1
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
2
|
Rahmanian M, Fathi M, Eftekhari M, Vakili K, Deravi N, Yaghoobpoor S, Sharifi H, Zeinodini R, Babajani A, Niknejad H. Developing a novel hypothesis to enhance mental resilience via targeting Faecalibacterium prausnitzii in gut-brain axis. Med Hypotheses 2024; 192:111468. [DOI: 10.1016/j.mehy.2024.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
3
|
Connolly D, Minj J, Murphy KM, Solverson PM, Rust BM, Carbonero F. Impact of quinoa and food processing on gastrointestinal health: a narrative review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39422522 DOI: 10.1080/10408398.2024.2416476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Due to exceptional nutritional quality, quinoa is an ideal candidate to solve food insecurity in many countries. Quinoa's profile of polyphenols, essential amino acids, and lipids make it ideal for digestive health. How the nutrient profile and bioavailability of quinoa metabolites differs across cooking methods such as heat, pressure, and time employed has yet to be elucidated. The objective of this review is to compile available research pertaining to the impact of various cooking methods on quinoa's nutritional properties with specific emphasis on how those properties affect gut health. Replacing small percentages of wheat flour with quinoa flour in baked bread increases the antioxidant activity, essential amino acids, fiber, minerals, and polyphenols. Extruding quinoa flour reduces amino acid, lipid, and polyphenol content of the raw seed, however direct quinoa and cereal grain extrudate comparisons are absent. Boiling quinoa leads to an increase of dietary fiber as well as exceptional retention of amino acids, lipids, and polyphenols. Baking and extruding with quinoa flour results in less optimal texture due to higher density, however minor substitutions can retain acceptable texture and even improve taste. Future research on quinoa's substitution in common processing methods will create equally desirable, yet more nutritious food products.
Collapse
Affiliation(s)
- Devin Connolly
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Jagrani Minj
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Kevin M Murphy
- Department of Crop and Soil Science, Washington State University, Pullman, Washington, USA
| | - Patrick M Solverson
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Bret M Rust
- Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- School of Food Science, Washington State University, Spokane, Washington, USA
| |
Collapse
|
4
|
Campagnoli LIM, Marchesi N, Varesi A, Morozzi M, Mascione L, Ricevuti G, Esposito C, Galeotti N, Pascale A. New therapeutic avenues in multiple sclerosis: Is there a place for gut microbiota-based treatments? Pharmacol Res 2024; 209:107456. [PMID: 39389400 DOI: 10.1016/j.phrs.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The bidirectional interaction between the gut and the central nervous system (CNS), the so-called gut microbiota-brain axis, is reported to influence brain functions, thus having a potential impact on the development or the progression of several neurodegenerative disorders. Within this context, it has been documented that multiple sclerosis (MS), an autoimmune inflammatory, demyelinating, and neurodegenerative disease of the CNS, is associated with gastrointestinal symptoms, including constipation, dysphagia, and faecal incontinence. Moreover, some evidence suggests the existence of an altered gut microbiota (GM) composition in MS patients with respect to healthy individuals, as well as the potential influence of GM dysbiosis on typical MS features, including increased intestinal permeability, disruption of blood-brain barrier integrity, chronic inflammation, and altered T cells differentiation. Starting from these assumptions, the possible involvement of GM alteration in MS pathogenesis seems likely, and its restoration could represent a supplemental beneficial strategy against this disabling disease. In this regard, the present review will explore possible preventive approaches (including several dietary interventions, the administration of probiotics, prebiotics, synbiotics, and postbiotics, and the use of faecal microbiota transplantation) to be pursued as prophylaxis or in combination with pharmacological treatments with the aim of re-establishing a proper GM, thus helping to prevent the development of this disease or to manage it by alleviating symptoms or slowing down its progression.
Collapse
Affiliation(s)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Angelica Varesi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Martina Morozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Linda Mascione
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
5
|
Yoon EJ, Lee SR, Ortutu BF, Kim JO, Jaiswal V, Baek S, Yoon SI, Lee SK, Yoon JH, Lee HJ, Cho JA. Effect of Endurance Exercise Training on Gut Microbiota and ER Stress. Int J Mol Sci 2024; 25:10742. [PMID: 39409071 PMCID: PMC11476978 DOI: 10.3390/ijms251910742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Regular exercise as part of one's lifestyle is well-recognized for its beneficial effect on several diseases such as cardiovascular disease and obesity; however, many questions remain unanswered regarding the effects of exercise on the gut environment. This study aimed to investigate the impact of long-term endurance exercise on modulating inflammation and endoplasmic reticulum (ER) stress. Fifteen-week-old male Sprague-Dawley (SD) rats were subjected to six months of endurance treadmill training, while age-matched controls remained sedentary. Results showed that IL-6 mRNA levels in colon tissues were significantly higher in the exercise group compared to the sedentary group. Exercise activated a significant ER stress-induced survival pathway by increasing BiP and phosphorylation of eIF2α (p-eIF2α) expressions in the liver and colon, while decreasing CHOP in the liver. Gene expressions of MUC2, Occludin, and Claudin-2 were increased in the colon of the exercise group, indicating enhanced intestinal integrity. Furthermore, the data showed a positive correlation between microbiota α-diversity and BiP (r = 0.464~0.677, p < 0.05). Populations of Desulfovibrio C21 c20 were significantly greater in the exercise group than the sedentary group. Additionally, predicted functions of the gut microbial community in terms of enzymes and pathways supported the enhancement of fatty-acid-related processes by exercise. These findings suggest that prolonged endurance exercise can affect the colon environment, which is likely related to changes in inflammation, ER stress, mucin layers and tight junctions, associated with modifications in the gut microbiome.
Collapse
Affiliation(s)
- Eun Ji Yoon
- Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Republic of Korea; (E.J.Y.); (S.-I.Y.)
| | - So Rok Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| | - Beulah Favour Ortutu
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| | - Jong-Oh Kim
- Department of Sport Science, Hannam University, Daejeon 34430, Republic of Korea; (J.-O.K.); (J.H.Y.)
| | - Varun Jaiswal
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea;
| | - Sooyeon Baek
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| | - Su-In Yoon
- Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Republic of Korea; (E.J.Y.); (S.-I.Y.)
| | - Sang Ki Lee
- Department of Sport Science, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Jin Hwan Yoon
- Department of Sport Science, Hannam University, Daejeon 34430, Republic of Korea; (J.-O.K.); (J.H.Y.)
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea;
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| |
Collapse
|
6
|
Yang W, Cui H, Wang C, Wang X, Yan C, Cheng W. A review of the pathogenesis of epilepsy based on the microbiota-gut-brain-axis theory. Front Mol Neurosci 2024; 17:1454780. [PMID: 39421261 PMCID: PMC11484502 DOI: 10.3389/fnmol.2024.1454780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of epilepsy is related to the microbiota-gut-brain axis, but the mechanism has not been clarified. The microbiota-gut-brain axis is divided into the microbiota-gut-brain axis (upward pathways) and the brain-gut-microbiota axis (downward pathways) according to the direction of conduction. Gut microorganisms are involved in pathological and physiological processes in the human body and participate in epileptogenesis through neurological, immunological, endocrine, and metabolic pathways, as well as through the gut barrier and blood brain barrier mediated upward pathways. After epilepsy, the downward pathway mediated by the HPA axis and autonomic nerves triggers "leaky brain "and "leaky gut," resulting in the formation of microbial structures and enterobacterial metabolites associated with epileptogenicity, re-initiating seizures via the upward pathway. Characteristic changes in microbial and metabolic pathways in the gut of epileptic patients provide new targets for clinical prevention and treatment of epilepsy through the upward pathway. Based on these changes, this review further redescribes the pathogenesis of epilepsy and provides a new direction for its prevention and treatment.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Cui
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ciai Yan
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiping Cheng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Tang W, Wang Q, Sun M, Liu C, Huang Y, Zhou M, Zhang X, Meng Z, Zhang J. The gut microbiota-oligodendrocyte axis: A promising pathway for modulating oligodendrocyte homeostasis and demyelination-associated disorders. Life Sci 2024; 354:122952. [PMID: 39127317 DOI: 10.1016/j.lfs.2024.122952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The bidirectional regulation between the gut microbiota and brain, known as gut-brain axis, has received significant attention. The myelin sheath, produced by oligodendrocytes or Schwann cells, is essential for efficient nervous signal transmission and the maintenance of brain function. Growing evidence shows that both oligodendrogenesis and myelination are modulated by gut microbiota and its metabolites, and when dysbiosis occurs, changes in the microbiota composition and/or associated metabolites may impact developmental myelination and the occurrence of neurodevelopmental disabilities. Although the link between the microbiota and demyelinating disease such as multiple sclerosis has been extensively studied, our knowledge about the role of the microbiota in other myelin-related disorders, such as neurodegenerative diseases, is limited. Mechanistically, the microbiota-oligodendrocyte axis is primarily mediated by factors such as inflammation, the vagus nerve, endocrine hormones, and microbiota metabolites as evidenced by metagenomics, metabolomics, vagotomy, and morphological and molecular approaches. Treatments targeting this axis include probiotics, prebiotics, microbial metabolites, herbal bioactive compounds, and specific dietary management. In addition to the commonly used approaches, viral vector-mediated tracing and gene manipulation, integrated multiomics and multicenter clinical trials will greatly promote the mechanistic and interventional studies and ultimately, the development of new preventive and therapeutic strategies against gut-oligodendrocyte axis-mediated brain impairments. Interestingly, recent findings showed that microbiota dysbiosis can be induced by hippocampal myelin damage and is reversible by myelin-targeted drugs, which provides new insights into understanding how hippocampus-based functional impairment (such as in neurodegenerative Alzheimer's disease) regulates the peripheral homeostasis of microbiota and associated systemic disorders.
