1
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
2
|
Gao T, Luo J, Fan J, Gong G, Yang H. Epigenetic modifications associated to diabetic peripheral neuropathic pain (Review). Mol Med Rep 2025; 31:28. [PMID: 39540354 PMCID: PMC11579833 DOI: 10.3892/mmr.2024.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The present review aimed to provide an update on the scientific progress of the role of epigenetic modifications on diabetic peripheral neuropathic pain (DPNP). DPNP is a devastating and troublesome complication of diabetes mellitus (DM), which affects one third of patients with DM and causes severe hyperalgesia and allodynia, leading to challenges in the treatment of these patients. The pathophysiology of DPNP is multifactorial and is not yet fully understood and treatment options for this disease are currently unsatisfactory. The underlying mechanisms and pathophysiology of DPNP have largely been explored in animal models and a mechanism‑derived approach might offer a potential therapeutic‑target for attenuating certain phenotypes of DPNP. Altered gene expression levels within the peripheral or central nervous systems (CNS) are a crucial mechanism of DPNP, however, the transcriptional mechanisms of these genes have not been fully elucidated. Epigenetic modifications, such as DNA methylation and histone modifications (methylation, acetylation, or phosphorylation), can alter gene expression levels via chromatin remodeling. Moreover, it has been reported that altering gene expression via epigenetic modifications within the peripheral or CNS, contributes to the changes in both pain sensitivity and pharmacological efficacy in DPNP. Therefore, the present review summarized the findings of relevant literature on the epigenetic alterations in DPNP and the therapeutic potential for targeting these alterations in the future treatment of this disease.
Collapse
Affiliation(s)
- Tangqing Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jingya Luo
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Juanning Fan
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Haihong Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
3
|
Zippo AG, Rodriguez‐Menendez V, Pozzi E, Canta A, Chiorazzi A, Ballarini E, Monza L, Alberti P, Meregalli C, Bravin A, Coan P, Longo E, Saccomano G, Paiva K, Tromba G, Cavaletti G, Carozzi VA. Paclitaxel alters the microvascular network in the central and peripheral nervous system of rats with chemotherapy-induced painful peripheral neuropathy. J Peripher Nerv Syst 2024; 29:537-554. [PMID: 39434652 PMCID: PMC11625995 DOI: 10.1111/jns.12660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND AND AIMS Chemotherapy-induced peripheral neurotoxicity (CIPN), with paraesthesia, numbness, dysesthesia and neuropathic pain ranks among the most common dose-limiting toxicity of several widely used anticancer drugs. Recent studies revealed the microvascular angiogenesis as a new important actor, beside peripheral neurons, in the neurotoxicity and neuropathic pain development and chronicisation. The aim of this work is to elucidate the role of vascular alterations in CIPN. METHODS We evaluated the severity of CIPN with neurophysiological, behavioural and neuropathological analysis together with the microvascular network in central and peripheral nervous systems of rats in order to correlate the features of the CIPN and the vascular abnormalities. The vascular network was quantitatively evaluated through synchrotron radiation-based X-ray phase-contrast micro-tomography imaging, measuring four specific parameters: vascular density, vessel diameter, vessel tortuosity and branching. RESULTS Rats exposed to paclitaxel and affected by a severe painful sensory axonopathy showed an increased vascular density (putative sprouting angiogenesis) in the crucial districts of the central (somatosensory cortex and lumbar spinal cord) and peripheral nervous system (lumbar dorsal root ganglia). In addition, the complexity of the vascular network and the size of neo-formed vessels were significantly decreased in specific regions. On the other hand, less significant changes were observed in rats exposed to cisplatin, affected by a painless peripheral neuropathy, suggesting a specific involvement of neo-angiogenesis in the development of severe neurotoxicity and neuropathic pain. INTERPRETATIONS These new ground-breaking results can shed light on new pathogenetic mechanisms and potential novel therapeutic approaches for painful-CIPN.
Collapse
Affiliation(s)
| | - Virginia Rodriguez‐Menendez
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Elisa Ballarini
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
- Fondazione IRCCS San Gerardo dei TintoriMonzaItaly
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Alberto Bravin
- Physics DepartmentUniversity of Milano‐BicoccaMilanItaly
| | - Paola Coan
- Faculty of PhysicsLudwig‐Maximillian UniversityMunichGermany
| | - Elena Longo
- Elettra‐Sincrotrone Trieste S.C.p.ATriesteItaly
| | - Giulia Saccomano
- Elettra‐Sincrotrone Trieste S.C.p.ATriesteItaly
- Department of Architecture and EngineeringUniversity of TriesteTriesteItaly
| | - Katrine Paiva
- Laboratory of Applied Physics to Biomedical Science, Physics InstituteRio de Janeiro State UniversityRio de JaneiroBrazil
| | | | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
- Fondazione IRCCS San Gerardo dei TintoriMonzaItaly
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| |
Collapse
|
4
|
Da Vitoria Lobo M, Hardowar L, Valentine T, Tomblin L, Guest C, Sharma D, Dickins B, Paul-Clark M, Hulse RP. Early-life cisplatin exposure induces neuroinflammation and chemotherapy-induced neuropathic pain. Dis Model Mech 2024; 17:dmm052062. [PMID: 39428813 PMCID: PMC11625889 DOI: 10.1242/dmm.052062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a common adverse health-related comorbidity that manifests later in life in patients with paediatric cancer. Current analgesia is ineffective, aligning closely with our lack of understanding of CINP. The aim of this study was to investigate how cisplatin induces nerve growth factor (NGF)-mediated neuroinflammation and nociceptor sensitisation. In a rat model of cisplatin-induced survivorship pain, cisplatin induced a neuroinflammatory environment in the dorsal root ganglia (DRG), demonstrated by NGF-positive macrophages infiltrating into the DRG. Cisplatin-treated CD11b- and F4/80-positive macrophages expressed more NGF compared to those treated with vehicle control. Mouse primary DRG sensory neuronal cultures demonstrated enhanced NGF-dependent TRPV1-mediated nociceptor activity after cisplatin treatment. Increased nociceptor activity was also observed when cultured mouse DRG neurons were treated with conditioned medium from cisplatin-activated macrophages. Elevated nociceptor activity was inhibited in a dose-dependent manner by an NGF-neutralising antibody. Intraperitoneal administration of the NGF-neutralising antibody reduced cisplatin-induced mechanical hypersensitivity and aberrant nociceptor intraepidermal nerve fibre density. These findings identify that a monocyte- or macrophage-driven NGF-TrkA pathway is a novel analgesic target for adult survivors of childhood cancer.
Collapse
Affiliation(s)
- Marlene Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Lydia Hardowar
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Tameille Valentine
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Lucy Tomblin
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Charlotte Guest
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Dhyana Sharma
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Benjamin Dickins
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Mark Paul-Clark
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Richard Philip Hulse
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
5
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
6
|
Hardowar L, Valentine T, Da Vitoria Lobo M, Corbett J, Owen B, Skeen O, Tomblin L, Sharma D, Elphick-Ross J, Philip Hulse R. Cisplatin induced alterations in nociceptor developmental trajectory elicits a TrkA dependent platinum-based chemotherapy induced neuropathic pain. Neuroscience 2024; 559:39-53. [PMID: 39187001 DOI: 10.1016/j.neuroscience.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Cisplatin-based chemotherapy is a common treatment for paediatric cancer. Unfortunately, cisplatin treatment causes neuropathic pain, a highly prevalent adverse health related complication in adult childhood cancer survivors. Due to minimal understanding of this condition, there are currently no condition tailored analgesics available. Here we investigated an alteration in nociceptor maturation that results in neuronal sensitisation and manifestation of cisplatin induced survivorship pain in a TrkA dependent manner. Cisplatin was administered (i.p. 0.1 mg/kg Postnatal day 14 and 16) to neonatal male and female Wistar rats and nociceptive behavioural assays were performed. In vitro studies utilised isolated neonatal dorsal root ganglia sensory neurons treated with cisplatin (5 μg/ml) to elucidate impact upon nociceptor activation and neurite growth, in combination with TrkA inhibition (GW441756 10 nM and 100 nM). Cisplatin treated male and female neonatal Wistar rats developed a delayed but lasting mechanical and heat hypersensitivity. Cisplatin administration led to increased TrkA expression in dorsal root ganglia sensory neurons. Nerve growth factor (NGF) induced TrkA activation led to sensory neuritogenesis and nociceptor sensitisation, which could be prevented through pharmacological TrkA inhibition (GW441756 either s.c. 100 nM or i.p. 2 mg/kg). Administration of TrkA antagonist suppressed cisplatin induced TRPV1 mediated nociceptor sensitisation and prevented cisplatin induced neuropathic pain. These studies provide greater understanding of the underlying mechanisms that cause cisplatin induced childhood cancer survivorship pain and allowing identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Tameille Valentine
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Marlene Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jack Corbett
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Beccy Owen
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Oliver Skeen
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Lucy Tomblin
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Dhyana Sharma
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Jasmine Elphick-Ross
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Richard Philip Hulse
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
7
|
Zhu LS, Lai C, Zhou CW, Chen HY, Liu ZQ, Guo Z, Man H, Du HY, Lu Y, Hu F, Chen Z, Shu K, Zhu LQ, Liu D. Postsynaptic lncRNA Sera/Pkm2 pathway orchestrates the transition from social competition to rank by remodeling the neural ensemble in mPFC. Cell Discov 2024; 10:87. [PMID: 39160208 PMCID: PMC11333582 DOI: 10.1038/s41421-024-00706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Individuals' continuous success in competitive interactions with conspecifics strongly affects their social hierarchy. Medial prefrontal cortex (mPFC) is the key brain region mediating both social competition and hierarchy. However, the molecular regulatory mechanisms underlying the neural ensemble in the mPFC remains unclear. Here, we demonstrate that in excitatory neurons of prelimbic cortex (PL), lncRNA Sera remodels the utilization of Pkm Exon9 and Exon10, resulting in a decrease in the Pkm1/2 ratio in highly competitive mice. By employing a tet-on/off system, we disrupt or rebuild the normal Pkm1/2 ratio by controlling the expression of Pkm2 in PL excitatory neurons. We find that long-term Pkm2 modulation induces timely competition alteration and hysteretic rank change, through phosphorylating the Ser845 site of GluA1. Together, this study uncovers a crucial role of lncRNA Sera/Pkm2 pathway in the transition of social competition to rank by remodeling neural ensemble in mPFC.
