR inhibited the activity of this enzyme suggesting a direct crosstalk between ROS- and RNS-signaling. In this review article the regulatory effects of ROS on GSNOR are highlighted and their physiological function in context of crosstalk between ROS and.NO and species in plants are discussed.
Collapse
Affiliation(s)
- Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 München/Neuherberg, Germany.
| |
Collapse
|
36
|
Begara-Morales JC, Chaki M, Valderrama R, Sánchez-Calvo B, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB. Nitric oxide buffering and conditional nitric oxide release in stress response. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3425-3438. [PMID: 29506191 DOI: 10.1093/jxb/ery072] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/19/2018] [Indexed: 05/22/2023]
Abstract
Nitric oxide (NO) has emerged as an essential biological messenger in plant biology that usually transmits its bioactivity by post-translational modifications such as S-nitrosylation, the reversible addition of an NO group to a protein cysteine residue leading to S-nitrosothiols (SNOs). In recent years, SNOs have risen as key signalling molecules mainly involved in plant response to stress. Chief among SNOs is S-nitrosoglutathione (GSNO), generated by S-nitrosylation of the key antioxidant glutathione (GSH). GSNO is considered the major NO reservoir and a phloem mobile signal that confers to NO the capacity to be a long-distance signalling molecule. GSNO is able to regulate protein function and gene expression, resulting in a key role for GSNO in fundamental processes in plants, such as development and response to a wide range of environmental stresses. In addition, GSNO is also able to regulate the total SNO pool and, consequently, it could be considered the storage of NO in cells that may control NO signalling under basal and stress-related responses. Thus, GSNO function could be crucial during plant response to environmental stresses. Besides the importance of GSNO in plant biology, its mode of action has not been widely discussed in the literature. In this review, we will first discuss the GSNO turnover in cells and secondly the role of GSNO as a mediator of physiological and stress-related processes in plants, highlighting those aspects for which there is still some controversy.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| |
Collapse
|
37
|
Ohtani M, Kawabe H, Demura T. Evidence that thiol-based redox state is critical for xylem vessel cell differentiation. PLANT SIGNALING & BEHAVIOR 2018; 13:e1428512. [PMID: 29393823 PMCID: PMC5933917 DOI: 10.1080/15592324.2018.1428512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO), which plays essential roles in a variety of cell signaling processes, is the precursor of a family of NO-derived molecules, including toxic reactive nitrogen species. The NO-based regulation of cellular activity is mediated by the reversible modification of cysteine thiol groups in redox-sensitive proteins. One such modification is protein S-nitrosylation, i.e., the addition of an NO moiety to a cysteine thiol, and this S-nitrosylation is regulated by enzymes such as S-nitrosoglutathione reductase (GSNOR). Recently, we reported a novel loss-of-function allele of gsnor1, named suppressor of ectopic vessel cell differentiation induced by VND7-1 (seiv1), based on the VND7-inducible system, in which almost all cell types are transdifferentiated into xylem vessel cells upon activation of the NAC transcription factor VND7. We also found that VND7 can be S-nitrosylated and that the target cysteine residues for S-nitrosylation are critical for VND7 transactivation activity. Here, we further discuss roles for GSNOR1 in xylem vessel cell differentiation, and provide additional data on the effects of cellular NO level on VND7 activity.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- CONTACT Misato Ohtani Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192 Japan
| | - Harunori Kawabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- CONTACT Taku Demura Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192 Japan
| |
Collapse
|
38
|
París R, Vazquez MM, Graziano M, Terrile MC, Miller ND, Spalding EP, Otegui MS, Casalongué CA. Distribution of Endogenous NO Regulates Early Gravitropic Response and PIN2 Localization in Arabidopsis Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:495. [PMID: 29731760 PMCID: PMC5920048 DOI: 10.3389/fpls.2018.00495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/03/2018] [Indexed: 05/19/2023]
Abstract
High-resolution and automated image analysis of individual roots demonstrated that endogenous nitric oxide (NO) contribute significantly to gravitropism of Arabidopsis roots. Lowering of endogenous NO concentrations strongly reduced and even reversed gravitropism, resulting in upward bending, without affecting root growth rate. Notably, the asymmetric accumulation of NO along the upper and lower sides of roots correlated with a positive gravitropic response. Detection of NO by the specific DAF-FM DA fluorescent probe revealed that NO was higher at the lower side of horizontally-oriented roots returning to initial values 2 h after the onset of gravistimulation. We demonstrate that NO promotes plasma membrane re-localization of PIN2 in epidermal cells, which is required during the early root gravitropic response. The dynamic and asymmetric localization of both auxin and NO is critical to regulate auxin polar transport during gravitropism. Our results collectively suggest that, although auxin and NO crosstalk occurs at different levels of regulation, they converge in the regulation of PIN2 membrane trafficking in gravistimulated roots, supporting the notion that a temporally and spatially coordinated network of signal molecules could participate in the early phases of auxin polar transport during gravitropism.
