1
|
Kaly MK, Rahman ME, Rana MS, Acharjee UK, Nasirujjaman K. Genotoxic effects of NDMA-contaminated ranitidine on Allium cepa cells and unveiling carcinogenic mechanisms via DFT and molecular dynamics simulation study. Sci Rep 2024; 14:31419. [PMID: 39733169 DOI: 10.1038/s41598-024-82984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption. Elevated concentrations of ranitidine correlated with increased chromosomal aberrations indicating genotoxic capabilities. These outcomes underscored that NDMA contaminated ranitidine exposure triggers genotoxicity hampering cell division and inducing chromosomal aberrations. Electronic characteristics of NDMA revealed its electrophilic nature suggesting its capability to create covalent adducts with DNA bases fostering genotoxic and carcinogenic characteristics. Molecular docking analysis showed the interactions of NDMA with DNA including hydrogen bonds and carbon-hydrogen interactions with nucleotide bases forming DNA adducts. Molecular dynamics simulations showcased the dynamic behavior of the DNA-NDMA complex over time with structural fluctuations. Dynamic hydrogen bond fluctuations implied interactive intricacies between solute and solvent molecules. Overall, this study illuminates how NDMA-contaminated ranitidine could trigger DNA damage and potentially contribute to carcinogenesis. It emphasizes the urgency of minimizing exposure to this perilous and hazardous compound.
Collapse
Affiliation(s)
- Mst Kusum Kaly
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Ekhtiar Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Sohel Rana
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Uzzal Kumar Acharjee
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Khondokar Nasirujjaman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
2
|
Duarte ID, Coelho EJR, Rocha LD, Morozesk M, Bonomo MM, Souza IDC, Zani LB, Galter IN, Nati N, Dos Santos SN, Santos KR, Aragão FB, Matsumoto ST. Cytogenetic and photosynthetic responses of plants after exposure to water from a lake environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64733-64743. [PMID: 39549193 DOI: 10.1007/s11356-024-35553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Plants are sensitive to environmental pollutants and are excellent organisms for genetic and physiological testing. Plant-based test systems are often used to study aquatic, aerial, and terrestrial pollution, especially Allium cepa, but studies with Tradescatia pallida specimens have gained prominence due to their sensitivity and applicability. Among the biomarkers, cytogenetic damage and chlorophyll levels are used in stress studies due to their responses to single or combined factors. The aim of this study was to evaluate cytogenetic and photosynthetic responses in T. pallida, and cytogenetic responses in A. cepa exposed to water from three sampling stations in the Juara lagoon (Municipality of Serra, ES, Brazil), collected in two sampling campaigns. The cytotoxic, genotoxic, and mutagenic potentials were analyzed using the T. pallida root tip mitosis assay and the Allium cepa test. Chloroplast pigment levels were measured in T. pallida leaves after chronic exposure to the lagoon water. The cytogenetic tests showed cytogenetic alterations at two sampling stations in at least one sampling campaign, suggesting the presence of potential pollutants, the effects of which were maximized during the rainy season. The study of photosynthetic metabolism in T. pallida showed a relationship between the levels of chloroplast pigments and the amount of nutrients present in the water.
Collapse
Affiliation(s)
- Ian Drumond Duarte
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Edvar Júnior Roncetti Coelho
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Livia Dorsh Rocha
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Mariana Morozesk
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Marina Marques Bonomo
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Iara da Costa Souza
- Department of Physiological Sciences, Federal University of São Carlos Carlos (UFSCar), Av. Washington Luiz, Km 235, São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Liliane Baldan Zani
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Iasmini Nicoli Galter
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Natalia Nati
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Sara Nascimento Dos Santos
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Kristian Rodolfo Santos
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Francielen Barroso Aragão
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil.
| | - Silvia Tamie Matsumoto
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| |
Collapse
|
3
|
da Silva RMG, Lourenção A, Franciscatti Mecina G, Cordeiro-Araújo MK, Bittencourt-Oliveira MDC, Ahii Chia M, Granero FO, Malaguti Figueiredo CC, Pompermayer Machado L, Pereira Silva L. Physiological and toxicological response of Microcystis aeruginosa BCCUSP232 exposed to Salvinia auriculata extracts. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:701-717. [PMID: 38865103 DOI: 10.1080/15287394.2024.2366320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Microcystis aeruginosa is one of the most predominant freshwater bloom-forming cyanobacterium found globally which is capable of producing toxic secondary metabolites including microcystins that might intoxicate animals and humans when contaminated water or food is ingested. Salvinia auriculata Aubl is one of the plants that might possess bioactive compounds capable of controlling growth and reproduction of M. aeruginosa. The present study aimed to determine the presence of bioactive compounds in S. auriculata extracts and determine alterations occurred in growth and reproduction of M. aeruginosa when exposed to these plant extracts. In addition, this investigation aimed to examine the influence of S. auriculata on antioxidant enzymes detected in M. aeruginosa. The results obtained demonstrated that the aqueous and ethanolic extracts of S. auriculata presented potential for control of cyanobacteria populations, exhibiting algicidal action on M. aeruginosa as well as interfering in antioxidant enzymes activities and parameters associated with oxidative stress. Phytochemical analyses demonstrated the presence of polyphenols and flavonoids content in both extracts. In addition, application of S. auriculata extracts did not produce cytogenotoxicity and/or mutagenicity utilizing Allium cepa test. Therefore, further studies are needed in order to identify and characterize the compounds responsible for these effects on M. aeruginosa and provide information regarding the possible application of S. auriculata in the treatment of drinking water.
Collapse
Affiliation(s)
- Regildo Márcio Gonçalves da Silva
- School of Sciences, Humanities and Languages, Department of Biotechnology, São Paulo State University (UNESP), Assis, São Paulo, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Anderson Lourenção
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Micheline Kézia Cordeiro-Araújo
- Luiz de Queiroz College of Agriculture, Department of Biological Sciences, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | | | | | - Filipe Oiveira Granero
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Levi Pompermayer Machado
- School of Agricultural Sciences, Department of Fisheries Engineering, São Paulo State University (UNESP), Registro, São Paulo, Brazil
| | - Luciana Pereira Silva
- Department of Nursery, Fundação Educacional do Município de Assis (FEMA), Assis, São Paulo, Brazil
| |
Collapse
|
4
|
Braga APA, de Souza LR, Lima MGF, de Moraes Cunha Gonçalves M, Marin-Morales MA. A study on phytogenotoxicity induced by biogenic amines: cadaverine and putrescine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30902-30913. [PMID: 38622416 DOI: 10.1007/s11356-024-33328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Among the compounds present in necro-leachate, a liquid released during the process of decomposition of the human body, are the biogenic amines cadaverine and putrescine. Although some studies on necro-leachate have indicated a potential ecotoxicological and public health risk associated with it, the research on this type of contamination is still rather limited. This study presents information about the phytotoxic and cytogenotoxic potential of cadaverine and putrescine, evaluated separately and within a mixture. Phytotoxicity was evaluated through a germination test, the initial growth of seedlings with Lactuca sativa, and cytogenotoxicity through chromosomal aberration and micronucleus tests with Allium cepa. The L. sativa results showed a phytotoxic effect for the evaluated amines, by reducing root (> 90%) and hypocotyl (> 80%) elongation. The co-exposure of cadaverine and putrescine potentiated cytogenotoxic activity by aneugenic action in the meristematic cells of A. cepa. From this result, it is possible to infer the eco-toxicogenic potential of cadaverine and putrescine. This study not only highlights the importance of the phytotoxic and cytogenotoxic effects of these amines but also emphasizes the urgent need for further investigation into contamination originating from cemetery environments. By evaluating the risks associated with necro-leachate, this research is aimed at informing global efforts to protect ecological and public health.
Collapse
Affiliation(s)
- Ana Paula Andrade Braga
- Department of Biology, São Paulo State University, Avenue 24-A, P.O Box 178, Rio Claro, São Paulo, 151513506-900, Brazil.
| | - Letícia Rosa de Souza
- Department of Biology, São Paulo State University, Avenue 24-A, P.O Box 178, Rio Claro, São Paulo, 151513506-900, Brazil
| | - Maria Gabriela Franco Lima
- Department of Biology, São Paulo State University, Avenue 24-A, P.O Box 178, Rio Claro, São Paulo, 151513506-900, Brazil
| | | | - Maria Aparecida Marin-Morales
- Department of Biology, São Paulo State University, Avenue 24-A, P.O Box 178, Rio Claro, São Paulo, 151513506-900, Brazil
| |
Collapse
|
5
|
Lian Y, Gao H, Ji L, Dong S. Physically-based simulation for oil leakage and diffusion on river using heterogeneous graph attention network. Heliyon 2024; 10:e25187. [PMID: 38333816 PMCID: PMC10850527 DOI: 10.1016/j.heliyon.2024.e25187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Once the oil pipeline leakage accident occurs on the river, the simulation of the leakage diffusion range is of great significance for the designation of emergency rescue plans. The existing methods cannot show the precise leakage diffusion process consistent with the physical law for crude oil on the river and the simulation suffers high run-time complexity. This paper proposed a two-phase leakage simulation for oil and water combined with the physical process of smoothed particle hydrodynamics (SPH) and graph attention network. A new and efficient method-Mixture Tension Divergence-Free SPH (MTDF-SPH)-that the mixture model and the surface tension model are introduced to the divergence-free smoothed particle hydrodynamics (DFSPH) for simulating the mixing and decomposition effects of immiscible phases. To further accelerate the leakage diffusion process, we design a physics-aware heterogeneous graph attention network (PAGATNet), based on Attention Graph Network Block (AGNB) and Feature-Response Knowledge Distillation (FRKD) to enhance the network's ability for extracting the particle features of physical properties. The experimental results on different test cases show the accuracy, robustness and effectiveness of our method than those of the state-of-the-art in two-phase leakage simulation of crude oil on the river.
Collapse
Affiliation(s)
- Yuanfeng Lian
- Department of Computer Science and Technology, China University of Petroleum, Beijing, 102249, China
- Beijing Key Laboratory of Petroleum Data Mining, Beijing, 102249, China
| | - Hanzhao Gao
- Department of Computer Science and Technology, China University of Petroleum, Beijing, 102249, China
| | - Lianen Ji
- Department of Computer Science and Technology, China University of Petroleum, Beijing, 102249, China
- Beijing Key Laboratory of Petroleum Data Mining, Beijing, 102249, China
| | - Shaohua Dong
- National Engineering Laboratory for Pipeline Safety, China University of Petroleum, Beijing, 102249, China
| |
Collapse
|
6
|
Li X, Li A, Zhang M, Gao T. Cytotoxicity and genotoxicity evaluation of chloroform using Vicia faba roots. Toxicol Ind Health 2023; 39:603-612. [PMID: 37518894 DOI: 10.1177/07482337231191573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Chloroform is a widely used industrial chemical that can also pollute the environment. The aims of this study were to examine the potential cytotoxicity and genotoxicity of chloroform on plant cells, using the Vicia faba bioassay. Chloroform was evaluated at concentrations of 0.1, 0.5, 1, 2, and 5 mg·L-1. The following parameters were analyzed: the mitotic index (MI), micronucleus (MN) frequency, chromosomal aberration (CA) frequency, and malondialdehyde (MDA) content. The results showed that exposure to increasing concentrations of chloroform caused a decrease in MI and an increase in the frequency of MN in Vicia faba root tip cells, relative to their controls. Moreover, various types of CA, including C-mitosis, fragments, bridges, laggard chromosomes, and multipolar mitosis, were observed in the treated cells. The frequency of MN was positively correlated with the frequency of CA in exposure to 0.1-1 mg·L-1 chloroform. Furthermore, chloroform exposure induced membrane lipid peroxidation damage in the Vicia faba radicle, and a linear correlation was observed between the MDA content and the frequency of MN or CA. These findings indicated that chloroform exposure can result in oxidative stress, cytotoxicity, and genotoxicity in plant cells.