Collapse
Affiliation(s)
- Ling-Shuang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao-Wen Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui-Yang Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Hui-Yun Du
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youming Lu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Dan Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Giordano R, Capriotti C, Gerra MC, Kappel A, Østgaard SE, Dallabona C, Arendt-Nielsen L, Petersen KKS. A potential link between inflammatory profiles, clinical pain, pain catastrophizing and long-term outcomes after total knee arthroplasty surgery. Eur J Pain 2024; 28:1202-1212. [PMID: 38407518 DOI: 10.1002/ejp.2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Chronic postoperative pain after total knee replacement (TKR) is a major clinical problem. It is still unclear if specific inflammatory mediators are associated with long-term postoperative pain complications. The current exploratory study aimed to (1) evaluate a multiplex of inflammatory mediators 5 years after TKR surgery in patients with different degrees of postoperative pain intensities and (2) study any association of the markers with clinical pain intensity, cognitive and functional outcomes. METHODS Plasma samples were collected 5 years after TKR surgery from 76 knee patients (43 females; 33 males) and analysed for 44 inflammatory markers. Pain (using visual analogue scale, VAS), the pain catastrophizing scale (PCS) and the Oxford knee score (OKS) were evaluated. Patients were categorized as high or low groups based on VAS, PCS and OKS scores. Associations between inflammatory markers, VAS, PCS and OKS were analysed and the marker expressions were compared between groups. RESULTS Pearson's correlations found 12 biomarkers associated with VAS (p < 0.05), 4 biomarkers with PCS and 3 biomarkers with OKS (p < 0.05). Four markers were altered in patients suffering from high compared to low chronic postoperative pain, three markers were altered in high compared to low catastrophizers and three markers were altered in patients with poor functional scores (p < 0.05). CONCLUSIONS The present exploratory study suggests that low-grade inflammation might be present in a subset of patients with high pain, high catastrophizing and low function 5 years after TKR. These exploratory results provide insights into some of the long-term postoperative complications after TKR surgery. SIGNIFICANCE STATEMENT This exploratory study evaluated a subset of inflammatory markers and the association to clinical pain intensity, knee function and pain catastrophizing in patients 5 years after total knee replacement surgery. Our results provide insights into the understanding of the underlying mechanisms that may drive the long experience of pain after TKR surgery.
Collapse
Affiliation(s)
- Rocco Giordano
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, Aalborg, Denmark
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Camilla Capriotti
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andreas Kappel
- Interdisciplinary Orthopedics, Department of Orthopedic surgery, Aalborg University Hospital, Aalborg University Hospital, Aalborg, Denmark
| | - Svend Erik Østgaard
- Interdisciplinary Orthopedics, Department of Orthopedic surgery, Aalborg University Hospital, Aalborg University Hospital, Aalborg, Denmark
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology & Hepatology, MechSense, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Kristian Kjær-Staal Petersen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Ran C, Olofsgård FJ, Wellfelt K, Steinberg A, Belin AC. Elevated cytokine levels in the central nervous system of cluster headache patients in bout and in remission. J Headache Pain 2024; 25:121. [PMID: 39044165 PMCID: PMC11267889 DOI: 10.1186/s10194-024-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Cluster headache is characterized by activation of the trigeminovascular pathway with subsequent pain signalling in the meningeal vessels, and inflammation has been suggested to play a role in the pathophysiology. To further investigate inflammation in cluster headache, inflammatory markers were analysed in patients with cluster headache and controls. METHODS We performed a case-control study, collecting cerebrospinal fluid and serum samples from healthy controls, cluster headache patients in remission, active bout, and during an attack to cover the dynamic range of the cluster headache phenotype. Inflammatory markers were quantified using Target 48 OLINK cytokine panels. RESULTS Altered levels of several cytokines were found in patients with cluster headache compared to controls. CCL8, CCL13, CCL11, CXCL10, CXCL11, HGF, MMP1, TNFSF10 and TNFSF12 levels in cerebrospinal fluid were comparable in active bout and remission, though significantly higher than in controls. In serum samples, CCL11 and CXCL11 displayed decreased levels in patients. Only one cytokine, IL-13 was differentially expressed in serum during attacks. CONCLUSION AND INTERPRETATION Our data shows signs of possible neuroinflammation occurring in biological samples from cluster headache patients. Increased cerebrospinal fluid cytokine levels are detectable in active bout and during remission, indicating neuroinflammation could be considered a marker for cluster headache and is unrelated to the different phases of the disorder.
Collapse
Affiliation(s)
- Caroline Ran
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | - Katrin Wellfelt
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Smith PR, Campbell ZT. RNA-binding proteins in pain. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1843. [PMID: 38576117 PMCID: PMC11003723 DOI: 10.1002/wrna.1843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
RNAs are meticulously controlled by proteins. Through direct and indirect associations, every facet in the brief life of an mRNA is subject to regulation. RNA-binding proteins (RBPs) permeate biology. Here, we focus on their roles in pain. Chronic pain is among the largest challenges facing medicine and requires new strategies. Mounting pharmacologic and genetic evidence obtained in pre-clinical models suggests fundamental roles for a broad array of RBPs. We describe their diverse roles that span RNA modification, splicing, stability, translation, and decay. Finally, we highlight opportunities to expand our understanding of regulatory interactions that contribute to pain signaling. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patrick R. Smith
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
| | - Zachary T. Campbell
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53792
| |
Collapse
|
11
|
Zhai M, Huang J, Yang S, Li N, Zeng J, Zheng Y, Sun W, Wu B. Transcriptomic analysis of differentially alternative splicing patterns in mice with inflammatory and neuropathic pain. Mol Pain 2024; 20:17448069241249455. [PMID: 38597175 PMCID: PMC11084985 DOI: 10.1177/17448069241249455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Although the molecular mechanisms of chronic pain have been extensively studied, a global picture of alternatively spliced genes and events in the peripheral and central nervous systems of chronic pain is poorly understood. The current study analyzed the changing pattern of alternative splicing (AS) in mouse brain, dorsal root ganglion, and spinal cord tissue under inflammatory and neuropathic pain. In total, we identified 6495 differentially alternatively spliced (DAS) genes. The molecular functions of shared DAS genes between these two models are mainly enriched in calcium signaling pathways, synapse organization, axon regeneration, and neurodegeneration disease. Additionally, we identified 509 DAS in differentially expressed genes (DEGs) shared by these two models, accounting for a small proportion of total DEGs. Our findings supported the hypothesis that the AS has an independent regulation pattern different from transcriptional regulation. Taken together, these findings indicate that AS is one of the important molecular mechanisms of chronic pain in mammals. This study presents a global description of AS profile changes in the full path of neuropathic and inflammatory pain models, providing new insights into the underlying mechanisms of chronic pain and guiding genomic clinical diagnosis methods and rational medication.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Southern University of Science and Technology Yantian Hospital, Shenzhen, China
- Benqing Laboratory, Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Jiabin Huang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Na Li
- Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Jun Zeng
- Center for Medical Experiments (CME), Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Yi Zheng
- Center for Medical Experiments (CME), Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Benqing Wu
- Benqing Laboratory, Shenzhen Guangming District People’s Hospital, Shenzhen, China
| |
Collapse
|
12
|
Song Y, Wang ZY, Luo J, Han WC, Wang XY, Yin C, Zhao WN, Hu SW, Zhang Q, Li YQ, Cao JL. CWC22-Mediated Alternative Splicing of Spp1 Regulates Nociception in Inflammatory Pain. Neuroscience 2023; 535:50-62. [PMID: 37838283 DOI: 10.1016/j.neuroscience.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Increasing evidence suggests that alternative splicing plays a critical role in pain, but its underlying mechanism remains elusive. Herein, we employed complete Freund's adjuvant (CFA) to induce inflammatory pain in mice. A combination of genomics research techniques, lentivirus-based genetic manipulations, behavioral tests, and molecular biological technologies confirmed that splicing factor Cwc22 mRNA and CWC22 protein were elevated in the spinal dorsal horn at 3 days after CFA injection. Knockdown of spinal CWC22 by lentivirus transfection (lenti-shCwc22) reversed CFA-induced thermal hyperalgesia and mechanical allodynia, whereas upregulation of spinal CWC22 (lenti-Cwc22) in naïve mice precipitated pain. Comprehensive transcriptome and genome analysis identified the secreted phosphoprotein 1 (Spp1) as a potential gene of CWC22-mediated alternative splicing, however, only Spp1 splicing variant 4 (Spp1 V4) was involved in thermal and mechanical nociceptive regulation. In conclusion, our findings demonstrate that spinal CWC22 regulates Spp1 V4 to participate in CFA-induced inflammatory pain. Blocking CWC22 or CWC22-mediated alternative splicing may provide a novel therapeutic target for the treatment of persistent inflammatory pain.
Collapse
Affiliation(s)
- Yu Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Zhi-Yong Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210008, China
| | - Jun Luo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Wen-Can Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xiao-Yi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Department of Anesthesiology, Gulou Hospital Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu Province 210008, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yan-Qiang Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
13
|
Gomez K, Duran P, Tonello R, Allen HN, Boinon L, Calderon-Rivera A, Loya-López S, Nelson TS, Ran D, Moutal A, Bunnett NW, Khanna R. Neuropilin-1 is essential for vascular endothelial growth factor A-mediated increase of sensory neuron activity and development of pain-like behaviors. Pain 2023; 164:2696-2710. [PMID: 37366599 PMCID: PMC10751385 DOI: 10.1097/j.pain.0000000000002970] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/26/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that binds numerous ligands including vascular endothelial growth factor A (VEGFA). Binding of this ligand to NRP-1 and the co-receptor, the tyrosine kinase receptor VEGFR2, elicits nociceptor sensitization resulting in pain through the enhancement of the activity of voltage-gated sodium and calcium channels. We previously reported that blocking the interaction between VEGFA and NRP-1 with the Spike protein of SARS-CoV-2 attenuates VEGFA-induced dorsal root ganglion (DRG) neuronal excitability and alleviates neuropathic pain, pointing to the VEGFA/NRP-1 signaling as a novel therapeutic target of pain. Here, we investigated whether peripheral sensory neurons and spinal cord hyperexcitability and pain behaviors were affected by the loss of NRP-1. Nrp-1 is expressed in both peptidergic and nonpeptidergic sensory neurons. A CRIPSR/Cas9 strategy targeting the second exon of nrp-1 gene was used to knockdown NRP-1. Neuropilin-1 editing in DRG neurons reduced VEGFA-mediated increases in CaV2.2 currents and sodium currents through NaV1.7. Neuropilin-1 editing had no impact on voltage-gated potassium channels. Following in vivo editing of NRP-1, lumbar dorsal horn slices showed a decrease in the frequency of VEGFA-mediated increases in spontaneous excitatory postsynaptic currents. Finally, intrathecal injection of a lentivirus packaged with an NRP-1 guide RNA and Cas9 enzyme prevented spinal nerve injury-induced mechanical allodynia and thermal hyperalgesia in both male and female rats. Collectively, our findings highlight a key role of NRP-1 in modulating pain pathways in the sensory nervous system.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Raquel Tonello
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, AZ, United States of America
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Tyler S. Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, AZ, United States of America
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University; Saint Louis, MO, United States of America
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016 USA
| |
Collapse
|
14
|
Arendt-Tranholm A, Mwirigi JM, Price TJ. RNA isoform expression landscape of the human dorsal root ganglion (DRG) generated from long read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564535. [PMID: 37961262 PMCID: PMC10634934 DOI: 10.1101/2023.10.28.564535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Splicing is a post-transcriptional RNA processing mechanism that enhances genomic complexity by creating multiple isoforms from the same gene. Diversity in splicing in the mammalian nervous system is associated with neuronal development, synaptic function and plasticity, and is also associated with diseases of the nervous system ranging from neurodegeneration to chronic pain. We aimed to characterize the isoforms expressed in the human peripheral nervous system, with the goal of creating a resource to identify novel isoforms of functionally relevant genes associated with somatosensation and nociception. We used long read sequencing (LRS) to document isoform expression in the human dorsal root ganglia (hDRG) from 3 organ donors. Isoforms were validated in silico by confirming expression in hDRG short read sequencing (SRS) data from 3 independent organ donors. 19,547 isoforms of protein-coding genes were detected using LRS and validated with SRS and strict expression cutoffs. We identified 763 isoforms with at least one previously undescribed splice-junction. Previously unannotated isoforms of multiple pain-associated genes, including ASIC3, MRGPRX1 and HNRNPK were identified. In the novel isoforms of ASIC3, a region comprising ~35% of the 5'UTR was excised. In contrast, a novel splice-junction was utilized in isoforms of MRGPRX1 to include an additional exon upstream of the start-codon, consequently adding a region to the 5'UTR. Novel isoforms of HNRNPK were identified which utilized previously unannotated splice-sites to both excise exon 14 and include a sequence in the 5' end of exon 13. The insertion and deletion in the coding region was predicted to excise a serine-phosphorylation site favored by cdc2, and replace it with a tyrosine-phosphorylation site potentially phosphorylated by SRC. We also independently confirm a recently reported DRG-specific splicing event in WNK1 that gives insight into how painless peripheral neuropathy occurs when this gene is mutated. Our findings give a clear overview of mRNA isoform diversity in the hDRG obtained using LRS. Using this work as a foundation, an important next step will be to use LRS on hDRG tissues recovered from people with a history of chronic pain. This should enable identification of new drug targets and a better understanding of chronic pain that may involve aberrant splicing events.
