1
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
2
|
Shobnam N, Ratley G, Zeldin J, Yadav M, Myles IA. Environmental and behavioral mitigation strategies for patients with atopic dermatitis. JAAD Int 2024; 17:181-191. [PMID: 39525843 PMCID: PMC11546681 DOI: 10.1016/j.jdin.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Herein, we aimed to summarize the evidence-base for these interventions with a focus on the role of specific chemicals in driving AD. Methods A narrative review of nonprescription mitigation strategies in AD was conducted. Results We identified avoidance strategies for the various routes of exposure such as air pollution, water contamination, or inclusion in home goods, skin care products, and cleansers. Evidence for and against dietary modification and emollient use as primary prevention were also elucidated. To remember these interventions we propose a mnemonic, HELPSS AD: Home decor, Emollients, Laundering, Probiotics, Soaks, Social support, Air quality, and Diet. Limitations Each of these categories presents nuanced molecular differences that must be considered. For example, probiotic responses vary by the specific species while home products and pollution must be analyzed by the specific toxins. Conclusion Although the interventions discussed lack the level of evidence required for inclusion into formal guidelines, awareness of these approaches may offer aid to, and build trust with, patients and caregivers.
Collapse
Affiliation(s)
- Nadia Shobnam
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Grace Ratley
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jordan Zeldin
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Manoj Yadav
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ian A. Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Fisher AL, Arora K, Maehashi S, Schweitzer D, Akefe IO. Unveiling the neurolipidome of obsessive-compulsive disorder: A scoping review navigating future diagnostic and therapeutic applications. Neurosci Biobehav Rev 2024; 166:105885. [PMID: 39265965 DOI: 10.1016/j.neubiorev.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Obsessive-Compulsive Disorder (OCD) poses a multifaceted challenge in psychiatry, with various subtypes and severities greatly impacting well-being. Recent scientific attention has turned towards lipid metabolism, particularly the neurolipidome, in response to clinical demands for cost-effective diagnostics and therapies. This scoping review integrates recent animal, translational, and clinical studies to explore impaired neurolipid metabolism mechanisms in OCD's pathogenesis, aiming to enhance future diagnostics and therapeutics. Five key neurolipids - endocannabinoids, lipid peroxidation, phospholipids, cholesterol, and fatty acids - were identified as relevant. While the endocannabinoid system shows promise in animal models, its clinical application remains limited. Conversely, lipid peroxidation and disruptions in phospholipid metabolism exhibit significant impacts on OCD's pathophysiology based on robust clinical data. However, the role of cholesterol and fatty acids remains inconclusive. The review emphasises the importance of translational research in linking preclinical findings to real-world applications, highlighting the potential of the neurolipidome as a potential biomarker for OCD detection and monitoring. Further research is essential for advancing OCD understanding and treatment modalities.
Collapse
Affiliation(s)
- Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
4
|
Yotova AY, Li LL, O'Leary A, Tegeder I, Reif A, Courtney MJ, Slattery DA, Freudenberg F. Synaptic proteome perturbations after maternal immune activation: Identification of embryonic and adult hippocampal changes. Brain Behav Immun 2024; 121:351-364. [PMID: 39089536 DOI: 10.1016/j.bbi.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Maternal immune activation (MIA) triggers neurobiological changes in offspring, potentially reshaping the molecular synaptic landscape, with the hippocampus being particularly vulnerable. However, critical details regarding developmental timing of these changes and whether they differ between males and females remain unclear. METHODS We induced MIA in C57BL/6J mice on gestational day nine using the viral mimetic poly(I:C) and performed mass spectrometry-based proteomic analyses on hippocampal synaptoneurosomes of embryonic (E18) and adult (20 ± 1 weeks) MIA offspring. RESULTS In the embryonic synaptoneurosomes, MIA led to lipid, polysaccharide, and glycoprotein metabolism pathway disruptions. In the adult synaptic proteome, we observed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, including cell death and growth, and cytoskeletal organisation. In adults, many associated pathways overlapped between males and females. However, we found distinct sex-specific enrichment of dopaminergic and glutamatergic pathways. We identified 50 proteins altered by MIA in both embryonic and adult samples (28 with the same directionality), mainly involved in presynaptic structure and synaptic vesicle function. We probed human phenome-wide association study data in the cognitive and psychiatric domains, and 49 of the 50 genes encoding these proteins were significantly associated with the investigated phenotypes. CONCLUSIONS Our data emphasise the dynamic effects of viral-like MIA on developing and mature hippocampi and provide novel targets for study following prenatal immune challenges. The 22 proteins that changed directionality from the embryonic to adult hippocampus, suggestive of compensatory over-adaptions, are particularly attractive for future investigations.
Collapse
Affiliation(s)
- Anna Y Yotova
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| | - Li-Li Li
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Aet O'Leary
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Department of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Irmgard Tegeder
- Goethe University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Michael J Courtney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - David A Slattery
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Florian Freudenberg
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany.
| |
Collapse
|
5
|
Bassareo V, Maccioni R, Talani G, Zuffa S, El Abiead Y, Lorrai I, Kawamura T, Pantis S, Puliga R, Vargiu R, Lecca D, Enrico P, Peana A, Dazzi L, Dorrestein PC, Sanna PP, Sanna E, Acquas E. Receptor and metabolic insights on the ability of caffeine to prevent alcohol-induced stimulation of mesolimbic dopamine transmission. Transl Psychiatry 2024; 14:391. [PMID: 39341817 PMCID: PMC11438888 DOI: 10.1038/s41398-024-03112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing. Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.
Collapse
Affiliation(s)
- Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Giuseppe Talani
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sofia Pantis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberta Puliga
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Daniele Lecca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandra Peana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Enrico Sanna
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| |
Collapse
|
6
|
Tabassum R, Mars N, Parolo PDB, Gerl MJ, Klose C, Pirinen M, Simons K, Widén E, Ripatti S. Polygenic scores for complex traits are associated with changes in concentration of circulating lipid species. PLoS Biol 2024; 22:e3002830. [PMID: 39325819 PMCID: PMC11460696 DOI: 10.1371/journal.pbio.3002830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/08/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Understanding perturbations in circulating lipid levels that often occur years or decades before clinical symptoms may enhance our understanding of disease mechanisms and provide novel intervention opportunities. Here, we assessed if polygenic scores (PGSs) for complex traits could detect lipid dysfunctions related to the traits and provide new biological insights. We constructed genome-wide PGSs (approximately 1 million genetic variants) for 50 complex traits in 7,169 Finnish individuals with routine clinical lipid profiles and lipidomics measurements (179 lipid species). We identified 678 associations (P < 9.0 × 10-5) involving 26 traits and 142 lipids. Most of these associations were also validated with the actual phenotype measurements where available (89.5% of 181 associations where the trait was available), suggesting that these associations represent early signs of physiological changes of the traits. We detected many known relationships (e.g., PGS for body mass index (BMI) and lysophospholipids, PGS for type 2 diabetes and triacyglycerols) and those that suggested potential target for prevention strategies (e.g., PGS for venous thromboembolism and arachidonic acid). We also found association of PGS for favorable adiposity with increased sphingomyelins levels, suggesting a probable role of sphingomyelins in increased risk for certain disease, e.g., venous thromboembolism as reported previously, in favorable adiposity despite its favorable metabolic effect. Altogether, our study provides a comprehensive characterization of lipidomic alterations in genetic predisposition for a wide range of complex traits. The study also demonstrates potential of PGSs for complex traits to capture early, presymptomatic lipid alterations, highlighting its utility in understanding disease mechanisms and early disease detection.
Collapse
Affiliation(s)
- Rubina Tabassum
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | | | | | | | | | - Matti Pirinen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | | | - Elisabeth Widén
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Maehashi S, Arora K, Fisher AL, Schweitzer DR, Akefe IO. Neurolipidomic insights into anxiety disorders: Uncovering lipid dynamics for potential therapeutic advances. Neurosci Biobehav Rev 2024; 163:105741. [PMID: 38838875 DOI: 10.1016/j.neubiorev.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Anxiety disorders constitute a spectrum of psychological conditions affecting millions of individuals worldwide, imposing a significant health burden. Historically, the development of anxiolytic medications has been largely focused on neurotransmitter function and modulation. However, in recent years, neurolipids emerged as a prime target for understanding psychiatric pathogenesis and developing novel medications. Neurolipids influence various neural activities such as neurotransmission and cellular functioning, as well as maintaining cell membrane integrity. Therefore, this review aims to elucidate the alterations in neurolipids associated with an anxious mental state and explore their potential as targets of novel anxiolytic medications. Existing evidence tentatively associates dysregulated neurolipid levels with the etiopathology of anxiety disorders. Notably, preclinical investigations suggest that several neurolipids, including endocannabinoids and polyunsaturated fatty acids, may hold promise as potential pharmacological targets. Overall, the current literature tentatively suggests the involvement of lipids in the pathogenesis of anxiety disorders, hinting at potential prospects for future pharmacological interventions.
Collapse
Affiliation(s)
- Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- Academy for Medical Education, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
8
|
Wank I, Mittmann C, Kreitz S, Chestnykh D, Mühle C, Kornhuber J, Ludwig A, Kalinichenko LS, Müller CP, Hess A. Neutral sphingomyelinase controls acute and chronic alcohol effects on brain activity. Neuropharmacology 2024; 253:109948. [PMID: 38636728 DOI: 10.1016/j.neuropharm.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Alcohol consumption is a widespread phenomenon throughout the world. However, how recreational alcohol use evolves into alcohol use disorder (AUD) remains poorly understood. The Smpd3 gene and its coded protein neutral sphingomyelinase (NSM) are associated with alcohol consumption in humans and alcohol-related behaviors in mice, suggesting a potential role in this transition. Using multiparametric magnetic resonance imaging, we characterized the role of NSM in acute and chronic effects of alcohol on brain anatomy and function in female mice. Chronic voluntary alcohol consumption (16 vol% for at least 6 days) affected brain anatomy in WT mice, reducing regional structure volume predominantly in cortical regions. Attenuated NSM activity prevented these anatomical changes. Functional MRI linked these anatomical adaptations to functional changes: Chronic alcohol consumption in mice significantly modulated resting state functional connectivity (RS FC) in response to an acute ethanol challenge (i.p. bolus of 2 g kg-1) in heterozygous NSM knockout (Fro), but not in WT mice. Acute ethanol administration in alcohol-naïve WT mice significantly decreased RS FC in cortical and brainstem regions, a key finding that was amplified in Fro mice. Regarding direct pharmacological effects, acute ethanol administration increased the regional cerebral blood volume (rCBV) in many brain areas. Here, chronic alcohol consumption otherwise attenuated the acute rCBV response in WT mice but enhanced it in Fro mice. Altogether, these findings suggest a differential role for NSM in acute and chronic functional brain responses to alcohol. Therefore, targeting NSM may be useful in the prevention or treatment of AUD.