Collapse
Affiliation(s)
- Wen Tang
- Department of Gastroenterology, Chongqing Western Hospital, Chongqing 400052, China
| | - Qi Wang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Mingguang Sun
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Neurology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing 100853, China
| | - Chang''e Liu
- Department of Nutrition, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yonghua Huang
- Department of Neurology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Maohu Zhou
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
8
|
Shahpasand S, Khatami SH, Ehtiati S, Alehossein P, Salmani F, Toutounchi AH, Zarei T, Shahmohammadi MR, Khodarahmi R, Aghamollaii V, Tafakhori A, Karima S. Therapeutic potential of the ketogenic diet: A metabolic switch with implications for neurological disorders, the gut-brain axis, and cardiovascular diseases. J Nutr Biochem 2024; 132:109693. [PMID: 38880191 DOI: 10.1016/j.jnutbio.2024.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The Ketogenic Diet (KD) is a dietary regimen that is low in carbohydrates, high in fats, and contains adequate protein. It is designed to mimic the metabolic state of fasting. This diet triggers the production of ketone bodies through a process known as ketosis. The primary objective of KD is to induce and sustain ketosis, which has been associated with numerous health benefits. Recent research has uncovered promising therapeutic potential for KD in the treatment of various diseases. This includes evidence of its effectiveness as a dietary strategy for managing intractable epilepsy, a form of epilepsy that is resistant to medication. We are currently assessing the efficacy and safety of KD through laboratory and clinical studies. This review focuses on the anti-inflammatory properties of the KD and its potential benefits for neurological disorders and the gut-brain axis. We also explore the existing literature on the potential effects of KD on cardiac health. Our aim is to provide a comprehensive overview of the current knowledge in these areas. Given the encouraging preliminary evidence of its therapeutic effects and the growing understanding of its mechanisms of action, randomized controlled trials are warranted to further explore the rationale behind the clinical use of KD. These trials will ultimately enhance our understanding of how KD functions and its potential benefits for various health conditions. We hope that our research will contribute to the body of knowledge in this field and provide valuable insights for future studies.
Collapse
Affiliation(s)
- Sheyda Shahpasand
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Haghbin Toutounchi
- Department of general surgery,Imam Hosein medical and educational center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Tayebe Zarei
- Clinical Trial Department, Behbalin Co., Ltd., Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| |
Collapse
|
9
|
Sanchez-Martinez J, Solis-Urra P, Olivares-Arancibia J, Plaza-Diaz J. Physical Exercise and Mechanism Related to Alzheimer's Disease: Is Gut-Brain Axis Involved? Brain Sci 2024; 14:974. [PMID: 39451988 PMCID: PMC11506766 DOI: 10.3390/brainsci14100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disease characterized by structural changes in the brain, including hippocampal atrophy, cortical thinning, amyloid plaques, and tau tangles. Due to the aging of the global population, the burden of Alzheimer's disease is expected to increase, making the exploration of non-pharmacological interventions, such as physical exercise, an urgent priority. RESULTS There is emerging evidence that regular physical exercise may mitigate the structural and functional declines associated with Alzheimer's disease. The underlying mechanisms, however, remain poorly understood. Gut-brain axis research is a promising area for further investigation. This system involves bidirectional communication between the gut microbiome and the brain. According to recent studies, the gut microbiome may influence brain health through modulating neuroinflammation, producing neuroactive compounds, and altering metabolic processes. Exercise has been shown to alter the composition of the gut microbiome, potentially impacting brain structure and function. In this review, we aim to synthesize current research on the relationship between physical exercise, structural brain changes in Alzheimer's disease, and the gut-brain axis. CONCLUSIONS In this study, we will investigate whether changes in the gut microbiome induced by physical exercise can mediate its neuroprotective effects, offering new insights into the prevention and treatment of Alzheimer's disease. By integrating findings from neuroimaging studies, clinical trials, and microbiome research, this review will highlight potential mechanisms. It will also identify key gaps in the literature. This will pave the way for future research directions.
Collapse
Affiliation(s)
- Javier Sanchez-Martinez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 8370134, Chile
| | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
10
|
Chelluboina B, Cho T, Park JS, Mehta SL, Bathula S, Jeong S, Vemuganti R. Intermittent fasting induced cerebral ischemic tolerance altered gut microbiome and increased levels of short-chain fatty acids to a beneficial phenotype. Neurochem Int 2024; 178:105795. [PMID: 38908519 PMCID: PMC11296926 DOI: 10.1016/j.neuint.2024.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Preconditioning-induced cerebral ischemic tolerance is known to be a beneficial adaptation to protect the brain in an unavoidable event of stroke. We currently demonstrate that a short bout (6 weeks) of intermittent fasting (IF; 15 h fast/day) induces similar ischemic tolerance to that of a longer bout (12 weeks) in adult C57BL/6 male mice subjected to transient middle cerebral artery occlusion (MCAO). In addition, the 6 weeks IF regimen induced ischemic tolerance irrespective of age (3 months or 24 months) and sex. Mice subjected to transient MCAO following IF showed improved motor function recovery (rotarod and beam walk tests) between days 1 and 14 of reperfusion and smaller infarcts (T2-MRI) on day 1 of reperfusion compared with age/sex matched ad libitum (AL) controls. Diet influences the gut microbiome composition and stroke is known to promote gut bacterial dysbiosis. We presently show that IF promotes a beneficial phenotype of gut microbiome following transient MCAO compared with AL cohort. Furthermore, post-stroke levels of short-chain fatty acids (SCFAs), which are known to be neuroprotective, are higher in the fecal samples of the IF cohort compared with the AL cohort. Thus, our studies indicate the efficacy of IF in protecting the brain after stroke, irrespective of age and sex, probably by altering gut microbiome and SCFA production.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Tony Cho
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jin-Soo Park
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
11
|
Chen G, Jin Y, Chu C, Zheng Y, Chen Y, Zhu X. Genetic prediction of blood metabolites mediating the relationship between gut microbiota and Alzheimer's disease: a Mendelian randomization study. Front Microbiol 2024; 15:1414977. [PMID: 39224217 PMCID: PMC11366617 DOI: 10.3389/fmicb.2024.1414977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background Observational studies have suggested an association between gut microbiota and Alzheimer's disease (AD); however, the causal relationship remains unclear, and the role of blood metabolites in this association remains elusive. Purpose To elucidate the causal relationship between gut microbiota and AD and to investigate whether blood metabolites serve as potential mediators. Materials and methods Univariable Mendelian randomization (UVMR) analysis was employed to assess the causal relationship between gut microbiota and AD, while multivariable MR (MVMR) was utilized to mitigate confounding factors. Subsequently, a two-step mediation MR approach was employed to explore the role of blood metabolites as potential mediators. We primarily utilized the inverse variance-weighted method to evaluate the causal relationship between exposure and outcome, and sensitivity analyses including Contamination mixture, Maximum-likelihood, Debiased inverse-variance weighted, MR-Egger, Bayesian Weighted Mendelian randomization, and MR pleiotropy residual sum and outlier were conducted to address pleiotropy. Results After adjustment for reverse causality and MVMR correction, class Actinobacteria (OR: 1.03, 95% CI: 1.01-1.06, p = 0.006), family Lactobacillaceae (OR: 1.03, 95% CI: 1.00-1.05, p = 0.017), genus Lachnoclostridium (OR: 1.03, 95% CI: 1.00-1.06, p = 0.019), genus Ruminiclostridium9 (OR: 0.97, 95% CI: 0.94-1.00, p = 0.027) and genus Ruminiclostridium6 (OR: 1.03, 95% CI: 1.01-1.05, p = 0.009) exhibited causal effects on AD. Moreover, 1-ribosyl-imidazoleacetate levels (-6.62%), Metabolonic lactone sulfate levels (2.90%), and Nonadecanoate (19:0) levels (-12.17%) mediated the total genetic predictive effects of class Actinobacteria on AD risk. Similarly, 2-stearoyl-GPE (18:0) levels (-9.87%), Octadecanedioylcarnitine (C18-DC) levels (4.44%), 1-(1-enyl-stearoyl)-2-oleoyl-GPE (p-18:0/18:1) levels (38.66%), and X-23639 levels (13.28%) respectively mediated the total genetic predictive effects of family Lactobacillaceae on AD risk. Furthermore, Hexadecanedioate (C16-DC) levels (5.45%) mediated the total genetic predictive effects of genus Ruminiclostridium 6 on AD risk; Indole-3-carboxylate levels (13.91%), X-13431 levels (7.08%), Alpha-ketoglutarate to succinate ratio (-13.91%), 3-phosphoglycerate to glycerate ratio (15.27%), and Succinate to proline ratio (-14.64%) respectively mediated the total genetic predictive effects of genus Ruminiclostridium 9 on AD risk. Conclusion Our mediation MR analysis provides genetic evidence suggesting the potential mediating role of blood metabolites in the causal relationship between gut microbiota and AD. Further large-scale randomized controlled trials are warranted to validate the role of blood metabolites in the specific mechanisms by which gut microbiota influence AD.
Collapse
Affiliation(s)
- Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yaxian Jin
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Cancan Chu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuhao Zheng
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yunzhi Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xing Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Yun SW, Lee DY, Park HS, Kim DH. Heat-Processed Soybean Germ Extract and Lactobacillus gasseri NK109 Supplementation Reduce LPS-Induced Cognitive Impairment and Colitis in Mice. Nutrients 2024; 16:2736. [PMID: 39203872 PMCID: PMC11357477 DOI: 10.3390/nu16162736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Soybean alleviates cognitive impairment. In our preparatory experiment, we found that dry-heat (90 °C for 30 min)-processed soybean embryo ethanol extract (hSE) most potently suppressed lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α expression in BV2 cells among dry-heat-, steaming-, and oil exclusion-processed soybean embryo ethanol extracts (SEs). Heat processing increased the absorbable soyasaponin Bb content of SE. Therefore, we investigated whether hSE and its supplement could mitigate LPS-impaired cognitive function in mice. Among dry-heat-, steaming-, and oil exclusion-processed SEs, hSE mitigated LPS-impaired cognitive function more than parental SE. hSE potently upregulated LPS-suppressed brain-derived neurotropic factor (BDNF) expression in the hippocampus, while LPS-induced TNF-α and IL-1β expression in the hippocampus and colon were downregulated. Lactobacillus gasseri NK109 additively increased the cognitive function-enhancing activity of hSE in mice with LPS-induced cognitive impairment as follows: the hSE and NK109 mix potently increased cognitive function and hippocampal BDNF expression and BDNF-positive neuron cell numbers and decreased TNF-α expression and NF-κB-positive cell numbers in the hippocampus and colon. These findings suggest that hSE and its supplement may decrease colitis and neuroinflammation by suppressing NF-κB activation and inducing BDNF expression, resulting in the attenuation of cognitive impairment.