Collapse
Affiliation(s)
- Ramiro París
- Instituto de Investigaciones Biológicas, UE Consejo Nacional de Investigaciones Científicas y Técnicas-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- *Correspondence: Ramiro París
| | - María M. Vazquez
- Instituto de Investigaciones Biológicas, UE Consejo Nacional de Investigaciones Científicas y Técnicas-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Magdalena Graziano
- Instituto de Investigaciones Biológicas, UE Consejo Nacional de Investigaciones Científicas y Técnicas-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María C. Terrile
- Instituto de Investigaciones Biológicas, UE Consejo Nacional de Investigaciones Científicas y Técnicas-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Nathan D. Miller
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Marisa S. Otegui
- Laboratory of Cell and Molecular Biology, Departments of Botany and Genetics, University of Wisconsin, Madison, WI, United States
| | - Claudia A. Casalongué
- Instituto de Investigaciones Biológicas, UE Consejo Nacional de Investigaciones Científicas y Técnicas-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Claudia A. Casalongué
| |
Collapse
|
39
|
Kawabe H, Ohtani M, Kurata T, Sakamoto T, Demura T. Protein S-Nitrosylation Regulates Xylem Vessel Cell Differentiation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:17-29. [PMID: 29040725 DOI: 10.1093/pcp/pcx151] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/04/2017] [Indexed: 05/07/2023]
Abstract
Post-translational modifications of proteins have important roles in the regulation of protein activity. One such modification, S-nitrosylation, involves the covalent binding of nitric oxide (NO)-related species to a cysteine residue. Recent work showed that protein S-nitrosylation has crucial functions in plant development and environmental responses. In the present study, we investigated the importance of protein S-nitrosylation for xylem vessel cell differentiation using a forward genetics approach. We performed ethyl methanesulfonate mutagenesis of a transgenic Arabidopsis 35S::VND7-VP16-GR line in which the activity of VASCULAR-RELATED NAC-DOMAIN7 (VND7), a key transcription factor involved in xylem vessel cell differentiation, can be induced post-translationally by glucocorticoid treatment, with the goal of obtaining suppressor mutants that failed to differentiate ectopic xylem vessel cells; we named these mutants suppressor of ectopic vessel cell differentiation induced by VND7 (seiv) mutants. We found the seiv1 mutant to be a recessive mutant in which ectopic xylem cell differentiation was inhibited, especially in aboveground organs. In seiv1 mutants, a single nucleic acid substitution (G to A) leading to an amino acid substitution (E36K) was present in the gene encoding S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1), which regulates the turnover of the natural NO donor, S-nitrosoglutathione. An in vitro S-nitrosylation assay revealed that VND7 can be S-nitrosylated at Cys264 and Cys320 located near the transactivation activity-related domains, which were shown to be important for transactivation activity of VND7 by transient reporter assay. Our results suggest crucial roles for GSNOR1-regulated protein S-nitrosylation in xylem vessel cell differentiation, partly through the post-translational modification of VND7.