Collapse
Affiliation(s)
- Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany
| | - Claire Mittmann
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany; Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Daria Chestnykh
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany
| | - Andreas Ludwig
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany
| | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia; Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, 68159, Heidelberg, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany; Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; FAU NeW - Research Center for New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
9
|
Krieg S, Konrad M, Krieg A, Kostev K. What Is the Link between Attention-Deficit/Hyperactivity Disorder (ADHD) and Dyslipidemia in Adults? A German Retrospective Cohort Study. J Clin Med 2024; 13:4460. [PMID: 39124726 PMCID: PMC11312942 DOI: 10.3390/jcm13154460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Alterations in the serum lipid profile have been suspected in many psychiatric disorders, such as schizophrenia and depression. However, studies on lipid status in attention-deficit/hyperactivity disorder (ADHD) are sparse and inconsistent. Methods: Using the nationwide, population-based IQVIA Disease Analyzer database, this retrospective cohort study included 5367 outpatients from general practices in Germany aged ≥18 years with a documented first diagnosis of ADHD between January 2005 and December 2021 and 26,835 propensity score-matched individuals without ADHD. Study outcomes were the first diagnosis of lipid metabolism disorders as a function of ADHD within up to 10 years of the index date. The cumulative 10-year incidence was analyzed using Kaplan-Meier curves and compared using the log-rank test. In addition, univariate Cox regression analyses were performed. Results: In the regression analysis, there was no significant association between ADHD and subsequent lipid metabolism disorders in the total population (HR: 0.94; 95% CI: 0.83-1.08), among women (HR: 1.04; 95% CI: 0.84-1.28), and among men (HR: 0.89; 95% CI: 0.74-1.06). In addition, no significant association was observed in the disease-stratified analyses. Conclusions: The findings of this study indicate that ADHD does not exert an influence on lipid metabolism. However, further investigation is warranted, particularly with respect to pharmacological interventions.
Collapse
Affiliation(s)
- Sarah Krieg
- Department of Inclusive Medicine, University Hospital Ostwestfalen-Lippe, Bielefeld University, 33617 Bielefeld, Germany
| | - Marcel Konrad
- Health & Social, FOM University of Applied Sciences for Economics and Management, 60486 Frankfurt am Main, Germany;
| | - Andreas Krieg
- Department of General and Visceral Surgery, Thoracic Surgery and Proctology, University Hospital Herford, Medical Campus OWL, Ruhr University Bochum, 32049 Herford, Germany;
| | | |
Collapse
|
10
|
He B, Zhou T, Liu J. Lipidomics Study of Type 1 Diabetic Rats Using Online Phase Transition Trapping-Supercritical Fluid Extraction-Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry. J Proteome Res 2024; 23:2619-2628. [PMID: 38910295 DOI: 10.1021/acs.jproteome.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Chromatography-mass spectrometry-based lipidomics represents an essential tool for elucidating lipid dysfunction mechanisms and is extensively employed in investigating disease mechanisms and identifying biomarkers. However, the detection of low-abundance lipids in biological matrices, along with cumbersome operational procedures, complicates comprehensive lipidomic analyses, necessitating the development of highly sensitive, environmentally friendly, and automated methods. In this study, an online phase transition trapping-supercritical fluid extraction-chromatography-mass spectrometry (PTT-SFEC-MS/MS) method was developed and successfully applied to plasma lipidomics analysis in Type 1 diabetes (T1D) rats. The PTT strategy captured entire extracts at the column head by converting CO2 from a supercritical state to a gaseous state, thereby preventing peak spreading, enhancing peak shape for precise quantification, and boosting sensitivity without any sample loss. This method utilized only 5 μL of plasma and accomplished sample extraction, separation, and detection within 27 min. Ultimately, 77 differential lipids were identified, including glycerophospholipids, sphingolipids, and glycerolipids, in T1D rat plasma. The results indicated that the progression of the disease might be linked to alterations in glycerophospholipid and sphingolipid metabolism. Our findings demonstrated a green, highly efficient, and automated method for the lipidomics analysis of biological samples, providing a scientific foundation for understanding the pathogenesis and diagnosis of T1D.
Collapse
Affiliation(s)
- Binhong He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Jiaqi Liu
- Guangzhou Analytical Center, Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou 510010, P.R. China
| |
Collapse
|
11
|
Viegas A, Araújo R, Ramalhete L, Von Rekowski C, Fonseca TAH, Bento L, Calado CRC. Discovery of Delirium Biomarkers through Minimally Invasive Serum Molecular Fingerprinting. Metabolites 2024; 14:301. [PMID: 38921436 PMCID: PMC11205956 DOI: 10.3390/metabo14060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Delirium presents a significant clinical challenge, primarily due to its profound impact on patient outcomes and the limitations of the current diagnostic methods, which are largely subjective. During the COVID-19 pandemic, this challenge was intensified as the frequency of delirium assessments decreased in Intensive Care Units (ICUs), even as the prevalence of delirium among critically ill patients increased. The present study evaluated how the serum molecular fingerprint, as acquired by Fourier-Transform InfraRed (FTIR) spectroscopy, can enable the development of predictive models for delirium. A preliminary univariate analysis of serum FTIR spectra indicated significantly different bands between 26 ICU patients with delirium and 26 patients without, all of whom were admitted with COVID-19. However, these bands resulted in a poorly performing Naïve-Bayes predictive model. Considering the use of a Fast-Correlation-Based Filter for feature selection, it was possible to define a new set of spectral bands with a wider coverage of molecular functional groups. These bands ensured an excellent Naïve-Bayes predictive model, with an AUC, a sensitivity, and a specificity all exceeding 0.92. These spectral bands, acquired through a minimally invasive analysis and obtained rapidly, economically, and in a high-throughput mode, therefore offer significant potential for managing delirium in critically ill patients.
Collapse
Affiliation(s)
- Ana Viegas
- ESTeSL—Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Avenida D. João II, Lote 4.58.01, 1990-096 Lisbon, Portugal;
- Neurosciences Area, Clinical Neurophysiology Unit, ULSSJ—Unidade Local de Saúde São José, Rua José António Serrano, 1150-199 Lisbon, Portugal
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (R.A.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Rúben Araújo
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (R.A.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
| | - Luís Ramalhete
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Blood and Transplantation Center of Lisbon, Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, n° 117, 1769-001 Lisboa, Portugal
- iNOVA4Health—Advancing Precision Medicine, RG11: Reno-Vascular Diseases Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Cristiana Von Rekowski
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (R.A.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
| | - Tiago A. H. Fonseca
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (R.A.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
| | - Luís Bento
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Intensive Care Department, ULSSJ—Unidade Local de Saúde São José, Rua José António Serrano, 1150-199 Lisbon, Portugal
- Integrated Pathophysiological Mechanisms, CHRC—Comprehensive Health Research Centre, NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Cecília R. C. Calado
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, The Associate Laboratory Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
12
|
Slykerman R, Davies N, Fuad M, Dekker J. Milk Fat Globule Membranes for Mental Health across the Human Lifespan. Foods 2024; 13:1631. [PMID: 38890860 PMCID: PMC11171857 DOI: 10.3390/foods13111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The milk fat globule membrane (MFGM) contains bioactive proteins, carbohydrates, and lipids. Polar lipids found in the MFGM play a critical role in maintaining cell membrane integrity and neuronal signalling capacity, thereby supporting brain health. This review summarises the literature on the MFGM and its phospholipid constituents for improvement of mental health across three key stages of the human lifespan, i.e., infancy, adulthood, and older age. MFGM supplementation may improve mental health by reducing neuroinflammation and supporting neurotransmitter synthesis through the gut-brain axis. Fortification of infant formula with MFGMs is designed to mimic the composition of breastmilk and optimise early gut and central nervous system development. Early behavioural and emotional development sets the stage for future mental health. In adults, promising results suggest that MFGMs can reduce the negative consequences of situational stress. Preclinical models of age-related cognitive decline suggest a role for the MFGM in supporting brain health in older age and reducing depressive symptoms. While there is preclinical and clinical evidence to support the use of MFGM supplementation for improved mental health, human studies with mental health as the primary target outcome are sparce. Further high-quality clinical trials examining the potential of the MFGM for psychological health improvement are important.
Collapse
Affiliation(s)
- Rebecca Slykerman
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Naomi Davies
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Maher Fuad
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| | - James Dekker
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| |
Collapse
|
13
|
Kalinichenko L, Kornhuber J, Sinning S, Haase J, Müller CP. Serotonin Signaling through Lipid Membranes. ACS Chem Neurosci 2024; 15:1298-1320. [PMID: 38499042 PMCID: PMC10995955 DOI: 10.1021/acschemneuro.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.
Collapse
Affiliation(s)
- Liubov
S. Kalinichenko
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Steffen Sinning
- Department
of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jana Haase
- School
of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Christian P. Müller
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Institute
of Psychopharmacology, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, 69047, Mannheim, Germany
| |
Collapse
|
14
|
Shi M, Du X, Jia Y, Zhang Y, Jia Q, Zhang X, Zhu Z. The identification of novel schizophrenia-related metabolites using untargeted lipidomics. Cereb Cortex 2024; 34:bhae160. [PMID: 38615242 DOI: 10.1093/cercor/bhae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024] Open
Abstract
Human lipidome still remains largely unexplored among Chinese schizophrenia patients. We aimed to identify novel lipid molecules associated with schizophrenia and cognition among schizophrenia patients. The current study included 96 male schizophrenia patients and 96 gender-matched healthy controls. Untargeted lipidomics profiling was conducted among all participants. Logistic regression models were used to assess metabolite associations with schizophrenia. We further assessed the incremental predictive value of identified metabolites beyond conventional risk factors on schizophrenia status. In addition, identified metabolites were tested for association with cognitive function among schizophrenia patients using linear regression models. A total of 34 metabolites were associated with schizophrenia. Addition of these identified metabolites to age, body mass index, smoking, and education significantly increased the risk reclassification of schizophrenia. Among the schizophrenia-related metabolites, 10 were further associated with cognition in schizophrenia patients, including four metabolites associated with immediate memory, two metabolites associated with delayed memory, three metabolites associated with visuospatial, four metabolites associated with language, one metabolite associated with attention, and two metabolites associated with the total score. Our findings provide novel insights into the biological mechanisms of schizophrenia, suggesting that lipid metabolites may serve as potential diagnostic or therapeutic targets of schizophrenia.