Collapse
Affiliation(s)
- Xue Li
- College of Urban Environment, Lanzhou City University, Lanzhou, China
| | - Ang Li
- College of Urban Environment, Lanzhou City University, Lanzhou, China
| | - Ming Zhang
- College of Urban Environment, Lanzhou City University, Lanzhou, China
| | - Tianpeng Gao
- College of Urban Environment, Lanzhou City University, Lanzhou, China
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| |
Collapse
|
7
|
Samarakoon T, Fujino T. Modulation of phytotoxic and cytogenetic effects of cadmium by humic acid: Findings from a short-term plant-based bioassay. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:3095-3107. [PMID: 37387433 PMCID: wst_2023_177 DOI: 10.2166/wst.2023.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The study of the modulation of the toxicity of heavy metals by coexisting chemicals in the environment is vital for realistic ecological risk assessment. Our study was aimed at determining possible toxicity modulations of Cd by humic acid (HA) using the Allium cepa test system. A. cepa bulbs were exposed to Cd (1 and 5 mg/L) and HA (10 mg/L) individually or in mixtures. The root lengths of the bulbs and cytogenetic endpoints in root meristematic cells, including the mitotic index (MI), nuclear abnormalities (NAs), and chromosomal abnormalities (CAs), were determined. The results revealed that the MIs of A. cepa co-exposed to HA and Cd were significantly recovered by >15% compared with those of A. cepa subjected to Cd-only treatments, and this response was more sensitive than the phytotoxic response (root length). Furthermore, the burden of NAs was significantly decreased in the co-exposed bulbs by >20% compared with bulbs with Cd-only treatments. The frequencies of CAs were also reduced in the bulbs co-exposed to HA and 1 and 5 mg/L Cd by >15 and >25%, respectively, compared with bulbs receiving Cd-only treatments. Therefore, our findings indicated that HA plays a significant protective role in Cd toxicity in A. cepa.
Collapse
Affiliation(s)
- Thilomi Samarakoon
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Saitama-city, Saitama 338-8570, Japan; Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya 11600, Sri Lanka E-mail:
| | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Saitama-city, Saitama 338-8570, Japan
| |
Collapse
|
8
|
Soldi KC, Londero JEL, Schavinski CR, Schuch AP. Genotoxicity of surface waters in Brazil. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503638. [PMID: 37188436 DOI: 10.1016/j.mrgentox.2023.503638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Brazil has abundant surface water resources, huge aquatic biodiversity and is home to 213 million people. Genotoxicity assays are sensitive tools to detect the effects of contaminants in surface waters and wastewaters, as well as to determine potential risks of contaminated waters to aquatic organisms and human health. This work aimed to survey the articles published in 2000-2021 that evaluated the genotoxicity of surface waters within Brazilian territory to unveil the profile and trends of this topic over time. In our searches, we considered articles focused on assessing aquatic biota, articles that conducted experiments with caged organisms or standardized tests in the aquatic sites, as well as articles that transported water or sediment samples from aquatic sites to the laboratory, where exposures were performed with organisms or standardized tests. We retrieved geographical information on the aquatic sites evaluated, the genotoxicity assays used, the percentage of genotoxicity detected, and, when possible, the causative agent of aquatic pollution. A total of 248 articles were identified. There was a trend of increase in the number of publications and annual diversity of hydrographic regions evaluated over time. Most articles focused on rivers from large metropolises. A very low number of articles were conducted on coastal and marine ecosystems. Water genotoxicity was detected in most articles, regardless of methodological approach, even in little-studied hydrographic regions. The micronucleus test and the alkaline comet assay were widely applied with blood samples, mainly derived from fish. Allium and Salmonella tests were the most frequently used standard protocols. Despite most articles did not confirm polluting sources and genotoxic agents, the detection of genotoxicity provides useful information for the management of water pollution. We discuss key points to be assessed to reach a more complete picture of the genotoxicity of surface waters in Brazil.
Collapse
Affiliation(s)
- Karen Costa Soldi
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - James Eduardo Lago Londero
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cassiano Ricardo Schavinski
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - André Passaglia Schuch
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil; Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Veronesi M, Rodriguez M, Marinho G, Bomfeti CA, Rocha BA, Barbosa F, Souza MCO, da Silva Faria MC, Rodrigues JL. Degradation of Praguicide Disulfoton Using Nanocompost and Evaluation of Toxicological Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:786. [PMID: 36613108 PMCID: PMC9820053 DOI: 10.3390/ijerph20010786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Organophosphates (OPPs) are an important element of modern agriculture; however, because they are being used excessively, their residues are leaching and accumulating in the soil and groundwater, contaminating aquatic and terrestrial food chains. An important OPP called disulfoton is frequently used to eradicate pests from a wide range of crops, including Brazil's coffee crops. Additionally, it does not easily degrade in the environment, and as such, this compound can slowly build up in living organisms such as humans. Moreover, this compound has been classified as "extremely hazardous" by the World Health Organization. This study evaluated the degradation efficiency of disulfoton using a Fenton-like reaction catalyzed by magnetite nanoparticles and determined the toxicity of the by-products of the degradation process using the bioindicator Allium cepa. Further, the removal efficiency of disulfoton was determined to be 94% under optimal conditions. On the other hand, the Allium cepa bioassay showed different toxic, cytotoxic, genotoxic, and mutagenic outcomes even after the remediation process. In conclusion, the Fenton process catalyzed by magnetite nanoparticles presents great efficiency for the oxidation of disulfoton. However, it is important to highlight that the high degradation efficiency of the Fenton-based process was not sufficient to achieve detoxification of the samples.
Collapse
Affiliation(s)
- Mayne Veronesi
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Mariandry Rodriguez
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Grazielle Marinho
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Cleide Aparecida Bomfeti
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Bruno Alves Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/no, Ribeirao Preto 14040-903, SP, Brazil
| | - Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/no, Ribeirao Preto 14040-903, SP, Brazil
| | - Marília Cristina Oliveira Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/no, Ribeirao Preto 14040-903, SP, Brazil
| | - Márcia Cristina da Silva Faria
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Jairo Lisboa Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| |
Collapse
|
10
|
Lopes KS, Sousa HG, Artur E Silva Filho F, da Silva Neta ER, de Lima SG, Dos Santos Rocha M, Marques RB, da Costa CLS, de Oliveira AN, Bezerra DGP, Alline Martins F, de Almeida PM, Uchôa VT, Martins Maia Filho AL. Identification of bioactive compounds and cytogenotoxicity of the essential oil from the leaves of Croton heliotropiifolius Kunth. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:1002-1018. [PMID: 36415179 DOI: 10.1080/15287394.2022.2146618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Croton heliotropiifolius Kunth, popularly known as "quince" and "velame," contains a high concentration of volatile oils in the leaves, and widely used in folk medicine as an antiseptic, analgesic, sedative, anti-inflammatory, spasmolytic and local anesthetic. The objectives of this investigation were to (1) identify the phytochemical compounds and (2) assess the cytogenotoxicity of the essential oil extracted from the leaves of C. heliotropiifolius Kunth. The oil was extracted utilizing hydrodistillation and phytochemical profile determined using gas chromatography and mass spectrometry (GCMS). In the toxicogenetics analysis, Allium cepa roots were exposed to 1% dimethylsulfoxide or methylmethanesulfonate (MMS, 10 µg/ml) negative and positive controls, respectively, and to C. heliotropiifolius oil at 6 concentrations (0.32; 1.6; 8; 40; 200 or 1000 µg/ml). The phytochemical profile exhibited 40 chromatographic bands, and 33 compounds identified. α-pinene (16.7%) and 1,8-cineole (13.81%) were identified as the major compounds. Some of these identified secondary metabolites displayed biological and pharmacological activities previously reported including antiseptic, analgesic, sedative, anti-inflammatory as well insecticidal, antiviral, anti-fungal actions. In the A. cepa test, C. heliotropiifolius leaves oil induced cytotoxicity at concentrations of 0.32, 1.6 or 200 µg/ml and genotoxicity at 200 or 1000 µg/ml as evidenced by increased presence of micronuclei and significant chromosomal losses. Based upon our observations data demonstrated that the essential oil of C. heliotropiifolius leaves contain monoterpene hydrocarbons, and oxygenated monoterpenes, sesquiterpenes, and oxygenated sesquiterpenes which are associated with cytotoxic and genotoxic responses noted in on A. cepa cells.
Collapse
Affiliation(s)
- Katianne Soares Lopes
- Graduate Program in Chemistry/PPGQ-GERATEC-DQ - State University of Piauí, Teresina, Brazil
| | | | | | | | | | | | - Rosemarie Brandim Marques
- Graduate Program in Chemistry/PPGQ-GERATEC-DQ - State University of Piauí, Teresina, Brazil
- Research Center in Biotechnology and Biodiversity - State University of Piauí, Teresina, Brazil
| | | | - André Nunes de Oliveira
- Research Center in Biotechnology and Biodiversity - State University of Piauí, Teresina, Brazil
| | | | | | - Pedro Marcos de Almeida
- Graduate Program in Chemistry/PPGQ-GERATEC-DQ - State University of Piauí, Teresina, Brazil
- Research Center in Biotechnology and Biodiversity - State University of Piauí, Teresina, Brazil
| | | | - Antônio Luiz Martins Maia Filho
- Graduate Program in Chemistry/PPGQ-GERATEC-DQ - State University of Piauí, Teresina, Brazil
- Research Center in Biotechnology and Biodiversity - State University of Piauí, Teresina, Brazil
| |
Collapse
|
11
|
González-Vidal A, Mercado-Sáenz S, Burgos-Molina AM, Sendra-Portero F, Ruiz-Gómez MJ. Growth alteration of Allium cepa L. roots exposed to 1.5 mT, 25 Hz pulsed magnetic field. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2471-2483. [PMID: 34474627 DOI: 10.1080/09603123.2021.1972090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The response of plants to magnetic fields (MF) is not fully understood. This work studies the effects of pulsed MF on the germination and growth of Allium cepa roots. Onions were exposed to 25Hz, 1.5mT, 33h. Pulsed MF was generated by a Helmholtz-type equipment that generated rectangular voltage pulses. The results showed that fewer roots grew in the specimens exposed to pulsed MF (14±6 roots on day 1 to 21±8 on day 4) than in the control groups (32±17 to 48±23) (p<0.05 Friedman). Control specimens showed a root mean length of 7±4 mm (day 1) and 24±10 mm (day 4). The specimens treated with pulsed MF showed a length of 4±2 mm (day 1), reaching 18±9 mm on day 4 (p<0.001 ANOVA). In conclusion, the exposure of Allium cepa specimens to 25Hz, 1.5mT pulsed MF during 33h produces a decrease in the germination and growth of roots.
Collapse
Affiliation(s)
- Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Silvia Mercado-Sáenz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Antonio M Burgos-Molina
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| |
Collapse
|
12
|
Zeyad MT, Khan S, Malik A. Genotoxic hazard and oxidative stress induced by wastewater irrigated soil with special reference to pesticides and heavy metal pollution. Heliyon 2022; 8:e10534. [PMID: 36119855 PMCID: PMC9474314 DOI: 10.1016/j.heliyon.2022.e10534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Due to enhancement of industrial growth and urbanization, soil contamination is increasing prominently. Therefore, it is important to examine possible adverse effects of industrial waste. Soil samples were might to be polluted with several heavy-metals and pesticides. Gas chromatographic results showed occurrence of high-level of organochlorine and organophosphate pesticides in studied soil samples. Genotoxicity of soil extracts was assessed using environmental-risk assessment models. Soil samples were extracted in hexane and dichloromethane solvents and were evaluated for genotoxic potential by prokaryotic (Ames test, plasmid nicking assay and E. coli K-12 DNA repair defective mutants) and eukaryotic (Allium cepa root chromosomal aberration and Vigna radiata seed-germination test) bioassays. Strain TA98 was found the most susceptible among soil extracts. The mutagenicity of hexane soil extract from wastewater irrigation was found to be higher than that of DCM samples in terms of mutagenic index, mutagenic potential, and induction factor for Ames strains. The damage in DNA repair defective mutants of hexane extracts were found higher compared to DCM extracts at dose of 20 μl/ml of culture. Survival in polA, lexA and recA mutants were 39%, 47% and 55% while treated with hexane extract. Allium cepa test, mitotic index was decreased in dose-dependent way and various kinds of chromosomal aberrations were found. Vigna radiata seeds germination and other parameters were also affected when treated with wastewater irrigated (WWI) soil. Oxidative stress in V. radiata roots were also showed under CLS microscope. Genotoxicity of WWI soil extract was also confirmed by plasmid nicking test. Our study provides possible explanation for the assessment of potential health and environmental hazards of the industrial region.