Collapse
Affiliation(s)
| | | | | | - Dong-Hyun Kim
- Neurobiota Research Center, Department of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-W.Y.); (D.-Y.L.); (H.-S.P.)
| |
Collapse
|
13
|
Li C, Li J, Zhou Q, Wang C, Hu J, Liu C. Effects of Physical Exercise on the Microbiota in Irritable Bowel Syndrome. Nutrients 2024; 16:2657. [PMID: 39203794 PMCID: PMC11356817 DOI: 10.3390/nu16162657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by abdominal pain, bloating, diarrhea, and constipation. Recent studies have underscored the significant role of the gut microbiota in the pathogenesis of IBS. Physical exercise, as a non-pharmacological intervention, has been proposed to alleviate IBS symptoms by modulating the gut microbiota. Aerobic exercise, such as running, swimming, and cycling, has been shown to enhance the diversity and abundance of beneficial gut bacteria, including Lactobacillus and Bifidobacterium. These bacteria produce short-chain fatty acids that possess anti-inflammatory properties and support gut barrier integrity. Studies involving IBS patients participating in structured aerobic exercise programs have reported significant improvements in their gut microbiota's composition and diversity, alongside an alleviation of symptoms like abdominal pain and bloating. Additionally, exercise positively influences mental health by reducing stress and improving mood, which can further relieve IBS symptoms via the gut-brain axis. Long-term exercise interventions provide sustained benefits, maintaining the gut microbiota's diversity and stability, supporting immune functions, and reducing systemic inflammation. However, exercise programs must be tailored to individual needs to avoid exacerbating IBS symptoms. Personalized exercise plans starting with low-to-moderate intensity and gradually increasing in intensity can maximize the benefits and minimize risks. This review examines the impact of various types and intensities of physical exercise on the gut microbiota in IBS patients, highlighting the need for further studies to explore optimal exercise protocols. Future research should include larger sample sizes, longer follow-up periods, and examine the synergistic effects of exercise and other lifestyle modifications. Integrating physical exercise into comprehensive IBS management plans can enhance symptom control and improve patients' quality of life.
Collapse
Affiliation(s)
- Chunpeng Li
- Russian Sports University, Moscow 105122, Russia;
| | - Jianmin Li
- School of Tai Chi Culture Handan University, Handan 056005, China;
| | - Qiaorui Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Can Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Jiahui Hu
- Moscow State Normal University, Moscow 127051, Russia
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
14
|
Wang Y, Xue YF, Xu YF, Wang MW, Guan J, Chen X. Elevated serum neurofilament light chain levels are associated with hepatic encephalopathy in patients with cirrhosis. Metab Brain Dis 2024; 39:1099-1108. [PMID: 38995495 DOI: 10.1007/s11011-024-01381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Increasing evidences implicate vital role of neuronal damage in the development of hepatic encephalopathy (HE). Neurofilament light chain (NfL) is the main frame component of neurons and is closely related to axonal radial growth and neuronal structural stability. We hypothesized that NfL as a biomarker of axonal injury may contribute to early diagnosis of HE. This study recruited 101 patients with liver cirrhosis, 10 healthy individuals, and 7 patients with Parkinson's disease. Minimal hepatic encephalopathy (MHE) was diagnosed using psychometric hepatic encephalopathy score. Serum NfL levels were measured by the electrochemiluminescence immunoassay. Serum NfL levels in cirrhotic patients with MHE were significantly higher than cirrhotic patients without MHE, and increased accordingly with the aggravation of HE. Serum NfL levels were associated with psychometric hepatic encephalopathy score, Child-Pugh score, model for end-stage liver disease score, and days of hospitalization. Additionally, serum NfL was an independent predictor of MHE (odds ratio of 1.020 (95% CI 1.005-1.034); P = 0.007). The discriminative abilities of serum NfL were high for identifying MHE (AUC of 0.8134 (95% CI 0.7130-0.9219); P ˂ 0.001) and OHE (AUC of 0.8852 (95% CI 0.8117-0.9587); P ˂ 0.001). Elevated serum NfL levels correlated with the presence of MHE and associated with the severity of HE, are expected to be a biomarker in patients with cirrhosis. Our study suggested that neuronal damage may play a critical role in the development of HE.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yu-Feng Xue
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yi-Fan Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ming-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jing Guan
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China.
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Xi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China.
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
15
|
Liang Y, Liu C, Cheng M, Geng L, Li J, Du W, Song M, Chen N, Yeleen TAN, Song L, Wang X, Han Y, Sheng C. The link between gut microbiome and Alzheimer's disease: From the perspective of new revised criteria for diagnosis and staging of Alzheimer's disease. Alzheimers Dement 2024; 20:5771-5788. [PMID: 38940631 PMCID: PMC11350031 DOI: 10.1002/alz.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Over the past decades, accumulating evidence suggests that the gut microbiome exerts a key role in Alzheimer's disease (AD). The Alzheimer's Association Workgroup is updating the diagnostic criteria for AD, which changed the profiles and categorization of biomarkers from "AT(N)" to "ATNIVS." Previously, most of studies focus on the correlation between the gut microbiome and amyloid beta deposition ("A"), the initial AD pathological feature triggering the "downstream" tauopathy and neurodegeneration. However, limited research investigated the interactions between the gut microbiome and other AD pathogenesis ("TNIVS"). In this review, we summarize current findings of the gut microbial characteristics in the whole spectrum of AD. Then, we describe the association of the gut microbiome with updated biomarker categories of AD pathogenesis. In addition, we outline the gut microbiome-related therapeutic strategies for AD. Finally, we discuss current key issues of the gut microbiome research in the AD field and future research directions. HIGHLIGHTS: The new revised criteria for Alzheimer's disease (AD) proposed by the Alzheimer's Association Workgroup have updated the profiles and categorization of biomarkers from "AT(N)" to "ATNIVS." The associations of the gut microbiome with updated biomarker categories of AD pathogenesis are described. Current findings of the gut microbial characteristics in the whole spectrum of AD are summarized. Therapeutic strategies for AD based on the gut microbiome are proposed.
Collapse
Affiliation(s)
- Yuan Liang
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Congcong Liu
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Manman Cheng
- Department of Respiratory MedicineThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Lijie Geng
- Department of RadiologyThe People's Hospital of YanzhouJiningChina
| | - Jing Li
- Department of EmergencyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Wenying Du
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | - Minfang Song
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Nian Chen
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | | | - Li Song
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Xiaoni Wang
- Department of NeurologySir Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Key Laboratory of Biomedical Engineering of Hainan ProvinceSchool of Biomedical EngineeringHainan UniversityHaikouChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
- National Clinical Research Center for Geriatric DisordersBeijingChina
| | - Can Sheng
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| |
Collapse
|
16
|
Yin C, Zhang M, Jin S, Zhou Y, Ding L, Lv Q, Huang Z, Zhou J, Chen J, Wang P, Zhang S, You Q. Mechanism of Salvia miltiorrhiza Bunge extract to alleviate Chronic Sleep Deprivation-Induced cognitive dysfunction in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155725. [PMID: 38772181 DOI: 10.1016/j.phymed.2024.155725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/16/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Bidirectional communication between the gut microbiota and the brain may play an essential role in the cognitive dysfunction associated with chronic sleep deprivation(CSD). Salvia miltiorrhiza Bunge (Danshen, DS), a famous Chinese medicine and functional tea, is extensively used to protect learning and memory capacities, although the mechanism of action remains unknown. PURPOSE The purpose of this research was to explore the efficacy and the underlying mechanism of DS in cognitive dysfunction caused by CSD. METHODS DS chemical composition was analyzed by UPLC-QTOF-MS/MS. Forty rats were randomly assigned to five groups (n = 8): control (CON), model (MOD), low- (1.35 g/kg, DSL), high-dose (2.70 g/kg, DSH) DS group, and Melatonin(100 mg/kg, MT) group. A CSD rat model was established over 21 days. DS's effects and the underlying mechanism were explored using the open-field test(OFT), Morris water-maze(MWM), tissue staining(Hematoxylin and Eosin Staining, Nissl staining, Alcian blue-periodic acid SCHIFF staining, and Immunofluorescence), enzyme-linked immunosorbent assay, Western blot, quantitative real-time polymerase chain reaction(qPCR), and 16S rRNA sequencing. RESULTS We demonstrated that CSD caused gut dysbiosis and cognitive dysfunction. Furthermore, 16S rRNA sequencing demonstrated that Firmicutes and Proteobacteria were more in fecal samples from model group rats, whereas Bacteroidota and Spirochaetota were less. DS therapy, on the contrary hand, greatly restored the gut microbial community, consequently alleviating cognitive impairment in rats. Further research revealed that DS administration reduced systemic inflammation via lowering intestinal inflammation and barrier disruption. Following that, DS therapy reduced Blood Brain Barrier(BBB) and neuronal damage, further decreasing neuroinflammation in the hippocampus(HP). Mechanistic studies revealed that DS therapy lowered lipopolysaccharide (LPS) levels in the HP, serum, and colon, consequently blocking the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products(IL-1β, IL-6, TNF-α, iNOS, and COX2) in the HP and colon. CONCLUSION DS treatment dramatically improved spatial learning and memory impairments in rats with CSD by regulating the composition of the intestinal flora, preserving gut and brain barrier function, and reducing inflammation mediated by the LPS-TLR4 signaling pathway. Our findings provide novel insight into the mechanisms by which DS treats cognitive dysfunction caused by CSD.