Collapse
Affiliation(s)
- Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou 215123, Jiangsu, China
| | - Xiangdong Du
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Xiangcheng District, Suzhou 215137, China
| | - Yiming Jia
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou 215123, Jiangsu, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou 215123, Jiangsu, China
| | - Qiufang Jia
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Xiangcheng District, Suzhou 215137, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Xiangcheng District, Suzhou 215137, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou 215123, Jiangsu, China
| |
Collapse
|
15
|
Cui X, Li J, Wang C, Ishaq HM, Zhang R, Yang F. Relationship between sphingolipids-mediated neuroinflammation and alcohol use disorder. Pharmacol Biochem Behav 2024; 235:173695. [PMID: 38128765 DOI: 10.1016/j.pbb.2023.173695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Alcohol use disorder is a chronic recurrent encephalopathy, and its pathogenesis has not been fully understood. Among possible explanations, neuroinflammation caused by the disorders of brain central immune signaling has been identified as one possible mechanism of alcohol use disorder. As the basic components of cells and important bioactive molecules, sphingolipids are essential in regulating many cellular activities. Recent studies have shown that sphingolipids-mediated neuroinflammation may be involved in the development of alcohol use disorder. METHODS PubMed databases were searched for literature on sphingolipids and alcohol use disorder (alcohol abuse, alcohol addiction, alcohol dependence, and alcohol misuse) including evidence of the relationship between sphingolipids-mediated neuroinflammation and alcohol use disorder (formation, withdrawal, treatment). RESULTS Disorders of sphingolipid metabolism, including the different types of sphingolipids and regulatory enzyme activity, have been found in patients with alcohol use disorder as well as animal models, which in turn cause neuro-inflammation in the central nervous system. Thus, these disorders may also be an important mechanism in the development of alcohol use disorder in patients. In addition, different sphingolipids may have different or even reverse effects on alcohol use disorder. CONCLUSIONS The sphingolipids-mediated neuroinflammation plays an important role in the development of alcohol use disorder. This review proposes a potential approach to prevent and treat alcohol use disorders by manipulating sphingolipid metabolism.
Collapse
Affiliation(s)
- XiaoJian Cui
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - JiaZhen Li
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - ChuanSheng Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - RuiLin Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
| | - Fan Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
16
|
Zorkina Y, Ushakova V, Ochneva A, Tsurina A, Abramova O, Savenkova V, Goncharova A, Alekseenko I, Morozova I, Riabinina D, Kostyuk G, Morozova A. Lipids in Psychiatric Disorders: Functional and Potential Diagnostic Role as Blood Biomarkers. Metabolites 2024; 14:80. [PMID: 38392971 PMCID: PMC10890164 DOI: 10.3390/metabo14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.
Collapse
Affiliation(s)
- Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Savenkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, 123473 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academi of Science, 142290 Moscow, Russia
- Russia Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 2, Kurchatov Square, 123182 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
17
|
Nadalin S, Zatković L, Peitl V, Karlović D, Vilibić M, Silić A, Dević Pavlić S, Buretić-Tomljanović A. An association between PPARα-L162V polymorphism and increased plasma LDL cholesterol levels after risperidone treatment. Prostaglandins Leukot Essent Fatty Acids 2024; 200:102604. [PMID: 38113727 DOI: 10.1016/j.plefa.2023.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) and antipsychotic medications both influence polyunsaturated fatty acids (PUFA) homeostasis, and thus PPARα polymorphism may be linked to antipsychotic treatment response. Here we investigated whether the functional leucine 162 valine (L162V) polymorphism in PPARα influenced antipsychotic treatment in a group of psychosis patients (N = 186), as well as in a patient subgroup with risperidone, paliperidone, or combination treatment (N = 65). Antipsychotic-naïve first-episode patients and nonadherent chronic individuals were genotyped by polymerase chain reaction analysis. At baseline, and after 8 weeks of treatment with various antipsychotic medications, we assessed the patients' Positive and Negative Syndrome Scale (PANSS) scores; PANSS factors; and metabolic syndrome-related parameters, including fasting plasma lipid and glucose levels, and body mass index. In the total patient group, PPARα polymorphism did not affect PANSS psychopathology or metabolic parameters. However, in the subgroup of patients with risperidone, paliperidone, or combination treatment, PPARα polymorphism influenced changes in plasma LDL cholesterol. Specifically, compared to PPARα-L162L homozygous patients, PPARα-L162V heterozygous individuals exhibited significantly higher increases of LDL cholesterol levels after antipsychotic treatment. The PPARα polymorphism had a strong effect size, but a relatively weak contribution to LDL cholesterol level variations (∼12.8 %).
Collapse
Affiliation(s)
- Sergej Nadalin
- Department of Psychiatry, General Hospital "Dr. Josip Benčević", Slavonski Brod, Croatia; School of Medicine, Catholic University of Croatia, Zagreb, Croatia.
| | - Lena Zatković
- Hospital Pharmacy, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Maja Vilibić
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ante Silić
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alena Buretić-Tomljanović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
18
|
Ren Z, Hou J, Li W, Tang Y, Wang M, Ding R, Liu S, Fu Y, Mai Y, Xia J, Zuo W, Zhou LH, Ye JH, Fu R. LPA1 receptors in the lateral habenula regulate negative affective states associated with alcohol withdrawal. Neuropsychopharmacology 2023; 48:1567-1578. [PMID: 37059867 PMCID: PMC10516930 DOI: 10.1038/s41386-023-01582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
The role of lysophosphatidic acid (LPA) signaling in psychiatric disorders and drug abuse is significant. LPA receptors are widely expressed in the central nervous system, including the lateral habenula (LHb). Recent studies suggest that LHb is involved in a negative emotional state during alcohol withdrawal, which can lead to relapse. The current study examines the role of LHb LPA signaling in the negative affective state associated with alcohol withdrawal. Adult male Long-Evans rats were trained to consume either alcohol or water for eight weeks. At 48 h of withdrawal, alcohol-drinking rats showed anxiety- and depression-like symptoms, along with a significant increase in LPA signaling and related neuronal activation molecules, including autotaxin (ATX, Enpp2), LPA receptor 1/3 (LPA1/3), βCaMKII, and c-Fos. However, there was a decrease in lipid phosphate phosphatase-related protein type 4 (LPPR4) in the LHb. Intra-LHb infusion of the LPA1/3 receptor antagonist ki-16425 or PKC-γ inhibitor Go-6983 reduced the abnormal behaviors and elevated relapse-like ethanol drinking. It also normalized high LPA1/3 receptors and enhanced AMPA GluA1 phosphorylation in Ser831 and GluA1/GluA2 ratio. Conversely, selective activation of LPA1/3 receptors by intra-LHb infusion of 18:1 LPA induced negative affective states and upregulated βCaMKII-AMPA receptor phosphorylation in Naive rats, which were reversed by pretreatment with intra-LHb Go-6983. Our findings suggest that disturbances in LPA signaling contribute to adverse affective disorders during alcohol withdrawal, likely through PKC-γ/βCaMKII-linked glutamate signaling. Targeting LPA may therefore be beneficial for individuals suffering from alcohol use disorders.
Collapse
Affiliation(s)
- Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Molin Wang
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Songlin Liu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong, 510970, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Li-Hua Zhou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518106, China.
| |
Collapse
|
19
|
Prince N, Stav M, Cote M, Chu SH, Vyas CM, Okereke OI, Palacios N, Litonjua AA, Vokonas P, Sparrow D, Spiro A, Lasky-Su JA, Kelly RS. Metabolomics and Self-Reported Depression, Anxiety, and Phobic Symptoms in the VA Normative Aging Study. Metabolites 2023; 13:851. [PMID: 37512558 PMCID: PMC10383599 DOI: 10.3390/metabo13070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Traditional approaches to understanding metabolomics in mental illness have focused on investigating a single disorder or comparisons between diagnoses, but a growing body of evidence suggests substantial mechanistic overlap in mental disorders that could be reflected by the metabolome. In this study, we investigated associations between global plasma metabolites and abnormal scores on the depression, anxiety, and phobic anxiety subscales of the Brief Symptom Inventory (BSI) among 405 older males who participated in the Normative Aging Study (NAS). Our analysis revealed overlapping and distinct metabolites associated with each mental health dimension subscale and four metabolites belonging to xenobiotic, carbohydrate, and amino acid classes that were consistently associated across all three symptom dimension subscales. Furthermore, three of these four metabolites demonstrated a higher degree of alteration in men who reported poor scores in all three dimensions compared to men with poor scores in only one, suggesting the potential for shared underlying biology but a differing degree of perturbation when depression and anxiety symptoms co-occur. Our findings implicate pathways of interest relevant to the overlap of mental health conditions in aging veterans and could represent clinically translatable targets underlying poor mental health in this high-risk population.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Meryl Stav
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
| | - Margaret Cote
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
| | - Su H. Chu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Chirag M. Vyas
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Olivia I. Okereke
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Natalia Palacios
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Pantel Vokonas
- Department of Veterans Affairs, Boston, MA 02114, USA; (P.V.); (D.S.)
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - David Sparrow
- Department of Veterans Affairs, Boston, MA 02114, USA; (P.V.); (D.S.)
