1
|
Liu Y, Xu Y, Tong S. Serum glial cell line-derived neurotrophic factor: a potential biomarker for white matter alteration in Parkinson's disease with mild cognitive impairment. Front Neurosci 2024; 18:1370787. [PMID: 39513043 PMCID: PMC11541347 DOI: 10.3389/fnins.2024.1370787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Objective Mild cognitive impairment (MCI) is a common non-motor manifestation of Parkinson's disease, commonly referred to as PD-MCI. However, there is a lack of comprehensive data regarding the role of glial cell line-derived neurotrophic factor (GDNF) and cerebral white matter damage in the pathogenesis of PD-MCI. The objective of this study is to investigate the association between alterations in GDNF levels and cerebral white matter damage in individuals diagnosed with PD-MCI, as well as to explore their potential involvement in cognitive progression. Methods Neuropsychological assessments were conducted on 105 patients with Parkinson's disease and 45 healthy volunteers to examine various cognitive domains. An enzyme-linked immunosorbent assay (ELISA) was employed to measure serum levels of GDNF. Additionally, all participants underwent 3.0T magnetic resonance imaging (MRI) to acquire diffusion tensor images (DTI), and a voxel-based analysis (VBA) approach was utilized to compare the fractional anisotropy (FA) values of white matter in the brain. Results There was a significant correlation between the right corpus callosum, right cingulate gyrus, and the Digit Span Backward Test (DSB-T) as well as the Trail Making Test A (TMT-A), both of which assess attention and working memory functions. The left internal capsule exhibited a significant correlation with the Trail Making Test B (TMT-B) and the Clock Drawing Test (CDT), which evaluate executive function. Additionally, the right cingulate gyrus showed a significant association with scores on the Auditory Verbal Learning Test-HuaShan (AVLT-H), assessing memory function. Abnormal fiber structures that demonstrated significant correlations with serum GDNF levels included the left internal capsule, left corticospinal tract, right corpus callosum, and right cingulate gyrus. Conclusion The decrease in serum GDNF levels among PD-MCI patients exhibiting impairments in attention and working memory function was significantly correlated with alterations in the corpus callosum (knee) and posterior cingulate gyrus. Furthermore, the reduction of serum GDNF levels in PD-MCI patients with impaired executive function is associated with changes in the internal capsule (forelimb) projection fibers. Additionally, the decline of serum GDNF levels in PD-MCI patients experiencing memory function impairment is related to alterations in the right cingulate gyrus.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Yan Xu
- Xuzhou Children’s Hospital, Xuzhou, China
| | - SuYan Tong
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Ebrahimi P, Davoudi E, Sadeghian R, Zadeh AZ, Razmi E, Heidari R, Morowvat MH, Sadeghian I. In vivo and ex vivo gene therapy for neurodegenerative diseases: a promise for disease modification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7501-7530. [PMID: 38775852 DOI: 10.1007/s00210-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/01/2024] [Indexed: 10/04/2024]
Abstract
Neurodegenerative diseases (NDDs), including AD, PD, HD, and ALS, represent a growing public health concern linked to aging and lifestyle factors, characterized by progressive nervous system damage leading to motor and cognitive deficits. Current therapeutics offer only symptomatic management, highlighting the urgent need for disease-modifying treatments. Gene therapy has emerged as a promising approach, targeting the underlying pathology of diseases with diverse strategies including gene replacement, gene silencing, and gene editing. This innovative therapeutic approach involves introducing functional genetic material to combat disease mechanisms, potentially offering long-term efficacy and disease modification. With advancements in genomics, structural biology, and gene editing tools such as CRISPR/Cas9, gene therapy holds significant promise for addressing the root causes of NDDs. Significant progress in preclinical and clinical studies has demonstrated the potential of in vivo and ex vivo gene therapy to treat various NDDs, offering a versatile and precise approach in comparison to conventional treatments. The current review describes various gene therapy approaches employed in preclinical and clinical studies for the treatment of NDDs, including AD, PD, HD, and ALS, and addresses some of the key translational challenges in this therapeutic approach.