Collapse
Affiliation(s)
- Chao Yin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Meiya Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Shuna Jin
- Hubei Shizhen Laboratory, Wuhan 430065, PR China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yuan Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Qing Lv
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Zixuan Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Jiaqi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Jianmei Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Ping Wang
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China.
| | - Shunbo Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Qiuyun You
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China.
| |
Collapse
|
17
|
Morys J, Małecki A, Nowacka-Chmielewska M. Stress and the gut-brain axis: an inflammatory perspective. Front Mol Neurosci 2024; 17:1415567. [PMID: 39092201 PMCID: PMC11292226 DOI: 10.3389/fnmol.2024.1415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as well as contributes to mental health maintenance. The pathways that underpin the axis expand from macroscopic interactions with the nervous system, to the molecular signals that include microbial metabolites, tight junction protein expression, or cytokines released during inflammation. The dysfunctional GBA has been repeatedly linked to the occurrence of anxiety- and depressive-like behaviors development. The importance of the inflammatory aspects of the altered GBA has recently been highlighted in the literature. Here we summarize current reports on GBA signaling which involves the immune response within the intestinal and blood-brain barrier (BBB). We also emphasize the effect of stress response on altering barriers' permeability, and the therapeutic potential of microbiota restoration by probiotic administration or microbiota transplantation, based on the latest animal studies. Most research performed on various stress models showed an association between anxiety- and depressive-like behaviors, dysbiosis of gut microbiota, and disruption of intestinal permeability with simultaneous changes in BBB integrity. It could be postulated that under stress conditions impaired communication across BBB may therefore represent a significant mechanism allowing the gut microbiota to affect brain functions.
Collapse
Affiliation(s)
| | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
18
|
Ullah I, Wang X, Li H. Novel and experimental therapeutics for the management of motor and non-motor Parkinsonian symptoms. Neurol Sci 2024; 45:2979-2995. [PMID: 38388896 DOI: 10.1007/s10072-023-07278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND : Both motor and non-motor symptoms of Parkinson's disease (PD) have a substantial detrimental influence on the patient's quality of life. The most effective treatment remains oral levodopa. All currently known treatments just address the symptoms; they do not completely reverse the condition. METHODOLOGY In order to find literature on the creation of novel treatment agents and their efficacy for PD patients, we searched PubMed, Google Scholar, and other online libraries. RESULTS According to the most recent study on Parkinson's disease (PD), a great deal of work has been done in both the clinical and laboratory domains, and some current scientists have even been successful in developing novel therapies for PD patients. CONCLUSION The quality of life for PD patients has increased as a result of recent research, and numerous innovative medications are being developed for PD therapy. In the near future, we will see positive outcomes regarding PD treatment.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
19
|
Yao X, Yang C, Jia X, Yu Z, Wang C, Zhao J, Chen Y, Xie B, Zhuang H, Sun C, Li Q, Kang X, Xiao Y, Liu L. High-fat diet consumption promotes adolescent neurobehavioral abnormalities and hippocampal structural alterations via microglial overactivation accompanied by an elevated serum free fatty acid concentration. Brain Behav Immun 2024; 119:236-250. [PMID: 38604269 DOI: 10.1016/j.bbi.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
Mounting evidence suggests that high-fat diet (HFD) consumption increases the risk for depression, but the neurophysiological mechanisms involved remain to be elucidated. Here, we demonstrated that HFD feeding of C57BL/6J mice during the adolescent period (from 4 to 8 weeks of age) resulted in increased depression- and anxiety-like behaviors concurrent with changes in neuronal and myelin structure in the hippocampus. Additionally, we showed that hippocampal microglia in HFD-fed mice assumed a hyperactive state concomitant with increased PSD95-positive and myelin basic protein (MBP)-positive inclusions, implicating microglia in hippocampal structural alterations induced by HFD consumption. Along with increased levels of serum free fatty acids (FFAs), abnormal deposition of lipid droplets and increased levels of HIF-1α protein (a transcription factor that has been reported to facilitate cellular lipid accumulation) within hippocampal microglia were observed in HFD-fed mice. The use of minocycline, a pharmacological suppressor of microglial overactivation, effectively attenuated neurobehavioral abnormalities and hippocampal structural alterations but barely altered lipid droplet accumulation in the hippocampal microglia of HFD-fed mice. Coadministration of triacsin C abolished the increases in lipid droplet formation, phagocytic activity, and ROS levels in primary microglia treated with serum from HFD-fed mice. In conclusion, our studies demonstrate that the adverse influence of early-life HFD consumption on behavior and hippocampal structure is attributed at least in part to microglial overactivation that is accompanied by an elevated serum FFA concentration and microglial aberrations represent a potential preventive and therapeutic target for HFD-related emotional disorders.
Collapse
Affiliation(s)
- Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xirui Jia
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yuxi Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Bingjie Xie
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Congli Sun
- Medical College, Southeast University, Nanjing 210009, China
| | - Qian Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
20
|
Jarmakiewicz-Czaja S, Gruszecka J, Filip R. The Diagnosis of Intestinal Fibrosis in Crohn's Disease-Present and Future. Int J Mol Sci 2024; 25:6935. [PMID: 39000043 PMCID: PMC11241173 DOI: 10.3390/ijms25136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Crohn's disease (CD) progresses with periods of remission and exacerbations. During exacerbations, chronic inflammation leads to tissue destruction. As a result, intestinal fibrosis may develop in response to the ongoing inflammatory process. Fibrosis in CD should be considered the result of the response of the intestinal wall (over) to the presence of inflammation in the deep structures of the intestinal wall. In the absence of ideal noninvasive methods, endoscopic evaluation in combination with biopsy, histopathological analysis, stool analysis, and blood analysis remains the gold standard for assessing both inflammation and fibrosis in CD. On the contrary, the ability to identify markers of intestinal fibrosis would help to develop new diagnostic and therapeutic methods to detect early stages of fibrosis. It is speculated that miRNAs may, in the future, become biomarkers for early noninvasive diagnosis in the treatment of intestinal fibrosis. The purpose of this review is to summarise existing diagnostic methods for Crohn's disease and present recent scientific reports on molecular testing.
Collapse
Affiliation(s)
| | - Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
21
|
Cristina RT, Mohamed EA, Tulcan C, Dumitrescu E, Muselin F, Orășan SA, Mateoc-Sirb T, Vlad D. The Oxidative Stress Markers' Protective Influence of Sea Buckthorn and Grape Extracts in Atorvastatin-Treated Hyperlipidemic Rats. Nutrients 2024; 16:1954. [PMID: 38931308 PMCID: PMC11206752 DOI: 10.3390/nu16121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Free radicals and reactive oxygen species initiate when the oxidative stress arises. (1) Background: The effect of natural molecules on oxidative stress in hyperlipidemic rats, taking statins, was observed. (2) Methods: One hundred and twelve white Wistar rats, males and females, were divided into seven: Group I received 20 mg of atorvastatin while groups II and III received a combination of 20 mg of atorvastatin and 100 mg of Sea buckthorn and grape extract. Groups IV and V received 100 mg of Sea buckthorn and grape extract, while groups VI and VII received only high-fat diet (HFD) and normal rodents' fodder. After two and six months, rats were euthanized, and blood was gathered to measure the main paraclinical values and total antioxidant capacity (TAC). Also, the liver and kidney were stored for the organs' cytoarchitecture. For statistics, two-way analysis of variance (ANOVA), was performed. (3) Results: HFD produced hyperlipidemia, accompanied by augmented serum and hepatic oxidative stress markers, in addition to a reduction in antioxidant enzyme activities and glutathione levels. Polyphenolic substances proven efficient against HFD caused oxidative stress. (4) Conclusions: Atorvastatin heightened the histological injuries caused by the fatty diet, but these were diminished by taking atorvastatin in combination with 100 mg/kg of plant extracts.
Collapse
Affiliation(s)
- Romeo T. Cristina
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (E.A.M.); (C.T.); (E.D.); (F.M.); (S.A.O.)
| | - Erieg A. Mohamed
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (E.A.M.); (C.T.); (E.D.); (F.M.); (S.A.O.)
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Camelia Tulcan
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (E.A.M.); (C.T.); (E.D.); (F.M.); (S.A.O.)
| | - Eugenia Dumitrescu
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (E.A.M.); (C.T.); (E.D.); (F.M.); (S.A.O.)
| | - Florin Muselin
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (E.A.M.); (C.T.); (E.D.); (F.M.); (S.A.O.)
| | - Sergiu A. Orășan
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania; (E.A.M.); (C.T.); (E.D.); (F.M.); (S.A.O.)
| | - Teodora Mateoc-Sirb
- Pharmacology Department, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Daliborca Vlad
- Pharmacology Department, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| |
Collapse
|
22
|
Qian SX, Bao YF, Li XY, Dong Y, Zhang XL, Wu ZY. Multi-omics Analysis Reveals Key Gut Microbiota and Metabolites Closely Associated with Huntington's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04271-9. [PMID: 38850348 DOI: 10.1007/s12035-024-04271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Dysbiosis of the gut microbiota is closely associated with neurodegenerative diseases, including Huntington's disease (HD). Gut microbiome-derived metabolites are key factors in host-microbiome interactions. This study aimed to investigate the crucial gut microbiome and metabolites in HD and their correlations. Fecal and serum samples from 11 to 26 patients with HD, respectively, and 16 and 23 healthy controls, respectively, were collected. The fecal samples were used for shotgun metagenomics while the serum samples for metabolomics analysis. Integrated analysis of the metagenomics and metabolomics data was also conducted. Firmicutes, Bacteroidota, Proteobacteria, Uroviricota, Actinobacteria, and Verrucomicrobia were the dominant phyla. At the genus level, the presence of Bacteroides, Faecalibacterium, Parabacteroides, Alistipes, Dialister, and Christensenella was higher in HD patients, while the abundance of Lachnospira, Roseburia, Clostridium, Ruminococcus, Blautia, Butyricicoccus, Agathobaculum, Phocaeicola, Coprococcus, and Fusicatenibacter decreased. A total of 244 differential metabolites were identified and found to be enriched in the glycerophospholipid, nucleotide, biotin, galactose, and alpha-linolenic acid metabolic pathways. The AUC value from the integrated analysis (1) was higher than that from the analysis of the gut microbiota (0.8632). No significant differences were found in the ACE, Simpson, Shannon, Sobs, and Chao indexes between HD patients and controls. Our study determined crucial functional gut microbiota and potential biomarkers associated with HD pathogenesis, providing new insights into the role of the gut microbiota-brain axis in HD occurrence and development.