Collapse
Affiliation(s)
- Asta Arendt-Tranholm
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Juliet M. Mwirigi
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| |
Collapse
|
15
|
Alalwany RH, Hawtrey T, Morgan K, Morris JC, Donaldson LF, Bates DO. Vascular endothelial growth factor isoforms differentially protect neurons against neurotoxic events associated with Alzheimer's disease. Front Mol Neurosci 2023; 16:1181626. [PMID: 37456522 PMCID: PMC10349181 DOI: 10.3389/fnmol.2023.1181626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, the chronic and progressive deterioration of memory and cognitive abilities. AD can be pathologically characterised by neuritic plaques and neurofibrillary tangles, formed by the aberrant aggregation of β-amyloid and tau proteins, respectively. We tested the hypothesis that VEGF isoforms VEGF-A165a and VEGF-A165b, produced by differential splice site selection in exon 8, could differentially protect neurons from neurotoxicities induced by β-amyloid and tau proteins, and that controlling expression of splicing factor kinase activity could have protective effects on AD-related neurotoxicity in vitro. Using oxidative stress, β-amyloid, and tau hyperphosphorylation models, we investigated the effect of VEGF-A splicing isoforms, previously established to be neurotrophic agents, as well as small molecule kinase inhibitors, which selectively inhibit SRPK1, the major regulator of VEGF splicing. While both VEGF-A165a and VEGF-A165b isoforms were protective against AD-related neurotoxicity, measured by increased metabolic activity and neurite outgrowth, VEGF-A165a was able to enhance neurite outgrowth but VEGF-A165b did not. In contrast, VEGF-A165b was more effective than VEGF-A165a in preventing neurite "dieback" in a tau hyperphosphorylation model. SRPK1 inhibition was found to significantly protect against neurite "dieback" through shifting AS of VEGFA towards the VEGF-A165b isoform. These results indicate that controlling the activities of the two different isoforms could have therapeutic potential in Alzheimer's disease, but their effect may depend on the predominant mechanism of the neurotoxicity-tau or β-amyloid.
Collapse
Affiliation(s)
- Roaa H. Alalwany
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Tom Hawtrey
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Kevin Morgan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan C. Morris
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Lucy F. Donaldson
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David O. Bates
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Sharma A, Behl T, Sharma L, Shah OP, Yadav S, Sachdeva M, Rashid S, Bungau SG, Bustea C. Exploring the molecular pathways and therapeutic implications of angiogenesis in neuropathic pain. Biomed Pharmacother 2023; 162:114693. [PMID: 37062217 DOI: 10.1016/j.biopha.2023.114693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Recently, much attention has been paid to chronic neuro-inflammatory condition underlying neuropathic pain. It is generally linked with thermal hyperalgesia and tactile allodynia. It results due to injury or infection in the nervous system. The neuropathic pain spectrum covers a variety of pathophysiological states, mostly involved are ischemic injury viral infections associated neuropathies, chemotherapy-induced peripheral neuropathies, autoimmune disorders, traumatic origin, hereditary neuropathies, inflammatory disorders, and channelopathies. In CNS, angiogenesis is evident in inflammation of neurons and pain in bone cancer. The role of chemokines and cytokines is dualistic; their aggressive secretion produces detrimental effects, leading to neuropathic pain. However, whether the angiogenesis contributes and exists in neuropathic pain remains doubtful. In the present review, we elucidated summary of diverse mechanisms of neuropathic pain associated with angiogenesis. Moreover, an overview of multiple targets that have provided insights on the VEGF signaling, signaling through Tie-1 and Tie-2 receptor, erythropoietin pathway promoting axonal growth are also discussed. Because angiogenesis as a result of these signaling, results in inflammation, we focused on the mechanisms of neuropathic pain. These factors are mainly responsible for the activation of post-traumatic regeneration of the PNS and CNS. Furthermore, we also reviewed synthetic and herbal treatments targeting angiogenesis in neuropathic pain.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, 248007 Dehradun, Uttarakhand, India.
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Shivam Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain 00000, United Arab Emirates
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410028, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania
| |
Collapse
|
17
|
Ueda T, Watanabe M, Miwa Y, Shibata Y, Kumamoto N, Ugawa S. Vascular endothelial growth factor-A is involved in intramuscular carrageenan-induced cutaneous mechanical hyperalgesia through the vascular endothelial growth factor-A receptor 1 and transient receptor potential vanilloid 1 pathways. Neuroreport 2023; 34:238-248. [PMID: 36789844 PMCID: PMC10516176 DOI: 10.1097/wnr.0000000000001885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Vascular endothelial growth factor-A (VEGF-A) plays a leading role in angiogenesis and pain hypersensitivity in cancer and chronic pain. It is not only induced by ischemic conditions but is also highly correlated with proalgesic cytokines, both of which are prominent in inflammatory muscle pain. However, the molecular basis of the involvement of VEGF-A in muscle pain remains unknown. METHODS In the present study, we performed behavioral and pharmacological analyses to determine the possible involvement of VEGF-A in the development of inflammatory muscle pain and the associated signal transduction pathway. RESULTS Unilateral intramuscular injection of carrageenan, a classical model of inflammatory muscle pain, increased VEGF-A gene expression in the tissues surrounding the injection site. Intramuscular administration of recombinant VEGF-A165 on the same side induced cutaneous mechanical hyperalgesia during the acute and subacute phases. The application of a specific VEGFR1 antibody on the same side significantly reduced the mechanical hyperalgesia induced by carrageenan or VEGF-A165 injection, whereas both a VEGFR2-neutralizing antibody and a VEGFR2 antagonist showed limited effects. Local preinjection of capsazepine, a transient receptor potential vanilloid 1 (TRPV1) antagonist, also inhibited VEGF-A165-induced hyperalgesia. Finally, intramuscular VEGF-A165-induced mechanical hyperalgesia was not found in TRPV1 knockout mice during the subacute phase. CONCLUSIONS These findings suggest that inflammatory stimuli increase interstitial VEGF-A165, which in turn induces cutaneous mechanical pain via the VEGFR1-mediated TRPV1 nociceptive pathway during inflammatory muscle pain. VEGFR1 could be a novel therapeutic target for inflammation-induced muscle pain.
Collapse
Affiliation(s)
- Takashi Ueda
- Department of Neuroscience and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi
| | - Masaya Watanabe
- Department of Neuroscience and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi
- Institute of Physiology and Medicine, Jobu University, Shinmachi, Takasaki, Gunma, Japan
| | - Youko Miwa
- Department of Neuroscience and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi
| | - Yasuhiro Shibata
- Department of Neuroscience and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi
| | - Natsuko Kumamoto
- Department of Neuroscience and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi
| | - Shinya Ugawa
- Department of Neuroscience and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi
| |
Collapse
|
18
|
Li M, Li J, Chen H, Zhu M. VEGF-Expressing Mesenchymal Stem Cell Therapy for Safe and Effective Treatment of Pain in Parkinson's Disease. Cell Transplant 2023; 32:9636897221149130. [PMID: 36635947 PMCID: PMC9841873 DOI: 10.1177/09636897221149130] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a pro-angiogenic factor that mediates the differentiation and function of vascular endothelial cells. VEGF has been implicated in modulating various pains. However, the effects of VEGF in Parkinson's disease (PD)-related pain have not been studied. The goal of this study was to understand the effects of VEGF-expressing mesenchymal stem cells (MSCs) on PD-related pain and the involved mechanisms. We used two types of MSCs: hAMSC-Vector-GFP and hAMSC-VEGF189-GFP in PD mice. Then, the expression of VEGF and the viability have been compared between two types of MSCs. To demonstrate the therapeutic effect of hAMSC-VEGF189-GFP, we transplanted each cell line in a PD mouse model. Head mechanical withdrawal thresholds were examined. hAMSC-VEGF189-GFP was associated with significantly increased VEGF expression and slightly increased viability, compared with hAMSC-Vector-GFP. The transplanted hAMSC-VEGF189-GFP significantly improved mechanical allodynia and inhibited transient receptor potential vanilloid 1 (TRPV1) expression in site. And such pain relief effects could be partially blocked by TRPV1 agonist. However, we did not observe tumor generation or neuron degeneration in hAMSC-VEGF189-GFP-transplanted animals. Taken together, our data suggest that hAMSC-VEGF189-GFP is safely therapeutically appropriate for treating PD-related pain. VEGF inhibits TRPV1 expression, which may contribute to its analgesic properties.
Collapse
Affiliation(s)
- Man Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ji Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hong Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Mingxin Zhu, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China.
| |
Collapse
|
19
|
The VEGF/VEGFR Axis Revisited: Implications for Cancer Therapy. Int J Mol Sci 2022; 23:ijms232415585. [PMID: 36555234 PMCID: PMC9779738 DOI: 10.3390/ijms232415585] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) axis is indispensable in the process of angiogenesis and has been implicated as a key driver of tumor vascularization. Consequently, several strategies that target VEGF and its cognate receptors, VEGFR-1 and VEGFR-2, have been designed to treat cancer. While therapies targeting full-length VEGF have resulted in an improvement in both overall survival and progression-free survival in various cancers, these benefits have been modest. In addition, the inhibition of VEGFRs is associated with undesirable off-target effects. Moreover, VEGF splice variants that modulate sprouting and non-sprouting angiogenesis have been identified in recent years. Cues within the tumor microenvironment determine the expression patterns of these variants. Noteworthy is that the mechanisms of action of these variants challenge the established norm of VEGF signaling. Furthermore, the aberrant expression of some of these variants has been observed in several cancers. Herein, developments in the understanding of the VEGF/VEGFR axis and the splice products of these molecules, as well as the environmental cues that regulate these variants are reviewed. Furthermore, strategies that incorporate the targeting of VEGF variants to enhance the effectiveness of antiangiogenic therapies in the clinical setting are discussed.