Collapse
Affiliation(s)
- Pouya Ebrahimi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Davoudi
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Amin Zaki Zadeh
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Emran Razmi
- Arak University of Medical Sciences, Arak, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Mandalawatta HP, Rajendra K, Fairfax K, Hewitt AW. Emerging trends in virus and virus-like particle gene therapy delivery to the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102280. [PMID: 39206077 PMCID: PMC11350507 DOI: 10.1016/j.omtn.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy and gene-editing techniques offer the very real potential for successful treatment of neurological diseases. However, drug delivery constraints continue to impede viable therapeutic interventions targeting the brain due to its anatomical complexity and highly restrictive microvasculature that is impervious to many molecules. Realizing the therapeutic potential of gene-based therapies requires robust encapsulation and safe and efficient delivery to the target cells. Although viral vectors have been widely used for targeted delivery of gene-based therapies, drawbacks such as host genome integration, prolonged expression, undesired off-target mutations, and immunogenicity have led to the development of alternative strategies. Engineered virus-like particles (eVLPs) are an emerging, promising platform that can be engineered to achieve neurotropism through pseudotyping. This review outlines strategies to improve eVLP neurotropism for therapeutic brain delivery of gene-editing agents.
Collapse
Affiliation(s)
| | - K.C. Rajendra
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kirsten Fairfax
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
4
|
Chengcheng M, Panpan A, Yalong Y, Mingyu S, Wei X, Jing C, Chuanxi T. GDNF improves the cognitive ability of PD mice by promoting glycosylation and membrane distribution of DAT. Sci Rep 2024; 14:17845. [PMID: 39090173 PMCID: PMC11294596 DOI: 10.1038/s41598-024-68609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
The core of clinic treatment of Parkinson's disease (PD) is to enhance dopamine (DA) signaling within the brain. The regulation of dopamine transporter (DAT) is integral to this process. This study aims to explore the regulatory mechanism of glial cell line-derived neurotrophic factor (GDNF) on DAT, thereby gaining a profound understanding its potential value in treating PD. In this study, we investigated the effects of GDNF on both cellular and mouse models of PD, including the glycosylation and membrane transport of DAT detected by immunofluorescence and immunoblotting, DA signal measured by neurotransmitter fiber imaging technology, Golgi morphology observed by electron microscopic, as well as cognitive ability assessed by behavior tests. This study revealed that in animal trials, MPTP-induced Parkinson's Disease (PD) mice exhibited a marked decline in cognitive function. Utilizing ELISA and neurotransmitter fiber imaging techniques, we observed a decrease in dopamine levels and a significant reduction in the intensity of dopamine signal release in the Prefrontal Cortex (PFC) of PD mice induced by MPTP. Intriguingly, these alterations were reversed by Glial Cell Line-Derived Neurotrophic Factor (GDNF). In cellular experiments, following MPP + intervention, there was a decrease in Gly-DAT modification in both the cell membrane and cytoplasm, coupled with an increase in Nongly-DAT expression and aggregation of DAT within the cytoplasm. Conversely, GDNF augmented DAT glycosylation and facilitated its membrane transport in damaged dopaminergic neurons, concurrently reversing the effects of GRASP65 depletion and Golgi fragmentation, thereby reducing the accumulation of DAT in the Golgi apparatus. Furthermore, overexpression of GRASP65 enhanced DAT transport in PD cells and mice, while suppression of GRASP65 attenuated the efficacy of GDNF on DAT. Additionally, GDNF potentiated the reutilization of neurotransmitters by the PFC presynaptic membrane, boosting the effective release of dopamine following a single electrical stimulation, ultimately ameliorating the cognitive impairments in PD mice.Therefore, we propose that GDNF enhances the glycosylation and membrane trafficking of DAT by facilitating the re-aggregation of the Golgi apparatus, thereby amplifying the utilization of DA signals. This ultimately leads to the improvement of cognitive abilities in PD mouse models. Our study illuminates, from a novel angle, the beneficial role of GDNF in augmenting DA utilization and cognitive function in PD, providing fresh insights into its therapeutic potential.
Collapse
Affiliation(s)
- Ma Chengcheng
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - An Panpan
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan Yalong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Su Mingyu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xu Wei
- Jinhu County People's Hospital, 160 Shenhua Avenue, Jinhu County, Huai'an City, Jiangsu, China
| | - Chen Jing
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Tang Chuanxi
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
5
|
Wang F, Han X, Mu Q, Chen H, Wu Y, Kang Y, Liu Y. Cerebrospinal fluid mesencephalic astrocyte-derived neurotrophic factor: A moderating effect on sleep time and cognitive function. J Psychiatr Res 2024; 176:33-39. [PMID: 38838432 DOI: 10.1016/j.jpsychires.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Sleeping late has been associated with cognitive impairment, and insufficient sleep can affect the secretion of feeding-related cytokines. Feeding-related cytokines may contribute to cognitive deficits resulting from delayed bedtime. Glial cell line-derived neurotrophic factor (GDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF), which are feeding-related neurotrophic factors, have been associated with improved cognitive function and neuroprotective abilities. Enhanced expression of GDNF and MANF is linked to increased energy expenditure and hyperphagia, respectively. AIMS This study aimed to investigate the association between cerebrospinal fluid (CSF) GDNF, MANF, cognition, and sleep time and to explore the moderating effects of GDNF and MANF on cognitive impairment in individuals who sleep late. METHOD This cross-sectional study included participants (mean age 31.76 ± 10.22 years) who were categorized as ≤23 o'clock sleepers (n = 66) and >23 o'clock sleepers (n = 125) based on sleep time. Cognition was assessed using Montreal Cognitive Assessment (MoCA), and GDNF and MANF levels in CSF were measured. RESULTS MANF may play a moderating role in the relationship between sleep time and cognition (R2 = 0.06, β = 0.59, p = 0.031). Age showed a negative correlation with MoCA scores (R2 = 0.08, β = -0.18), while education exhibited a positive correlation (β = 0.17, both p < 0.05). Only ≤23 o'clock sleepers exhibited a negative correlation between MANF levels and BMI (r = -0.35, p = 0.005). CONCLUSIONS This study provides hitherto undocumented evidence of the potential protective effect of CSF MANF on cognitive impairment of late sleepers, which suggests that maintaining a regular sleep schedule may contribute to cognition and overall health, with MANF playing a role in this process.