Collapse
Affiliation(s)
- Shu-Xia Qian
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, Zhejiang, China
| | - Yu-Feng Bao
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xiao-Yan Li
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xiao-Ling Zhang
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, Zhejiang, China.
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
- Nanhu Brain-Computer Interface Institute, Hangzhou, China.
| |
Collapse
|
23
|
Fabi JP. The connection between gut microbiota and its metabolites with neurodegenerative diseases in humans. Metab Brain Dis 2024; 39:967-984. [PMID: 38848023 DOI: 10.1007/s11011-024-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
The aging of populations is a global phenomenon that follows a possible increase in the incidence of neurodegenerative diseases. Alzheimer's, Parkinson's, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, and Huntington's diseases are some neurodegenerative disorders that aging could initiate or aggravate. Recent research has indicated that intestinal microbiota dysbiosis can trigger metabolism and brain functioning, contributing to the etiopathogenesis of those neurodegenerative diseases. The intestinal microbiota and its metabolites show significant functions in various aspects, such as the immune system modulation (development and maturation), the maintenance of the intestinal barrier integrity, the modulation of neuromuscular functions in the intestine, and the facilitation of essential metabolic processes for both the microbiota and humans. The primary evidence supporting the connection between intestinal microbiota and its metabolites with neurodegenerative diseases are epidemiological observations and animal models experimentation. This paper reviews up-to-date evidence on the correlation between the microbiota-gut-brain axis and neurodegenerative diseases, with a specially focus on gut metabolites. Dysbiosis can increase inflammatory cytokines and bacterial metabolites, altering intestinal and blood-brain barrier permeability and causing neuroinflammation, thus facilitating the pathogenesis of neurodegenerative diseases. Clinical data supporting this evidence still needs to be improved. Most of the works found are descriptive and associated with the presence of phyla or species of bacteria with neurodegenerative diseases. Despite the limitations of recent research, the potential for elucidating clinical questions that have thus far eluded clarification within prevailing pathophysiological frameworks of health and disease is promising through investigation of the interplay between the host and microbiota.
Collapse
Affiliation(s)
- João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508000, SP, Brazil.
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, 05508080, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, 05508080, SP, Brazil.
| |
Collapse
|
24
|
Khoo SC, Zhang N, Luang-In V, Goh MS, Sonne C, Ma NL. Exploring environmental exposomes and the gut-brain nexus: Unveiling the impact of pesticide exposure. ENVIRONMENTAL RESEARCH 2024; 250:118441. [PMID: 38350544 DOI: 10.1016/j.envres.2024.118441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nan Zhang
- Synerk Biotech, BioBay, Suzhou, 215000, China; Neuroscience Program, Department of Neurology, Houston Methodist Research Institute, TX, 77030, USA; Department of Neurology, Weill Cornell Medicine, New York, 10065, USA
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantharawichai, Mahasarakham, 44150, Thailand
| | - Meng Shien Goh
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Danish Centre for Environment and Energy (DCE), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Nyuk Ling Ma
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
25
|
Rook GAW. Evolution and the critical role of the microbiota in the reduced mental and physical health associated with low socioeconomic status (SES). Neurosci Biobehav Rev 2024; 161:105653. [PMID: 38582194 DOI: 10.1016/j.neubiorev.2024.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, Department of infection, UCL (University College London), London, UK.
| |
Collapse
|
26
|
Warren A, Nyavor Y, Zarabian N, Mahoney A, Frame LA. The microbiota-gut-brain-immune interface in the pathogenesis of neuroinflammatory diseases: a narrative review of the emerging literature. Front Immunol 2024; 15:1365673. [PMID: 38817603 PMCID: PMC11137262 DOI: 10.3389/fimmu.2024.1365673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Importance Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Nikkia Zarabian
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Aidan Mahoney
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Undergraduate College, Princeton University, Princeton, NJ, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
27
|
Ma X, Kim JK, Shin YJ, Park HS, Lee DY, Yim SV, Kim DH. Lipopolysaccharide-producing Veillonella infantium and Escherichia fergusonii cause vagus nerve-mediated cognitive impairment in mice. Brain Behav Immun 2024; 118:136-148. [PMID: 38428648 DOI: 10.1016/j.bbi.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Gut microbiota communicates bidirectionally with the brain through the nervous, immune, and endocrine systems of the gut. In our preliminary study, the fecal microbiota of volunteers with mild cognitive impairment (Fmci) exhibited a higher abundance of Escherichia fergusonii (NK2001), Veillonella infantium (NK2002), and Enterococcus faecium (NK2003) populations compared with those of healthy volunteers. Therefore, we examined the effects of Fmci, NK2001 (gram-negative), NK2002 (gram-negative-like), and NK2003 (gram-positive) on cognitive impairment-like behavior, neuroinflammation, and colitis in mice with or without antibiotics. Fmci transplantation increased cognitive impairment-like behavior, hippocampal tumor necrosis factor (TNF)-α expression, and the size of toll-like receptor (TLR)4+Iba1+, TLR2+Iba1+, and NF-κB+Iba1+ cell populations independent of antibiotic treatment. Oral gavage of NK2001, NK2002, or NK2003, which induced TNF-α expression in Caco-2 cells, significantly increased cognitive impairment-like behavior and hippocampal TNF-α expression and Iba1-positive cell populations and decreased brain-derived neurotrophic factor (BDNF) expression in mice. Celiac vagotomy significantly decreased NK2001- or NK2002-induced cognitive impairment-like behavior and hippocampal Iba1+ cell population and TNF-α expression and increased NK2001- or NK2002-suppressed hippocampal BDNF expression. However, NK2003-induced cognitive impairment-like behavior and hippocampal Iba1+ cell population and TNF-α expression were partially, but not significantly, attenuated by celiac vagotomy. Furthermore, celiac vagotomy did not affect NK2001-, NK2002-, or NK2003-induced lipopolysaccharide (LPS) levels in the blood and feces and TNF-α expression and NF-κB-positive cell population in the colon. In conclusion, LPS-producing NK2001 and NK2002 and LPS-nonproducing NK2003 may induce NF-κB-mediated neuroinflammation through the translocation of byproducts such as LPS and peptidoglycan into the brain through gut-blood/vagus nerve-brain and gut-blood-brain pathways, respectively, resulting in cognitive impairment.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea; School of Pharmacy, Jeonbuk National University, Jeonju-si, Korea.
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea.
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea.
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea.
| | - Sung-Vin Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
28
|
Nicolas S, Dohm-Hansen S, Lavelle A, Bastiaanssen TFS, English JA, Cryan JF, Nolan YM. Exercise mitigates a gut microbiota-mediated reduction in adult hippocampal neurogenesis and associated behaviours in rats. Transl Psychiatry 2024; 14:195. [PMID: 38658547 PMCID: PMC11043361 DOI: 10.1038/s41398-024-02904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Lifestyle factors, especially exercise, impact the manifestation and progression of psychiatric and neurodegenerative disorders such as depression and Alzheimer's disease, mediated by changes in hippocampal neuroplasticity. The beneficial effects of exercise may be due to its promotion of adult hippocampal neurogenesis (AHN). Gut microbiota has also been showed to be altered in a variety of brain disorders, and disturbances of the microbiota have resulted in alterations in brain and behaviour. However, whether exercise can counteract the negative effects of altered gut microbiota on brain function remains under explored. To this end, chronic disruption of the gut microbiota was achieved using an antibiotic cocktail in rats that were sedentary or allowed voluntary access to running wheels. Sedentary rats with disrupted microbiota displayed impaired performance in hippocampal neurogenesis-dependent tasks: the modified spontaneous location recognition task and the novelty suppressed feeding test. Performance in the elevated plus maze was also impaired due to antibiotics treatment. These behaviours, and an antibiotics-induced reduction in AHN were attenuated by voluntary exercise. The effects were independent of changes in the hippocampal metabolome but were paralleled by caecal metabolomic changes. Taken together these data highlight the importance of the gut microbiota in AHN-dependent behaviours and demonstrate the power of lifestyle factors such as voluntary exercise to attenuate these changes.
Collapse
Affiliation(s)
- Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sebastian Dohm-Hansen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jane A English
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- INFANT Research Centre, Cork University Hospital, Wilton, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Alagiakrishnan K, Morgadinho J, Halverson T. Approach to the diagnosis and management of dysbiosis. Front Nutr 2024; 11:1330903. [PMID: 38706561 PMCID: PMC11069313 DOI: 10.3389/fnut.2024.1330903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
All microorganisms like bacteria, viruses and fungi that reside within a host environment are considered a microbiome. The number of bacteria almost equal that of human cells, however, the genome of these bacteria may be almost 100 times larger than the human genome. Every aspect of the physiology and health can be influenced by the microbiome living in various parts of our body. Any imbalance in the microbiome composition or function is seen as dysbiosis. Different types of dysbiosis are seen and the corresponding symptoms depend on the site of microbial imbalance. The contribution of the intestinal and extra-intestinal microbiota to influence systemic activities is through interplay between different axes. Whole body dysbiosis is a complex process involving gut microbiome and non-gut related microbiome. It is still at the stage of infancy and has not yet been fully understood. Dysbiosis can be influenced by genetic factors, lifestyle habits, diet including ultra-processed foods and food additives, as well as medications. Dysbiosis has been associated with many systemic diseases and cannot be diagnosed through standard blood tests or investigations. Microbiota derived metabolites can be analyzed and can be useful in the management of dysbiosis. Whole body dysbiosis can be addressed by altering lifestyle factors, proper diet and microbial modulation. The effect of these interventions in humans depends on the beneficial microbiome alteration mostly based on animal studies with evolving evidence from human studies. There is tremendous potential for the human microbiome in the diagnosis, treatment, and prognosis of diseases, as well as, for the monitoring of health and disease in humans. Whole body system-based approach to the diagnosis of dysbiosis is better than a pure taxonomic approach. Whole body dysbiosis could be a new therapeutic target in the management of various health conditions.