Collapse
|
13
|
Chowdhary P, Singh A, Chandra R, Kumar PS, Raj A, Bharagava RN. Detection and identification of hazardous organic pollutants from distillery wastewater by GC-MS analysis and its phytotoxicity and genotoxicity evaluation by using Allium cepa and Cicer arietinum L. CHEMOSPHERE 2022; 297:134123. [PMID: 35240156 DOI: 10.1016/j.chemosphere.2022.134123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 05/12/2023]
Abstract
Distillery industry generates a huge amount of wastewater, which contains a high strength of organic and inorganic load. Accordingly, this study aims to analyze the physico-chemical pollution parameters and the occurrence of phytotoxic, cytotoxic and genotoxic pollutants in wastewater. The result revealed that values of wastewater parameters were recorded as 13268 mg l-1 (BOD), 25144 mg l-1 (COD), 25144 mg l-1 (TS), and 6634 mg l-1 (phosphate), while pH was alkaline. The organic compounds detected by GC-MS were quercetin 7,3',4'-trimethoxy, octadecadienoic acid, propanoic acid, glycocholic acid methyl ester, cantaxanthin, etc. The Allium cepa was used for the toxicity test with different concentrations of wastewater showed a significant level of reduction in root growth and length after exposure and the maximum reduction was at 25% and 20%. Phytotoxicity studies were performed using Cicer arietinum L. with different concentrations of wastewater, which showed adverse effects on seed germination, root length, and the effect was associated with the increasing concentration of wastewater. A. cepa root tips were used for the analysis of mitotic index (MI), nuclear abnormalities (NA), and chromosomal aberrations (CA). MI was decreasing significantly from 72% (control) to 33%, 22%, 23%, 21%, and 18% at 5%, 10%, 15%, 20%, and 25% wastewater concentration, respectively. The A. cepa root tip cells showed chromosomal aberrations and nuclear abnormalities like vagrant, stickiness, chromosomal loss, c-mitosis, binucleated, micronuclei, and aberrant cell. This study concluded that the wastewater treatment process is insufficient and the discharged waste needs a proper assessment to know the associated health risk.
Collapse
Affiliation(s)
- Pankaj Chowdhary
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India; Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Anjali Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India.
| | - Ram Naresh Bharagava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India.
| |
Collapse
|
14
|
Goetten de Lima G, Wilke Sivek T, Matos M, Lundgren Thá E, de Oliveira KMG, Rodrigues de Souza I, de Morais de Lima TA, Cestari MM, Esteves Magalhães WL, Hansel FA, Morais Leme D. A biocide delivery system composed of nanosilica loaded with neem oil is effective in reducing plant toxicity of this biocide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118660. [PMID: 34896221 DOI: 10.1016/j.envpol.2021.118660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
One possible way to reduce the environmental impacts of pesticides is by nanostructuring biocides in nanocarriers because this promotes high and localized biocidal activity and can avoid toxicity to non-target organisms. Neem oil (NO) is a natural pesticide with toxicity concerns to plants, fish, and other organisms. Thus, loading NO in a safe nanocarrier can contribute to minimizing its toxicity. For this study, we have characterized the integrity of a nanosilica-neem oil-based biocide delivery system (SiO2NP#NO BDS) and evaluated its effectiveness in reducing NO toxicity by the Allium cepa test. NO, mainly consisted of unsaturated fatty acids, was well binded to the SiO2NP with BTCA crosslinker. Overall, this material presented all of its pores filled with the NO with fatty acid groups at both the surface and bulk level of the nanoparticle. The thermal stability of NO was enhanced after synthesis, and the NO was released as zero-order model with a total of 20 days without burst release. The SiO2NP#NO BDS was effective in reducing the individual toxicity of NO to the plant system. NO in single form inhibited the seed germination of A. cepa (EC50 of 0.38 g L-1), and the effect was no longer observed at the BDS condition. Contrarily to the literature, the tested NO did not present cyto- and geno-toxic effects in A. cepa, which may relate to the concentration level and composition.
Collapse
Affiliation(s)
- Gabriel Goetten de Lima
- Graduate Program in Engineering and Science of Materials - PIPE, Federal University of Paraná - UFPR, 81.531-990, Curitiba, PR, Brazil; Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Tainá Wilke Sivek
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Mailson Matos
- Graduate Program in Engineering and Science of Materials - PIPE, Federal University of Paraná - UFPR, 81.531-990, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Parmar MP, Waghela BN, Vaidya FU, Pathak C, Parmar DV. Evaluation of antimitotic activity of herbal extracts using plant-based model systems and their cytotoxic potential against human colon carcinoma cells. J Cancer Res Ther 2021; 17:1483-1490. [PMID: 34916382 DOI: 10.4103/jcrt.jcrt_853_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective The aim of this study was to screen plant extracts for antimitotic activity using Vigna radiata germination inhibition assay, followed by Allium cepa root tip assay and evaluation of their cytotoxic potential on colon carcinoma (HCT-116) cell lines. Subjects and Methods Aqueous extracts of Aconitum heterophyllum, Terminalia bellirica, Bauhinia variegata, Vanda roxburghii, and Cassia angustifolia were prepared by maceration method, and preliminary screening studies to check their antimitotic activity were done by V. radiata germination inhibition assay, followed by A. cepa root tip assay. Furthermore, cytotoxic actions were evaluated by cell proliferation assay. Effect of T. bellirica aqueous extract was analyzed to induce morphological changes, cell death, lactate dehydrogenase release, and cell survival of HCT-116 cells. Statistical Analysis Used The data represented were analyzed by Student's t-test using SigmaStat 2.0 statistical analysis software. The normality of data was tested by the Shapiro-Wilk test before the Student's t-test. P values *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001 were considered as statistically significant. Results All the plant extracts showed promising antimitotic activity. Out of all, T. bellirica was highly effective on HCT-116 cells and promising effect on cell proliferation assay and Annexin-propidium iodide staining revealed that T. bellirica efficiently induces apoptosis. Conclusions T. bellirica inhibits cancer cell growth and induces apoptotic cell death. Collectively, it may hold potential for cancer therapeutics.
Collapse
Affiliation(s)
- Mayur P Parmar
- Department of Biochemistry, Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot, Gujarat, India
| | - Bhargav N Waghela
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Foram U Vaidya
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Chandramani Pathak
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Dipak V Parmar
- Department of Biochemistry, Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot, Gujarat, India
| |
Collapse
|
16
|
Oliveira KMGD, Carvalho EHDS, Santos Filho RD, Sivek TW, Thá EL, Souza IRD, Coelho LDDS, Pimenta MEB, Oliveira GARD, Oliveira DPD, Cestari MM, Leme DM. Single and mixture toxicity evaluation of three phenolic compounds to the terrestrial ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113226. [PMID: 34252852 DOI: 10.1016/j.jenvman.2021.113226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are primarily studied regarding endocrine-mediated effects in mammals and fish. However, EDCs can cause toxicity by mechanisms outside the endocrine system, and, as they are released continuously into soils, they may pose risks to terrestrial organisms. In this work, the plant Allium cepa and the earthworm Eisenia foetida were used as test systems to evaluate the toxicity and cyto-/geno-toxicity of three environmental phenols known as EDCs (Bisphenol A - BPA, Octylphenol - OP, Nonylphenol - NP). The tested phenols were evaluated in environmentally relevant concentrations (μg/L) and in single forms and mixture. BPA, OP, and NP did not inhibit the seed germination and root development in A. cepa in their single forms and mixture. However, all single forms of the tested phenols caused cellular and DNA damages in A. cepa, and although these effects persist in the mixtures, the effects were verified at lower levels. These phenols caused acute toxicity to E. foetida after 48 h of exposure and at both conditions evaluated (single forms and mixture); however, unlike A. cepa, in earthworms, mixtures and single forms presented the same level of effects, indicating that interspecies physiological different might influence the mixture toxicity. In summary, our results suggest that BPA, OP, and NP are toxicants to earthworm and cyto-/geno-toxicants to monocotyledonous plants at low concentrations. However, interaction among these phenols reduces the magnitude of their individual effects (antagonistic effect) in the plant test system. Therefore, this study draws attention to the need to raise knowledge about the ecotoxicity of phenolic compounds to help predict their ecological risks and protect non-target terrestrial species.
Collapse
Affiliation(s)
- Ketelen Michele Guilherme de Oliveira
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | | | - Ronaldo Dos Santos Filho
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Tainá Wilke Sivek
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Emanoela Lundgren Thá
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Irisdoris Rodrigues de Souza
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Lauren Dalat de Sousa Coelho
- Faculty of Pharmacy, Federal University of Goiás (UFG), Environmental Toxicology Research Laboratory (EnvTox), Goiânia, GO, Brazil
| | - Maria Eunice Bertelli Pimenta
- Faculty of Pharmacy, Federal University of Goiás (UFG), Environmental Toxicology Research Laboratory (EnvTox), Goiânia, GO, Brazil
| | - Gisele Augusto Rodrigues de Oliveira
- Faculty of Pharmacy, Federal University of Goiás (UFG), Environmental Toxicology Research Laboratory (EnvTox), Goiânia, GO, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Marta Margarete Cestari
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Daniela Morais Leme
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
17
|
DNA Methylation-An Epigenetic Mark in Mutagen-Treated Brachypodium distachyon Cells. PLANTS 2021; 10:plants10071408. [PMID: 34371611 PMCID: PMC8309452 DOI: 10.3390/plants10071408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
The chromatin structure is significantly influenced by some epigenetic modifications including DNA methylation. The nuclear organization plays an essential role in the cell response to external stresses including mutagens. We present an analysis of the correlation between epigenetic modifications and the instability of the Brachypodium distachyon genome, which are observed as micronuclei, following maleic hydrazide (MH) and nitroso-N-methylurea (MNU) treatments. We compared the level of DNA methylation in the control (untreated) and mutagen-treated B. distachyon nuclei. An immunostaining method using specific antibodies against modified DNA anti-5-methylcytosine was used for the evaluation of DNA methylation in a single nucleus and micronucleus. Interestingly, we showed an alteration of DNA methylation in cells after mutagenic treatments. The results indicate that DNA methylation might be involved in the response of the B. distachyon genome to mutagenic treatments. This demonstrates that analyses of the epigenetic modifications should be integrated into current plant genetic toxicology in order to explain the mechanisms of DNA damage and repair in plants.
Collapse
|
18
|
Martins LP, Sampaio J, Godoi RS, Vargas LK, Silva FR, Beneduzi A. Water quality assessment of the Demetrio stream: an affluent of the Gravataí River in the South of Brazil. BRAZ J BIOL 2021; 82:e234692. [PMID: 34105659 DOI: 10.1590/1519-6984.234692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022] Open
Abstract
The Gravataí River basin, one of the main water sources of the metropolitan region of Porto Alegre, is among the ten most polluted rivers in Brazil. Water quality is monitored only through physico-chemical and microbiological parameters in Brazil, and in this context, considering the importance of the use of biomarkers in complementing the analysis of water, the present study aimed to evaluate the environmental quality of the main affluent of the Gravataí River, Demetrio stream, through physico-chemical, microbiological, and cytogenotoxic criteria, at the stream source (P1), whereas samples P2 and P3 were obtained from the upstream near the area with the highest urban density and the downstream near the meeting point with the Gravataí River, respectively. The results for copper concentration and color classified the Demetrio stream as Class 4 in general, that is, the water is suitable only for navigation and to landscape harmony. The main genotoxic alterations (micronuclei and nuclear buds) were observed in P2, in which were obtained the highest levels of copper, in addition to iron and manganese. Anthropic interventions were observed in P1 and P2; however, due to its low metal concentration, P3, near the Gravataí River, manifested an improvement in environmental quality.