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA 02118, USA
| | - Avron Spiro
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Psychiatry, Boston University Chobanian and Avidisian School of Medicine, Boston, MA 02118, USA
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
20
|
De Giorgi R, Rizzo Pesci N, Rosso G, Maina G, Cowen PJ, Harmer CJ. The pharmacological bases for repurposing statins in depression: a review of mechanistic studies. Transl Psychiatry 2023; 13:253. [PMID: 37438361 PMCID: PMC10338465 DOI: 10.1038/s41398-023-02533-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
Statins are commonly prescribed medications widely investigated for their potential actions on the brain and mental health. Pre-clinical and clinical evidence suggests that statins may play a role in the treatment of depressive disorders, but only the latter has been systematically assessed. Thus, the physiopathological mechanisms underlying statins' putative antidepressant or depressogenic effects have not been established. This review aims to gather available evidence from mechanistic studies to strengthen the pharmacological basis for repurposing statins in depression. We used a broad, well-validated search strategy over three major databases (Pubmed/MEDLINE, Embase, PsychINFO) to retrieve any mechanistic study investigating statins' effects on depression. The systematic search yielded 8068 records, which were narrowed down to 77 relevant papers. The selected studies (some dealing with more than one bodily system) described several neuropsychopharmacological (44 studies), endocrine-metabolic (17 studies), cardiovascular (6 studies) and immunological (15 studies) mechanisms potentially contributing to the effects of statins on mood. Numerous articles highlighted the beneficial effect of statins on depression, particularly through positive actions on serotonergic neurotransmission, neurogenesis and neuroplasticity, hypothalamic-pituitary axis regulation and modulation of inflammation. The role of other mechanisms, especially the association between statins, lipid metabolism and worsening of depressive symptoms, appears more controversial. Overall, most mechanistic evidence supports an antidepressant activity for statins, likely mediated by a variety of intertwined processes involving several bodily systems. Further research in this area can benefit from measuring relevant biomarkers to inform the selection of patients most likely to respond to statins' antidepressant effects while also improving our understanding of the physiopathological basis of depression.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom.
| | - Nicola Rizzo Pesci
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Gianluca Rosso
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Giuseppe Maina
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Philip J Cowen
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
| | - Catherine J Harmer
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
| |
Collapse
|
21
|
Ribeiro HC, Zandonadi FDS, Sussulini A. An overview of metabolomic and proteomic profiling in bipolar disorder and its clinical value. Expert Rev Proteomics 2023; 20:267-280. [PMID: 37830362 DOI: 10.1080/14789450.2023.2267756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) is a complex psychiatric disease characterized by alternating mood episodes. As for any other psychiatric illness, currently there is no biochemical test that is able to support diagnosis or therapeutic decisions for BD. In this context, the discovery and validation of biomarkers are interesting strategies that can be achieved through proteomics and metabolomics. AREAS COVERED In this descriptive review, a literature search including original articles and systematic reviews published in the last decade was performed with the objective to discuss the results of BD proteomic and metabolomic profiling analyses and indicate proteins and metabolites (or metabolic pathways) with potential clinical value. EXPERT OPINION A large number of proteins and metabolites have been reported as potential BD biomarkers; however, most studies do not reach biomarker validation stages. An effort from the scientific community should be directed toward the validation of biomarkers and the development of simplified bioanalytical techniques or protocols to determine them in biological samples, in order to translate proteomic and metabolomic findings into clinical routine assays.
Collapse
Affiliation(s)
- Henrique Caracho Ribeiro
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas(UNICAMP), Campinas, SP, Brazil
| | - Flávia da Silva Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas(UNICAMP), Campinas, SP, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas(UNICAMP), Campinas, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
22
|
Tumayhi M, Banji D, Khardali I, Banji OJF, Alshahrani S, Alqahtani SS, Muqri S, Abdullah A, Sherwani W, Attafi I. Amphetamine-Related Fatalities and Altered Brain Chemicals: A Preliminary Investigation Using the Comparative Toxicogenomic Database. Molecules 2023; 28:4787. [PMID: 37375342 DOI: 10.3390/molecules28124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Amphetamine is a psychostimulant drug with a high risk of toxicity and death when misused. Abuse of amphetamines is associated with an altered organic profile, which includes omega fatty acids. Low omega fatty acid levels are linked to mental disorders. Using the Comparative Toxicogenomic Database (CTD), we investigated the chemical profile of the brain in amphetamine-related fatalities and the possibility of neurotoxicity. We classified amphetamine cases as low (0-0.5 g/mL), medium (>0.5 to 1.5 g/mL), and high (>1.5 g/mL), based on amphetamine levels in brain samples. All three groups shared 1-octadecene, 1-tridecene, 2,4-di-tert-butylphenol, arachidonic acid (AA), docosahexaenoic acid (DHA), eicosane, and oleylamide. We identified chemical-disease associations using the CTD tools and predicted an association between DHA, AA and curated conditions like autistic disorder, disorders related to cocaine, Alzheimer's disease, and cognitive dysfunction. An amphetamine challenge may cause neurotoxicity in the human brain due to a decrease in omega-3 fatty acids and an increase in oxidative products. Therefore, in cases of amphetamine toxicity, a supplement therapy may be needed to prevent omega-3 fatty acid deficiency.
Collapse
Affiliation(s)
- Murad Tumayhi
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - David Banji
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ibrahim Khardali
- Forensic Toxicology Services, Forensic Medical Center, Ministry of Health, Jazan 45142, Saudi Arabia
| | - Otilia J F Banji
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Safiah Muqri
- Forensic Toxicology Services, Forensic Medical Center, Ministry of Health, Jazan 45142, Saudi Arabia
| | - Amal Abdullah
- Forensic Toxicology Services, Forensic Medical Center, Ministry of Health, Jazan 45142, Saudi Arabia
| | - Wedad Sherwani
- Forensic Toxicology Services, Forensic Medical Center, Ministry of Health, Jazan 45142, Saudi Arabia
| | - Ibraheem Attafi
- Forensic Toxicology Services, Forensic Medical Center, Ministry of Health, Jazan 45142, Saudi Arabia
| |
Collapse
|
23
|
Li Y, Zhang L, Mao M, He L, Wang T, Pan Y, Zhao X, Li Z, Mu X, Qian Y, Qiu J. Multi-omics analysis of a drug-induced model of bipolar disorder in zebrafish. iScience 2023; 26:106744. [PMID: 37207274 PMCID: PMC10189518 DOI: 10.1016/j.isci.2023.106744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Emerging studies demonstrate that inflammation plays a crucial role in the pathogenesis of bipolar disorder (BD), but the underlying mechanism remains largely unclear. Given the complexity of BD pathogenesis, we performed high-throughput multi-omic profiling (metabolomics, lipidomics, and transcriptomics) of the BD zebrafish brain to comprehensively unravel the molecular mechanism. Our research proved that in BD zebrafish, JNK-mediated neuroinflammation altered metabolic pathways involved in neurotransmission. On one hand, disturbed metabolism of tryptophan and tyrosine limited the participation of the monoamine neurotransmitters serotonin and dopamine in synaptic vesicle recycling. On the other hand, dysregulated metabolism of the membrane lipids sphingomyelin and glycerophospholipids altered the synaptic membrane structure and neurotransmitter receptors (chrnα7, htr1b, drd5b, and gabra1) activity. Our findings revealed that disturbance of serotonergic and dopaminergic synaptic transmission mediated by the JNK inflammatory cascade was the key pathogenic mechanism in a zebrafish model of BD, provides critical biological insights into the pathogenesis of BD.
Collapse
Affiliation(s)
- Yameng Li
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Zhang
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingcai Mao
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linjuan He
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yecan Pan
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Zhao
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zishu Li
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiyan Mu
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongzhong Qian
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author
| | - Jing Qiu
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author
| |
Collapse
|
24
|
Teng T, Clarke G, Wu J, Wu Q, Maes M, Wang J, Wu H, Yin B, Jiang Y, Li X, Liu X, Han Y, Song J, Jin X, Ji P, Guo Y, Zhou X, Xie P. Disturbances of purine and lipid metabolism in the microbiota-gut-brain axis in male adolescent nonhuman primates with depressive-like behaviors. J Adv Res 2023:S2090-1232(23)00116-9. [PMID: 37068733 DOI: 10.1016/j.jare.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) in adolescents is a widespread and growing global public health concern with unique characteristics and pathophysiological mechanisms that are distinct from MDD in adults. OBJECTIVE The purpose of our work was to address this knowledge gap about the unique characteristics and pathophysiological mechanisms of adolescent depression from a microbiota-gut-brain (MGB) axis perspective. METHOD Ten healthy male cynomolgus macaques (Macaca fascicularis) were paired into five pairs based on age and body weight, and two cynomolgus macaques from each pair were randomly allocated to chronic unpredictable mild stress group, or unstressed control group. At endpoint, microbe composition from cecum, ascending colon, transverse colon, and descending colon were analyzed by metagenome sequencing, and the metabolite profiles of MGB axis including central (prefrontal cortex, hippocampus and amygdala) and peripheral (plasma, gut and feces of cecum, ascending colon, transverse colon and descending colon) samples were analyzed by metabolomic profiling. Then, we compare the gut microbiome and metabolic signatures in MGB axis between adolescent and adult depressed macaques. RESULTS The microbial composition and gut-brain metabolic signatures were widely divergent between adolescent and adult depressed macaques, though the phylum Firmicutes and lipid metabolism pathways were persistently altered in both populations. Purine and arginine biosynthesis metabolism were a specific hallmark of adolescent depressed macaques, while fatty acyl metabolism was specially altered in adult. These differential metabolic pathways in adolescent and adult depressed macaques were mainly mapped into the prefrontal cortex and hippocampus, respectively. Notably, the genus Clostridium and Haemophilus, characteristically disturbed in adolescent depressed macaques but not in adult, were also significantly associated with the majority of purine metabolites in MGB axis. CONCLUSION These findings provide a new framework describing divergent pathophysiological mechanisms between adolescent and adult depression, and may open new windows for more effective treatment strategies of adolescent depression.