Collapse
|
20
|
Peng Z, Yang F, Huang S, Tang Y, Wan L. Targeting Vascular endothelial growth factor A with soluble vascular endothelial growth factor receptor 1 ameliorates nerve injury-induced neuropathic pain. Mol Pain 2022; 18:17448069221094528. [PMID: 35354377 PMCID: PMC9706061 DOI: 10.1177/17448069221094528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain is a distressing medical condition with few effective treatments. The role of Vascular endothelial growth factor A (VEGFA) in inflammation pain has been confirmed in many researches. However, the mechanism of VEGFA affects neuropathic pain remains unclear. In this study, we demonstrated that VEGFA plays an important role in spare nerve injury (SNI)-induced neuropathic pain, which is mediated by enhanced expression and colocalized of VEGFA, p-AKT and TRPV1 in SNI-induced neuropathic pain model. Soluble VEGFR1 (sFlt1) not only relieved mechanical hyperalgesia and the expression of inflammatory markers, but ameliorated the expression of VEGFA, VEGFR2, p-AKT, and TRPV1 in spinal cord. However, these effects of sFlt1 can be blocked by rpVEGFA and by 740 Y-P. Therefore, our study indication that targeting VEGFA with sFlt1 reduces neuropathic pain development via the AKT/TRPV1 pathway in SNI-induced nerve injury. This study elucidates a new therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Zhe Peng
- Department of Pain Medicine, The
State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital,
Guangzhou
Medical University, Guangzhou, P.R.
China,Stem Cell Translational Medicine
Center, The Second Affiliated Hospital, Guangzhou Medical
University, Guangzhou, P. R. of China
| | - Fan Yang
- Department of Pain Medicine, The
State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital,
Guangzhou
Medical University, Guangzhou, P.R.
China,Stem Cell Translational Medicine
Center, The Second Affiliated Hospital, Guangzhou Medical
University, Guangzhou, P. R. of China
| | - Siting Huang
- Department of Pain Medicine, The
State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital,
Guangzhou
Medical University, Guangzhou, P.R.
China
| | - Yang Tang
- Department of Pain Medicine, The
State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital,
Guangzhou
Medical University, Guangzhou, P.R.
China,Stem Cell Translational Medicine
Center, The Second Affiliated Hospital, Guangzhou Medical
University, Guangzhou, P. R. of China
| | - Li Wan
- Department of Pain Medicine, The
State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital,
Guangzhou
Medical University, Guangzhou, P.R.
China,Stem Cell Translational Medicine
Center, The Second Affiliated Hospital, Guangzhou Medical
University, Guangzhou, P. R. of China,Li Wan, Department of Pain management, The
Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong Lu,
Guangzhou 510260, P.R. China.
| |
Collapse
|
21
|
Gowler PRW, Turnbull J, Shahtaheri M, Walsh DA, Barrett DA, Chapman V. Interplay between cellular changes in the knee joint, circulating lipids and pain behaviours in a slowly progressing murine model of osteoarthritis. Eur J Pain 2022; 26:2213-2226. [PMID: 36097797 PMCID: PMC9826505 DOI: 10.1002/ejp.2036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Synovial inflammation has known contributions to chronic osteoarthritis (OA) pain, but the potential role in transitions from early to late stages of OA pain is unclear. METHODS The slowly progressing surgical destabilization of the medial meniscus (DMM) murine OA model and sham control, was used in male C57BL/6J mice to investigate the interplay between knee inflammation, plasma pro- and anti-inflammatory oxylipins and pain responses during OA progression. Changes in joint histology, macrophage infiltration, chemokine receptor CX3CR1 expression, weight bearing asymmetry, and paw withdrawal thresholds were quantified 4, 8 and 16 weeks after surgery. Plasma levels of multiple bioactive lipid mediators were quantified using liquid chromatography with tandem mass-spectrometry (LC-MS/MS). RESULTS Structural joint damage was evident at 8 weeks post-DMM surgery onwards. At 16 weeks post-DMM surgery, synovial scores, numbers of CD68 and CD206 positive macrophages and pain responses were significantly increased. Plasma levels of oxylipins were negatively correlated with joint damage and synovitis scores at 4 and 8 weeks post-DMM surgery. Higher circulating levels of the pro-resolving oxylipin pre-cursor 17-HDHA were associated with lower weight bearing asymmetry at week 16. CONCLUSIONS The transition to chronic OA pathology and pain is likely influenced by both joint inflammation and plasma oxylipin mediators of inflammation and levels of pro-resolution molecules. SIGNIFICANCE Using a slow progressing surgical model of osteoarthritis we show how the changing balance between local and systemic inflammation may be of importance in the progression of pain behaviours during the transition to chronic osteoarthritis pain.
Collapse
Affiliation(s)
- Peter R. W. Gowler
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - James Turnbull
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of PharmacyUniversity of NottinghamNottinghamUK
| | - Mohsen Shahtaheri
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | - David A. Walsh
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | - David A. Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of PharmacyUniversity of NottinghamNottinghamUK
| | - Victoria Chapman
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
22
|
Rasoulinejad SA, Sarreshtehdari N, Mafi AR. The crosstalk between VEGF signaling pathway and long non-coding RNAs in neovascular retinal diseases: Implications for anti-VEGF therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Gowler PRW, Turnbull J, Shahtaheri M, Gohir S, Kelly T, McReynolds C, Yang J, Jha RR, Fernandes GS, Zhang W, Doherty M, Walsh DA, Hammock BD, Valdes AM, Barrett DA, Chapman V. Clinical and Preclinical Evidence for Roles of Soluble Epoxide Hydrolase in Osteoarthritis Knee Pain. Arthritis Rheumatol 2022; 74:623-633. [PMID: 34672113 PMCID: PMC8957539 DOI: 10.1002/art.42000] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Chronic pain due to osteoarthritis (OA) is a major clinical problem, and existing analgesics often have limited beneficial effects and/or adverse effects, necessitating the development of novel therapies. Epoxyeicosatrienoic acids (EETs) are endogenous antiinflammatory mediators, rapidly metabolized by soluble epoxide hydrolase (EH) to dihydroxyeicosatrienoic acids (DHETs). We undertook this study to assess whether soluble EH-driven metabolism of EETs to DHETs plays a critical role in chronic joint pain associated with OA and provides a new target for treatment. METHODS Potential associations of chronic knee pain with single-nucleotide polymorphisms (SNPs) in the gene-encoding soluble EH and with circulating levels of EETs and DHETs were investigated in human subjects. A surgically induced murine model of OA was used to determine the effects of both acute and chronic selective inhibition of soluble EH by N-[1-(1-oxopropy)-4-piperidinyl]-N'-(trifluoromethoxy)phenyl]-urea (TPPU) on weight-bearing asymmetry, hind paw withdrawal thresholds, joint histology, and circulating concentrations of EETs and DHETs. RESULTS In human subjects with chronic knee pain, 3 pain measures were associated with SNPs of the soluble EH gene EPHX2, and in 2 separate cohorts of subjects, circulating levels of EETs and DHETs were also associated with 3 pain measures. In the murine OA model, systemic administration of TPPU both acutely and chronically reversed established pain behaviors and decreased circulating levels of 8,9-DHET and 14,15-DHET. EET levels were unchanged by TPPU administration. CONCLUSION Our novel findings support a role of soluble EH in OA pain and suggest that inhibition of soluble EH and protection of endogenous EETs from catabolism represents a potential new therapeutic target for OA pain.
Collapse
Affiliation(s)
- Peter R. W. Gowler
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life Sciences. University of Nottingham, UK
| | - James Turnbull
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life Sciences. University of Nottingham, UK
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy. University of Nottingham, UK
| | - Mohsen Shahtaheri
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine. University of Nottingham, UK
| | - Sameer Gohir
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine. University of Nottingham, UK
| | - Tony Kelly
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine. University of Nottingham, UK
| | - Cindy McReynolds
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Centre, University of California, Davis, USA
| | - Jun Yang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Centre, University of California, Davis, USA
| | - Rakesh R. Jha
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life Sciences. University of Nottingham, UK
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy. University of Nottingham, UK
| | - Gwen S. Fernandes
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine. University of Nottingham, UK
| | - Weiya Zhang
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine. University of Nottingham, UK
| | - Michael Doherty
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine. University of Nottingham, UK
| | - David A. Walsh
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine. University of Nottingham, UK
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Centre, University of California, Davis, USA
| | - Ana. M. Valdes
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine. University of Nottingham, UK
| | - David A. Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy. University of Nottingham, UK
| | - Victoria Chapman
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life Sciences. University of Nottingham, UK
| |
Collapse
|
24
|
Fan LJ, Kan HM, Chen XT, Sun YY, Chen LP, Shen W. Vascular endothelial growth factor-A/vascular endothelial growth factor2 signaling in spinal neurons contributes to bone cancer pain. Mol Pain 2022; 18:17448069221075891. [PMID: 35083936 PMCID: PMC8874205 DOI: 10.1177/17448069221075891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tumor metastasis to bone is often accompanied by a severe pain syndrome (cancer-induced bone pain, CIBP) that is frequently unresponsive to analgesics, which markedly reduces patient quality of life and cancer treatment tolerance in patients. Prolonged pain can induce hypersensitivity via spinal plasticity, and several recent studies have implicated the involvement of vascular endothelial growth factor-A (VEGF-A) signaling in this process. Here, we speculated that CIBP is associated with VEGF-A/VEGFR2 signaling in the spinal cord. A mouse model of CIBP was established by intramedullary injection of Lewis lung carcinoma (LLC) cells in the mouse femur. Pain sensitization and potential amelioration via VEGF-A/VEGFR2 blockade were measured using paw withdrawal threshold to mechanical stimulation and paw withdrawal latency to thermal. Spinal VEGF-A/VEGFR2 signaling was blocked by intrathecal injection of the VEGF-A antibody or the specific VEGFR2 inhibitor ZM323881. Changes in the expression levels of VEGF-A, VEGFR2, and other pain-related signaling factors were measured using western blotting and immunofluorescence staining. Mice after LLC injection demonstrated mechanical allodynia and thermal hyperalgesia, both of which were suppressed via anti-VEGF-A antibody or ZM323881. Conversely, the intrathecal injection of exogenous VEGF-A was sufficient to cause pain hypersensitivity in naïve mice via the VEGFR2-mediated activation of protein kinase C. Moreover, the spinal blockade of VEGF-A or VEGFR2 also suppressed N-methyl-D-aspartate receptor (NMDAR) activation and downstream Ca2+-dependent signaling. Thus, spinal VEGF-A/VEGFR2/NMDAR signaling pathways may be critical mediators of CIBP.