Collapse
Affiliation(s)
- L P Martins
- Universidade La Salle - Unilasalle, Canoas, RS, Brasil
| | - J Sampaio
- Secretaria da Agricultura, Pecuária e Desenvolvimento Rural - SEAPDR, Departamento de Diagnóstico e Pesquisa Agropecuária - DDPA, Porto Alegre, RS, Brasil
| | - R S Godoi
- Universidade La Salle - Unilasalle, Canoas, RS, Brasil
| | - L K Vargas
- Secretaria da Agricultura, Pecuária e Desenvolvimento Rural - SEAPDR, Departamento de Diagnóstico e Pesquisa Agropecuária - DDPA, Porto Alegre, RS, Brasil
| | - F R Silva
- Universidade La Salle - Unilasalle, Canoas, RS, Brasil
| | - A Beneduzi
- Universidade La Salle - Unilasalle, Canoas, RS, Brasil.,Secretaria da Agricultura, Pecuária e Desenvolvimento Rural - SEAPDR, Departamento de Diagnóstico e Pesquisa Agropecuária - DDPA, Porto Alegre, RS, Brasil
| |
Collapse
|
19
|
Wang Z, Chen Z, Niu Y, Ren P, Hao M. Feasibility of vermicomposting for spent drilling fluid from a nature-gas industry employing earthworms Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:111994. [PMID: 33711576 DOI: 10.1016/j.ecoenv.2021.111994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the vermicomposting of spent drilling fluid (SDF) from the nature-gas industry mixed with cow dung in 0% (T1), 20% (T2), 30% (T3), 40% (T4), 50% (T5), and 60% (T6) ratio employing Eisenia fetida under a 6 weeks trial. Eisenia. fetida showed better growth and reproduction performances in the first three vermireactors (T1-T3), and the mortality was higher in the vermireactors that contained more spent drilling fluid (≥40%). Vermicomposting results in a decrease in total organic carbon, C/N ratio, and an increase in EC, total nitrogen, total phosphorous, total potassium compared to their initial values. The RadViz and VizRank showed that vermicomposting results in a greater impact on the C/N ratio (15.24-35.48%) and EC (7.29-26.45%) compared to other parameters. Activities of urease and alkaline phosphatase during vermicomposting initially increased and then declined suggesting vermicompost maturity. Also, seed germination, mitotic index and chromosomal abnormality assays using cowpea signified that the vermicomposts T2 is suitable for agricultural use due to the lower phytotoxicity and cytotoxicity. The results indicated that SDF could be converted into good quality manure by vermicomposting if mixed up to 20% with cow dung.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100 Shaanxi, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhikun Chen
- Key Laboratory of Soil Resource & Biotech Application, Shaanxi Academy of Sciences, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an 710061, China
| | - Yuhua Niu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
| | - Peng Ren
- Research Institute of Oil and Gas Technology, PetroChina Changqing Oilfield Branch, Xi'an 710200, Shaanxi, China
| | - Mingde Hao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100 Shaanxi, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Pantano G, Mazzeo DEC, Rocha THDS, Marin-Morales MA, Fadini PS, Mozeto AA. Toxicity of the sawdust used for phosphorus recovery in a eutrophic reservoir: experiments with Lactuca sativa and Allium cepa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18276-18283. [PMID: 33410013 DOI: 10.1007/s11356-020-11868-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Eutrophication is one of the environmental problems arising from the increase of essential nutrient concentrations, mainly phosphorus and nitrogen. In contrast to excess phosphorus, the depletion of phosphate rock deposits used for the production of fertilizers compromises the food supply. Therefore, the development of technologies that propose the recovery of the phosphorus contained in eutrophic environments for its later use for agricultural fertilization purposes is very important to ensure global food security. This work aimed to evaluate the toxic potential of the sawdust (biosorbent previously used for phosphorus adsorption) in order to enable its application in agriculture. For this, toxicity experiments with Lactuca sativa (lettuce) and Allium cepa (onion) seeds were performed. The phytotoxic potential was assessed by means of the seed germination index and physiological parameters such as radicle and hypocotyl growth. Cytotoxicity, genotoxicity, and mutagenicity tests were also performed on onion seeds. From statistical tests, it was possible to affirm that the sawdust did not promote inhibition of seed germination and radicle and hypocotyl growth. No genotoxicity, cytotoxicity and, mutagenicity were observed, which allowed to state that the sawdust is not toxic to the onion species, which reinforces the possibility of application of the biosorbent for soil fertilization purposes. Therefore, the use of sawdust for phosphorus biosorption with the subsequent agricultural application is promising and quite important from a global food security point of view.
Collapse
Affiliation(s)
- Glaucia Pantano
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná, 81531-980, Brazil.
| | - Dânia Elisa Christofoletti Mazzeo
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, 13506-900, Brazil
| | - Thais Helena Dos Santos Rocha
- Laboratório de Biogeoquímica Ambiental - Núcleo de Estudos, Diagnósticos e Intervenções Ambientais, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Maria Aparecida Marin-Morales
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, 13506-900, Brazil
| | - Pedro Sergio Fadini
- Laboratório de Biogeoquímica Ambiental - Núcleo de Estudos, Diagnósticos e Intervenções Ambientais, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Antonio Aparecido Mozeto
- Laboratório de Biogeoquímica Ambiental - Núcleo de Estudos, Diagnósticos e Intervenções Ambientais, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
21
|
Galter IN, Duarte ID, Malini M, Aragão FB, de Oliveira Martins I, Rocha LD, Carneiro MTWD, do Espírito Santo KS, de Oliveira David JA, Matsumoto EST. Water assessment of the Itapemirim River/Espírito Santo (Brazil): abiotic and toxicogenetic aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10175-10191. [PMID: 33170467 DOI: 10.1007/s11356-020-11116-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The Itapemirim River is considered one of the most important water resources in the state of Espírito Santo, Brazil. However, environmental problems due to continuous anthropogenic contamination are threatening its potential use. This study assessed water quality by analyzing abiotic and toxicogenetic aspects of the water from four stations along the river. Samples were collected in both dry and rainy seasons. Most of the abiotic variables were below the threshold established by CONAMA Resolution No. 357/2005, and so were most of the metals. However, Al and Cu contents were above those allowed by legislation, ranging from 0.2 to 0.9 mg/L. Regarding toxicogenetic aspects, genotoxic effects were observed in meristematic cells of Allium cepa, in micronucleus test and comet assay of Oreochromis niloticus, and CHO-K1 cells. Mutagenic effects were significant at RI 02 (0.34), RI 03 (0.46), and RI 04 (0.12) stations on the first campaign in A. cepa F1 cells, compared to the negative control (0.0). The second campaign revealed the same results, but with the addition of samples from RI 01 (0.17) and RI 03 (0.18) showing mutagenicity in the micronucleus test with fish erythrocytes when compared to the negative control (0.3). Essentially, all the samples evaluated in both campaigns showed damage in A. cepa, O. niloticus, and CHO-K1 cells, thus demonstrating that the water quality of the Itapemirim River is compromised and requires action plans for its recovery.
Collapse
Affiliation(s)
- Iasmini Nicoli Galter
- Graduate Program in Genetics and Breeding, Federal University of Espírito Santo, Alto Universitário Street, without number, Guararema, Alegre, Espírito Santo, Brazil.
| | - Ian Drumond Duarte
- Department of Biological Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Vitória, Espírito Santo, 29075-910, Brazil
| | - Maressa Malini
- Department of Biological Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Vitória, Espírito Santo, 29075-910, Brazil
| | - Francielen Barroso Aragão
- Department of Biological Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Vitória, Espírito Santo, 29075-910, Brazil
| | - Ian de Oliveira Martins
- Department of Biological Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Vitória, Espírito Santo, 29075-910, Brazil
| | - Lívia Dorch Rocha
- Department of Biological Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Vitória, Espírito Santo, 29075-910, Brazil
| | | | - Kamila Soares do Espírito Santo
- Department of Chemistry, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Vitória, Espírito Santo, 29075-910, Brazil
| | - José Augusto de Oliveira David
- Department of Biology, Federal University of Espírito Santo, Alto Universitário Street, without number, Guararema, Alegre, Espírito Santo, Brazil
| | - E Silvia Tamie Matsumoto
- Department of Biological Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Vitória, Espírito Santo, 29075-910, Brazil
| |
Collapse
|
22
|
Alderete BL, da Silva J, Godoi R, da Silva FR, Taffarel SR, da Silva LP, Garcia ALH, Júnior HM, de Amorim HLN, Picada JN. Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment. CHEMOSPHERE 2021; 263:128291. [PMID: 33297233 DOI: 10.1016/j.chemosphere.2020.128291] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Approximately 20% industrial water pollution comes from textile dyeing process, with Azo dyes being a major problem in this scenario and requiring new forms of efficient treatment. Effluent treatments using the Advanced Oxidation Processes (AOP) are justified by the potential of application in the dyed effluent treatments once they can change the Azo dye chemical structure. Thus, this study aimed to evaluate the toxicity and mutagenic capacity of a synthetic effluent containing Amido Black 10B (AB10B) azo dye before treatment with AOP, named Gross Synthetic Effluent (GSE), and after the AOP, named Treated Synthetic Effluent (TSE). Daphnia magna and Allium cepa tests were used to evaluate acute toxicity effects and chromosomal mutagenesis, respectively. The Salmonella/microsome assay was performed to evaluate gene mutations. In silico assays were also performed aiming to identify the mutagenic and carcinogenic potential of the degradation byproducts of AB10B. There was 100% immobility to D. magna after 24 h and 48 h of treatments with TSE, showing EC50 values around 5%, whereas GSE did not show acute toxicity. However, GSE induced chromosomal mutations in A. cepa test. Both GSE and TSE were not able to induce gene mutations in S. typhimurium strains. These effects can be associated with two byproducts generated with the cleavage of the azo bonds of AB10B, 4-nitroaniline and -2-7-triamino-8-hydroxy-3-6-naphthalinedisulfate (TAHNDS). In conclusion, AOP is an efficient method to reduce the mutagenicity of synthetic effluent containing AB10B and additional methods should be applied aiming to reduce the toxicity.
Collapse
Affiliation(s)
- Bárbara Lopes Alderete
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil
| | - Juliana da Silva
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil; La Salle University, Laboratory of Genetic Toxicology. PPGSDH (Professional Master's Degree in Health and Human Development) and Academic Master in Environmental Impact Assessment, Canoas, RS, Brazil.
| | - Rafael Godoi
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil; La Salle University, Laboratory of Genetic Toxicology. PPGSDH (Professional Master's Degree in Health and Human Development) and Academic Master in Environmental Impact Assessment, Canoas, RS, Brazil
| | - Fernanda Rabaioli da Silva
- La Salle University, Laboratory of Genetic Toxicology. PPGSDH (Professional Master's Degree in Health and Human Development) and Academic Master in Environmental Impact Assessment, Canoas, RS, Brazil
| | - Silvio Roberto Taffarel
- La Salle University, Laboratory of Genetic Toxicology. PPGSDH (Professional Master's Degree in Health and Human Development) and Academic Master in Environmental Impact Assessment, Canoas, RS, Brazil
| | - Lucas Pisoni da Silva
- La Salle University, Laboratory of Genetic Toxicology. PPGSDH (Professional Master's Degree in Health and Human Development) and Academic Master in Environmental Impact Assessment, Canoas, RS, Brazil
| | - Ana Leticia Hilario Garcia
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil
| | - Horst Mitteregger Júnior
- Laboratory of Ecotoxicology, SENAI, Institute of Technology in Leather and the Environment, 93600-000, Estância Velha, RS, Brazil
| | | | - Jaqueline Nascimento Picada
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil.
| |
Collapse
|
23
|
Chromosomal Abnormalities in Allium cepa Induced by Treated Textile Effluents: Spatial and Temporal Variations. J Toxicol 2020; 2020:8814196. [PMID: 32831832 PMCID: PMC7422008 DOI: 10.1155/2020/8814196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/07/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022] Open
Abstract
Appropriate effluent treatment processes are expected to significantly reduce the toxicity of effluents before they are released to the natural environment. The present study was aimed to assess the spatial and temporal variations of the physical and chemical water quality parameters of a natural water body receiving treated textile effluents and to assess the chromosomal abnormalities induced by the treated textile effluents. Four sampling sites (A: effluent discharge point; B: 100 m downstream from site A along the tributary; C: 200 m downstream from site A along the tributary; D: 100 m upstream from site A along the tributary) were selected associated to a tributary that received treated textile effluent. The physical and chemical water quality parameters were measured in the composite water samples collected from the study sites, and Allium cepa bioassay was conducted using aged tap water as the control. Sampling was conducted in both rainy and dry seasons. The conductivity, TDS, COD, and colour intensity of the water samples collected from the study sites were significantly higher during the dry season compared to those in the rainy season. Allium cepa root meristematic cells exposed to water samples from sites A, B, and C showed a significantly high interphase and prophase indices compared to those exposed to aged tap water and upstream site during both rainy and dry seasons. The mitotic index of the root tip cells of Allium cepa bulbs exposed to the water samples collected from the effluent discharge point (site A) and from the 100 m downstream site from site A (site B) was significantly lower than that of the other sites in both rainy and dry seasons. However, the mitotic index of the root tip cells of Allium cepa bulbs exposed to the water samples from the upstream site was not significantly different from that of the control treatment during both sampling seasons. The bioassay indicated that the mitotic index and phase index of the root meristematic cells of Allium cepa can be affected by the treated textile effluents released to the water body and the occurrence of C metaphase, chromosomal adherence, bridges, disturbed anaphase, vagrant chromosomes, and chromosomal breaks indicated that the treated textile effluent receiving tributary can possibly contain genotoxic and mutagenic compounds which can induce chromosomal abnormalities.