Collapse
Affiliation(s)
- Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jing Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingyuan Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence, Peking University, Beijing, China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
25
|
Wang L, Wei Q, Xu R, Chen Y, Li S, Bu Q, Zhao Y, Li H, Zhao Y, Jiang L, Chen Y, Dai Y, Zhao Y, Cen X. Cardiolipin and OPA1 Team up for Methamphetamine-Induced Locomotor Activity by Promoting Neuronal Mitochondrial Fusion in the Nucleus Accumbens of Mice. ACS Chem Neurosci 2023; 14:1585-1601. [PMID: 37043723 DOI: 10.1021/acschemneuro.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Mitochondria are highly dynamic organelles with coordinated cycles of fission and fusion occurring continuously to satisfy the energy demands in the complex architecture of neurons. How mitochondria contribute to addicted drug-induced adaptable mitochondrial networks and neuroplasticity remains largely unknown. Through liquid chromatography-mass spectrometry-based lipidomics, we first analyzed the alteration of the mitochondrial lipidome of three mouse brain areas in methamphetamine (METH)-induced locomotor activity and conditioned place preference. The results showed that METH remodeled the mitochondrial lipidome of the hippocampus, nucleus accumbens (NAc), and striatum in both models. Notably, mitochondrial hallmark lipid cardiolipin (CL) was specifically increased in the NAc in METH-induced hyperlocomotor activity, which was accompanied by an elongated giant mitochondrial morphology. Moreover, METH significantly boosted mitochondrial respiration and ATP generation as well as the copy number of mitochondrial genome DNA in the NAc. By screening the expressions of mitochondrial dynamin-related proteins, we found that repeated METH significantly upregulated the expression of long-form optic atrophy type 1 (L-OPA1) and enhanced the interaction of L-OPA1 with CL, which may promote mitochondrial fusion in the NAc. On the contrary, neuronal OPA1 depletion in the NAc not only recovered the dysregulated mitochondrial morphology and synaptic vesicle distribution induced by METH but also attenuated the psychomotor effect of METH. Collectively, upregulated CL and OPA1 cooperate to mediate METH-induced adaptation of neuronal mitochondrial dynamics in the NAc, which correlates with the psychomotor effect of METH. These findings propose a potential therapeutic approach for METH addiction by inhibiting neuronal mitochondrial fusion.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qingfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Rui Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yue Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| |
Collapse
|
26
|
Liao XX, Hu K, Xie XH, Wen YL, Wang R, Hu ZW, Zhou YL, Li JJ, Wu MK, Yu JX, Chen JW, Ren P, Wu XY, Zhou JJ. Banxia Xiexin decoction alleviates AS co-depression disease by regulating the gut microbiome-lipid metabolic axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116468. [PMID: 37044233 DOI: 10.1016/j.jep.2023.116468] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin decoction (BXD) is a classic Chinese herbal formulation consisting of 7 herbs including Pinelliae Rhizoma, Scutellariae Radix, Zingiberis Rhizoma, Ginseng Radix, Glycyrrhizae Radix, Coptidis Rhizoma, and Jujubae Fructus, which can exert effects on lowering lipids and alleviating depressive mood disorders via affecting gastrointestinal tract. AIM OF THE STUDY The pathogenesis of atherosclerosis (AS) co-depression disease has not been well studied, and the current clinical treatment strategies are not satisfactory. As a result, it is critical to find novel methods of treatment. Based on the hypothesis that the gut microbiome may promote the development of AS co-depression disease by regulating host lipid metabolism, this study sought to evaluate the effectiveness and action mechanism of BXD in regulation of the gut microbiome via an intervention in AS co-depression mice. MATERIALS AND METHODS To determine the primary constituents of BXD, UPLC-Q/TOF-MS analysis was carried out. Sixteen C56BL/6 mice were fed normal chow as a control group; 64 ApoE-/- mice were randomized into four groups (model group and three treatment groups) and fed high-fat chow combined with daily bind stimulation for sixteen weeks to develop the AS co-depression mouse model and were administered saline or low, medium or high concentrations of BXD during the experimental modeling period. The antidepressant efficacy of BXD was examined by weighing, a sucrose preference test, an open field test, and a tail suspension experiment. The effectiveness of BXD as an anti-AS treatment was evaluated by means of biochemical indices, the HE staining method, and the Oil red O staining method. The impacts of BXD on the gut microbiome structure and brain (hippocampus and prefrontal cortex tissue) lipids in mice with the AS co-depression model were examined by 16S rDNA sequencing combined with lipidomics analysis. RESULTS The main components of BXD include baicalin, berberine, ginsenoside Rb1, and 18 other substances. BXD could improve depression-like behavioral characteristics and AS-related indices in AS co-depression mice; BXD could regulate the abundance of some flora (phylum level: reduced abundance of Proteobacteria and Deferribacteres; genus level: reduced abundance of Clostridium_IV, Helicobacter, and Pseudoflavonifractor, Acetatifactor, Oscillibacter, which were significantly different). The lipidomics analysis showed that the differential lipids between the model and gavaged high-dose BXD (BXH) groups were enriched in glycerophospholipid metabolism, and lysophosphatidylcholine (LPC(20:3)(rep)(rep)) in the hippocampus and LPC(20:4)(rep) in the prefrontal cortex both showed downregulation in BXH. The correlation analysis illustrated that the screened differential lipids were mainly linked to Deferribacteres and Actinobacteria. CONCLUSION BXD may exert an anti-AS co-depression therapeutic effect by modulating the abundance of some flora and thus intervening in peripheral lipid and brain lipid metabolism (via downregulation of LPC levels).
Collapse
Affiliation(s)
- Xing-Xing Liao
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ke Hu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xin-Hua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - You-Liang Wen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Rui Wang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zi-Wei Hu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yu-Long Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jia-Jun Li
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ming-Kun Wu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jing-Xuan Yu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jia-Wei Chen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Peng Ren
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xiao-Yun Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Jun-Jie Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
27
|
Duan J, Gong X, Womer FY, Sun K, Tang L, Liu J, Zheng J, Zhu Y, Tang Y, Zhang X, Wang F. Neurodevelopmental trajectories, polygenic risk, and lipometabolism in vulnerability and resilience to schizophrenia. BMC Psychiatry 2023; 23:153. [PMID: 36894907 PMCID: PMC9999573 DOI: 10.1186/s12888-023-04597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Schizophrenia (SZ) arises from a complex interplay involving genetic and molecular factors. Early intervention of SZ hinges upon understanding its vulnerability and resiliency factors in study of SZ and genetic high risk for SZ (GHR). METHODS Herein, using integrative and multimodal strategies, we first performed a longitudinal study of neural function as measured by amplitude of low frequency function (ALFF) in 21 SZ, 26 GHR, and 39 healthy controls to characterize neurodevelopmental trajectories of SZ and GHR. Then, we examined the relationship between polygenic risk score for SZ (SZ-PRS), lipid metabolism, and ALFF in 78 SZ, and 75 GHR in cross-sectional design to understand its genetic and molecular substrates. RESULTS Across time, SZ and GHR diverge in ALFF alterations of the left medial orbital frontal cortex (MOF). At baseline, both SZ and GHR had increased left MOF ALFF compared to HC (P < 0.05). At follow-up, increased ALFF persisted in SZ, yet normalized in GHR. Further, membrane genes and lipid species for cell membranes predicted left MOF ALFF in SZ; whereas in GHR, fatty acids best predicted and were negatively correlated (r = -0.302, P < 0.05) with left MOF. CONCLUSIONS Our findings implicate divergence in ALFF alteration in left MOF between SZ and GHR with disease progression, reflecting vulnerability and resiliency to SZ. They also indicate different influences of membrane genes and lipid metabolism on left MOF ALFF in SZ and GHR, which have important implications for understanding mechanisms underlying vulnerability and resiliency in SZ and contribute to translational efforts for early intervention.
Collapse
Affiliation(s)
- Jia Duan
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.,Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Fay Y Womer
- Dept of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaijin Sun
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China
| | - Lili Tang
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.,Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Juan Liu
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.,Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Junjie Zheng
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China
| | - Yue Zhu
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.,Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Yanqing Tang
- Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China.
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.
| | - Fei Wang
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China. .,Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
28
|
Li J, Huang H, Fan R, Hua Y, Ma W. Lipidomic analysis of brain and hippocampus from mice fed with high-fat diet and treated with fecal microbiota transplantation. Nutr Metab (Lond) 2023; 20:12. [PMID: 36793054 PMCID: PMC9930259 DOI: 10.1186/s12986-023-00730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Dietary fat intake affects brain composition and function. Different types of dietary fatty acids alter species and abundance of brain lipids in mice. The aim of this study is to explore whether the changes are effective through gut microbiota. METHODS In our study, 8-week-old male C57BL/6 mice were randomly divided into 7 groups and fed with high-fat diet (HFD) with different fatty acid compositions, control (CON) group, long-chain saturated fatty acid (LCSFA) group, medium-chain saturated fatty acid (MCSFA) group, n-3 polyunsaturated fatty acid (n-3 PUFA) group, n-6 polyunsaturated fatty acid (n-6 PUFA) group, monounsaturated fatty acid (MUFA) group and trans fatty acid (TFA) group. Then, the fecal microbiota transplant (FMT) was performed in other pseudo germ-free mice after antibiotic treatment. The experimental groups were orally perfused with gut microbiota that induced by HFD with different types of dietary fatty acids. The mice were fed with regular fodder before and after FMT. High-performance liquid chromatography-mass spectrometry (LC-MS) was used to analysis the composition of fatty acids in the brain of HFD-fed mice and hippocampus of mice treated with FMT which was collected from HFD-fed mice. RESULTS The content of acyl-carnitines (AcCa) increased and lysophosphatidylgylcerol (LPG) decreased in all kinds of HFD groups. phosphatidic acids (PA), phosphatidylethanolamine (PE) and sphingomyelin (SM) contents were significantly increased in the n-6 PUFA-fed HFD group. The HFD elevated the saturation of brain fatty acyl (FA). Lysophosphatidylcholine (LPC), lysodi-methylphosphatidylethanolamine (LdMePE), monolysocardiolipin (MLCL), dihexosylceramides (Hex2Cer), and wax ester (WE) significantly increased after LCSFA-fed FMT. MLCL reduced and cardiolipin (CL) raised significantly after n-3 PUFA-fed FMT. CONCLUSIONS The study revealed, HFD and FMT in mice had certain effects on the content and composition of fatty acids in the brain, especially on glycerol phospholipid (GP). The change of AcCa content in FA was a good indicator of dietary fatty acid intake. By altering the fecal microbiota, dietary fatty acids might affect brain lipids.