Collapse
Affiliation(s)
| | - Joao Morgadinho
- Kaye Edmonton Clinic, Alberta Health Services, Edmonton, AB, Canada
| | - Tyler Halverson
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Luo YX, Yang LL, Yao XQ. Gut microbiota-host lipid crosstalk in Alzheimer's disease: implications for disease progression and therapeutics. Mol Neurodegener 2024; 19:35. [PMID: 38627829 PMCID: PMC11020986 DOI: 10.1186/s13024-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Peng LH, Tan Y, Bajinka O. The influence of maternal diet on offspring's gut microbiota in early life. Arch Gynecol Obstet 2024; 309:1183-1190. [PMID: 38057588 DOI: 10.1007/s00404-023-07305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The influence of maternal diet on offspring's health is an area of study that is linked to epigenetics. Maternal diet contributes to determining the health status of offspring and maternally linked mechanisms and is a global health challenge that requires attention. The impact of gut microbiota on host metabolism and offspring health is still not established. OBJECTIVE In this review, we intend to discuss the evidence on the impact of maternal diet and the health of offspring gut microbiota. The paper focuses on the gut microbiome of animal models. It captures the maternal diet and its influence on the offspring's gut microbiota, behavior that is supported by cell experimental results. Both inflammation and immune status of offspring induced by maternal diet are discussed. Finally, this review used predicted biological pathways involved in maternal diet and offspring health, and the influence of maternal diet on gut microbiota and offspring behavior. Obesity, diabetes, asthma and allergies, and neurodegenerative disorders and prospects for maternal diet, and microbiota and offspring health were discussed. CONCLUSION The review was able to gather that a high-fat diet during pregnancy created a long-lasting metabolic signature on the infant's innate immune system, altering inflammation in the offspring microbiota, which predisposed offspring to obesity and metabolic diseases in adulthood.
Collapse
Affiliation(s)
- Li-Hua Peng
- Department of Physiology, Hunan Yongzhou Vocational Technical College, Yongzhou, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- School of Medicine and Allied Health Sciences, University of The Gambia, Serrekunda, Gambia.
| |
Collapse
|
32
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
33
|
Ekwudo MN, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease: pathogenic mechanisms and therapeutic targets. FEBS J 2024. [PMID: 38426291 DOI: 10.1111/febs.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Huntington's disease (HD) is a currently incurable neurogenerative disorder and is typically characterized by progressive movement disorder (including chorea), cognitive deficits (culminating in dementia), psychiatric abnormalities (the most common of which is depression), and peripheral symptoms (including gastrointestinal dysfunction). There are currently no approved disease-modifying therapies available for HD, with death usually occurring approximately 10-25 years after onset, but some therapies hold promising potential. HD subjects are often burdened by chronic diarrhea, constipation, esophageal and gastric inflammation, and a susceptibility to diabetes. Our understanding of the microbiota-gut-brain axis in HD is in its infancy and growing evidence from preclinical and clinical studies suggests a role of gut microbial population imbalance (gut dysbiosis) in HD pathophysiology. The gut and the brain can communicate through the enteric nervous system, immune system, vagus nerve, and microbiota-derived-metabolites including short-chain fatty acids, bile acids, and branched-chain amino acids. This review summarizes supporting evidence demonstrating the alterations in bacterial and fungal composition that may be associated with HD. We focus on mechanisms through which gut dysbiosis may compromise brain and gut health, thus triggering neuroinflammatory responses, and further highlight outcomes of attempts to modulate the gut microbiota as promising therapeutic strategies for HD. Ultimately, we discuss the dearth of data and the need for more longitudinal and translational studies in this nascent field. We suggest future directions to improve our understanding of the association between gut microbes and the pathogenesis of HD, and other 'brain and body disorders'.
Collapse
Affiliation(s)
- Millicent N Ekwudo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| |
Collapse
|
34
|
Noor Eddin A, Alfuwais M, Noor Eddin R, Alkattan K, Yaqinuddin A. Gut-Modulating Agents and Amyotrophic Lateral Sclerosis: Current Evidence and Future Perspectives. Nutrients 2024; 16:590. [PMID: 38474719 DOI: 10.3390/nu16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a highly fatal neurodegenerative disorder characterized by the progressive wasting and paralysis of voluntary muscle. Despite extensive research, the etiology of ALS remains elusive, and effective treatment options are limited. However, recent evidence implicates gut dysbiosis and gut-brain axis (GBA) dysfunction in ALS pathogenesis. Alterations to the composition and diversity of microbial communities within the gut flora have been consistently observed in ALS patients. These changes are often correlated with disease progression and patient outcome, suggesting that GBA modulation may have therapeutic potential. Indeed, targeting the gut microbiota has been shown to be neuroprotective in several animal models, alleviating motor symptoms and mitigating disease progression. However, the translation of these findings to human patients is challenging due to the complexity of ALS pathology and the varying diversity of gut microbiota. This review comprehensively summarizes the current literature on ALS-related gut dysbiosis, focusing on the implications of GBA dysfunction. It delineates three main mechanisms by which dysbiosis contributes to ALS pathology: compromised intestinal barrier integrity, metabolic dysfunction, and immune dysregulation. It also examines preclinical evidence on the therapeutic potential of gut-microbiota-modulating agents (categorized as prebiotics, probiotics, and postbiotics) in ALS.
Collapse
Affiliation(s)
- Ahmed Noor Eddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Alfuwais
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Reena Noor Eddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
35
|
Nájera-Maldonado JM, Salazar R, Alvarez-Fitz P, Acevedo-Quiroz M, Flores-Alfaro E, Hernández-Sotelo D, Espinoza-Rojo M, Ramírez M. Phenolic Compounds of Therapeutic Interest in Neuroprotection. J Xenobiot 2024; 14:227-246. [PMID: 38390994 PMCID: PMC10885129 DOI: 10.3390/jox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
The number of elderly people is projected to double in the next 50 years worldwide, resulting in an increased prevalence of neurodegenerative diseases. Aging causes changes in brain tissue homeostasis, thus contributing to the development of neurodegenerative disorders. Current treatments are not entirely effective, so alternative treatments or adjuvant agents are being actively sought. Antioxidant properties of phenolic compounds are of particular interest for neurodegenerative diseases whose psychopathological mechanisms strongly rely on oxidative stress at the brain level. Moreover, phenolic compounds display other advantages such as the permeability of the blood-brain barrier (BBB) and the interesting molecular mechanisms that we reviewed in this work. We began by briefly outlining the physiopathology of neurodegenerative diseases to understand the mechanisms that result in irreversible brain damage, then we provided an overall classification of the phenolic compounds that would be addressed later. We reviewed in vitro and in vivo studies, as well as some clinical trials in which neuroprotective mechanisms were demonstrated in models of different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), ischemia, and traumatic brain injury (TBI).
Collapse
Affiliation(s)
| | - Ricardo Salazar
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Patricia Alvarez-Fitz
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Macdiel Acevedo-Quiroz
- National Technological Institute of Mexico, Technological/IT Institute of Zacatepec, Zacatepec 62780, Mexico
| | - Eugenia Flores-Alfaro
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Daniel Hernández-Sotelo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Espinoza-Rojo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Ramírez
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| |
Collapse
|
36
|
Zare MJ, Masoumi SJ, Zare M. The association between energy-adjusted dietary inflammatory index and physical activity with sleep quality: a cross-sectional study. BMC Nutr 2024; 10:26. [PMID: 38310318 PMCID: PMC10838418 DOI: 10.1186/s40795-024-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The study aimed to assess the independent and interactive association of energy-adjusted dietary inflammatory index (E-DII) and physical activity (PA) with sleep quality. METHOD A cross-sectional study was conducted on the 2466 participants (60% women). A 116-item food frequency questionnaire (FFQ) was applied to calculate E-DII, the International Physical Activity Questionnaire (IPAQ) long form for PA, and the Pittsburgh sleep quality index (PSQI) to assess sleep quality were collected via interview. Multivariate logistic regression was applied to assess independent and interactive associations of E-DII and PA with sleep quality. RESULT No significant association was observed between E-DII and sleep quality (OR: 0.96, 95% CI: 0.92_1.01). Also, there was no significant association between the levels of PA and sleep quality. Women had 70% increased odds for poor sleep quality (OR: 1.7, 95% CI: 1.39_2.09) compared with men. No interactive association was observed between E-DII and PA levels with sleep quality. CONCLUSION No significant association was observed between E-DII and PA levels with sleep quality. The study indicates a gender difference in sleep quality. Future prospective studies are required to confirm these findings.
Collapse
Affiliation(s)
- Mohammad Javad Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Razi Boulevard, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Razi Boulevard, Shiraz, Iran.
- Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran.
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Razi Boulevard, Shiraz, Iran
| |
Collapse
|
37
|
Tian X, Dong W, Zhou W, Yan Y, Lu L, Mi J, Cao Y, Sun Y, Zeng X. The polysaccharides from the fruits of Lycium barbarum ameliorate high-fat and high-fructose diet-induced cognitive impairment via regulating blood glucose and mediating gut microbiota. Int J Biol Macromol 2024; 258:129036. [PMID: 38151081 DOI: 10.1016/j.ijbiomac.2023.129036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
High-fat and high-fructose diet (HFFD) consumption can induce cognitive dysfunction and gut microbiota disorder. In the present study, the effects of the polysaccharides from the fruits of Lycium barbarum L. (LBPs) on HFFD-induced cognitive deficits and gut microbiota dysbiosis were investigated. The results showed that intervention of LBPs (200 mg/kg/day) for 14 weeks could significantly prevent learning and memory deficits in HFFD-fed mice, evidenced by a reduction of latency and increment of crossing parameters of platform quadrant in Morris water maze test. Moreover, oral administration of LBPs enhanced the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor and reduced the activation of glial cells in hippocampus. Besides, LBPs treatment enriched the relative abundances of Allobaculum and Lactococcus and reduced the relative abundance of Proteobacteria in gut bacterial community of HFFD-fed mice, accompanied by increased levels of short-chain fatty acids (SCFAs) as well as expression of associated G protein-coupled receptors. Furthermore, LBPs intervention prevented insulin resistance, obesity and colonic inflammation. Finally, a significant correlation was observed among neuroinflammation associated parameters, gut microbiota and SCFAs through Pearson correlation analysis. Collectively, these findings suggested that the regulation of gut microbiota might be the potential mechanism of LBPs on preventing cognitive dysfunction induced by HFFD.