Collapse
|
24
|
Fioresi VS, de Cássia Ribeiro Vieira B, de Campos JMS, da Silva Souza T. Cytogenotoxic activity of the pesticides imidacloprid and iprodione on Allium cepa root meristem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28066-28076. [PMID: 32405953 DOI: 10.1007/s11356-020-09201-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Effects of imidacloprid and iprodione, isolated and in mixture, were assessed by using seed germination and root growth test, flow cytometry, and chromosomal aberrations test on Allium cepa root meristem. The highest concentrations of imidacloprid, including field concentration, increased the frequency of sub-G1 particles, decreased the frequency of nuclei in G2/M, increased the coefficient of variation of G1 (CVG1) and the frequency of aberrant cells, and inhibited the mitotic index culminating in the reduction in root length. All doses of iprodione also presented cytogenotoxic action. The highest concentration of the fungicide affected the growth of A. cepa roots. In response to exposure to pesticide mixtures, the cell cycle of A. cepa was blocked in the G1 phase. The mixtures with low doses of the pesticides significantly decreased the mitotic index, and as a consequence, the genotoxicity was reduced. In the mixtures with the highest doses of the agrochemicals, the blockage of the cell cycle was insufficient for damage repair, resulting in a significant increase of chromosomal aberrations. The results suggest caution in the use of pesticides doses that induce cytological abnormalities in non-target organisms.
Collapse
Affiliation(s)
- Vinicius Sartori Fioresi
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde (CCENS), Universidade Federal do Espírito Santo, Alto Universitário s/n, Caixa Postal 16, Alegre, ES, 29500-000, Brasil
| | | | | | - Tatiana da Silva Souza
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde (CCENS), Universidade Federal do Espírito Santo, Alto Universitário s/n, Caixa Postal 16, Alegre, ES, 29500-000, Brasil.
| |
Collapse
|
25
|
Sowani H, Kulkarni M, Zinjarde S. Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11: Cellular responses and degradation perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114538. [PMID: 32305803 DOI: 10.1016/j.envpol.2020.114538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
A tropical soil Actinomycete, Gordonia amicalis HS-11, has been previously demonstrated to degrade unsaturated and saturated hydrocarbons (squalene and n-hexadecane, respectively) in an effective manner. In present study, G. amicalis HS-11 degraded 92.85 ± 3.42% of the provided diesel oil [1% (v/v)] after 16 days of aerobic incubation. The effect of different culture conditions such as carbon source, nitrogen source, pH, temperature, and aeration on degradation was studied. During degradation, this Actinomycete synthesized surface active compounds (SACs) in an extracellular manner that brought about a reduction in surface tension from 69 ± 2.1 to 30 ± 1.1 mN m-1 after 16 days. The morphology of cells grown on diesel was monitored by using a Field Emission Scanning Electron Microscope. Diesel-grown cells were longer and clumped with smooth surfaces, possibly due to the secretion of SACs. The interaction between the cells and diesel oil was studied by Confocal Laser Scanning Microscope. Some cells were adherent on small diesel droplets and others were present in the non-attached form thus confirming the emulsification ability of this organism. The fatty acid profiles of the organism grown on diesel oil for 48 h were different from those on Luria Bertani Broth. The genotoxicity and cytotoxicity of diesel oil before and after degradation were determined. Cytogenetic parameters such as mitotic index (MI); mitosis distribution and chromosomal aberration (type and frequency) were assessed. Oxidative stress was evaluated by measuring levels of catalase, superoxide dismutase and concentration of malondialdehyde. On the basis of these studies it was deduced that the degradation metabolites were relatively non-toxic.
Collapse
Affiliation(s)
- Harshada Sowani
- Department of Chemistry, Biochemistry Division, Savitribai Phule Pune University, Pune, 411007, India
| | - Mohan Kulkarni
- Department of Chemistry, Biochemistry Division, Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
26
|
Casillas-Figueroa F, Arellano-García ME, Leyva-Aguilera C, Ruíz-Ruíz B, Luna Vázquez-Gómez R, Radilla-Chávez P, Chávez-Santoscoy RA, Pestryakov A, Toledano-Magaña Y, García-Ramos JC, Bogdanchikova N. Argovit™ Silver Nanoparticles Effects on Allium cepa: Plant Growth Promotion without Cyto Genotoxic Damage. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1386. [PMID: 32708646 PMCID: PMC7408422 DOI: 10.3390/nano10071386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Due to their antibacterial and antiviral effects, silver nanoparticles (AgNP) are one of the most widely used nanomaterials worldwide in various industries, e.g., in textiles, cosmetics and biomedical-related products. Unfortunately, the lack of complete physicochemical characterization and the variety of models used to evaluate its cytotoxic/genotoxic effect make comparison and decision-making regarding their safe use difficult. In this work, we present a systematic study of the cytotoxic and genotoxic activity of the commercially available AgNPs formulation Argovit™ in Allium cepa. The evaluated concentration range, 5-100 µg/mL of metallic silver content (85-1666 µg/mL of complete formulation), is 10-17 times higher than the used for other previously reported polyvinylpyrrolidone (PVP)-AgNP formulations and showed no cytotoxic or genotoxic damage in Allium cepa. Conversely, low concentrations (5 and 10 µg/mL) promote growth without damage to roots or bulbs. Until this work, all the formulations of PVP-AgNP evaluated in Allium cepa regardless of their size, concentration, or the exposure time had shown phytotoxicity. The biological response observed in Allium cepa exposed to Argovit™ is caused by nanoparticles and not by silver ions. The metal/coating agent ratio plays a fundamental role in this response and must be considered within the key physicochemical parameters for the design and manufacture of safer nanomaterials.
Collapse
Affiliation(s)
- Francisco Casillas-Figueroa
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - María Evarista Arellano-García
- Facultad de Ciencias, UABC, Carretera Transpeninsular Ensenada-Tijuana No. 3917 Col. Playitas, 22860 Ensenada, Baja California, Mexico;
| | - Claudia Leyva-Aguilera
- Facultad de Ciencias, UABC, Carretera Transpeninsular Ensenada-Tijuana No. 3917 Col. Playitas, 22860 Ensenada, Baja California, Mexico;
| | - Balam Ruíz-Ruíz
- Facultad de Medicina extensión los Mochis, Universidad Autónoma de Sinaloa, Av. Ángel Flores s/n, Ciudad Universitaria, 81223 Los Mochis, Sinaloa, Mexico;
| | - Roberto Luna Vázquez-Gómez
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Rocío Alejandra Chávez-Santoscoy
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, ITESM, Monterrey, Eugenio Garza Sada, 2501 Sur, 64849 Monterrey, Nuevo León, Mexico;
| | - Alexey Pestryakov
- Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, UNAM, Carretera Tijuana-Ensenada Km 107, 22860 Ensenada, Baja California, Mexico;
| |
Collapse
|
27
|
“Green” synthesis of Ag2S nanoparticles, study of their properties and bioimaging applications. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01365-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Wijeyaratne WMDN, Wickramasinghe PGMU. Treated Textile Effluents: Cytotoxic and Genotoxic Effects in the Natural Aquatic Environment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:245-252. [PMID: 31858153 DOI: 10.1007/s00128-019-02768-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Textile effluent treatment methods use biological and chemical treatments to reduce the toxicity and to comply with standard effluent discharge limits. However, trace amounts of pollutants can affect the biological organisms in the receiving environment. The present study used Allium cepa bio assay to assess the cytotoxic and genotoxic effects of treated textile effluents discharged to the natural environment. The results of the bioassay indicated that treated textile effluents can induce alterations in the mitotic index. Also nuclear buds, bi nuclei, condensed nuclei, were recorded in the bioassay and the severity of them decreased towards downstream of the effluent discharge point. Therefore, it can be concluded that even the discharged effluents comply with the standard limits, there is a possibility of causing cytotoxic and genotoxic effects in the organisms living in the natural environment.
Collapse
|
29
|
Souza IR, Silva LR, Fernandes LSP, Salgado LD, Silva de Assis HC, Firak DS, Bach L, Santos-Filho R, Voigt CL, Barros AC, Peralta-Zamora P, Mattoso N, Franco CRC, Soares Medeiros LC, Marcon BH, Cestari MM, Sant'Anna-Santos BF, Leme DM. Visible-light reduced silver nanoparticles' toxicity in Allium cepa test system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113551. [PMID: 31801672 DOI: 10.1016/j.envpol.2019.113551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/28/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in consumer products due to their antibacterial property; however, their potential toxicity and release into the environment raises concern. Based on the limited understanding of AgNPs aggregation behavior, this study aimed to investigate the toxicity of uncoated (uc-AgNP) and coated with polyvinylpyrrolidone (PVP-AgNP), at low concentrations (0.5-100 ng/mL), under dark and visible-light exposure, using a plant test system. We exposed Allium cepa seeds to both types of AgNPs for 4-5 days to evaluate several toxicity endpoints. AgNPs did not cause acute toxicity (i.e., inhibition of seed germination and root development), but caused genotoxicity and biochemical alterations in oxidative stress parameters (lipid peroxidation) and activities of antioxidant enzymes (superoxide dismutase and catalase) in light and dark conditions. However, the light exposure decreased the rate of chromosomal aberration and micronuclei up to 5.60x in uc-AgNP and 2.01x in PVP-AgNP, and 2.69x in uc-AgNP and 3.70x in PVP-AgNP, respectively. Thus, light exposure reduced the overall genotoxicity of these AgNPs. In addition, mitotic index alterations and morphoanatomical changes in meristematic cells were observed only in the dark condition at the highest concentrations, demonstrating that light also reduces AgNPs cytotoxicity. The light-dependent aggregation of AgNPs may have reduced toxicity by reducing the uptake of these NPs by the cells. Our findings demonstrate that AgNPs can be genotoxic, cytotoxic and induce morphoanatomical and biochemical changes in A. cepa roots even at low concentrations, and that visible-light alters their aggregation state, and decreases their toxicity. We suggest that visible light can be an alternative treatment to remediate AgNP residues, minimizing their toxicity and environmental risks.
Collapse
Affiliation(s)
- Irisdoris R Souza
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Lucas R Silva
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Letícia S P Fernandes
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Lilian D Salgado
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Daniele S Firak
- Department of Chemistry, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Larissa Bach
- Department of Chemistry, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Ronaldo Santos-Filho
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Carmen L Voigt
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Ariana C Barros
- Department of Botany, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Ney Mattoso
- Department of Physics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Celia Regina C Franco
- Department of Cellular and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | - Marta M Cestari
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Daniela M Leme
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
30
|
Macar TK, Macar O, Yalçın E, Çavuşoğlu K. Resveratrol ameliorates the physiological, biochemical, cytogenetic, and anatomical toxicities induced by copper(II) chloride exposure in Allium cepa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:657-667. [PMID: 31808086 DOI: 10.1007/s11356-019-06920-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/31/2019] [Indexed: 04/16/2023]
Abstract
Excessive copper (Cu) exposure ultimately results in toxicosis in all organisms. The protective potential of resveratrol compound against the CuCl2 toxicity was evaluated in Allium cepa L. root tip cells. For this aim, A. cepa bulbs were divided into six groups and the groups were treated with tap water, 400 mg/L resveratrol, 800 mg/L resveratrol, 20 μM CuCl2, 400 mg/L resveratrol + 20 μM CuCl2, and 800 mg/L resveratrol + 20 μM CuCl2 solutions, respectively for 72 h. The first group irrigated with tap water was accepted as control. All groups were screened for the germination percentage, root elongation, total bulb weight gain, micronucleus (MN) frequency, mitotic index (MI), chromosomal aberrations, and anatomical changes. Furthermore, superoxide dismutase (SOD) and catalase (CAT) activities as well as malondialdehyde (MDA) level as an indicator of lipid peroxidation were investigated. It was found that CuCl2 exposure alone triggered a definite negative effects on all parameters examined. On the other hand, the groups treated with resveratrol did not have statistically different values compared to the control group. Resveratrol doses induced a remarkable recovery in growth parameters including germination percentage, root elongation, and total bulb weight gain when applied with CuCl2. In these groups, MN frequency, chromosomal aberrations, and anatomical abnormalities were alleviated, whereas the MI levels increased significantly. Moreover, lipid peroxidation level and antioxidant enzyme activities showed a marked amelioration when resveratrol and CuCl2 were applied together. Copper compounds have become common pollutants due to their direct uses as pesticides in agricultural areas as well as their spreading to natural areas from industrial fields. The study clearly demonstrated the therapeutic potential of resveratrol against the harmful effects of CuCl2 exposure in Allium roots. So, resveratrol could be considered as a plant-derived restorative agent for the reduction of the risks from the other copper compounds.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| | - Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey
| | - Emine Yalçın
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| |
Collapse
|
31
|
Alvarenga IFS, Dos Santos FE, Silveira GL, Andrade-Vieira LF, Martins GC, Guilherme LRG. Investigating arsenic toxicity in tropical soils: A cell cycle and DNA fragmentation approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134272. [PMID: 31783468 DOI: 10.1016/j.scitotenv.2019.134272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/21/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a metalloid and a toxicant that is found naturally in many environmental compartments, soils included. Soils with high levels of As occur worldwide and might pose a threat not only to humans, but also to many ecosystems. Considering the scarcity of studies regarding cytogenotoxic effects of model plants in As-contaminated soil, mainly in tropical areas, this study proposes the use of Allium cepa root tip bioassays for a fast-track assessment of As toxicity in tropical soils. For this end, root tip cells of A. cepa were exposed to an Oxisol, an Inceptisol and a Tropical Artificial Soil (TAS) contaminated with increasing doses of As (0, 8, 14.5, 26, 46.5, 84, 150, and 270 mg kg-1). The effects of As on cell cycle, micronucleus formation, and DNA fragmentation were evaluated. In general, root tip cells exposure to As increases the frequency of chromosome abnormalities and micronucleus, in turn, decreasing the frequency of mitotic index. As-treated cells also presented an increase in the percentage of DNA damage observed in comet assay. Overall, the effects of As in TAS were more pronounced, than in the Oxisol, being the Inceptisol the less toxic. A discussion of each As effect in cells and the link with the soil type is presented and reveals that clastogenic effects of As in A. cepa cells seemed to be the mode of action of this soil contaminant.