Collapse
Affiliation(s)
- Jinchen Li
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Hongying Huang
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Fan
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yinan Hua
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Weiwei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
29
|
Kalinichenko LS, Mühle C, Jia T, Anderheiden F, Datz M, Eberle AL, Eulenburg V, Granzow J, Hofer M, Hohenschild J, Huber SE, Kämpf S, Kogias G, Lacatusu L, Lugmair C, Taku SM, Meixner D, Sembritzki NK, Praetner M, Rhein C, Sauer C, Scholz J, Ulrich F, Valenta F, Weigand E, Werner M, Tay N, Mc Veigh CJ, Haase J, Wang AL, Abdel-Hafiz L, Huston JP, Smaga I, Frankowska M, Filip M, Lourdusamy A, Kirchner P, Ekici AB, Marx LM, Suresh NP, Frischknecht R, Fejtova A, Saied EM, Arenz C, Bozec A, Wank I, Kreitz S, Hess A, Bäuerle T, Ledesma MD, Mitroi DN, Miranda AM, Oliveira TG, Lenz B, Schumann G, Kornhuber J, Müller CP. Adult alcohol drinking and emotional tone are mediated by neutral sphingomyelinase during development in males. Cereb Cortex 2023; 33:844-864. [PMID: 35296883 DOI: 10.1093/cercor/bhac106] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/03/2023] Open
Abstract
Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Tianye Jia
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai 200433, China.,PONS Centre and SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AB, UK
| | - Felix Anderheiden
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Maria Datz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Anna-Lisa Eberle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Volker Eulenburg
- Department for Anesthesiology and Intensive Care, Faculty of Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Jonas Granzow
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Martin Hofer
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Julia Hohenschild
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Sabine E Huber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Stefanie Kämpf
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Laura Lacatusu
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Charlotte Lugmair
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Stephen Mbu Taku
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Doris Meixner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Nina-Kristin Sembritzki
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Marc Praetner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Christina Sauer
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Jessica Scholz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Franziska Ulrich
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Florian Valenta
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Esther Weigand
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Markus Werner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Nicole Tay
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai 200433, China
| | - Conor J Mc Veigh
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jana Haase
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Kraków 31-343, Poland
| | - Malgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Kraków 31-343, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Kraków 31-343, Poland
| | - Anbarasu Lourdusamy
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Lena M Marx
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Neeraja Puliparambil Suresh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Anna Fejtova
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Essa M Saied
- Institute for Chemistry, Humboldt University, Berlin 12489, Germany.,Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Christoph Arenz
- Institute for Chemistry, Humboldt University, Berlin 12489, Germany
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91054, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen 91054, Germany
| | - Isabel Wank
- Department of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Silke Kreitz
- Department of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Andreas Hess
- Department of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, University Hospital Erlangen, Erlangen 91054, Germany
| | | | - Daniel N Mitroi
- Centro Biologia Molecular Severo Ochoa (CSIC-UAM), Madrid 28040, Spain
| | - André M Miranda
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Tiago Gil Oliveira
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J5, Mannheim 68159, Germany
| | - Gunter Schumann
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai 200433, China.,Department of Psychiatry and Psychotherapie, CCM, PONS Centre, Charite Mental Health, Charite Universitaetsmedizin Berlin, Berlin 10117, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
30
|
Protective effect of kaempferol against cognitive and neurological disturbances induced by d-galactose and aluminum chloride in mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
31
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
32
|
Wang F, Guo L, Zhang T, Cui Z, Wang J, Zhang C, Xue F, Zhou C, Li B, Tan Q, Peng Z. Alterations in Plasma Lipidomic Profiles in Adult Patients with Schizophrenia and Major Depressive Disorder. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58111509. [PMID: 36363466 PMCID: PMC9697358 DOI: 10.3390/medicina58111509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023]
Abstract
Background and Objectives: Lipidomics is a pivotal tool for investigating the pathogenesis of mental disorders. However, studies qualitatively and quantitatively analyzing peripheral lipids in adult patients with schizophrenia (SCZ) and major depressive disorder (MDD) are limited. Moreover, there are no studies comparing the lipid profiles in these patient populations. Materials and Method: Lipidomic data for plasma samples from sex- and age-matched patients with SCZ or MDD and healthy controls (HC) were obtained and analyzed by liquid chromatography-mass spectrometry (LC-MS). Results: We observed changes in lipid composition in patients with MDD and SCZ, with more significant alterations in those with SCZ. In addition, a potential diagnostic panel comprising 103 lipid species and another diagnostic panel comprising 111 lipid species could distinguish SCZ from HC (AUC = 0.953) or SCZ from MDD (AUC = 0.920) were identified, respectively. Conclusions: This study provides an increased understanding of dysfunctional lipid composition in the plasma of adult patients with SCZ or MDD, which may lay the foundation for identifying novel clinical diagnostic methods for these disorders.
Collapse
Affiliation(s)
- Fei Wang
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Lin Guo
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Ting Zhang
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Zhiquan Cui
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Jinke Wang
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Chi Zhang
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Cuihong Zhou
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi’an 710032, China
| | - Qingrong Tan
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
- Correspondence: (Q.T.); (Z.P.); Tel.: +86-29-83293951 (Q.T.)
| | - Zhengwu Peng
- Department of Psychiatry, Chang’an Hospital, Xi’an 710000, China
- Correspondence: (Q.T.); (Z.P.); Tel.: +86-29-83293951 (Q.T.)
| |
Collapse
|
33
|
Yoon JH, Seo Y, Jo YS, Lee S, Cho E, Cazenave-Gassiot A, Shin YS, Moon MH, An HJ, Wenk MR, Suh PG. Brain lipidomics: From functional landscape to clinical significance. SCIENCE ADVANCES 2022; 8:eadc9317. [PMID: 36112688 PMCID: PMC9481132 DOI: 10.1126/sciadv.adc9317] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 05/23/2023]
Abstract
Lipids are crucial components of cellular function owing to their role in membrane formation, intercellular signaling, energy storage, and homeostasis maintenance. In the brain, lipid dysregulations have been associated with the etiology and progression of neurodegeneration and other neurological pathologies. Hence, brain lipids are emerging as important potential targets for the early diagnosis and prognosis of neurological diseases. This review aims to highlight the significance and usefulness of lipidomics in diagnosing and treating brain diseases. We explored lipid alterations associated with brain diseases, paying attention to organ-specific characteristics and the functions of brain lipids. As the recent advances in brain lipidomics would have been impossible without advances in analytical techniques, we provide up-to-date information on mass spectrometric approaches and integrative analysis with other omic approaches. Last, we present the potential applications of lipidomics combined with artificial intelligence techniques and interdisciplinary collaborative research for treating brain diseases with clinical heterogeneities.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Youngsuk Seo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Yeon Suk Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Yong-Seung Shin
- Laboratory Solutions Sales, Agilent Technologies Korea Ltd., Seoul, 06621, Republic of Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| |
Collapse
|
34
|
Zlomuzica A, Plank L, Dere E. A new path to mental disorders: Through gap junction channels and hemichannels. Neurosci Biobehav Rev 2022; 142:104877. [PMID: 36116574 DOI: 10.1016/j.neubiorev.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Behavioral disturbances related to emotional regulation, reward processing, cognition, sleep-wake regulation and activity/movement represent core symptoms of most common mental disorders. Increasing empirical and theoretical evidence suggests that normal functioning of these behavioral domains relies on fine graded coordination of neural and glial networks which are maintained and modulated by intercellular gap junction channels and unapposed pannexin or connexin hemichannels. Dysfunctions in these networks might contribute to the development and maintenance of psychopathological and neurobiological features associated with mental disorders. Here we review and discuss the evidence indicating a prominent role of gap junction channel and hemichannel dysfunction in core symptoms of mental disorders. We further discuss how the increasing knowledge on intercellular gap junction channels and unapposed pannexin or connexin hemichannels in the brain might lead to deeper mechanistic insight in common mental disorders and to the development of novel treatment approaches. We further attempt to exemplify what type of future research on this topic could be integrated into multidimensional approaches to understand and cure mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
35
|
Kelley DP, Chaichi A, Duplooy A, Singh D, Gartia MR, Francis J. Labelfree mapping and profiling of altered lipid homeostasis in the rat hippocampus after traumatic stress: Role of oxidative homeostasis. Neurobiol Stress 2022; 20:100476. [PMID: 36032405 PMCID: PMC9403561 DOI: 10.1016/j.ynstr.2022.100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative and lipid homeostasis are altered by stress and trauma and post-traumatic stress disorder (PTSD) is associated with alterations to lipid species in plasma. Stress-induced alterations to lipid oxidative and homeostasis may exacerbate PTSD pathology, but few preclinical investigations of stress-induced lipidomic changes in the brain exist. Currently available techniques for the quantification of lipid species in biological samples require tissue extraction and are limited in their ability to retrieve spatial information. Raman imaging can overcome this limitation through the quantification of lipid species in situ in minimally processed tissue slices. Here, we utilized a predator exposure and psychosocial stress (PE/PSS) model of traumatic stress to standardize Raman imaging of lipid species in the hippocampus using LC-MS based lipidomics and these data were confirmed with qRT-PCR measures of mRNA expression of relevant enzymes and transporters. Electron Paramagnetic Resonance Spectroscopy (EPR) was used to measure free radical production and an MDA assay to measure oxidized polyunsaturated fatty acids. We observed that PE/PSS is associated with increased cholesterol, altered lipid concentrations, increased free radical production and reduced oxidized polyunsaturated fats (PUFAs) in the hippocampus (HPC), indicating shifts in lipid and oxidative homeostasis in the HPC after traumatic stress.
Collapse
Affiliation(s)
- D. Parker Kelley
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| | - Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alexander Duplooy
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| | - Dhirendra Singh
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Joseph Francis
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| |
Collapse
|
36
|
Zhao D, Zhang J, Zhu Y, He C, Fei W, Yue N, Wang C, Wang L. Study of Antidepressant-Like Effects of Albiflorin and Paeoniflorin Through Metabolomics From the Perspective of Cancer-Related Depression. Front Neurol 2022; 13:828612. [PMID: 35873784 PMCID: PMC9304767 DOI: 10.3389/fneur.2022.828612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mental health has become a new challenge in cancer treatment, with a high prevalence of depression in patients with cancer. Albiflorin (AF) and paeoniflorinn (PF) are isomers extracted from the root of Paeoniae Radix Alba (Baishao in Chinese), belonging to the monoterpene glycosides, and multiple studies have been conducted on their antidepression and anti-cancer effects. However, the effects of AF and PF on cancer-related depression are unclear. Therefore, the current study aims to investigate whether the two isomers are able to exert antidepressant-like effects and understand the underlying mechanisms in a rat model, established by combining irradiation with chronic restraint stress and solitary confinement. Our results demonstrate a significant regulation of AF and PF in the pharmacodynamic index, including the peripheral blood, organ index, behavioral traits, and HPA axis, relative to control rats. In serum and cerebral cortex metabonomics analysis, AF and PF showed a significantly restorative trend in abnormal biomarkers and regulating ether lipid metabolism, alanine, aspartate, glutamate metabolism, tryptophan metabolism, carnitine metabolism, arachidonic acid metabolism, arginine and proline metabolism pathway. Eight potential biomarkers were further screened by means of receiver operating characteristic (ROC) analysis. The data indicate that AF and PF could effectively ameliorate a depression-like state in the model rats, and the mechanism may be associated with the regulation of the neuroendocrine immune system and disrupted metabolic pathways. Further experiments are warranted to comprehensively evaluate the antidepressant effects of AF and PF in cancer-related depression. This study provides a better insight into the action mechanisms of antidepression of TCM, and provides a new perspective for the therapy of cancer-related depression.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Jianjun Zhang
| | - Yingli Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng He
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Na Yue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chenglong Wang
- Ethnic Medicine Characteristic Diagnosis and Treatment Center, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang
| |
Collapse
|
37
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
38
|
Müller CP. Serotonin and Consciousness-A Reappraisal. Behav Brain Res 2022; 432:113970. [PMID: 35716774 DOI: 10.1016/j.bbr.2022.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
The serotonergic system of the brain is a major modulator of behaviour. Here we describe a re-appraisal of its function for consciousness based on anatomical, functional and pharmacological data. For a better understanding, the current model of consciousness is expanded. Two parallel streams of conscious flow are distinguished. A flow of conscious content and an affective consciousness flow. While conscious content flow has its functional equivalent in the activity of higher cortico-cortical and cortico-thalamic networks, affective conscious flow originates in segregated deeper brain structures for single emotions. It is hypothesized that single emotional networks converge on serotonergic and other modulatory transmitter neurons in the brainstem where a bound percept of an affective conscious flow is formed. This is then dispersed to cortical and thalamic networks, where it is time locked with conscious content flow at the level of these networks. Serotonin acts in concert with other modulatory systems of the brain stem with some possible specialization on single emotions. Together, these systems signal a bound percept of affective conscious flow. Dysfunctions in the serotonergic system may not only give rise to behavioural and somatic symptoms, but also essentially affect the coupling of conscious affective flow with conscious content flow, leading to the affect-stained subjective side of mental disorders like anxiety, depression, or schizophrenia. The present model is an attempt to integrate the growing insights into serotonergic system function. However, it is acknowledged, that several key claims are still at a heuristic level that need further empirical support.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
39
|
Identification of cerebrospinal fluid and serum metabolomic biomarkers in first episode psychosis patients. Transl Psychiatry 2022; 12:229. [PMID: 35665740 PMCID: PMC9166796 DOI: 10.1038/s41398-022-02000-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Psychotic disorders are currently diagnosed by examining the patient's mental state and medical history. Identifying reliable diagnostic, monitoring, predictive, or prognostic biomarkers would be useful in clinical settings and help to understand the pathophysiology of schizophrenia. Here, we performed an untargeted metabolomics analysis using ultra-high pressure liquid chromatography coupled with time-of-flight mass spectroscopy on cerebrospinal fluid (CSF) and serum samples of 25 patients at their first-episode psychosis (FEP) manifestation (baseline) and after 18 months (follow-up). CSF and serum samples of 21 healthy control (HC) subjects were also analyzed. By comparing FEP and HC groups at baseline, we found eight CSF and 32 serum psychosis-associated metabolites with non-redundant identifications. Most remarkable was the finding of increased CSF serotonin (5-HT) levels. Most metabolites identified at baseline did not differ between groups at 18-month follow-up with significant improvement of positive symptoms and cognitive functions. Comparing FEP patients at baseline and 18-month follow-up, we identified 20 CSF metabolites and 90 serum metabolites that changed at follow-up. We further utilized Ingenuity Pathway Analysis (IPA) and identified candidate signaling pathways involved in psychosis pathogenesis and progression. In an extended cohort, we validated that CSF 5-HT levels were higher in FEP patients than in HC at baseline by reversed-phase high-pressure liquid chromatography. To conclude, these findings provide insights into the pathophysiology of psychosis and identify potential psychosis-associated biomarkers.