Collapse
Affiliation(s)
- Li-Jun Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hou-Ming Kan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-Yuan Sun
- Department of Anesthesiology, Xuzhou First People’s Hospital, Xuzhou, China
| | - Li-ping Chen
- Department of Pain Management, Affiliated Hospital of Xuzhou, Xuzhou, China
| | - Wen Shen
- Department of Pain Management, Affiliated Hospital of Xuzhou, Xuzhou, China
| |
Collapse
|
25
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
26
|
Gadepalli A, Akhilesh, Uniyal A, Modi A, Chouhan D, Ummadisetty O, Khanna S, Solanki S, Allani M, Tiwari V. Multifarious Targets and Recent Developments in the Therapeutics for the Management of Bone Cancer Pain. ACS Chem Neurosci 2021; 12:4195-4208. [PMID: 34723483 DOI: 10.1021/acschemneuro.1c00414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bone cancer pain (BCP) is a distinct pain state showing characteristics of both neuropathic and inflammatory pain. On average, almost 46% of cancer patients exhibit BCP with numbers flaring up to as high as 76% for terminally ill patients. Patients suffering from BCP experience a compromised quality of life, and the unavailability of effective therapeutics makes this a more devastating condition. In every individual cancer patient, the pain is driven by different mechanisms at different sites. The mechanisms behind the manifestation of BCP are very complex and poorly understood, which creates a substantial barrier to drug development. Nevertheless, some of the key mechanisms involved have been identified and are being explored further to develop targeted molecules. Developing a multitarget approach might be beneficial in this case as the underlying mechanism is not fixed and usually a number of these pathways are simultaneously dysregulated. In this review, we have discussed the role of recently identified novel modulators and mechanisms involved in the development of BCP. They include ion channels and receptors involved in sensing alteration of temperature and acidic microenvironment, immune system activation, sodium channels, endothelins, protease-activated receptors, neurotrophins, motor proteins mediated trafficking of glutamate receptor, and some bone-specific mechanisms. Apart from this, we have also discussed some of the novel approaches under preclinical and clinical development for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Ajay Modi
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Shreya Khanna
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Shreya Solanki
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| |
Collapse
|
27
|
Micheli L, Parisio C, Lucarini E, Vona A, Toti A, Pacini A, Mello T, Boccella S, Ricciardi F, Maione S, Graziani G, Lacal PM, Failli P, Ghelardini C, Di Cesare Mannelli L. VEGF-A/VEGFR-1 signalling and chemotherapy-induced neuropathic pain: therapeutic potential of a novel anti-VEGFR-1 monoclonal antibody. J Exp Clin Cancer Res 2021; 40:320. [PMID: 34649573 PMCID: PMC8515680 DOI: 10.1186/s13046-021-02127-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neuropathic pain is a clinically relevant adverse effect of several anticancer drugs that markedly impairs patients' quality of life and frequently leads to dose reduction or therapy discontinuation. The poor knowledge about the mechanisms involved in neuropathy development and pain chronicization, and the lack of effective therapies, make treatment of chemotherapy-induced neuropathic pain an unmet medical need. In this context, the vascular endothelial growth factor A (VEGF-A) has emerged as a candidate neuropathy hallmark and its decrease has been related to pain relief. In the present study, we have investigated the role of VEGF-A and its receptors, VEGFR-1 and VEGFR-2, in pain signalling and in chemotherapy-induced neuropathy establishment as well as the therapeutic potential of receptor blockade in the management of pain. METHODS Behavioural and electrophysiological analyses were performed in an in vivo murine model, by using selective receptor agonists, blocking monoclonal antibodies or siRNA-mediated silencing of VEGF-A and VEGFRs. Expression of VEGF-A and VEGFR-1 in astrocytes and neurons was detected by immunofluorescence staining and confocal microscopy analysis. RESULTS In mice, the intrathecal infusion of VEGF-A (VEGF165 isoforms) induced a dose-dependent noxious hypersensitivity and this effect was mediated by VEGFR-1. Consistently, electrophysiological studies indicated that VEGF-A strongly stimulated the spinal nociceptive neurons activity through VEGFR-1. In the dorsal horn of the spinal cord of animals affected by oxaliplatin-induced neuropathy, VEGF-A expression was increased in astrocytes while VEGFR-1 was mainly detected in neurons, suggesting a VEGF-A/VEGFR-1-mediated astrocyte-neuron cross-talk in neuropathic pain pathophysiology. Accordingly, the selective knockdown of astrocytic VEGF-A by intraspinal injection of shRNAmir blocked the development of oxaliplatin-induced neuropathic hyperalgesia and allodynia. Interestingly, both intrathecal and systemic administration of the novel anti-VEGFR-1 monoclonal antibody D16F7, endowed with anti-angiogenic and antitumor properties, reverted oxaliplatin-induced neuropathic pain. Besides, D16F7 effectively relieved hypersensitivity induced by other neurotoxic chemotherapeutic agents, such as paclitaxel and vincristine. CONCLUSIONS These data strongly support the role of the VEGF-A/VEGFR-1 system in mediating chemotherapy-induced neuropathic pain at the central nervous system level. Thus, treatment with the anti-VEGFR-1 mAb D16F7, besides exerting antitumor activity, might result in the additional advantage of attenuating neuropathic pain when combined with neurotoxic anticancer agents.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Alessia Vona
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine - DMSC - Anatomy and Histology Section, University of Florence, L.go Brambilla 3, 50134, Florence, Italy
| | - Tommaso Mello
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- I.R.C.S.S., Neuromed, 86077, Pozzilli, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
- IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy.
| | | | - Paola Failli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
28
|
Hayashi Y, Kato H, Nonaka K, Nakanishi H. Stem cells from human exfoliated deciduous teeth attenuate mechanical allodynia in mice through distinct from the siglec-9/MCP-1-mediated tissue-repairing mechanism. Sci Rep 2021; 11:20053. [PMID: 34625639 PMCID: PMC8501097 DOI: 10.1038/s41598-021-99585-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
The effects of stem cells from human exfoliated deciduous teeth (SHED) on mechanical allodynia were examined in mice. A single intravenous injection of SHED and conditioned medium from SHED (SHED-CM) through the left external jugular vein significantly reversed the established mechanical allodynia induced by spinal nerve transection at 6 days after injection. SHED or SHED-CM significantly decreased the mean numbers of activating transcription factor 3-positive neurons and macrophages in the ipsilateral side of the dorsal root ganglion (DRG) at 20 days after spinal nerve transection. SHED or SHED-CM also suppressed activation of microglia and astrocytes in the ipsilateral side of the dorsal spinal cord. A single intravenous injection of secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 had no effect on the established mechanical allodynia, whereas a single intravenous injection of protein component(s) contained in SHED-CM with molecular weight of between 30 and 50 kDa reversed the pain. Therefore, it may be concluded that protein component(s) with molecular mass of 30–50 kDa secreted by SHED could protect and/or repair DRG neurons damaged by nerve transection, thereby ameliorating mechanical allodynia.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan. .,Faculty of Dental Science, Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Graduate School of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.,Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuaki Nonaka
- School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, 831-8501, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan.
| |
Collapse
|
29
|
Pan XW, Xu D, Chen WJ, Chen JX, Chen WJ, Ye JQ, Gan SS, Zhou W, Song X, Shi L, Cui XG. USP39 promotes malignant proliferation and angiogenesis of renal cell carcinoma by inhibiting VEGF-A 165b alternative splicing via regulating SRSF1 and SRPK1. Cancer Cell Int 2021; 21:486. [PMID: 34544400 PMCID: PMC8454004 DOI: 10.1186/s12935-021-02161-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/18/2021] [Indexed: 01/01/2023] Open
Abstract
Background The benefit of targeted therapy for renal cell carcinoma (RCC) is largely crippled by drug resistance. Rapid disease progression and poor prognosis occur in patients with drug resistance. New treatments demand prompt exploration for clinical therapies. Ubiquitin-specific peptidase 39 (USP39) serves as the pro-tumor factor in several previous studies of other malignant tumors. To investigate the function and mechanism of USP39 in promoting malignant proliferation and angiogenesis of RCC. Methods We applied ONCOMINE database to analyze the correlation between USP39 expression level and the clinical characteristics of RCC. USP39 knockdown or overexpression plasmids were transfected into 786-O and ACHN cells. The HUVEC received cell supernatants of 786-O and ACHN cells with knockdown or overexpression USP39.The effect of USP39 on RCC was evaluated by MTT assay, cell cycle analysis, colony formation assay and tubule formation assay. The interaction between USP39 and VEGF-A alternative splicing was assessed by affinity purification and mass spectrometry, co-immunoprecipitation and Western blot assays. Results The mRNA expression level of USP39 in RCC was significantly higher than that in normal renal tissue (P < 0.001), and negatively correlated with the survival rate of RCC patients (P < 0.01). Silencing of USP39 in 786-O and ACHN cells inhibited cell proliferation and colony formation, and induced S phase arrest. USP39 overexpression significantly increased the number of tubules (P < 0.05) and branches (P < 0.01) formed by HUVEC cells, and USP39 knockdown produced an opposite effect (P < 0.05). The USP39 (101–565) fragment directly mediated its binding to SRSF1 and SRPK1, and promoted the phosphorylation of SRSF1 to regulate VEGF-A alternative splicing. USP39 knockdown upregulated the expression of VEGF-A165b, and USP39 overexpression downregulated the expression of VEGF-A165b significantly (both P < 0.05). Conclusion USP39 acted as a pro-tumor factor by motivating the malignant biological processes of RCC, probably through inhibiting VEGF-A165b alternative splicing and regulating SRSF1 and SRPK1. USP39 may prove to be a potential therapeutic target for RCC. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02161-x.
Collapse
Affiliation(s)
- Xiu-Wu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.,Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Da Xu
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Wen-Jin Chen
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Jia-Xin Chen
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Wei-Jie Chen
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Jian-Qing Ye
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Si-Shun Gan
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Wang Zhou
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Xu Song
- Department of Urology, Shanghai Seventh People's Hospital, Shandong, 200137, China.
| | - Lei Shi
- Department of Urology, Yantai Yuhuangding Hospital of Qingdao University Medical College, Shandong, 264000, China.
| | - Xin-Gang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
30
|
Intranasal delivery of an antisense oligonucleotide to the RNA-binding protein HuR relieves nerve injury-induced neuropathic pain. Pain 2021; 162:1500-1510. [PMID: 33259457 DOI: 10.1097/j.pain.0000000000002154] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023]
Abstract
ABSTRACT Neuropathic pain remains an undertreated condition and there is a medical need to develop effective treatments. Accumulating evidence indicates that posttranscriptional regulation of gene expression is involved in neuropathic pain; however, RNA processing is not clearly investigated. Our study investigated the role of HuR, an RNA binding protein, in promoting neuropathic pain and trauma-induced microglia activation in the spared nerve injury mouse model. To this aim, an antisense oligonucleotide (ASO) knockdown of HuR gene expression was used. Antisense oligonucleotides poorly cross the blood-brain barrier and an intranasal (i.n.) administration was used to achieve central nervous system penetration through a noninvasive delivery. The efficacy of i.n. ASO administration was compared to an intrathecal (i.t.) delivery. I.n. administered ASO reduced spinal HuR protein and relieved pain hypersensitivity with a similar efficacy to i.t. administration. Immunofluorescence studies showed that HuR was expressed in activated microglia, colocalized with p38 and, partially, with extracellular signal-regulated kinase (ERK)1/2 within the spinal cord dorsal horn. An anti-HuR ASO inhibited the activation of spinal microglia by reducing the levels of proinflammatory cytokines, inducible nitric oxide synthase, the activation of nuclear factor-κB (NF-κB), and suppressed the spared nerve injury-induced overphosphorylation of spinal p38, ERK1/2 and c-Jun-N-terminal kinase (JNK)-1. In addition, HuR silencing increased the expression of the anti-inflammatory cytokine IL-10, promoting the shift of microglial M1 to M2 phenotype. Targeting HuR by i.n. anti-HuR ASO might represent a noninvasive promising perspective for neuropathic pain management by its powerful inhibition of microglia-mediated spinal neuroinflammation and promotion of an anti-inflammatory and neuroprotectant response.