Collapse
|
32
|
Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00303-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
33
|
de Lima GG, Mendes C, de Marchi G, Vicari T, Cestari MM, Gomes MF, Ramsdorf WA, Magalhães WLE, Hansel FA, Leme DM. The evaluation of the potential ecotoxicity of pyroligneous acid obtained from fast pyrolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:616-623. [PMID: 31132557 DOI: 10.1016/j.ecoenv.2019.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Pyroligneous acid (PA) is a by-product of bio-oil, which is obtained by pyrolysis of the wood. This product has been tested for use in several areas, such as agriculture, as a promising green herbicide; however, there are few scientific data regarding its environmental impacts. For this study, an ecotoxicity testing battery, composed of Daphnia magna acute toxicity test, Allium cepa test and in vitro Comet assay with the rainbow trout gonad-2 cell fish line (RTG-2) were used to evaluate the acute toxicity and genotoxicity of PA obtained from fast pyrolysis of eucalyptus wood fines. The PA presented acute toxicity to D. magna (microcrustacea) with EC50 of 26.12 mg/L, and inhibited the seed germination (EC50 5.556 g/L) and root development (EC50 3.436 g/L) of A. cepa (higher plant). No signs of genotoxicity (chromosomal aberrations and micronuclei in A. cepa and primary DNA lesions in RTG-2 cells) were detected to this product. The acute toxicity and absence of genotoxicity may relate to the molecules found in the PA, being the phenolic fraction the key chemical candidate responsible for the toxicity observed. In addition, daphnids seem to be more sensitivity to the toxicity of PA than higher plants based on their EC50 values. This first ecotoxicological evaluation of PA from fast pyrolysis pointed out the need of determining environmental exposure limits to promote the safer agriculture use of this product, avoiding impacts to living organisms.
Collapse
Affiliation(s)
- Gabriel Goetten de Lima
- Graduate Program in Engineering and Science of Materials - PIPE, Federal University of Paraná - UFPR, 81.531-990 Curitiba PR, Brazil; Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Camila Mendes
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gustavo de Marchi
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Taynah Vicari
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Monike F Gomes
- Laboratory of Ecotoxicology, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| | | | | | | | | |
Collapse
|
34
|
Mourão AO, Silva DF, Rodriguez M, Torres TS, Franco ES, Pádua VL, da Silva Faria MC, Maia LFO, Rodrigues JL. Degradation of haloacetic acids with the Fenton-like and analysis by GC-MS: use of bioassays for monitoring of genotoxic, mutagenic and cytotoxic effects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:513. [PMID: 31346830 DOI: 10.1007/s10661-019-7642-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
In this study, a method was developed to evaluate the degradation of haloacetic acids (HAAs) in water by a heterogenous Fenton-like process catalyzed by cobalt-doped magnetite nanoparticles (Fe3 - xCoxO4), extraction of the contaminants by liquid-liquid extraction (LLE), and analysis by gas chromatography-mass spectrometry (GC-MS). The developed method was efficient in the degradation of HAAs, with the following degradation values: 63%, 62%, 30%, 39%, 37%, 50%, 84%, 41%, and 79% for monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, trichloroacetic acid, bromochloroacetic acid, dibromoacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, and tribromoacetic acid compounds, respectively. Through the application of the Allium cepa test, the cytotoxicity, genotoxicity, and mutagenicity of HAAs were evaluated. The results confirm its genotoxic and mutagenic effects on Allium cepa meristematic cells. Through this study, it was possible to verify the effectiveness of the developed method and its potential as a proposal for environmental remediation.
Collapse
Affiliation(s)
- Amanda Oliveira Mourão
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, 39803-371, Brazil
| | - Diego Francis Silva
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, 39803-371, Brazil
| | - Mariandry Rodriguez
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, 39803-371, Brazil
| | - Thamyris Souza Torres
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, 39803-371, Brazil
| | - Elton Santos Franco
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, 39803-371, Brazil
| | - Valter Lúcio Pádua
- Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Márcia Cristina da Silva Faria
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, 39803-371, Brazil
| | - Luiz Fernando Oliveira Maia
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, 39803-371, Brazil
| | - Jairo Lisboa Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, 39803-371, Brazil.
| |
Collapse
|
35
|
Kayumov AR, Solovyev DA, Bobrov DE, Rizvanov AA. Current Approaches to the Evaluation of Soil Genotoxicity. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00652-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Mattos BD, da Silva LR, de Souza IR, Magalhães WLE, Leme DM. Slow delivery of biocide from nanostructured, microscaled, particles reduces its phytoxicity: A model investigation. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:513-519. [PMID: 30641421 DOI: 10.1016/j.jhazmat.2018.12.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Nano-engineered delivery systems have emerged as possible solutions for more efficient pest management in agriculture. Likewise for nanostructured drug delivery systems (DDS) in medicine, the use of biocide delivery systems (BDS) brought concerns on their toxicology on non-targeted organisms. Plants, for instance, are the foundation of the ecosystem, acting as primary actor in the food chain and is associated with the whole biodiversity, being strictly related to human health. This is a very important consideration to fully understand the benefits of using delivery systems for crop protection and production. Herein, a biocide delivery system was prepared by loading nanostructured, microscaled, biogenic silica particles with thymol, a known phytotoxicant. The resulting system contains 120 mg of thymol per gram of silica and displays slow release features. The Allium cepa bioassay was chosen to demonstrate how the toxicity and cellular damages induced by thymol can be significantly reduced through a slow, controlled, release strategy. The lower mobility of the reference particles associated with slow-delivery features reduced the toxicity and cellular damages caused by thymol in the plant genetic model.
Collapse
Affiliation(s)
- Bruno Dufau Mattos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland.
| | - Lucas Rafael da Silva
- Department of Genetics, Federal University of Paraná, Av. Cel. Francisco H. dos Santos s/n, Curitiba, 81531-980, Brazil
| | - Irisdoris Rodrigues de Souza
- Department of Genetics, Federal University of Paraná, Av. Cel. Francisco H. dos Santos s/n, Curitiba, 81531-980, Brazil
| | | | - Daniela Morais Leme
- Department of Genetics, Federal University of Paraná, Av. Cel. Francisco H. dos Santos s/n, Curitiba, 81531-980, Brazil
| |
Collapse
|
37
|
dos Santos R, Vicari T, Santos SA, Felisbino K, Mattoso N, Sant’Anna-Santos BF, Cestari MM, Leme DM. Genotoxicity of titanium dioxide nanoparticles and triggering of defense mechanisms in Allium cepa. Genet Mol Biol 2019; 42:425-435. [PMID: 31259365 PMCID: PMC6726158 DOI: 10.1590/1678-4685-gmb-2018-0205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/05/2018] [Indexed: 01/20/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are widely used and may impact the environment. Thus, this study used a high concentration of TiO2NP (1000 mg/L) to verify the defense mechanisms triggered by a plant system - an indicator of toxicity. Furthermore, this study aimed at completely characterizing TiO2NP suspensions to elucidate their toxic behavior. TiO2NPs were taken up by meristematic cells of Allium cepa, leading to slight inhibition of seed germination and root growth. However, severe cellular and DNA damages were observed in a concentration-dependent manner (10, 100, and 1000 mg/L). For this reason, we used the highest tested concentration (1000 mg/L) to verify if the plant cells developed defense mechanisms against the TiO2NPs and evaluated other evidences of TiO2NP genotoxicity. Nucleolar alterations and plant defense responses (i.e., increased lytic vacuoles, oil bodies and NP phase change) were observed in meristematic cells exposed to TiO2NP at 1000 mg/L. In summary, TiO2NPs can damage the genetic material of plants; however, plants displayed defense mechanisms against the deleterious effects of these NPs. In addition, A. cepa was found to be a suitable test system to evaluate the cyto- and genotoxicity of NPs.
Collapse
Affiliation(s)
- Ronaldo dos Santos
- Department of Genetics, Universidade Federal do Paraná (UFPR),
Curitiba, PR, Brazil
| | - Taynah Vicari
- Department of Genetics, Universidade Federal do Paraná (UFPR),
Curitiba, PR, Brazil
| | - Samuel A. Santos
- Department of Plant Pathology, Universidade Federal de Viçosa
(UFV), Viçosa, MG, Brazil
| | - Karoline Felisbino
- Department of Genetics, Universidade Federal do Paraná (UFPR),
Curitiba, PR, Brazil
| | - Ney Mattoso
- Department of Physics, Universidade Federal do Paraná (UFPR),
Curitiba, PR, Brazil
| | | | | | - Daniela Morais Leme
- Department of Genetics, Universidade Federal do Paraná (UFPR),
Curitiba, PR, Brazil
| |
Collapse
|
38
|
Abreu-Junior CH, de Lima Brossi MJ, Monteiro RT, Cardoso PHS, da Silva Mandu T, Nogueira TAR, Ganga A, Filzmoser P, de Oliveira FC, Firme LP, He Z, Capra GF. Effects of sewage sludge application on unfertile tropical soils evaluated by multiple approaches: A field experiment in a commercial Eucalyptus plantation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1457-1467. [PMID: 30577137 DOI: 10.1016/j.scitotenv.2018.11.334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Sewage sludge (SS) reuse in forest plantation as soil fertilizer/amendment has tremendously increased in recent years. However, SS may have high concentrations of potentially toxic elements (PTE), representing a potential risk for soil and the whole ecosystem. This paper was aimed to assess the toxicity of PTE in unfertile tropical soils amended with SS in a commercial Eucalyptus plantation, with an integrated multiple approaches combining: i) the use of a battery of bioassays (Daphnia magna, Pseudokcrichirella subcapitata, Lactuca sativa, and Allium cepa); and ii) the evaluation of some PTE (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and their availability into the pedoenvironment. Differences in total and available PTE between SS doses and time of treatments were evaluated using ANOVA; correlations between PTE and bioassays by a sparse partial robust M-regression (SPRM), while multiple correlations among parameters were performed by principal factor analysis (PFA). Results show that PTE contents in soils tended to increase with SS application doses. However this cannot be assumed as a general rule since in all the investigated treatments the PTE concentrations were consistently below both soil natural background concentrations and quality reference values. Bioassays showed a generalized low eco- and genotoxicity of SS with an increase in toxicity at increasing SS doses but with a clear decreasing trend as time went by. A. cepa was the most sensitive bioassay followed by P. subcapitata > D. magna > L. sativa. Overall, the results indicate that in realistic open field conditions SS risk may be lower than expected due to dynamic decrease in PTE toxicity with time after application. This study has an important implication that open-field trials should be strongly encouraged for evaluating environmental risk of SS application in forestry.