Collapse
|
40
|
Neurobiological Links between Stress, Brain Injury, and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8111022. [PMID: 35663199 PMCID: PMC9159819 DOI: 10.1155/2022/8111022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Stress, which refers to a combination of physiological, neuroendocrine, behavioral, and emotional responses to novel or threatening stimuli, is essentially a defensive adaptation under physiological conditions. However, strong and long-lasting stress can lead to psychological and pathological damage. Growing evidence suggests that patients suffering from mild and moderate brain injuries and diseases often show severe neurological dysfunction and experience severe and persistent stressful events or environmental stimuli, whether in the acute, subacute, or recovery stage. Previous studies have shown that stress has a remarkable influence on key brain regions and brain diseases. The mechanisms through which stress affects the brain are diverse, including activation of endoplasmic reticulum stress (ERS), apoptosis, oxidative stress, and excitatory/inhibitory neuron imbalance, and may lead to behavioral and cognitive deficits. The impact of stress on brain diseases is complex and involves impediment of recovery, aggravation of cognitive impairment, and neurodegeneration. This review summarizes various stress models and their applications and then discusses the effects and mechanisms of stress on key brain regions—including the hippocampus, hypothalamus, amygdala, and prefrontal cortex—and in brain injuries and diseases—including Alzheimer’s disease, stroke, traumatic brain injury, and epilepsy. Lastly, this review highlights psychological interventions and potential therapeutic targets for patients with brain injuries and diseases who experience severe and persistent stressful events.
Collapse
|
41
|
Yin X, Mongan D, Cannon M, Zammit S, Hyötyläinen T, Orešič M, Brennan L, Cotter DR. Plasma lipid alterations in young adults with psychotic experiences: A study from the Avon Longitudinal Study of Parents and Children cohort. Schizophr Res 2022; 243:78-85. [PMID: 35245705 DOI: 10.1016/j.schres.2022.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 01/12/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Psychotic experiences (PEs) are associated with an increased risk of future psychotic and non-psychotic mental disorders. The identification of biomarkers of PEs may provide insights regarding the underlying pathophysiology. METHODS The current study applied targeted lipidomic approaches to compare plasma lipid profiles in participants from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort who did (n = 206) or did not (n = 206) have PEs when aged approximately 24 years. RESULTS In total, 202 lipids including 8 lipid classes were measured by using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Eight lipid clusters were generated. Thirteen individual lipids were nominally significantly higher in the PEs group compared to the control group. After correction for multiple comparisons, 9 lipids comprising 3 lysophosphatidylcholines (LPCs), 2 phosphatidylcholines (PCs) and 4 triacylglycerols (TGs) remained significant. In addition, PEs cases had increased levels of TGs and LPCs with a low double bond count. CONCLUSIONS These findings indicate plasma lipidomic abnormalities in individuals experiencing PEs. The lipidomic profile measures could aid our understanding of the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaofei Yin
- Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Stanley Zammit
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK; Centre for Academic Mental Health, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | | | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lorraine Brennan
- Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
42
|
Chaudhary V, Longkumer I, Kaur G, Saraswathy KN. Gender-specific association of biochemical variables with depression: a population-based case-control study from North India. MIDDLE EAST CURRENT PSYCHIATRY 2022. [DOI: 10.1186/s43045-022-00187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Depression is a highly prevalent mental disorder with complex aetiology. An emerging body of evidence shows that depression tends to co-occur with abnormal blood glucose levels and dyslipidaemia. This study aimed to understand the overall and gender-specific associations of abnormal glucose levels and dyslipidaemia with depression in a single Mendelian population from rural Haryana, India. To achieve the aim, a population-based case-control study, which constituted of 251 depressed (cases) and 251 non-depressed (controls) individuals, was set up. The study was conducted among the Jat community of Palwal District, Haryana (North India). Data collection was done using a pre-tested interview schedule through the household survey method. Depression status was ascertained using Beck Depression Inventory-II. Fasting blood glucose analysis and lipid profiling were done using commercial kits (Randox, USA) through spectrophotometry. Statistical analysis was done using MS-Excel 2010 and SPSS version 16.0.
Results
In the present study, overall fasting blood sugar level was not found to be associated with depression. However, high blood sugar posed a 3.6-folds elevated risk for depression among females with borderline significance (p = 0.058). Further, higher levels of TC and LDL were found to be inversely associated with depression. In the sex-wise analysis inverse association of TC and LDL with depression remained significant among males but not among females. Instead, high TG and high VLDL showed an increased risk for depression in females.
Conclusions
This study suggests gender-specific associations of some of the studied biochemical variables with depression. Longitudinal studies are warranted to explicate cause-effect relationships between the studied biochemical variables and depression.
Collapse
|
43
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
44
|
Susai SR, Sabherwal S, Mongan D, Föcking M, Cotter DR. Omega-3 fatty acid in ultra-high-risk psychosis: A systematic review based on functional outcome. Early Interv Psychiatry 2022; 16:3-16. [PMID: 33652502 DOI: 10.1111/eip.13133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 12/27/2022]
Abstract
AIM Among different types of poly unsaturated fatty acids, omega-3 fatty acids (FA) play a substantial role in brain development and functioning. This review was designed to evaluate and synthesize available evidence regarding omega-3 FAs and functional outcome in the ultra-high-risk (UHR) population. METHODS An electronic search in PubMed, EMBASE, PSYCINFO and COCHRANE search engines has been performed for all articles published until January 2019. The studies that have data regarding omega-3 FAs and functional outcome in UHR population were included. RESULTS Out of 397 nonduplicate citations, 19 articles met selection criteria. These articles were from four different primary studies, namely the Program of Rehabilitation and Therapy (PORT), the North American Prodromal Longitudinal Studies (NAPLS), Vienna High Risk study (VHR) and the NEURAPRO. The data from the NAPLS study found a positive correlation between functional improvement and frequency of dietary intake omega-3 FA. Moreover, among the erythrocyte omega-3 FA only eicosapentaenoic acid (EPA) showed a positive correlation with functional score. The VHR study found long-term improvement in functional outcome in omega-3 group compared to control, whereas such difference was noticed in the NEURAPRO. In the VHR study both omega-3 and omega-6 together predicted the functional improvement at 12 weeks. CONCLUSIONS The number of studies available remains insufficient and more studies with standardized outcome measures in a clinically comparable UHR population would be of more value to understand the clinical benefits of omega-3 FA in the UHR population.
Collapse
Affiliation(s)
- Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sophie Sabherwal
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
45
|
Zhang T, Guo L, Li R, Wang F, Yang WM, Yang JB, Cui ZQ, Zhou CH, Chen YH, Yu H, Peng ZW, Tan QR. Alterations of Plasma Lipids in Adult Women With Major Depressive Disorder and Bipolar Depression. Front Psychiatry 2022; 13:927817. [PMID: 35923457 PMCID: PMC9339614 DOI: 10.3389/fpsyt.2022.927817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Lipidomics has been established as a potential tool for the investigation of mental diseases. However, the composition analysis and the comparison of the peripheral lipids regarding adult women with major depressive depression (MDD) or bipolar depression (BPD) has been poorly addressed. In the present study, age-matched female individuals with MDD (n = 28), BPD (n = 22) and healthy controls (HC, n = 25) were enrolled. Clinical symptoms were assessed and the plasma samples were analyzed by comprehensive lipid profiling based on liquid chromatography-mass spectrometry (LC/MS). We found that the composition of lipids was remarkably changed in the patients with MDD and BPD when compared to HC or compared to each other. Moreover, we identified diagnostic potential biomarkers comprising 20 lipids that can distinguish MDD from HC (area under the curve, AUC = 0.897) and 8 lipids that can distinguish BPD from HC (AUC = 0.784), as well as 13 lipids were identified to distinguish MDD from BPD with moderate reliability (AUC = 0.860). This study provides further understanding of abnormal lipid metabolism in adult women with MDD and BPD and may develop lipid classifiers able to effectively discriminate MDD from BPD and HC.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Lin Guo
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Rui Li
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Fei Wang
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Wen-Mao Yang
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Jia-Bin Yang
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Zhi-Quan Cui
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yi-Huan Chen
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Huan Yu
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zheng-Wu Peng
- Department of Psychiatry, Chang'an Hospital, Xi'an, China.,Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qing-Rong Tan
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| |
Collapse
|
46
|
Couttas TA, Jieu B, Rohleder C, Leweke FM. Current State of Fluid Lipid Biomarkers for Personalized Diagnostics and Therapeutics in Schizophrenia Spectrum Disorders and Related Psychoses: A Narrative Review. Front Psychiatry 2022; 13:885904. [PMID: 35711577 PMCID: PMC9197191 DOI: 10.3389/fpsyt.2022.885904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Schizophrenia spectrum disorders (SSD) are traditionally diagnosed and categorized through clinical assessment, owing to their complex heterogeneity and an insufficient understanding of their underlying pathology. However, disease progression and accurate clinical diagnosis become problematic when differentiating shared aspects amongst mental health conditions. Hence, there is a need for widely accessible biomarkers to identify and track the neurobiological and pathophysiological development of mental health conditions, including SSD. High-throughput omics applications involving the use of liquid chromatography-mass spectrometry (LC-MS) are driving a surge in biological data generation, providing systems-level insight into physiological and pathogenic conditions. Lipidomics is an emerging subset of metabolomics, largely underexplored amongst the omics systems. Lipid profiles in the brain are highly enriched with well-established functions, including maintenance, support, and signal transduction of neuronal signaling pathways, making them a prospective and exciting source of biological material for neuropsychiatric research. Importantly, changes in the lipid composition of the brain appear to extend into the periphery, as there is evidence that circulating lipid alterations correlate with alterations of psychiatric condition(s). The relative accessibility of fluid lipids offers a unique source to acquire a lipidomic "footprint" of molecular changes, which may support reliable diagnostics even at early disease stages, prediction of treatment response and monitoring of treatment success (theranostics). Here, we summarize the latest fluid lipidomics discoveries in SSD-related research, examining the latest strategies to integrate information into multi-systems overviews that generate new perspectives of SSD-related psychosis identification, development, and treatment.