Collapse
Affiliation(s)
- Harunori Kawabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Tomoaki Sakamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| |
Collapse
|
40
|
Tognetti VB, Bielach A, Hrtyan M. Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk. PLANT, CELL & ENVIRONMENT 2017; 40:2586-2605. [PMID: 28708264 DOI: 10.1111/pce.13021] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/17/2017] [Accepted: 06/24/2017] [Indexed: 05/18/2023]
Abstract
To maintain the activity of meristems is an absolute requirement for plant growth and development, and the role of the plant hormones auxin and cytokinin in apical meristem function is well established. Only little attention has been given, however, to the function of the reactive oxygen species (ROS) gradient along meristematic tissues and its interplay with hormonal regulatory networks. The interdependency between auxin-related, cytokinin-related and ROS-related circuits controls primary growth and development while modulating plant morphology in response to detrimental environmental factors. Because ROS interaction with redox-active compounds significantly affects the cellular redox gradient, the latter constitutes an interface for crosstalk between hormone and ROS signalling pathways. This review focuses on the mechanisms underlying ROS-dependent interactions with redox and hormonal components in shoot and root apical meristems which are crucial for meristems maintenance when plants are exposed to environmental hardships. We also emphasize the importance of cell type and the subcellular compartmentalization of ROS and redox networks to obtain a holistic understanding of how apical meristems adapt to stress.
Collapse
Affiliation(s)
- Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
41
|
Retzer K, Lacek J, Skokan R, Del Genio CI, Vosolsobě S, Laňková M, Malínská K, Konstantinova N, Zažímalová E, Napier RM, Petrášek J, Luschnig C. Evolutionary Conserved Cysteines Function as cis-Acting Regulators of Arabidopsis PIN-FORMED 2 Distribution. Int J Mol Sci 2017; 18:E2274. [PMID: 29109378 PMCID: PMC5713244 DOI: 10.3390/ijms18112274] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 01/19/2023] Open
Abstract
Coordination of plant development requires modulation of growth responses that are under control of the phytohormone auxin. PIN-FORMED plasma membrane proteins, involved in intercellular transport of the growth regulator, are key to the transmission of such auxin signals and subject to multilevel surveillance mechanisms, including reversible post-translational modifications. Apart from well-studied PIN protein modifications, namely phosphorylation and ubiquitylation, no further post-translational modifications have been described so far. Here, we focused on root-specific Arabidopsis PIN2 and explored functional implications of two evolutionary conserved cysteines, by a combination of in silico and molecular approaches. PIN2 sequence alignments and modeling predictions indicated that both cysteines are facing the cytoplasm and therefore would be accessible to redox status-controlled modifications. Notably, mutant pin2C-A alleles retained functionality, demonstrated by their ability to almost completely rescue defects of a pin2 null allele, whereas high resolution analysis of pin2C-A localization revealed increased intracellular accumulation, and altered protein distribution within plasma membrane micro-domains. The observed effects of cysteine replacements on root growth and PIN2 localization are consistent with a model in which redox status-dependent cysteine modifications participate in the regulation of PIN2 mobility, thereby fine-tuning polar auxin transport.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria.
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic.
| | - Jozef Lacek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Roman Skokan
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Charo I Del Genio
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Martina Laňková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic.
| | - Kateřina Malínská
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic.
| | - Nataliia Konstantinova
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria.
| | - Eva Zažímalová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic.
| | - Richard M Napier
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Jan Petrášek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria.
| |
Collapse
|
42
|
Cañas RA, Li Z, Pascual MB, Castro-Rodríguez V, Ávila C, Sterck L, Van de Peer Y, Cánovas FM. The gene expression landscape of pine seedling tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1064-1087. [PMID: 28635135 DOI: 10.1111/tpj.13617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/13/2017] [Accepted: 05/31/2017] [Indexed: 05/20/2023]
Abstract
Conifers dominate vast regions of the Northern hemisphere. They are the main source of raw materials for timber industry as well as a wide range of biomaterials. Despite their inherent difficulties as experimental models for classical plant biology research, the technological advances in genomics research are enabling fundamental studies on these plants. The use of laser capture microdissection followed by transcriptomic analysis is a powerful tool for unravelling the molecular and functional organization of conifer tissues and specialized cells. In the present work, 14 different tissues from 1-month-old maritime pine (Pinus pinaster) seedlings have been isolated and their transcriptomes analysed. The results increased the sequence information and number of full-length transcripts from a previous reference transcriptome and added 39 841 new transcripts. In total, 2376 transcripts were ubiquitously expressed in all of the examined tissues. These transcripts could be considered the core 'housekeeping genes' in pine. The genes have been clustered in function to their expression profiles. This analysis reduced the number of profiles to 38, most of these defined by their expression in a unique tissue that is much higher than in the other tissues. The expression and localization data are accessible at ConGenIE.org (http://v22.popgenie.org/microdisection/). This study presents an overview of the gene expression distribution in different pine tissues, specifically highlighting the relationships between tissue gene expression and function. This transcriptome atlas is a valuable resource for functional genomics research in conifers.