Collapse
Affiliation(s)
| | | | - Regina Teresa Monteiro
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, SP 13400-970, Brazil
| | | | - Thays da Silva Mandu
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, SP 13400-970, Brazil
| | - Thiago Assis Rodrigues Nogueira
- Department of Plant Protection, Rural Engineering and Soils, School of Engineering, São Paulo State University, Ilha Solteira, SP 15.385-000, Brazil
| | - Antonio Ganga
- Dipartimento di Agraria, Università degli Studi di Sassari, Via Colombo n°1, 08100 Nuoro, Italy
| | - Peter Filzmoser
- CSTAT - Computational Statistics, Institute of Statistics & Mathematical Methods in Economics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien, Austria
| | | | - Lucia Pittol Firme
- Biossolido Agricultura e Ambiente Ltda. e Biossolo Serviços Agronômicos e Ambientais Ltda. Piracicaba, SP, Brazil
| | - Zhenli He
- Institute of Food and Agricultural Sciences, Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945-3138, USA
| | - Gian Franco Capra
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Colombo n°1, 08100 Nuoro, Italy; Desertification Research Centre, Università degli Studi di Sassari, Viale Italia n° 39, 07100 Sassari, Italy.
| |
Collapse
|
39
|
Khan S, Anas M, Malik A. Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicol Rep 2019; 6:193-201. [PMID: 30859068 PMCID: PMC6396094 DOI: 10.1016/j.toxrep.2019.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 11/25/2022] Open
Abstract
Textile industrial wastewater samples were taken from the Panki site 5 industrial area of Kanpur city, India. Atomic Absorption spectrophotometer and Gas Chromatography-Mass spectrometry techniques have shown that the wastewater contained several heavy metals and organic pollutants (Khan and Malik, 2017) [1]. Further, in order to explore the potential toxicity of these pollutants present in the effluent, a battery of short-term biological assays (Ames test, DNA repair defective mutation assay and Allium cepa chromosomal aberration test) were used. Wastewater samples were concentrated with XAD-4/8 resins and liquid-liquid extraction procedure. XAD-concentrated samples were more mutagenic than the liquid-liquid extracted samples. Ames TA98 and polA (SOS defective) strains were the most responsive strains. The wastewater also resulted in significant decline in mitotic index and induced chromosomal aberrations in A. cepa roots. The findings thus showed that the combination of physico-chemical analysis alongwith the toxicity assessment (using short term biological assays) would provide valuable and more realistic information about the joint toxicity of chemical pollutants present in the textile effluent.
Collapse
Affiliation(s)
| | | | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
40
|
Lacerda LM, Garcia SC, da Silva LB, de Ávila Dornelles M, Presotto AT, Lourenço ED, de Franceschi ID, Fernandes E, Wannmacher CMD, Brucker N, Sauer E, Gioda A, Machado AB, Oliveira E, Trombini TL, Feksa LR. Evaluation of hematological, biochemical parameters and thiol enzyme activity in chrome plating workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1892-1901. [PMID: 30460648 DOI: 10.1007/s11356-018-3755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The most commonly used solution in chrome plating bath is chromic acid (hexavalent Cr), and a considerable amount of mists is released into the air and consequently produce hazards to workers. Thus, the aim of this study was to evaluate whether the biomarker of exposure to metals, specially Cr levels, presents associations with hematological and biochemical parameters and if they can alter the activity of enzymes that contain thiol groups such as pyruvate kinase, creatine kinase, adenylate kinase, and δ-aminolevulinate dehydratase. Fifty male chrome plating workers were used for exposed group and 50 male non-exposed workers for control group. For that, biological monitoring was performed through quantification of metals on total blood and urine by inductively coupled plasma mass spectrometry (ICP-MS) and enzyme activity was performed by spectrometry in erythrocytes. In addition, chromium levels in water was quantified and ecotoxicology assay was performed with Allium cepa test. The results demonstrated that blood and urinary chromium levels in exposed group were higher than the control group (p < 0.0001). Furthermore, decreased activity of enzymes was found in those that contain thiol groups from exposed group when compared with the control group (p < 0.001). The water analysis did not present a statistical difference between control and exposed groups (p > 0.05), demonstrating that water did not seem to be the source of contamination. In summary, our findings indicated some toxicology effects observed in the exposed group, such as thiol enzyme inhibition, mainly associated with occupational exposure in chrome plating and besides the presence of other metals, and Cr demonstrated to influence the activity of the enzymes analyzed in this research.
Collapse
Affiliation(s)
- Larissa Machado Lacerda
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciano Basso da Silva
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | | | | | | | | | - Elissa Fernandes
- Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Aline Belem Machado
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil.
- Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil.
| | - Evandro Oliveira
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | - Thereza Luciano Trombini
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | - Luciane Rosa Feksa
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
- Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
41
|
Kus A, Kwasniewska J, Szymanowska-Pułka J, Hasterok R. Dissecting the chromosomal composition of mutagen-induced micronuclei in Brachypodium distachyon using multicolour FISH. ANNALS OF BOTANY 2018; 122:1161-1171. [PMID: 29982446 PMCID: PMC6324755 DOI: 10.1093/aob/mcy115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Brachypodium distachyon (Brachypodium) is a model species for temperate cereals and other economically important grasses. Its favourable cytogenetic features and advanced molecular infrastructure make it a good model for understanding the mechanisms of instability of plant genomes after mutagenic treatment. The aim of this study was to qualitatively and quantitatively assess the composition and origin of micronuclei arising from genomic fracture, and to detect possible 'hot spots' for mutagen-induced DNA breaks. METHODS Seeds of Brachypodium were treated with maleic hydrazide (MH) or X-rays. The structure of mutagen-induced micronuclei was analysed in root-tip meristematic cells using multicolour fluorescence in situ hybridization (mcFISH) with various repetitive (5S rDNA, 25S rDNA, telomeric, centromeric) and low-repeat [small and large pools of bacterial artificial chromosome (BAC) clones specific for chromosome Bd1] DNA sequences. KEY RESULTS The majority of micronuclei derive from large, acentric fragments. X-rays caused more interstitial DNA breaks than MH. Double-strand breaks rarely occurred in distal chromosome regions. Bd1 contributed to the formation of more mutagen-induced micronuclei than expected from random chromosome involvement. CONCLUSIONS mcFISH with chromosome-specific BAC clones offers insight into micronuclei composition, in so far as it allows their origin and formation to be determined more specifically. A reliable assay for micronuclei composition is crucial for the development of modern genotoxicity tests using plant cells. The combination of mutagenic treatments and well-developed cytomolecular resources in Brachypodium make this model species very promising for plant mutagenesis research.
Collapse
Affiliation(s)
- Arita Kus
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Jolanta Kwasniewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Szymanowska-Pułka
- Department of Biophysics and Plant Morphogenesis, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
42
|
Pamplona-Silva MT, Gonçalves LC, Marin-Morales MA. Genetic toxicity of water contaminated by microcystins collected during a cyanobacteria bloom. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:223-230. [PMID: 30269018 DOI: 10.1016/j.ecoenv.2018.09.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Microcystin-LR (MCLR) is a toxin mainly produced by Microcystis aeruginosa, cyanobacteria most commonly found in eutrophic environments. Cyanobacteria blooms have affected Salto Grande reservoir (Americana, State of São Paulo/Brazil) for several decades, often observed during periods of drought. In this study, the genotoxic effects of MCLR (95% purity) and water samples contaminated by this toxin were evaluated during cyanobacteria bloom using assays with the test organism Allium cepa. The results showed genotoxic action for pure microcystin and cytotoxic, genotoxic and mutagenic action for water samples collected during flowering. Chromosomal aberration assays have shown that MCLR induces chromosomal breaks that persist in the daughter cells as MN. Therefore, it is possible to infer a clastogenic action for this toxin. The MCLR present in the environmental samples was shown to be more cytogenotoxic for the cells than the different concentrations tested in this study with the pure substance. This amplified toxic action can be related to a synergistic effect between the MCLR and other compounds present in the environmental samples. The genotoxicity studies with MCLR show inconsistent and inconclusive results, so this toxin needs to be better investigated in order to obtain further information about the action mode of it is on the biological system.
Collapse
Affiliation(s)
- Maria Tereza Pamplona-Silva
- São Paulo State University (Unesp), Institute of Bioscience, Rio Claro. Av. 24-A, 1515, 13.506-900 Rio Claro, SP, Brazil.
| | - Letícia Cristina Gonçalves
- São Paulo State University (Unesp), Institute of Bioscience, Rio Claro. Av. 24-A, 1515, 13.506-900 Rio Claro, SP, Brazil.
| | - Maria Aparecida Marin-Morales
- São Paulo State University (Unesp), Institute of Bioscience, Rio Claro. Av. 24-A, 1515, 13.506-900 Rio Claro, SP, Brazil.
| |
Collapse
|
43
|
Felisbino K, Santos-Filho R, Piancini LDS, Cestari MM, Leme DM. Mesotrione herbicide does not cause genotoxicity, but modulates the genotoxic effects of Atrazine when assessed in mixture using a plant test system (Allium cepa). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 150:83-88. [PMID: 30195392 DOI: 10.1016/j.pestbp.2018.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Mesotrione (MES) is an herbicide from the triketone family and has been used as an alternative to Atrazine (ATZ), which was banned in some countries due to its toxicity to non-target organisms. Despite being considered an eco-friendly herbicide, data from the literature about the harmful effects of MES in its pure form and/or in combination with other herbicides is still scarce. Aimed at assessing the potential of MES to induce cell death and DNA damage, seeds of Allium cepa (higher plant, monocotyledon) were exposed to this herbicide, pure and in mixture with ATZ, and the number of dividing cells (cytotoxicity), chromosomal aberrations (CA, genotoxicity) and micronuclei (MN, mutagenicity) were then quantified. The pure MES (1.8 to 460 μg/L) did not show either cytotoxicity or genotoxicity/mutagenicity under the tested conditions. The genotoxicity of ATZ (1.5 to 400 μg/L), previous reported in the literature, was confirmed herein. The assessment of MES + ATZ mixtures (1.8 + 1.5; 7 + 6.25; 30 + 25 μg/L, respectively) showed that MES, at low concentrations, enhance the genotoxicity of ATZ (potentiation), since the significant frequencies of CA and MN were greater than the ones expected in additive effects. Taking together, MES in its pure form seems to be a safe alternative to ATZ regarding the capacity to damage (at cellular and DNA levels) non-target plants (Monocots); however, MES in combination with ATZ appeared to act as a co-mutagen at low concentrations.
Collapse
Affiliation(s)
- Karoline Felisbino
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; Centro Universitário Cesumar (UniCesumar), Curitiba, PR, Brazil
| | - Ronaldo Santos-Filho
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Laercio D S Piancini
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Daniela Morais Leme
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
44
|
Thamke VR, Tapase SR, Kodam KM. Evaluation of risk assessment of new industrial pollutant, ionic liquids on environmental living systems. WATER RESEARCH 2017; 125:237-248. [PMID: 28865373 DOI: 10.1016/j.watres.2017.08.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Ionic liquids (ILs) are much known for their promising alternative for volatile solvents in industries and gained popularity as a greener solvent, however industrial effluent discharge containing ILs are also increasing. There is a scarcity of information on the toxicity of ILs; the present study will explore different facts about their harmfulness. The toxic effects of five different ILs: [C4MIM]Br, [Hx3PC14]N(CN)2, [C10MIM]BF4, [BTDA]Cl and [C4MPY]Cl were analysed on bacteria, fungi, plant and animal cells. Both Gram positive and negative bacteria were found to be more susceptible to [C10MIM]BF4 and [BTDA]Cl than [C4MIM]Br, [Hx3PC14]N(CN)2 and [C4MPY]Cl, whereas fungi revealed quite a resistance to all ILs. All ILs were toxic towards Triticum aestivum affecting their roots and shoots, however [C10MIM]BF4 and [BTDA]Cl were more toxic amongst them. Studies on Allium cepa described their toxic behaviour at the genetic level by altering cell division and nuclear material. Furthermore, studies on human red blood cells described by % haemolysis in which [Hx3PC14]N(CN)2 and [BTDA]Cl exhibited higher toxicity at very lower concentrations. While the genotoxic effect on blood lymphocytes exerted by [Hx3PC14]N(CN)2, [C10MIM]BF4 and [BTDA]Cl confirmed their toxic effects on human cells.
Collapse
Affiliation(s)
- Viresh R Thamke
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Savita R Tapase
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Kisan M Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
45
|
Morozesk M, Bonomo MM, Souza IDC, Rocha LD, Duarte ID, Martins IO, Dobbss LB, Carneiro MTWD, Fernandes MN, Matsumoto ST. Effects of humic acids from landfill leachate on plants: An integrated approach using chemical, biochemical and cytogenetic analysis. CHEMOSPHERE 2017; 184:309-317. [PMID: 28601664 DOI: 10.1016/j.chemosphere.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Biological process treatment of landfill leachate produces a significant amount of sludge, characterized by high levels of organic matter from which humic acids are known to activate several enzymes of energy metabolism, stimulating plant growth. This study aimed to characterize humic acids extracted from landfill sludge and assess the effects on plants exposed to different concentrations (0.5, 1, 2 and 4 mM C L-1) by chemical and biological analysis, to elucidate the influence of such organic material and minimize potential risks of using sludge in natura. Landfill humic acids showed high carbon and nitrogen levels, which may represent an important source of nutrients for plants. Biochemical analysis demonstrated an increase of enzyme activity, especially H+-ATPase in 2 mM C L-1 landfill humic acid. Additionally, cytogenetic alterations were observed in meristematic and F1 cells, through nuclear abnormalities and micronuclei. Multivariate statistical analysis provided integration of physical, chemical and biological data. Despite all the nutritional benefits of humic acids and their activation of plant antioxidant systems, the observed biological effects showed concerning levels of mutagenicity.