Collapse
|
31
|
Perez-Miller S, Patek M, Moutal A, de Haro PD, Cabel CR, Thorne CA, Campos SK, Khanna R. Novel Compounds Targeting Neuropilin Receptor 1 with Potential To Interfere with SARS-CoV-2 Virus Entry. ACS Chem Neurosci 2021; 12:1299-1312. [PMID: 33787218 PMCID: PMC8029449 DOI: 10.1021/acschemneuro.0c00619] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Marcel Patek
- Bright Rock Path Consulting, LLC, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Paz Duran de Haro
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Carly R. Cabel
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
| | - Curtis A. Thorne
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
- Department of Immunobiology, College of Medicine, University of Arizona
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
- Regulonix LLC, Tucson, AZ, USA
| |
Collapse
|
32
|
Ventriglia J, Paciolla I, Pisano C, Tambaro R, Cecere SC, Di Napoli M, Attademo L, Arenare L, Spina A, Russo D, Califano D, Losito NS, Setola SV, Franzese E, De Vita F, Orditura M, Pignata S. Arthralgia in patients with ovarian cancer treated with bevacizumab and chemotherapy. Int J Gynecol Cancer 2021; 31:110-113. [PMID: 32796087 DOI: 10.1136/ijgc-2020-001540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Chemotherapy with carboplatin, paclitaxel, and bevacizumab is the standard therapy for patients with advanced stage ovarian cancer wild-type BRCA after primary surgery. The most frequent side effects of bevacizumab in this setting are hypertension, thrombosis, hemorrhage, and proteinuria, while arthralgia has been poorly described. OBJECTIVE To examine the incidence, duration, and reversibility of arthralgia. PATIENTS AND METHODS A retrospective analysis was performed to describe the occurrence and outcome of arthralgia in 114 patients with advanced ovarian cancer, given first-line treatment with a combination of carboplatin, paclitaxel, and bevacizumab. Statistical analysis was performed to investigate a possible prognostic role of arthralgia, with progression-free survival as endpoint. RESULTS 47 of 114 patients (41%) developed arthralgia during therapy. All patients had grade 1 or grade 2 arthralgia. Toxicity persisted after the end of bevacizumab in 17/47 patients (36%). Median progression-free survival for patients without arthralgia was 18 months (95% CI 14 to 24) compared with 29 months (95% CI 21 to not reached) for patients experiencing arthralgia (p=0.03). In order to avoid possible biases related to treatment duration, a multivariable Cox proportional hazards model including toxicity as a time dependent variable and age, stage, and residual disease after primary surgery was performed. In this model no variable showed a statistically significant association with progression-free survival. CONCLUSION A high incidence of arthralgia (41%) was found and although rogression-free survival was worse for those patients who developed arthralgia, this was not maintained on multivariate analysis. Guidelines for treatment of this adverse event are needed.
Collapse
Affiliation(s)
- Jole Ventriglia
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| | - Immacolata Paciolla
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| | - Carmela Pisano
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| | - Rosa Tambaro
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| | | | - Marilena Di Napoli
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| | - Laura Attademo
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| | - Laura Arenare
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| | - Anna Spina
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| | - Daniela Russo
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| | - Daniela Califano
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| | | | | | - Elisena Franzese
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, 80131 Naples, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, 80131 Naples, Italy
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, 80131 Naples, Italy
| | - Sandro Pignata
- Istituto Nazionale Tumori di Napoli, Fondazione G.Pascale, IRCCS, Naples, Italy
| |
Collapse
|
33
|
Moutal A, Martin LF, Boinon L, Gomez K, Ran D, Zhou Y, Stratton HJ, Cai S, Luo S, Gonzalez KB, Perez-Miller S, Patwardhan A, Ibrahim MM, Khanna R. SARS-CoV-2 spike protein co-opts VEGF-A/neuropilin-1 receptor signaling to induce analgesia. Pain 2021; 162:243-252. [PMID: 33009246 PMCID: PMC7737878 DOI: 10.1097/j.pain.0000000000002097] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
Global spread of severe acute respiratory syndrome coronavirus 2 continues unabated. Binding of severe acute respiratory syndrome coronavirus 2's spike protein to host angiotensin-converting enzyme 2 triggers viral entry, but other proteins may participate, including the neuropilin-1 receptor (NRP-1). Because both spike protein and vascular endothelial growth factor-A (VEGF-A)-a pronociceptive and angiogenic factor, bind NRP-1, we tested whether spike could block VEGF-A/NRP-1 signaling. VEGF-A-triggered sensory neuron firing was blocked by spike protein and NRP-1 inhibitor EG00229. Pronociceptive behaviors of VEGF-A were similarly blocked through suppression of spontaneous spinal synaptic activity and reduction of electrogenic currents in sensory neurons. Remarkably, preventing VEGF-A/NRP-1 signaling was antiallodynic in a neuropathic pain model. A "silencing" of pain through subversion of VEGF-A/NRP-1 signaling may underlie increased disease transmission in asymptomatic individuals.
Collapse
Affiliation(s)
| | - Laurent F. Martin
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | | | | | | | | | | | - Song Cai
- Departments of Pharmacology, and
| | | | | | - Samantha Perez-Miller
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Amol Patwardhan
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, United States
| | - Mohab M. Ibrahim
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, United States
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
34
|
Stem Cells in the Treatment of Neuropathic Pain: Research Progress of Mechanism. Stem Cells Int 2020; 2020:8861251. [PMID: 33456473 PMCID: PMC7785341 DOI: 10.1155/2020/8861251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain (NP) is pain caused by somatosensory nervous system injury or disease. Its prominent symptoms are spontaneous pain, hyperalgesia, and allodynia, and the sense of pain is extremely strong. Owing to the complex mechanism, conventional painkillers lack effectiveness. Recently, research on the treatment of NP by stem cells is increasing and promising results have been achieved in preclinical research. In this review, we briefly introduce the neuropathic pain, the current treatment strategy, and the development of stem cell therapy, and we collected the experimental and clinical trial articles of many kinds of stem cells in the treatment of neuropathic pain from the past ten years. We analyzed and summarized the general efficacy and mechanism of stem cells in the treatment of neuropathic pain. We found that the multiple-mechanism approach was different from the single mechanism of routine clinical drugs; stem cells play a role in peripheral mechanism, central mechanism, and disinhibition of spinal cord level that lead to neuropathic pain, so they are more effective in analgesia and treatment of neuropathic pain.
Collapse
|
35
|
Palada V, Ahmed AS, Freyhult E, Hugo A, Kultima K, Svensson CI, Kosek E. Elevated inflammatory proteins in cerebrospinal fluid from patients with painful knee osteoarthritis are associated with reduced symptom severity. J Neuroimmunol 2020; 349:577391. [PMID: 32987275 DOI: 10.1016/j.jneuroim.2020.577391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammation and periphery-to-CNS neuroimmune cross-talk in patients with painful knee osteoarthritis (OA) are poorly understood. We utilized proximity extension assay to measure the level of 91 inflammatory proteins in CSF and serum from OA patients and controls. The patients had elevated levels of 48 proteins in CSF indicating neuroinflammation. Ten proteins were correlated between CSF and serum and potentially involved in periphery-to-CNS neuroimmune cross-talk. Seven CSF proteins, all with previously reported neuroprotective effects, were associated with lower pain intensity and milder knee-related symptoms. Our findings indicate that neuroinflammation in OA could be protective and associated with less severe symptoms.
Collapse
Affiliation(s)
- Vinko Palada
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Aisha Siddiqah Ahmed
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Eva Freyhult
- Department of Medical Sciences, Uppsala University, Uppsala 75185, Sweden
| | - Anders Hugo
- Ortho Center Stockholm, 194 89 Upplands Väsby, Sweden
| | - Kim Kultima
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden; Department of Medical Sciences, Uppsala University, Uppsala 75185, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden.
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden.
| |
Collapse
|
36
|
Li Z, Li A, Yan L, Yang T, Xu W, Fan P. Downregulation of long noncoding RNA DLEU1 attenuates hypersensitivity in chronic constriction injury-induced neuropathic pain in rats by targeting miR-133a-3p/SRPK1 axis. Mol Med 2020; 26:104. [PMID: 33167866 PMCID: PMC7653812 DOI: 10.1186/s10020-020-00235-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background Neuropathic pain belongs to chronic pain and is caused by the primary dysfunction of the somatosensory nervous system. Long noncoding RNAs (lncRNAs) have been reported to regulate neuronal functions and play significant roles in neuropathic pain. DLEU1 has been indicated to have close relationship with neuropathic pain. Therefore, our study focused on the significant role of DLEU1 in neuropathic pain rat models. Methods We first constructed a chronic constrictive injury (CCI) rat model. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were employed to evaluate hypersensitivity in neuropathic pain. RT-qPCR was performed to analyze the expression of target genes. Enzyme-linked immunosorbent assay (ELISA) was conducted to detect the concentrations of interleukin‐6 (IL-6), tumor necrosis factor‐α (TNF-α) and IL-1β. The underlying mechanisms of DLEU1 were investigated using western blot and luciferase reporter assays. Results Our findings showed that DLEU1 was upregulated in CCI rats. DLEU1 knockdown reduced the concentrations of IL‐6, IL‐1β and TNF‐α in CCI rats, suggesting that neuroinflammation was inhibited by DLEU1 knockdown. Besides, knockdown of DLEU1 inhibited neuropathic pain behaviors. Moreover, it was confirmed that DLEU1 bound with miR-133a-3p and negatively regulated its expression. SRPK1 was the downstream target of miR-133a-3p. DLEU1 competitively bound with miR-133a-3p to upregulate SRPK1. Finally, rescue assays revealed that SRPK1 overexpression rescued the suppressive effects of silenced DLEU1 on hypersensitivity in neuropathic pain and inflammation of spinal cord in CCI rats. Conclusion DLEU1 regulated inflammation of the spinal cord and mediated hypersensitivity in neuropathic pain in CCI rats by binding with miR-133a-3p to upregulate SRPK1 expression.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Aiyuan Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Liping Yan
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Tian Yang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Wei Xu
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Pengju Fan
- Department of Burn and Plastic Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
37
|
Perez-Miller S, Patek M, Moutal A, Cabel CR, Thorne CA, Campos SK, Khanna R. In silico identification and validation of inhibitors of the interaction between neuropilin receptor 1 and SARS-CoV-2 Spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.22.308783. [PMID: 32995772 PMCID: PMC7523098 DOI: 10.1101/2020.09.22.308783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 spike protein interferes with pain signaling. Here, we report hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physico-chemical properties. Using an ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that almost all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, USA
| | - Marcel Patek
- Bright Rock Path Consulting, LLC, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Carly R. Cabel
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
| | - Curtis A. Thorne
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
- Department of Immunobiology, College of Medicine, University of Arizona
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| |
Collapse
|
38
|
Moutal A, Martin LF, Boinon L, Gomez K, Ran D, Zhou Y, Stratton HJ, Cai S, Luo S, Gonzalez KB, Perez-Miller S, Patwardhan A, Ibrahim MM, Khanna R. SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.17.209288. [PMID: 32869019 PMCID: PMC7457601 DOI: 10.1101/2020.07.17.209288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues unabated. Binding of SARS-CoV-2's Spike protein to host angiotensin converting enzyme 2 triggers viral entry, but other proteins may participate, including neuropilin-1 receptor (NRP-1). As both Spike protein and vascular endothelial growth factor-A (VEGF-A) - a pro-nociceptive and angiogenic factor, bind NRP-1, we tested if Spike could block VEGF-A/NRP-1 signaling. VEGF-A-triggered sensory neuronal firing was blocked by Spike protein and NRP-1 inhibitor EG00229. Pro-nociceptive behaviors of VEGF-A were similarly blocked via suppression of spontaneous spinal synaptic activity and reduction of electrogenic currents in sensory neurons. Remarkably, preventing VEGF-A/NRP-1 signaling was antiallodynic in a neuropathic pain model. A 'silencing' of pain via subversion of VEGF-A/NRP-1 signaling may underlie increased disease transmission in asymptomatic individuals.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Laurent F. Martin
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Yuan Zhou
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Kerry Beth Gonzalez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Mohab M. Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, Arizona 85721, United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724 United States of America
| |
Collapse
|
39
|
Dardente H, English WR, Valluru MK, Kanthou C, Simpson D. Debunking the Myth of the Endogenous Antiangiogenic Vegfaxxxb Transcripts. Trends Endocrinol Metab 2020; 31:398-409. [PMID: 32396842 DOI: 10.1016/j.tem.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/28/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
In this opinion article we critically assess evidence for the existence of a family of antiangiogenic vascular endothelial growth factor (Vegfaxxxb) transcripts, arising from the use of a phylogenetically conserved alternative distal splice site within exon 8 of the VEGFA gene. We explain that prior evidence for Vegfaxxxb transcripts in tissues rests heavily upon flawed RT-PCR methodologies, with the extensive use of 5'-tailing in primer design being the main issue. Furthermore, our analysis of large RNA-seq data sets (human and ovine) fails to identify a single Vegfaxxxb transcript. Therefore, we challenge the very existence of Vegfaxxxb transcripts, which further questions the physiological relevance of studies based on the use of 'anti-VEGFAxxxb' antibodies. Our analysis has implications for the proposed therapeutic use of isoform-specific anti-VEGFA strategies for treating cancer and retinopathies.