Collapse
Affiliation(s)
- Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - M Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
43
|
Tichá T, Činčalová L, Kopečný D, Sedlářová M, Kopečná M, Luhová L, Petřivalský M. Characterization of S-nitrosoglutathione reductase from Brassica and Lactuca spp. and its modulation during plant development. Nitric Oxide 2017; 68:68-76. [PMID: 27940345 DOI: 10.1016/j.niox.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 11/21/2022]
Abstract
Cellular homeostasis of S-nitrosoglutathione (GSNO), a major cache of nitric oxide bioactivity in plants, is controlled by the NADH-dependent S-nitrosoglutathione reductase (GSNOR) belonging to the family of class III alcohol dehydrogenases (EC 1.1.1.1). GSNOR is a key regulator of S-nitrosothiol metabolism and is involved in plant responses to abiotic and biotic stresses. This study was focused on GSNOR from two important crop plants, cauliflower (Brassica oleracea var. botrytis, BoGSNOR) and lettuce (Lactuca sativa, LsGSNOR). Both purified recombinant GSNORs were characterized in vitro and found to exists as dimers, exhibit high thermal stability and substrate preference towards GSNO, although both enzymes have dehydrogenase activity with a broad range of long-chain alcohols and ω-hydroxy fatty acids in presence of NAD+. Data on enzyme affinities to their cofactors NADH and NAD+ obtained by isothermal titration calorimetry suggest the high affinity to NADH might underline the GSNOR capacity to function in the intracellular environment. GSNOR activity and gene expression peak during early developmental stages of lettuce and cauliflower at 20 and 30 days after germination, respectively. GSNOR activity was also measured in four other Lactuca spp. genotypes with different degree of resistance to biotrophic pathogen Bremia lactucae. Higher GSNOR activities were found in non-infected plants of susceptible genotypes L. sativa UCDM2 and L. serriola as compared to resistant genotypes. GSNOR and GSNO were localized by confocal laser scanning microscopy in vascular bundles and in epidermal and parenchymal cells of leaf cross-sections. The presented results bring new insight in the role of GSNOR in the regulation of S-nitrosothiol levels in plant growth and development.
Collapse
Affiliation(s)
- Tereza Tichá
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Martina Kopečná
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
44
|
Barnett SD, Buxton ILO. The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy. Crit Rev Biochem Mol Biol 2017; 52:340-354. [PMID: 28393572 PMCID: PMC5597050 DOI: 10.1080/10409238.2017.1304353] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
S-nitrosoglutathione reductase (GSNOR), or ADH5, is an enzyme in the alcohol dehydrogenase (ADH) family. It is unique when compared to other ADH enzymes in that primary short-chain alcohols are not its principle substrate. GSNOR metabolizes S-nitrosoglutathione (GSNO), S-hydroxymethylglutathione (the spontaneous adduct of formaldehyde and glutathione), and some alcohols. GSNOR modulates reactive nitric oxide (•NO) availability in the cell by catalyzing the breakdown of GSNO, and indirectly regulates S-nitrosothiols (RSNOs) through GSNO-mediated protein S-nitrosation. The dysregulation of GSNOR can significantly alter cellular homeostasis, leading to disease. GSNOR plays an important regulatory role in smooth muscle relaxation, immune function, inflammation, neuronal development and cancer progression, among many other processes. In recent years, the therapeutic inhibition of GSNOR has been investigated to treat asthma, cystic fibrosis and interstitial lung disease (ILD). The direct action of •NO on cellular pathways, as well as the important regulatory role of protein S-nitrosation, is closely tied to GSNOR regulation and defines this enzyme as an important therapeutic target.