Collapse
Affiliation(s)
- Mariana Morozesk
- Physiological Science Department, Federal University of Sao Carlos, Av. Washington Luiz, Km 235, 13565-905, Sao Carlos, Sao Paulo, Brazil
| | - Marina Marques Bonomo
- Physiological Science Department, Federal University of Sao Carlos, Av. Washington Luiz, Km 235, 13565-905, Sao Carlos, Sao Paulo, Brazil
| | - Iara da Costa Souza
- Physiological Science Department, Federal University of Sao Carlos, Av. Washington Luiz, Km 235, 13565-905, Sao Carlos, Sao Paulo, Brazil
| | - Lívia Dorsch Rocha
- Biological Science Department, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitoria, Espirito Santo, Brazil
| | - Ian Drumond Duarte
- Biological Science Department, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitoria, Espirito Santo, Brazil
| | - Ian Oliveira Martins
- Biological Science Department, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitoria, Espirito Santo, Brazil
| | - Leonardo Barros Dobbss
- Institute of Agricultural Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Avenida Vereador Joao Narciso, 1380, 38610-000, Unai, Minas Gerais, Brazil
| | | | - Marisa Narciso Fernandes
- Physiological Science Department, Federal University of Sao Carlos, Av. Washington Luiz, Km 235, 13565-905, Sao Carlos, Sao Paulo, Brazil
| | - Silvia Tamie Matsumoto
- Biological Science Department, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitoria, Espirito Santo, Brazil.
| |
Collapse
|
46
|
TEDESCO MARÍLIA, KUHN ANDRIELLEW, FRESCURA VIVIANEDALSOUTO, BOLIGON ALINEA, ATHAYDE MARGARETHL, TEDESCO SOLANGEB, SILVA ANTONIOCDA. Assessment of the antiproliferative and antigenotoxic activity and phytochemical screening of aqueous extracts of Sambucus australis Cham. & Schltdl. (ADOXACEAE). ACTA ACUST UNITED AC 2017; 89:2141-2154. [DOI: 10.1590/0001-3765201720150138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/05/2016] [Indexed: 11/22/2022]
|
47
|
de Castro E Sousa JM, Peron AP, da Silva E Sousa L, de Moura Holanda M, de Macedo Vieira Lima A, de Oliveira VA, da Silva FCC, de Morais Lima LHG, Matos LA, de Moura Dantas SMM, de Aguiar RPS, Islam MT, de Carvalho Melo-Cavalcante AA, Bonecker CC, Junior HFJ. Cytotoxicity and genotoxicity of Guaribas river water (Piauí, Brazil), influenced by anthropogenic action. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:301. [PMID: 28555439 DOI: 10.1007/s10661-017-6015-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
In general, tropical rivers have a great impact on human activities. Bioaccumulation of toxins is a worldwide problem nowadays and has been, historically, overlooked by the supervisory authorities. This study evaluated cytogenotoxic effects of Guaribas river (a Brazilian river) water during dry and rainy seasons of 2014 by using the Allium cepa test system. The toxicogenetic variables, including root growth, mitotic index, and chromosomal aberrations, were analyzed in meristematic cells of A. cepa exposed to water samples taken from the up-, within, and downstream of the city Picos (state: Piauí). The physical-chemical parameters were also analyzed to explain water quality and possible anthropogenic action. Additionally, the presence of heavy metals was also analyzed to explain water quality and possible damaging effects on eukaryotic cells. The results suggest that the river water exerted cytotoxic, mutagenic, and genotoxic effects, regardless of the seasons. In addition, Guaribas river presented physico-chemical values outside the Brazilian laws, which can be a characteristic of human pollution (domestic sewage, industrial, and local agriculture). The genetic damage was positively correlated with higher levels of heavy metals. The pollution of the Guaribas river water may link to the chemical contamination, including the action of heavy metals and their impacts on genetic instability in the aquatic ecosystem. In conclusion, necessary steps should be taken into account for further toxicogenetic studies of the Guaribas river water, as it has an influence in human health of the same region of Brazil.
Collapse
Affiliation(s)
- João Marcelo de Castro E Sousa
- Department of Biological Sciences, Federal University of Piauí, Campus Senator Helvidiu Nunes de Barros, Av. Cicero Duarte, Picos, Piauí, 64600-000, Brazil
| | - Ana Paula Peron
- Department of Biological Sciences, Federal University of Piauí, Campus Senator Helvidiu Nunes de Barros, Av. Cicero Duarte, Picos, Piauí, 64600-000, Brazil
| | - Louridânya da Silva E Sousa
- Department of Biological Sciences, Federal University of Piauí, Campus Senator Helvidiu Nunes de Barros, Av. Cicero Duarte, Picos, Piauí, 64600-000, Brazil
| | - Mércia de Moura Holanda
- Department of Biological Sciences, Federal University of Piauí, Campus Senator Helvidiu Nunes de Barros, Av. Cicero Duarte, Picos, Piauí, 64600-000, Brazil
| | - Ataíde de Macedo Vieira Lima
- Department of Biological Sciences, Federal University of Piauí, Campus Senator Helvidiu Nunes de Barros, Av. Cicero Duarte, Picos, Piauí, 64600-000, Brazil
| | - Vitor Alves de Oliveira
- Department of Biological Sciences, Federal University of Piauí, Campus Senator Helvidiu Nunes de Barros, Av. Cicero Duarte, Picos, Piauí, 64600-000, Brazil
| | - Felipe Cavalcanti Carneiro da Silva
- Department of Biological Sciences, Federal University of Piauí, Campus Senator Helvidiu Nunes de Barros, Av. Cicero Duarte, Picos, Piauí, 64600-000, Brazil
| | | | - Leomá Albuquerque Matos
- Department of Biological Sciences, Federal University of Piauí, Campus Minister Petronio Portela, Ininga neighborhood, Teresina, Piauí, 64049-550, Brazil
| | - Sandra Maria Mendes de Moura Dantas
- Department of Biological Sciences, Federal University of Piauí, Campus Minister Petronio Portela, Ininga neighborhood, Teresina, Piauí, 64049-550, Brazil
| | - Raí Pablo Sousa de Aguiar
- Department of Pharmacy, Graduate Program in Ph armaceutical Sciences, Federal University of Piauí, Campus Minister Petronio Portela, Ininga neighborhood, Teresina, Piauí, 64049-550, Brazil
| | - Muhammad Torequl Islam
- Department of Pharmacy, Graduate Program in Ph armaceutical Sciences, Federal University of Piauí, Campus Minister Petronio Portela, Ininga neighborhood, Teresina, Piauí, 64049-550, Brazil.
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Department of Pharmacy, Graduate Program in Ph armaceutical Sciences, Federal University of Piauí, Campus Minister Petronio Portela, Ininga neighborhood, Teresina, Piauí, 64049-550, Brazil
| | - Cláudia Costa Bonecker
- Departament of Biological Sciences, Center for Research in Limnology, Ichthyology and agriculture, State University of Maringa, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | - Horácio Ferreira Júlio Junior
- Departament of Biological Sciences, Center for Research in Limnology, Ichthyology and agriculture, State University of Maringa, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| |
Collapse
|
48
|
CARVALHO BDL, SALES IMS, PERON AP. Cytotoxic, genotoxic and mutagenic potential of UHT whole milk. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.21916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Ana Paula PERON
- Universidade Federal do Piauí, Brazil; Universidade Federal do Piauí, Brazil
| |
Collapse
|
49
|
Hara RV, Marin-Morales MA. In vitro and in vivo investigation of the genotoxic potential of waters from rivers under the influence of a petroleum refinery (São Paulo State - Brazil). CHEMOSPHERE 2017; 174:321-330. [PMID: 28183058 DOI: 10.1016/j.chemosphere.2017.01.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
In recent years concern about the chemical composition of wastewater generated by the oil refining industry has increased, even after its treatment. These wastewaters contain substances that can harm both the entire aquatic ecosystem and the health of any exposed organisms. The aim of this study was to evaluate the genotoxic and mutagenic potentials of the effluent generated by the largest Brazilian petroleum refinery, the effectiveness of the treatments used by the refinery, and whether its effluent can compromise the water quality of the river where it is discarded. Chromosomal aberration and micronucleus assays were performed in Allium cepa and micronucleus test in mammalian cell culture (CHO-K1). The samples were collected in three sites at the refinery: one site on the Jaguari River and two sites on the Atibaia Rivers (upstream and downstream of the discharged effluent), under three different climatic conditions. Tests with A. cepa showed increased frequencies of chromosomal aberrations and micronuclei in meristematic cells for the effluent after physico-chemical treatment, but the samples after treatment biological and stabilization pond presented none of these abnormalities. It was observed that the induced damage in the meristematic cells was not observed in the F1 cells of A. cepa roots. The micronucleus test performed with mammalian cell culture also indicated that the effluent, after physico-chemical treatment, induced a significant increase in micronucleus frequencies. Plant and hamster cells exposed to the other samples collected inside the refinery and in the Jaguari and Atibaia Rivers did not present evidence of genotoxicity and mutagenicity in the tests performed. This study showed that the effluent treated carried out by the refinery (biological treatment followed by a stabilization pond) proved to be efficient for the removal of the toxic load still present after the physico-chemical treatment, since no change in the quality of the Atibaia River was observed. However, because this is an industry with a high production of effluent with toxic potential, its effluents must be constantly monitored, so that there is no compromise of the water quality of the receiving river.
Collapse
Affiliation(s)
- Raquel Vaz Hara
- UNESP - Institute of Biosciences, Department of Biology, Av 24-A, 1515, CEP 13506-900, Rio Claro, São Paulo, Brazil
| | - Maria Aparecida Marin-Morales
- UNESP - Institute of Biosciences, Department of Biology, Av 24-A, 1515, CEP 13506-900, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
50
|
Duarte ID, Silva NHVF, da Costa Souza I, de Oliveira LB, Rocha LD, Morozesk M, Bonomo MM, de Almeida Pereira T, Dias MC, de Oliveira Fernandes V, Matsumoto ST. Water quality of a coastal lagoon (ES, Brazil): abiotic aspects, cytogenetic damage, and phytoplankton dynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10855-10868. [PMID: 28293825 DOI: 10.1007/s11356-017-8721-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Assessment of water resources requires interdisciplinary studies that include multiple ecosystem aspects. This study evaluated the water quality of Juara Lagoon (ES, Brazil) based on physical and chemical variables, cytogenetic responses in Allium cepa and phytoplankton dynamics. Three sampling sites were defined and water samples were collected during two sampling periods. Analyses such as determination of photic zone, conductivity, and concentrations of nutrients and metals were conducted as well as cytotoxic, mutagenic, and genotoxic potentials using A. cepa test. The main attributes of phytoplankton community, such as total richness, total density, density by class, dominance, and diversity, were also evaluated. Results have revealed that Juara Lagoon has signs of artificial eutrophication at two sampling sites due to high levels of total phosphorus and ammonia nitrogen. Cytotoxic, genotoxic, and mutagenic potentials were detected as well as high concentrations of Fe and Mn. Furthermore, 165 phytoplankton taxa were recorded, with highest richness in Chlorophyceae and Cyanophyceae classes. In addition, Cyanophyceae presented as the highest density class. A. cepa test and phytoplankton community evaluation indicated that the ecological quality of Juara Lagoon is compromised.
Collapse
Affiliation(s)
- Ian Drumond Duarte
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Nayara Heloisa Vieira Fraga Silva
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Av. Washington Luiz, Km 235, São Carlos, CEP 13565-905, São Paulo, Brazil
| | - Larissa Bassani de Oliveira
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Lívia Dorsch Rocha
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Av. Washington Luiz, Km 235, São Carlos, CEP 13565-905, São Paulo, Brazil
| | - Marina Marques Bonomo
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Av. Washington Luiz, Km 235, São Carlos, CEP 13565-905, São Paulo, Brazil
| | - Thaís de Almeida Pereira
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Mauro Cesar Dias
- Departamento de Química, Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES), Avenida Ministro Salgado Filho, n 1000, Vila Velha, CEP 29106-010, Espírito Santo, Brazil
| | - Valéria de Oliveira Fernandes
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil
| | - Silvia Tamie Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, CEP 29075-910, Brazil.
| |
Collapse
|