Collapse
Affiliation(s)
- Xinyi Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
Matin S, Dadkhah M. BDNF/CREB signaling pathway contribution in depression pathogenesis: A survey on the non-pharmacological therapeutic opportunities for gut microbiota dysbiosis. Brain Res Bull 2024; 207:110882. [PMID: 38244808 DOI: 10.1016/j.brainresbull.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Emerging evidence supports the gut microbiota and the brain communication in general health. This axis may affect behavior through modulating neurotransmission, and thereby involve in the pathogenesis and/or progression of different neuropsychiatric disorders such as depression. Brain-derived neurotrophic factor and cAMP response element-binding protein known as CREB/BDNF pathway plays have critical functions in the pathogenesis of depression as the same of mechanisms related to antidepressants. However, the putative causal significance of the CREB/BDNF signaling cascade in the gut-brain axis in depression remains unknown. Also interventions such as probiotics supplementation and exercise can influence microbiome also improve bidirectional communication of gut and brain. In this review we aim to explain the BDNF/CREB signaling pathway and gut microbiota dysfunction and then evaluate the potential role of probiotics, prebiotics, and exercise as a therapeutic target in the gut microbiota dysfunction induced depression. The current narrative review will specifically focus on the impact of exercise and diet on the intestinal microbiota component, as well as the effect that these therapies may have on the microbiota to alleviate depressive symptoms. Finally, we look at how BDNF/CREB signaling pathway may exert distinct effects on depression and gut microbiota dysfunction.
Collapse
Affiliation(s)
- Somaieh Matin
- Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
39
|
Zhang K, Guo H, Zhang X, Yang H, Yuan G, Zhu Z, Lu X, Zhang J, Du J, Shi H, Jin G, Ren J, Hao J, Sun Y, Su P, Zhang Z. Effects of aerobic exercise or Tai Chi Chuan interventions on problematic mobile phone use and the potential role of intestinal flora: A multi-arm randomized controlled trial. J Psychiatr Res 2024; 170:394-407. [PMID: 38218013 DOI: 10.1016/j.jpsychires.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/16/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Problematic use of mobile phones (PMPU) has been described as a serious public health issue. METHODS This study was a parallel three-arm randomized controlled trial and has completed registration (ClinicalTrials.gov Identifier: NCT05843591). Ninety college students with PMPU were randomly assigned to the aerobic exercise group (AE group, n = 30), the Tai Chi Chuan group (TCC group, n = 30), or the wait-list control group (WLC group, n = 30). At the end of the intervention, stool samples from the study participants were collected for biological analysis based on 16 S rDNA amplicon sequencing technology. The primary outcome was addiction symptoms assessed by the Smartphone Addiction Scale-Short Version (SAS-SV). The secondary outcomes are emotional symptoms, physical symptoms, and flora species. RESULTS Compared with the WLC group, the AE and TCC groups showed reductions in PMPU levels, physical and mental fatigue, but there was no difference between the two groups. Moreover, the effect of increasing self-esteem embodied in the TCC group was not present in the AE group. Compared to the WLC group, the relative abundance of Bacteroidaceae and Bacteroides were lower in the AE group, while the relative abundance of Erysipelotrichaceae and Alistipes were lower in the TCC group. And the relative abundance of Bacteroidaceae, Bacteroides, and Alistipes were significantly and negatively correlated with the decline in PMPU scores. CONCLUSION AE or TCC is an effective, safe and efficient intervention for college students with PMPU, providing some physiological and psychological benefits and having some impact on their intestinal flora.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310003, China.
| | - Haiyun Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Xueqing Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huayu Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Guojing Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhihui Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jianghui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jun Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Haiyan Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Guifang Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Juan Ren
- The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jiahu Hao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Ying Sun
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Puyu Su
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China; Center for Evidence Based Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
40
|
Ferenc K, Sokal-Dembowska A, Helma K, Motyka E, Jarmakiewicz-Czaja S, Filip R. Modulation of the Gut Microbiota by Nutrition and Its Relationship to Epigenetics. Int J Mol Sci 2024; 25:1228. [PMID: 38279228 PMCID: PMC10816208 DOI: 10.3390/ijms25021228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The intestinal microbiota is a community of microorganisms inhabiting the human intestines, potentially influencing both physiological and pathophysiological processes in the human body. Existing evidence suggests that nutrients can influence the modulation of the gut microbiota. However, there is still limited evidence regarding the effects of vitamin and mineral supplementation on the human gut microbiota through epigenetic modification. It is plausible that maintaining an adequate dietary intake of vitamin D, iron, fibre, zinc and magnesium may have a beneficial effect on alleviating inflammation in the body, reducing oxidative stress, and improving the condition of the intestinal microbiota through various epigenetic mechanisms. Moreover, epigenetics involves alterations in the phenotype of a cell without changing its fundamental DNA sequence. It appears that the modulation of the microbiota by various nutrients may lead to epigenetic regulation. The correlations between microbiota and epigenetics are potentially interdependent. Therefore, the primary objective of this review is to identify the complex relationships between diet, gut microbiota, and epigenetic regulation. These interactions could play a crucial role in systemic health.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
41
|
Ma X, Shin JW, Cho JH, Han SW, Kim DH. IL-6 expression-suppressing Lactobacillus reuteri strains alleviate gut microbiota-induced anxiety and depression in mice. Lett Appl Microbiol 2024; 77:ovad144. [PMID: 38126116 DOI: 10.1093/lambio/ovad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Fecal microbiota transplantation from patients with depression/inflammatory bowel disease (PDI) causes depression with gut inflammation in mice. Here, we investigated the effects of six Lactobacillus reuteri strains on brain-derived neurotropic factor (BDNF), serotonin, and interleukin (IL)-6 expression in neuronal or macrophage cells and PDI fecal microbiota-cultured microbiota (PcM)-induced depression in mice. Of these strains, L6 most potently increased BDNF and serotonin levels in corticosterone-stimulated SH-SY5Y and PC12 cells, followed by L3. L6 most potently decreased IL-6 expression in lipopolysaccharide (LPS)-stimulated macrophages. When L1 (weakest in vitro), L3, and L6 were orally administered in mice with PcM-induced depression, L6 most potently suppressed depression-like behaviors and hippocampal TNF-α and IL-6 expression and increased hippocampal serotonin, BDNF, 5HT7, GABAARα1, and GABABR1b expression, followed by L3 and L1. L6 also suppressed TNF-α and IL-6 expression in the colon. BDNF or serotonin levels in corticosterone-stimulated neuronal cells were negatively correlated with depression-related biomarkers in PcM-transplanted mice, while IL-6 levels in LPS-stimulated macrophage were positively correlated. These findings suggest that IL-6 expression-suppressing and BDNF/serotonin expression-inducing LBPs in vitro, particularly L6, may alleviate gut microbiota-involved depression with colitis in vivo.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Jeong-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Jae-Hyun Cho
- PB Department, NVP Healthcare, Inc., Suwon 16209, South Korea
| | - Seung-Won Han
- PB Department, NVP Healthcare, Inc., Suwon 16209, South Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| |
Collapse
|
42
|
Shi B, Li H, He X. Advancing lifelong precision medicine for cardiovascular diseases through gut microbiota modulation. Gut Microbes 2024; 16:2323237. [PMID: 38411391 PMCID: PMC10900281 DOI: 10.1080/19490976.2024.2323237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
The gut microbiome is known as the tenth system of the human body that plays a vital role in the intersection between health and disease. The considerable inter-individual variability in gut microbiota poses both challenges and great prospects in promoting precision medicine in cardiovascular diseases (CVDs). In this review, based on the development, evolution, and influencing factors of gut microbiota in a full life circle, we summarized the recent advances on the characteristic alteration in gut microbiota in CVDs throughout different life stages, and depicted their pathological links in mechanism, as well as the highlight achievements of targeting gut microbiota in CVDs prevention, diagnosis and treatment. Personalized strategies could be tailored according to gut microbiota characteristics in different life stages, including gut microbiota-blood metabolites combined prediction and diagnosis, dietary interventions, lifestyle improvements, probiotic or prebiotic supplements. However, to fulfill the promise of a lifelong cardiovascular health, more mechanism studies should progress from correlation to causality and decipher novel mechanisms linking specific microbes and CVDs. It is also promising to use the burgeoning artificial intelligence and machine learning to target gut microbiota for developing diagnosis system and screening for new therapeutic interventions.
Collapse
Affiliation(s)
- Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Bhattacharjee B, Chakrovorty A, Biswas M, Samadder A, Nandi S. To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds. Curr Med Chem 2024; 31:3752-3790. [PMID: 37211853 DOI: 10.2174/0929867330666230519112312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action. INTRODUCTION DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN. METHODS Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article. RESULT This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN. CONCLUSION This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.
Collapse
Affiliation(s)
- Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Maharaj Biswas
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
44
|
Guo W, Xiong W. From gut microbiota to brain: implications on binge eating disorders. Gut Microbes 2024; 16:2357177. [PMID: 38781112 PMCID: PMC11123470 DOI: 10.1080/19490976.2024.2357177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The prevalence of eating disorders has been increasing over the last 50 years. Binge eating disorder (BED) and bulimia nervosa (BN) are two typical disabling, costly and life-threatening eating disorders that substantially compromise the physical well-being of individuals while undermining their psychological functioning. The distressing and recurrent episodes of binge eating are commonly observed in both BED and BN; however, they diverge as BN often involves the adoption of inappropriate compensatory behaviors aimed at averting weight gain. Normal eating behavior is coordinated by a well-regulated trade-off between intestinal and central ingestive mechanism. Conversely, despite the fact that the etiology of BED and BN remains incompletely resolved, emerging evidence corroborates the notion that dysbiosis of gastrointestinal microbiome and its metabolites, alteration of gut-brain axis, as well as malfunctioning central circuitry regulating motivation, execution and reward all contribute to the pathology of binge eating. In this review, we aim to outline the current state of knowledge pertaining to the potential mechanisms through which each component of the gut-brain axis participates in binge eating behaviors, and provide insight for the development of microbiome-based therapeutic interventions that hold promise in ameliorating patients afflicted with binge eating disorders.