Collapse
Affiliation(s)
- Scott D Barnett
- a Department of Pharmacology , University of Nevada, Reno School of Medicine , Reno , NV , USA
| | - Iain L O Buxton
- a Department of Pharmacology , University of Nevada, Reno School of Medicine , Reno , NV , USA
| |
Collapse
|
45
|
Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:856-867. [PMID: 27801967 DOI: 10.1111/tpj.13299] [Citation(s) in RCA: 1099] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) play a key role in the acclimation process of plants to abiotic stress. They primarily function as signal transduction molecules that regulate different pathways during plant acclimation to stress, but are also toxic byproducts of stress metabolism. Because each subcellular compartment in plants contains its own set of ROS-producing and ROS-scavenging pathways, the steady-state level of ROS, as well as the redox state of each compartment, is different at any given time giving rise to a distinct signature of ROS levels at the different compartments of the cell. Here we review recent studies on the role of ROS in abiotic stress in plants, and propose that different abiotic stresses, such as drought, heat, salinity and high light, result in different ROS signatures that determine the specificity of the acclimation response and help tailor it to the exact stress the plant encounters. We further address the role of ROS in the acclimation of plants to stress combination as well as the role of ROS in mediating rapid systemic signaling during abiotic stress. We conclude that as long as cells maintain high enough energy reserves to detoxify ROS, ROS is beneficial to plants during abiotic stress enabling them to adjust their metabolism and mount a proper acclimation response.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Rosa M Rivero
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario Espinardo, Ed. 25, 30100, Espinardo, Murcia, Spain
| | - Eduardo Blumwald
- Department of Plant Sciences, Mail Stop 5, University of California, 1 Shields Ave, Davis, CA, 95616, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| |
Collapse
|
46
|
Zhao J, Wang W, Zhou H, Wang R, Zhang P, Wang H, Pan X, Xu J. Manganese Toxicity Inhibited Root Growth by Disrupting Auxin Biosynthesis and Transport in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:272. [PMID: 28316607 PMCID: PMC5334637 DOI: 10.3389/fpls.2017.00272] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/14/2017] [Indexed: 05/05/2023]
Abstract
Mn toxicity inhibits both primary root (PR) growth and lateral root development. However, the mechanism underlying Mn-mediated root growth inhibition remains to be further elucidated. Here, we investigated the role of auxin in Mn-mediated inhibition of PR growth in Arabidopsis using physiological and genetic approaches. Mn toxicity inhibits PR elongation by reducing meristematic cell division potential. Mn toxicity also reduced auxin levels in root tips by reducing IAA biosynthesis and down-regulating the expression of auxin efflux carriers PIN4 and PIN7. Loss of function pin4 and pin7 mutants showed less inhibition of root growth than col-0 seedlings. These results indicated that this inhibitory effect of Mn toxicity on PR growth was mediated by affecting auxin biosynthesis and the expression of auxin efflux transporters PIN4 and PIN7.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, KunmingChina
| | - Wenying Wang
- College of Life Science and Geography, Qinghai Normal UniversityXining, China
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Ruling Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, KunmingChina
| | - Ping Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, KunmingChina
| | - Huichun Wang
- College of Life Science and Geography, Qinghai Normal UniversityXining, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of TechnologyHangzhou, China
- *Correspondence: Jin Xu, Xiangliang Pan,
| | - Jin Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, KunmingChina
- *Correspondence: Jin Xu, Xiangliang Pan,
| |
Collapse
|
47
|
Asgher M, Per TS, Masood A, Fatma M, Freschi L, Corpas FJ, Khan NA. Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2273-2285. [PMID: 27812964 DOI: 10.1007/s11356-016-7947-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/20/2016] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a free radical molecule involved in an array of functions under physiological and adverse environmental conditions. As other free radical molecules, NO biological action depends on its cellular concentration, acting as a signal molecule when produced at low concentration or resulting in cellular damage when produced at sufficiently high levels to trigger nitro-oxidative stress. Over the last decade, significant progress has been made in characterizing NO metabolism and action mechanism, revealing that diverse biosynthetic routes can generate this free radical in plants and its action mainly occurs through posttranslational modification (nitration and S-nitrosylation) of target proteins. Intricate crosstalk networks between NO and other signaling molecules have been described involving phytohormones, other second messengers, and key transcription factors. This review will focus on our current understanding of NO interplay with phytohormones and other plant growth regulators under abiotic stress conditions.
Collapse
Affiliation(s)
- Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tasir S Per
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Sao Paulo, Brazil
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080, Granada, Spain.