Collapse
Affiliation(s)
- Timothy A Couttas
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Beverly Jieu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Cathrin Rohleder
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - F Markus Leweke
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
47
|
Guo L, Zhang T, Li R, Cui ZQ, Du J, Yang JB, Xue F, Chen YH, Tan QR, Peng ZW. Alterations in the Plasma Lipidome of Adult Women With Bipolar Disorder: A Mass Spectrometry-Based Lipidomics Research. Front Psychiatry 2022; 13:802710. [PMID: 35386518 PMCID: PMC8978803 DOI: 10.3389/fpsyt.2022.802710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 01/21/2023] Open
Abstract
Lipidomics has become a pivotal tool in biomarker discovery for the diagnosis of psychiatric illnesses. However, the composition and quantitative analysis of peripheral lipids in female patients with bipolar disorder (BD) have been poorly addressed. In this study, plasma samples from 24 female patients with BD and 30 healthy controls (HCs) were analyzed by comprehensive lipid profiling and quantitative validation based on liquid chromatography-mass spectrometry. Clinical characteristics and a correlation between the level of lipid molecules and clinical symptoms were also observed. We found that the quantitative alterations in several lipid classes, including acylcarnitine, lysophosphatidylethanolamine, GM2, sphingomyelin, GD2, triglyceride, monogalactosyldiacylglycerol, phosphatidylinositol phosphate, phosphatidylinositol 4,5-bisphosphate, phosphatidylethanolamine, phosphatidylserine, and lysophosphatidylinositol, were remarkably upregulated or downregulated in patients with BD and were positively or negatively correlated with the severity of psychotic, affective, or mania symptoms. Meanwhile, the composition of different carbon chain lengths and degrees of fatty acid saturation for these lipid classes in BD were also different from those of HCs. Moreover, 55 lipid molecules with significant differences and correlations with the clinical parameters were observed. Finally, a plasma biomarker set comprising nine lipids was identified, and an area under the curve of 0.994 was obtained between patients with BD and the HCs. In conclusion, this study provides a further understanding of abnormal lipid metabolism in the plasma and suggests that specific lipid species can be used as complementary biomarkers for the diagnosis of BD in women.
Collapse
Affiliation(s)
- Lin Guo
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Ting Zhang
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Rui Li
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Zhi-Quan Cui
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Jing Du
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Jia-Bin Yang
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yi-Huan Chen
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qing-Rong Tan
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Zheng-Wu Peng
- Department of Psychiatry, Chang'an Hospital, Xi'an, China.,Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
48
|
De Giorgi R, Martens M, Rizzo Pesci N, Cowen PJ, Harmer CJ. The effects of atorvastatin on emotional processing, reward learning, verbal memory and inflammation in healthy volunteers: An experimental medicine study. J Psychopharmacol 2021; 35:1479-1487. [PMID: 34872404 PMCID: PMC8652357 DOI: 10.1177/02698811211060307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Growing evidence from clinical trials and epidemiological studies suggests that statins can have clinically significant antidepressant effects, potentially related to anti-inflammatory action on several neurobiological structures. However, the underlying neuropsychological mechanisms of these effects remain unexplored. AIMS In this experimental medicine trial, we investigated the 7-day effects of the lipophilic statin, atorvastatin on a battery of neuropsychological tests and inflammation in healthy volunteers. METHODS Fifty healthy volunteers were randomised to either 7 days of atorvastatin 20 mg or placebo in a double-blind design. Participants were assessed with psychological questionnaires and a battery of well-validated behavioural tasks assessing emotional processing, which is sensitive to putative antidepressant effects, reward learning and verbal memory, as well as the inflammatory marker, C-reactive protein. RESULTS Compared to placebo, 7-day atorvastatin increased the recognition (p = 0.006), discriminability (p = 0.03) and misclassifications (p = 0.04) of fearful facial expression, independently from subjective states of mood and anxiety, and C-reactive protein levels. Otherwise, atorvastatin did not significantly affect any other psychological and behavioural measure, nor peripheral C-reactive protein. CONCLUSIONS Our results reveal for the first time the early influence of atorvastatin on emotional cognition by increasing the processing of anxiety-related stimuli (i.e. increased recognition, discriminability and misclassifications of fearful facial expression) in healthy volunteers, in the absence of more general effects on negative affective bias. Further studies exploring the effects of statins in depressed patients, especially with raised inflammatory markers, may clarify this finding and inform future clinical trials.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Marieke Martens
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Nicola Rizzo Pesci
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Philip J Cowen
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
49
|
Tkachev AI, Stekolshchikova EA, Morozova AY, Anikanov NA, Zorkina YA, Alekseyeva PN, Khobta EB, Andreyuk DS, Zozulya SA, Barkhatova AN, Klyushnik TP, Reznik AM, Kostyuk GP, Khaitovich PE. Ceramides: Shared Lipid Biomarkers of Cardiovascular Disease and Schizophrenia. CONSORTIUM PSYCHIATRICUM 2021; 2:35-43. [PMID: 39044755 PMCID: PMC11262249 DOI: 10.17816/cp101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Schizophrenia, although a debilitating mental illness, greatly affects individuals' physical health as well. One of the leading somatic comorbidities associated with schizophrenia is cardiovascular disease, which has been estimated to be one of the leading causes of excess mortality in patients diagnosed with schizophrenia. Although the shared susceptibility to schizophrenia and cardiovascular disease is well established, the mechanisms linking these two disorders are not well understood. Genetic studies have hinted toward shared lipid metabolism abnormalities co-occurring in the two disorders, while lipid compounds have emerged as prognostic markers for cardiovascular disease. In particular, three ceramide species in the blood plasma, Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1), have been robustly linked to the latter disorder. AIM We aimed to assess the differences in abundances of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in the blood plasma of schizophrenia patients compared to healthy controls. METHODS We measured the abundances of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in a cohort of 82 patients with schizophrenia and 138 controls without a psychiatric diagnosis and validated the results using an independent cohort of 26 patients with schizophrenia, 55 control individuals, and 19 patients experiencing a first psychotic episode. RESULTS We found significant alterations for all three ceramide species Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) and a particularly strong difference in concentrations between psychiatric patients and controls for the ceramide species Cer(d18:1/18:0). CONCLUSIONS The alteration of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) levels in the blood plasma might be a manifestation of metabolic abnormalities common to both schizophrenia and cardiovascular disease.
Collapse
|
50
|
Shutta KH, Balasubramanian R, Huang T, Jha SC, Zeleznik OA, Kroenke CH, Tinker LF, Smoller JW, Casanova R, Tworoger SS, Manson JE, Clish CB, Rexrode KM, Hankinson SE, Kubzansky LD. Plasma metabolomic profiles associated with chronic distress in women. Psychoneuroendocrinology 2021; 133:105420. [PMID: 34597898 PMCID: PMC8547060 DOI: 10.1016/j.psyneuen.2021.105420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
Several forms of chronic distress including anxiety and depression are associated with adverse cardiometabolic outcomes. Metabolic alterations may underlie these associations. Whether these forms of distress are associated with metabolic alterations even after accounting for comorbid conditions and other factors remains unclear. Using an agnostic approach, this study examines a broad range of metabolites in relation to chronic distress among women. For this cross-sectional study of chronic distress and 577 plasma metabolites, data are from different substudies within the Women's Health Initiative (WHI) and Nurses' Health Studies (NHSI, NHSII). Chronic distress was characterized by depressive symptoms and other depression indicators in the WHI and NHSII substudies, and by combined indicators of anxiety and depressive symptoms in the NHSI substudy. We used a two-phase discovery-validation framework, with WHI (N = 1317) and NHSII (N = 218) substudies in the discovery phase (identifying metabolites associated with distress) and NHSI (N = 558) substudy in the validation phase. A differential network analysis provided a systems-level assessment of metabolomic alterations under chronic distress. Analyses adjusted for potential confounders and mediators (demographics, comorbidities, medications, lifestyle factors). In the discovery phase, 46 metabolites were significantly associated with depression measures. In validation, six of these metabolites demonstrated significant associations with chronic distress after adjustment for potential confounders. Among women with high distress, we found lower gamma-aminobutyric acid (GABA), threonine, biliverdin, and serotonin and higher C16:0 ceramide and 3-methylxanthine. Our findings suggest chronic distress is associated with metabolomic alterations and provide specific targets for future study of biological pathways in chronic diseases.
Collapse
Affiliation(s)
- Katherine H Shutta
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, 010 Arnold House, 715 North Pleasant Street, Amherst, MA 01003, USA.
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, 010 Arnold House, 715 North Pleasant Street, Amherst, MA 01003, USA.
| | - Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Shaili C Jha
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Candyce H Kroenke
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Jordan W Smoller
- Department of Psychiatry and Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cancer Epidemiology, Moffit Cancer Center, Tampa, FL, USA.
| | - JoAnn E Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Kathryn M Rexrode
- Harvard Medical School, Boston, MA, USA; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, 010 Arnold House, 715 North Pleasant Street, Amherst, MA 01003, USA.
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|