Collapse
Affiliation(s)
- Hugues Dardente
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.
| | - William R English
- Department of Oncology and Metabolism, Tumour Microcirculation Group, University of Sheffield, School of Medicine, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Manoj K Valluru
- Department of Oncology and Metabolism, Tumour Microcirculation Group, University of Sheffield, School of Medicine, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Chryso Kanthou
- Department of Oncology and Metabolism, Tumour Microcirculation Group, University of Sheffield, School of Medicine, Beech Hill Road, Sheffield, S10 2RX, UK
| | - David Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT7 1NN, UK
| |
Collapse
|
40
|
Khamar P, Nair AP, Shetty R, Vaidya T, Subramani M, Ponnalagu M, Dhamodaran K, D'souza S, Ghosh A, Pahuja N, Deshmukh R, Ahuja P, Sainani K, Nuijts RMMA, Das D, Ghosh A, Sethu S. Dysregulated Tear Fluid Nociception-Associated Factors, Corneal Dendritic Cell Density, and Vitamin D Levels in Evaporative Dry Eye. Invest Ophthalmol Vis Sci 2019; 60:2532-2542. [PMID: 31195410 DOI: 10.1167/iovs.19-26914] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to study the status and association among tear-soluble factors, corneal dendritic cell density, vitamin D, and signs and symptoms in dry eye disease (DED). Methods A total of 33 control subjects and 47 evaporative dry eye patients were included in the study. DED diagnosis and classification was based on the 2017 Report of the Tear Film & Ocular Surface Society International Dry Eye Workshop (TFOS DEWS II). DED workup, including tear film break-up time (TBUT), Schirmer's test I (STI), corneal and conjunctival staining, ocular surface disease index (OSDI) scoring, and in vivo confocal microscopy (to assess corneal dendritic cell density [cDCD] and subbasal nerve plexus [SBNP] features) was performed in the study subjects. Tear fluid using Schirmer's strip and serum were collected from the subjects. Multiplex ELISA or single analyte ELISA was performed to measure 34 tear-soluble factors levels including vitamin D. Results Significantly higher OSDI discomfort score, lower TBUT, and lower STI were observed in DED patients. cDCD was significantly higher in DED patients. No significant difference was observed in SBNP features. Tear fluid IL-1β, IL-17A, MMP9, MMP10, MMP9/TIMP ratio, and VEGF-B were significantly higher in DED patients. Significantly lower tear fluid IL-2, IP-10, NPY, VEGF-A, and vitamin D was observed in DED patients. These dysregulated tear factors showed significant associations with DED signs and symptoms. Conclusions Altered tear fluid soluble factors with potential to modulate nociception exhibited a distinct association with ocular surface discomfort status, TBUT, STI, and cDCD. This implies a functional relationship between the various tear-soluble factors and dry eye pathogenesis, indicating new molecular targets for designing targeted therapies.
Collapse
Affiliation(s)
- Pooja Khamar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Archana Padmanabhan Nair
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Tanuja Vaidya
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Murali Subramani
- Stem Cell Lab, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Murugeswari Ponnalagu
- Stem Cell Lab, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Kamesh Dhamodaran
- Stem Cell Lab, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Sharon D'souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Anuprita Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Natasha Pahuja
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Rashmi Deshmukh
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Prerna Ahuja
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Kanchan Sainani
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Debashish Das
- Stem Cell Lab, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.,Singapore Eye Research Institute, Singapore
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
41
|
Affiliation(s)
- Richard P Hulse
- Cancer Biology, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
42
|
Growth Factor Signaling Regulates Mechanical Nociception in Flies and Vertebrates. J Neurosci 2019; 39:6012-6030. [PMID: 31138657 DOI: 10.1523/jneurosci.2950-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Mechanical sensitization is one of the most difficult clinical pain problems to treat. However, the molecular and genetic bases of mechanical nociception are unclear. Here we develop a Drosophila model of mechanical nociception to investigate the ion channels and signaling pathways that regulate mechanical nociception. We fabricated von Frey filaments that span the subthreshold to high noxious range for Drosophila larvae. Using these, we discovered that pressure (force/area), rather than force per se, is the main determinant of aversive rolling responses to noxious mechanical stimuli. We demonstrated that the RTK PDGF/VEGF receptor (Pvr) and its ligands (Pvfs 2 and 3) are required for mechanical nociception and normal dendritic branching. Pvr is expressed and functions in class IV sensory neurons, whereas Pvf2 and Pvf3 are produced by multiple tissues. Constitutive overexpression of Pvr and its ligands or inducible overexpression of Pvr led to mechanical hypersensitivity that could be partially separated from morphological effects. Genetic analyses revealed that the Piezo and Pain ion channels are required for mechanical hypersensitivity observed upon ectopic activation of Pvr signaling. PDGF, but not VEGF, peptides caused mechanical hypersensitivity in rats. Pharmacological inhibition of VEGF receptor Type 2 (VEGFR-2) signaling attenuated mechanical nociception in rats, suggesting a conserved role for PDGF and VEGFR-2 signaling in regulating mechanical nociception. VEGFR-2 inhibition also attenuated morphine analgesic tolerance in rats. Our results reveal that a conserved RTK signaling pathway regulates baseline mechanical nociception in flies and rats.SIGNIFICANCE STATEMENT Hypersensitivity to touch is poorly understood and extremely difficult to treat. Using a refined Drosophila model of mechanical nociception, we discovered a conserved VEGF-related receptor tyrosine kinase signaling pathway that regulates mechanical nociception in flies. Importantly, pharmacological inhibition of VEGF receptor Type 2 signaling in rats causes analgesia and blocks opioid tolerance. We have thus established a robust, genetically tractable system for the rapid identification and functional analysis of conserved genes underlying mechanical pain sensitivity.
Collapse
|
43
|
Tooke K, Girard B, Vizzard MA. Functional effects of blocking VEGF/VEGFR2 signaling in the rat urinary bladder in acute and chronic CYP-induced cystitis. Am J Physiol Renal Physiol 2019; 317:F43-F51. [PMID: 30995112 DOI: 10.1152/ajprenal.00083.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High expression of VEGF is associated with immature angiogenesis within the urinary bladder wall and bladder afferent nerve sensitization, leading to visceral hyperalgesia and pelvic pain. Research suggests a shift in VEGF alternative splice variant (VEGF-Axxxa and VEGF-Axxxb) expression with several pathologies (e.g., neuropathic pain and inflammation) as well as differing effects on pain. Translational studies have also demonstrated increased total VEGF expression in the bladders of women with interstitial cystitis/bladder pain syndrome. In the present study, we quantified VEGF alternative splice variant expression in lower urinary tract tissues under control conditions and with cyclophosphamide (CYP)-induced cystitis. Using conscious cystometry and intravesical instillation of a potent and selective VEGF receptor 2 (VEGFR2) tyrosine kinase inhibitor (Ki-8751, 1 mg/kg) in Wistar rats (male and female) with acute and chronic CYP-induced cystitis and control (no CYP) rats, we further determined the functional effects of VEGFR2 blockade on bladder function. With VEGFR2 blockade, bladder capacity increased (P ≤ 0.01) in male and female control rats as well as in male and female rats with acute (P ≤ 0.05) or chronic (P ≤ 0.01 or P ≤ 0.05, respectively) CYP-induced cystitis. Void volume also increased in female control rats (P ≤ 0.01) and female rats with acute (P ≤ 0.05) or chronic (P ≤ 0.05) CYP-induced cystitis as well as in male control rats (P ≤ 0.05) and male rats with chronic CYP-induced cystitis (P ≤ 0.01). These data suggest that VEGF may be a biomarker for interstitial cystitis/bladder pain syndrome and that targeting VEGF/VEGFR2 signaling may be an effective treatment.
Collapse
Affiliation(s)
- Katharine Tooke
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - Beatrice Girard
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - Margaret A Vizzard
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| |
Collapse
|
44
|
Llorián-Salvador M, González-Rodríguez S. Painful Understanding of VEGF. Front Pharmacol 2018; 9:1267. [PMID: 30459621 PMCID: PMC6232229 DOI: 10.3389/fphar.2018.01267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- María Llorián-Salvador
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | |
Collapse
|
45
|
Beazley-Long N, Hodge D, Ashby WR, Bestall SM, Almahasneh F, Durrant AM, Benest AV, Blackley Z, Ballmer-Hofer K, Hirashima M, Hulse RP, Bates DO, Donaldson LF. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun 2018; 74:49-67. [PMID: 29548992 PMCID: PMC6302073 DOI: 10.1016/j.bbi.2018.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 02/01/2023] Open
Abstract
Chronic pain can develop in response to conditions such as inflammatory arthritis. The central mechanisms underlying the development and maintenance of chronic pain in humans are not well elucidated although there is evidence for a role of microglia and astrocytes. However in pre-clinical models of pain, including models of inflammatory arthritis, there is a wealth of evidence indicating roles for pathological glial reactivity within the CNS. In the spinal dorsal horn of rats with painful inflammatory arthritis we found both a significant increase in CD11b+ microglia-like cells and GFAP+ astrocytes associated with blood vessels, and the number of activated blood vessels expressing the adhesion molecule ICAM-1, indicating potential glio-vascular activation. Using pharmacological interventions targeting VEGFR2 in arthritic rats, to inhibit endothelial cell activation, the number of dorsal horn ICAM-1+ blood vessels, CD11b+ microglia and the development of secondary mechanical allodynia, an indicator of central sensitization, were all prevented. Targeting endothelial VEGFR2 by inducible Tie2-specific VEGFR2 knock-out also prevented secondary allodynia in mice and glio-vascular activation in the dorsal horn in response to inflammatory arthritis. Inhibition of VEGFR2 in vitro significantly blocked ICAM-1-dependent monocyte adhesion to brain microvascular endothelial cells, when stimulated with inflammatory mediators TNF-α and VEGF-A165a. Taken together our findings suggest that a novel VEGFR2-mediated spinal cord glio-vascular mechanism may promote peripheral CD11b+ circulating cell transmigration into the CNS parenchyma and contribute to the development of chronic pain in inflammatory arthritis. We hypothesise that preventing this glio-vascular activation and circulating cell translocation into the spinal cord could be a new therapeutic strategy for pain caused by rheumatoid arthritis.