Collapse
Affiliation(s)
- Weiwei Guo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, Hefei, China
| |
Collapse
|
45
|
Zhu Y, Song G. Molecular origin and biological effects of exercise mimetics. J Exerc Sci Fit 2024; 22:73-85. [PMID: 38187084 PMCID: PMC10770624 DOI: 10.1016/j.jesf.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
With the rapid development of sports science and molecular biology technology, academia refers to molecules or microorganisms that mimic or enhance the beneficial effects of exercise on the body, called "exercise mimetics." This review aims to clarify the concept and development history of exercise mimetics, and to define the concept of exercise mimetics by summarizing its characteristics and functions. Candidate molecules and drug targets for exercise mimetics are summarized, and the relationship between exercise mimetics and exercise is explained, as well as the targeting system and function of exercise mimetics. The main targeting systems for exercise mimetics are the exercise system, circulatory system, endocrine system, endocrine system, and nervous system, while the immune system is potential targeting systems. Finally, future research directions for exercise mimetics are discussed.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Gang Song
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
46
|
Villavicencio-Tejo F, Olesen MA, Navarro L, Calisto N, Iribarren C, García K, Corsini G, Quintanilla RA. Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders. Neurotox Res 2023; 42:4. [PMID: 38103074 DOI: 10.1007/s12640-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The gut-brain axis is an essential communication pathway between the central nervous system (CNS) and the gastrointestinal tract. The human microbiota is composed of a diverse and abundant microbial community that compasses more than 100 trillion microorganisms that participate in relevant physiological functions such as host nutrient metabolism, structural integrity, maintenance of the gut mucosal barrier, and immunomodulation. Recent evidence in animal models has been instrumental in demonstrating the possible role of the microbiota in neurodevelopment, neuroinflammation, and behavior. Furthermore, clinical studies suggested that adverse changes in the microbiota can be considered a susceptibility factor for neurological disorders (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). In this review, we will discuss evidence describing the role of gut microbes in health and disease as a relevant risk factor in the pathogenesis of neurodegenerative disorders, including AD, PD, HD, and ALS.
Collapse
Affiliation(s)
- Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile
| | - Laura Navarro
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nancy Calisto
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristian Iribarren
- Laboratorio de Patógenos Gastrointestinales, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Laboratorio de Patógenos Gastrointestinales, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gino Corsini
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile.
| |
Collapse
|
47
|
Shevchenko A, Shalaginova I, Katserov D, Matskova L, Shiryaeva N, Dyuzhikova N. Post-stress changes in the gut microbiome composition in rats with different levels of nervous system excitability. PLoS One 2023; 18:e0295709. [PMID: 38079399 PMCID: PMC10712864 DOI: 10.1371/journal.pone.0295709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
The gut-brain axis is a critical communication system influencing the interactions between the gastrointestinal tract (GI) and the central nervous system (CNS). The gut microbiota plays a significant role in this axis, affecting the development and function of the nervous system. Stress-induced psychopathologies, such as depression and anxiety, have been linked to the gut microbiota, but underlying mechanisms and genetic susceptibility remain unclear. In this study, we examined stress-induced changes in the gut microbiome composition in two rat strains with different levels of nervous system excitability: high threshold (HT strain) and low threshold (LT strain). Rats were exposed to long-term emotional and painful stress using the Hecht protocol, and fecal samples were collected at multiple time points before and after stress exposure. Using 16S rRNA amplicon sequencing, we assessed the qualitative and quantitative changes in the gut microbiota. Our results revealed distinct microbial diversity between the two rat strains, with the HT strain displaying higher diversity compared to the LT strain. Notably, under prolonged stress, the HT strain showed an increase in relative abundance of microorganisms from the genera Faecalibacterium and Prevotella in fecal samples. Additionally, both strains exhibited a decrease in Lactobacillus abundance following stress exposure. Our findings provide valuable insights into the impact of hereditary nervous system excitability on the gut microbiome composition under stress conditions. Understanding the gut-brain interactions in response to stress may open new avenues for comprehending stress-related psychopathologies and developing potential therapeutic interventions targeted at the gut microbiota. However, further research is needed to elucidate the exact mechanisms underlying these changes and their implications for stress-induced disorders. Overall, this study contributes to the growing body of knowledge on the gut-brain axis and its significance in stress-related neurobiology.
Collapse
Affiliation(s)
- Alla Shevchenko
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Irina Shalaginova
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Dmitriy Katserov
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Ludmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Shiryaeva
- Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Natalia Dyuzhikova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
48
|
Barwell T, Seroude L. Polyglutamine disease in peripheral tissues. Hum Mol Genet 2023; 32:3303-3311. [PMID: 37642359 DOI: 10.1093/hmg/ddad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
This year is a milestone anniversary of the discovery that Huntington's disease is caused by the presence of expanded polyglutamine repeats in the huntingtin gene leading to the formation of huntingtin aggregates. 30 years have elapsed and there is still no cure and the only FDA-approved treatment to alleviate the debilitating locomotor impairments presents several adverse effects. It has long been neglected that the huntingtin gene is almost ubiquitously expressed in many tissues outside of the nervous system. Growing evidence indicates that these peripheral tissues can contribute to the symptoms of the disease. New findings in Drosophila have shown that the selective expression of mutant huntingtin in muscle or fat is sufficient to cause detrimental effects in the absence of any neurodegeneration. In addition, it was discovered that a completely different tissue distribution of Htt aggregates in Drosophila muscles is responsible for a drastic aggravation of the detrimental effects. This review examines the peripheral tissues that express huntingtin with an added focus on the nature and distribution of the aggregates, if any.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| | - Laurent Seroude
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
49
|
Singh S, Mahajan M, Kumar D, Singh K, Chowdhary M, Amit. An inclusive study of recent advancements in Alzheimer's disease: A comprehensive review. Neuropeptides 2023; 102:102369. [PMID: 37611472 DOI: 10.1016/j.npep.2023.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Alzheimer's disease (AD) has remained elusive in revealing its pathophysiology and mechanism of development. In this review paper, we attempt to highlight several theories that abound about the exact pathway of AD development. The number of cases worldwide has prompted a constant flow of research to detect high-risk patients, slow the progression of the disease and discover improved methods of treatment that may prove effective. We shall focus on the two main classes of drugs that are currently in use; and emerging ones with novel mechanisms that are under development. As of late there has also been increased attention towards factors that were previously thought to be unrelated to AD, such as the gut microbiome, lifestyle habits, and diet. Studies have now shown that all these factors make an impact on AD progression, thus bringing to our attention more areas that could hold the key to combating this disease. This paper covers all the aforementioned factors concisely. We also briefly explore the relationship between mental health and AD, both before and after the diagnosis of the disease.
Collapse
Affiliation(s)
- Sukanya Singh
- Department of Zoology, Hansraj College, University of Delhi, New Delhi, Delhi 110007, India
| | - Mitali Mahajan
- Department of Zoology, Hansraj College, University of Delhi, New Delhi, Delhi 110007, India
| | - Dhawal Kumar
- Department of Zoology, Hansraj College, University of Delhi, New Delhi, Delhi 110007, India
| | - Kunika Singh
- Department of Zoology, Hansraj College, University of Delhi, New Delhi, Delhi 110007, India
| | - Mehvish Chowdhary
- Department of Zoology, Hansraj College, University of Delhi, New Delhi, Delhi 110007, India
| | - Amit
- Department of Zoology, Hansraj College, University of Delhi, New Delhi, Delhi 110007, India.
| |
Collapse
|
50
|
Grabrucker S, Marizzoni M, Silajdžić E, Lopizzo N, Mombelli E, Nicolas S, Dohm-Hansen S, Scassellati C, Moretti DV, Rosa M, Hoffmann K, Cryan JF, O’Leary OF, English JA, Lavelle A, O’Neill C, Thuret S, Cattaneo A, Nolan YM. Microbiota from Alzheimer's patients induce deficits in cognition and hippocampal neurogenesis. Brain 2023; 146:4916-4934. [PMID: 37849234 PMCID: PMC10689930 DOI: 10.1093/brain/awad303] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/29/2023] [Accepted: 08/19/2023] [Indexed: 10/19/2023] Open
Abstract
Alzheimer's disease is a complex neurodegenerative disorder leading to a decline in cognitive function and mental health. Recent research has positioned the gut microbiota as an important susceptibility factor in Alzheimer's disease by showing specific alterations in the gut microbiome composition of Alzheimer's patients and in rodent models. However, it is unknown whether gut microbiota alterations are causal in the manifestation of Alzheimer's symptoms. To understand the involvement of Alzheimer's patient gut microbiota in host physiology and behaviour, we transplanted faecal microbiota from Alzheimer's patients and age-matched healthy controls into microbiota-depleted young adult rats. We found impairments in behaviours reliant on adult hippocampal neurogenesis, an essential process for certain memory functions and mood, resulting from Alzheimer's patient transplants. Notably, the severity of impairments correlated with clinical cognitive scores in donor patients. Discrete changes in the rat caecal and hippocampal metabolome were also evident. As hippocampal neurogenesis cannot be measured in living humans but is modulated by the circulatory systemic environment, we assessed the impact of the Alzheimer's systemic environment on proxy neurogenesis readouts. Serum from Alzheimer's patients decreased neurogenesis in human cells in vitro and were associated with cognitive scores and key microbial genera. Our findings reveal for the first time, that Alzheimer's symptoms can be transferred to a healthy young organism via the gut microbiota, confirming a causal role of gut microbiota in Alzheimer's disease, and highlight hippocampal neurogenesis as a converging central cellular process regulating systemic circulatory and gut-mediated factors in Alzheimer's.
Collapse
Affiliation(s)
- Stefanie Grabrucker
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Laboratory of Neuroimaging and Alzheimer’s Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Edina Silajdžić
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - Nicola Lopizzo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Mombelli
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
| | - Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Sebastian Dohm-Hansen
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | | | | | - Melissa Rosa
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
| | - Karina Hoffmann
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O’Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Jane A English
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Cora O’Neill
- APC Microbiome Ireland, University College Cork, Ireland
- School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, T12 YT20 Cork, Ireland
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|