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
48
|
Ni M, Zhang L, Shi YF, Wang C, Lu Y, Pan J, Liu JZ. Excessive Cellular S-nitrosothiol Impairs Endocytosis of Auxin Efflux Transporter PIN2. FRONTIERS IN PLANT SCIENCE 2017; 8:1988. [PMID: 29218054 PMCID: PMC5704370 DOI: 10.3389/fpls.2017.01988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 05/20/2023]
Abstract
S-nitrosoglutathione reductase (GSNOR1) is the key enzyme that regulates cellular levels of S-nitrosylation across kingdoms. We have previously reported that loss of GSNOR1 resulted in impaired auxin signaling and compromised auxin transport in Arabidopsis, leading to the auxin-related morphological phenotypes. However, the molecular mechanism underpinning the compromised auxin transport in gsnor1-3 mutant is still unknown. Endocytosis of plasma-membrane (PM)-localized efflux PIN proteins play critical roles in auxin transport. Therefore, we investigate whether loss of GSNOR1 function has any effects on the endocytosis of PIN-FORMED (PIN) proteins. It was found that the endocytosis of either the endogenous PIN2 or the transgenically expressed PIN2-GFP was compromised in the root cells of gsnor1-3 seedlings relative to Col-0. The internalization of PM-associated PIN2 or PIN2-GFP into Brefeldin A (BFA) bodies was significantly reduced in gsnor1-3 upon BFA treatment in a manner independent of de novo protein synthesis. In addition, the exogenously applied GSNO not only compromised the endocytosis of PIN2-GFP but also inhibited the root elongation in a concentration-dependent manner. Taken together, our results indicate that, besides the reduced PIN2 level, one or more compromised components in the endocytosis pathway could account for the reduced endocytosis of PIN2 in gsnor1-3.
Collapse
Affiliation(s)
- Min Ni
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Lei Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Ya-Fei Shi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yiran Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jian-Zhong Liu
| |
Collapse
|
49
|
Liu YY, Wang RL, Zhang P, Sun LL, Xu J. Involvement of reactive oxygen species in lanthanum-induced inhibition of primary root growth. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6149-6159. [PMID: 27811082 PMCID: PMC5100026 DOI: 10.1093/jxb/erw379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although lanthanum (La) has been used as an agricultural plant growth stimulant for approximately 50 years, high concentrations are toxic to plants. Despite significant advances in recent years, the mechanisms underlying the effects of La on root system development remain unclear. Here, we report that a high concentration of La inhibits primary root (PR) elongation and induces lateral root (LR) development. La results in cell death in PR tips, thereby leading to the loss of meristematic cell division potential, stem cell niche activity, and auxin distribution in PR tips. Further analysis indicated that La induces reactive oxygen species (ROS) over-accumulation in PR tips. Reduction in ROS accumulation partially alleviated the inhibitory effects of La on PR elongation by improving cell survival in PR tips and thereby improving meristematic cell division potential and auxin distribution in PR tips. We also found ROS to be involved in La-induced endocytosis. Genetic analyses supported the described phenotype. Overall, our results indicate that La affects root growth, at least partially, by modulating ROS levels in roots to induce cell death in PR tips and subsequent auxin redistribution in roots, leading to remodeling of the root system architecture.
Collapse
Affiliation(s)
- Yang-Yang Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Ru-Ling Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Ping Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Liang-Liang Sun
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Jin Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
50
|
Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:471. [PMID: 27148300 PMCID: PMC4828662 DOI: 10.3389/fpls.2016.00471] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.
Collapse
Affiliation(s)
- Fernanda S. Farnese
- Laboratory of Plant Ecophysiology, Instituto Federal Goiano – Campus Rio VerdeGoiás, Brazil
| | - Paulo E. Menezes-Silva
- Laboratory of Plant Ecophysiology, Instituto Federal Goiano – Campus Rio VerdeGoiás, Brazil
| | - Grasielle S. Gusman
- Laboratory of Plant Chemistry, Univiçosa – Faculdade de Ciências Biológicas e da SaúdeViçosa, Brazil
| | - Juraci A. Oliveira
- Department of General Biology, Universidade Federal de ViçosaViçosa, Brazil
| |
Collapse
|