Collapse
Affiliation(s)
- Nicholas Beazley-Long
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Daryl Hodge
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - William Robert Ashby
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Samuel Marcus Bestall
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Fatimah Almahasneh
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexandra Margaret Durrant
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Andrew Vaughan Benest
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Zoe Blackley
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Masanori Hirashima
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Japan
| | - Richard Phillip Hulse
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - David Owen Bates
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK; COMPARE University of Birmingham and University of Nottingham Midlands, UK
| | - Lucy Frances Donaldson
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
46
|
Yang Y, Li S, Jin ZR, Jing HB, Zhao HY, Liu BH, Liang YJ, Liu LY, Cai J, Wan Y, Xing GG. Decreased abundance of TRESK two-pore domain potassium channels in sensory neurons underlies the pain associated with bone metastasis. Sci Signal 2018; 11. [PMID: 30327410 DOI: 10.1126/scisignal.aao5150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Bone metastasis–associated VEGF suppresses neuronal K
+
channels and increases pain in rats.
Collapse
Affiliation(s)
- Yue Yang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Song Li
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Zi-Run Jin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Hong-Yan Zhao
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Bo-Heng Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Ya-Jing Liang
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ling-Yu Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - You Wan
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
- Second Affiliated Hospital of Xinxiang Medical University, Henan, China
| |
Collapse
|
47
|
Jere M, Cassidy RM. VEGF-A 165 b to the rescue: vascular integrity and pain sensitization. J Physiol 2018; 596:5077-5078. [PMID: 30156272 DOI: 10.1113/jp276902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Madhavi Jere
- Vassar College, Poughkeepsie, NY, USA.,GradSURP at, UTHealth McGovern Medical School, Houston, TX, USA
| | - Ryan M Cassidy
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, Houston, TX, USA.,MSTP, University of Texas McGovern Medical School and MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Neuroscience Program, University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Science, Houston, TX, USA
| |
Collapse
|
48
|
Bestall SM, Hulse RP, Blackley Z, Swift M, Ved N, Paton K, Beazley-Long N, Bates DO, Donaldson LF. Sensory neuronal sensitisation occurs through HMGB-1-RAGE and TRPV1 in high-glucose conditions. J Cell Sci 2018; 131:jcs215939. [PMID: 29930087 PMCID: PMC6080605 DOI: 10.1242/jcs.215939] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023] Open
Abstract
Many potential causes for painful diabetic neuropathy have been proposed including actions of cytokines and growth factors. High mobility group protein B1 (HMGB1) is a RAGE (also known as AGER) agonist whose levels are increased in diabetes and that contributes to pain by modulating peripheral inflammatory responses. HMGB1 enhances nociceptive behaviour in naïve animals through an unknown mechanism. We tested the hypothesis that HMGB1 causes pain through direct neuronal activation of RAGE and alteration of nociceptive neuronal responsiveness. HMGB1 and RAGE expression were increased in skin and primary sensory (dorsal root ganglion, DRG) neurons of diabetic rats at times when pain behaviour was enhanced. Agonist-evoked TRPV1-mediated Ca2+ responses increased in cultured DRG neurons from diabetic rats and in neurons from naïve rats exposed to high glucose concentrations. HMGB1-mediated increases in TRPV1-evoked Ca2+ responses in DRG neurons were RAGE- and PKC-dependent, and this was blocked by co-administration of the growth factor splice variant VEGF-A165b. Pain behaviour and the DRG RAGE expression increases were blocked by VEGF-A165b treatment of diabetic rats in vivo Hence, we conclude that HMGB1-RAGE activation sensitises DRG neurons in vitro, and that VEGF-A165b blocks HMGB-1-RAGE DRG activation, which may contribute to its analgesic properties in vivo.
Collapse
Affiliation(s)
- Samuel M Bestall
- School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard P Hulse
- Arthritis Research UK Pain Centre, The Medical School QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Zoe Blackley
- School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Matthew Swift
- School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham NG7 2UH, UK
- Cancer Biology, School of Clinical Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Nikita Ved
- Arthritis Research UK Pain Centre, The Medical School QMC, University of Nottingham, Nottingham NG7 2UH, UK
- Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Kenneth Paton
- School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Nicholas Beazley-Long
- School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham NG7 2UH, UK
- Arthritis Research UK Pain Centre, The Medical School QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - David O Bates
- Cancer Biology, School of Clinical Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Lucy F Donaldson
- School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham NG7 2UH, UK
- Arthritis Research UK Pain Centre, The Medical School QMC, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
49
|
Ved N, Da Vitoria Lobo ME, Bestall SM, L Vidueira C, Beazley-Long N, Ballmer-Hofer K, Hirashima M, Bates DO, Donaldson LF, Hulse RP. Diabetes-induced microvascular complications at the level of the spinal cord: a contributing factor in diabetic neuropathic pain. J Physiol 2018; 596:3675-3693. [PMID: 29774557 PMCID: PMC6092307 DOI: 10.1113/jp275067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Diabetes is thought to induce neuropathic pain through activation of dorsal horn sensory neurons in the spinal cord. Here we explore the impact of hyperglycaemia on the blood supply supporting the spinal cord and chronic pain development. In streptozotocin-induced diabetic rats, neuropathic pain is accompanied by a decline in microvascular integrity in the dorsal horn. Hyperglycaemia-induced degeneration of the endothelium in the dorsal horn was associated with a loss in vascular endothelial growth factor (VEGF)-A165 b expression. VEGF-A165 b treatment prevented diabetic neuropathic pain and degeneration of the endothelium in the spinal cord. Using an endothelial-specific VEGFR2 knockout transgenic mouse model, the loss of endothelial VEGFR2 signalling led to a decline in vascular integrity in the dorsal horn and the development of hyperalgesia in VEGFR2 knockout mice. This highlights that vascular degeneration in the spinal cord could be a previously unidentified factor in the development of diabetic neuropathic pain. ABSTRACT Abnormalities of neurovascular interactions within the CNS of diabetic patients is associated with the onset of many neurological disease states. However, to date, the link between the neurovascular network within the spinal cord and regulation of nociception has not been investigated despite neuropathic pain being common in diabetes. We hypothesised that hyperglycaemia-induced endothelial degeneration in the spinal cord, due to suppression of vascular endothelial growth factor (VEGF)-A/VEGFR2 signalling, induces diabetic neuropathic pain. Nociceptive pain behaviour was investigated in a chemically induced model of type 1 diabetes (streptozotocin induced, insulin supplemented; either vehicle or VEGF-A165 b treated) and an inducible endothelial knockdown of VEGFR2 (tamoxifen induced). Diabetic animals developed mechanical allodynia and heat hyperalgesia. This was associated with a reduction in the number of blood vessels and reduction in Evans blue extravasation in the lumbar spinal cord of diabetic animals versus age-matched controls. Endothelial markers occludin, CD31 and VE-cadherin were downregulated in the spinal cord of the diabetic group versus controls, and there was a concurrent reduction of VEGF-A165 b expression. In diabetic animals, VEGF-A165 b treatment (biweekly i.p., 20 ng g-1 ) restored normal Evans blue extravasation and prevented vascular degeneration, diabetes-induced central neuron activation and neuropathic pain. Inducible knockdown of VEGFR2 (tamoxifen treated Tie2CreERT2 -vegfr2flfl mice) led to a reduction in blood vessel network volume in the lumbar spinal cord and development of heat hyperalgesia. These findings indicate that hyperglycaemia leads to a reduction in the VEGF-A/VEGFR2 signalling cascade, resulting in endothelial dysfunction in the spinal cord, which could be an undiscovered contributing factor to diabetic neuropathic pain.
Collapse
Affiliation(s)
- N Ved
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - M E Da Vitoria Lobo
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK
| | - S M Bestall
- Arthritis Research UK Pain Centre and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, NG7 2UH, UK
| | - C L Vidueira
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK
| | - N Beazley-Long
- Arthritis Research UK Pain Centre and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | - M Hirashima
- Division of Vascular Biology, Kobe University, Japan
| | - D O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham, Birmingham and University of Nottingham, Nottingham, UK
| | - L F Donaldson
- Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK
| | - R P Hulse
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
50
|
Bates DO, Beazley-Long N, Benest AV, Ye X, Ved N, Hulse RP, Barratt S, Machado MJ, Donaldson LF, Harper SJ, Peiris-Pages M, Tortonese DJ, Oltean S, Foster RR. Physiological Role of Vascular Endothelial Growth Factors as Homeostatic Regulators. Compr Physiol 2018; 8:955-979. [PMID: 29978898 DOI: 10.1002/cphy.c170015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vascular endothelial growth factor (VEGF) family of proteins are key regulators of physiological systems. Originally linked with endothelial function, they have since become understood to be principal regulators of multiple tissues, both through their actions on vascular cells, but also through direct actions on other tissue types, including epithelial cells, neurons, and the immune system. The complexity of the five members of the gene family in terms of their different splice isoforms, differential translation, and specific localizations have enabled tissues to use these potent signaling molecules to control how they function to maintain their environment. This homeostatic function of VEGFs has been less intensely studied than their involvement in disease processes, development, and reproduction, but they still play a substantial and significant role in healthy control of blood volume and pressure, interstitial volume and drainage, renal and lung function, immunity, and signal processing in the peripheral and central nervous system. The widespread expression of VEGFs in healthy adult tissues, and the disturbances seen when VEGF signaling is inhibited support this view of the proteins as endogenous regulators of normal physiological function. This review summarizes the evidence and recent breakthroughs in understanding of the physiology that is regulated by VEGF, with emphasis on the role they play in maintaining homeostasis. © 2017 American Physiological Society. Compr Physiol 8:955-979, 2018.
Collapse
Affiliation(s)
- David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | | | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Xi Ye
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard P Hulse
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Shaney Barratt
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Maria J Machado
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Lucy F Donaldson
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Steven J Harper
- School of Physiology, Pharmacology & Neuroscience, Medical School, University of Bristol, Bristol, United Kingdom
| | - Maria Peiris-Pages
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Domingo J Tortonese
- Centre for Comparative and Clinical Anatomy, University of Bristol, Bristol, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Rebecca R Foster
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|