Collapse
Affiliation(s)
- Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China; Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China.
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship Hospital, Urumqi, 830049, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China
| | - Hongxu Chen
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China; Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Kyung J, Kim D, Shin K, Park D, Hong SC, Kim TM, Choi EK, Kim YB. Repeated Intravenous Administration of Human Neural Stem Cells Producing Choline Acetyltransferase Exerts Anti-Aging Effects in Male F344 Rats. Cells 2023; 12:2711. [PMID: 38067139 PMCID: PMC10706332 DOI: 10.3390/cells12232711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major features of aging might be progressive decreases in cognitive function and physical activity, in addition to withered appearance. Previously, we reported that the intracerebroventricular injection of human neural stem cells (NSCs named F3) encoded the choline acetyltransferase gene (F3.ChAT). The cells secreted acetylcholine and growth factors (GFs) and neurotrophic factors (NFs), thereby improving learning and memory function as well as the physical activity of aged animals. In this study, F344 rats (10 months old) were intravenously transplanted with F3 or F3.ChAT NSCs (1 × 106 cells) once a month to the 21st month of age. Their physical activity and cognitive function were investigated, and brain acetylcholine (ACh) and cholinergic and dopaminergic system markers were analyzed. Neuroprotective and neuroregenerative activities of stem cells were also confirmed by analyzing oxidative damages, neuronal skeletal protein, angiogenesis, brain and muscle weights, and proliferating host stem cells. Stem cells markedly improved both cognitive and physical functions, in parallel with the elevation in ACh levels in cerebrospinal fluid and muscles, in which F3.ChAT cells were more effective than F3 parental cells. Stem cell transplantation downregulated CCL11 and recovered GFs and NFs in the brain, leading to restoration of microtubule-associated protein 2 as well as functional markers of cholinergic and dopaminergic systems, along with neovascularization. Stem cells also restored muscular GFs and NFs, resulting in increased angiogenesis and muscle mass. In addition, stem cells enhanced antioxidative capacity, attenuating oxidative damage to the brain and muscles. The results indicate that NSCs encoding ChAT improve cognitive function and physical activity of aging animals by protecting and recovering functions of multiple organs, including cholinergic and dopaminergic systems, as well as muscles from oxidative injuries through secretion of ACh and GFs/NFs, increased antioxidant elements, and enhanced blood flow.
Collapse
Affiliation(s)
- Jangbeen Kyung
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dajeong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyungha Shin
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Republic of Korea
| | - Soon-Cheol Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| |
Collapse
|
7
|
Rao YL, Ganaraja B, Suresh PK, Joy T, Ullal SD, Manjrekar PA, Murlimanju BV, Sharma BG. Effect of resveratrol and combination of resveratrol and donepezil on the expression of microglial cells and astrocytes in Wistar albino rats of colchicine-induced Alzheimer's disease. 3 Biotech 2023; 13:319. [PMID: 37641690 PMCID: PMC10460340 DOI: 10.1007/s13205-023-03743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Aim The goal was to evaluate the effect of resveratrol (RS) and combination therapy of RS and donepezil (DPZ), on the numerical expression of microglial cells and astrocytes, in the frontal cortex, regions of the hippocampus in colchicine-induced Alzheimer's disease (AD) model. Methods The study involved male albino Wistar rats of three months, age and consisted of 6 groups, with six animals each. The immunohistochemical staining with mouse monoclonal anti-human CD 68 and mouse monoclonal anti-GFAP was performed to assess the number of microglial cells and astrocytes, respectively. Results AD group showed an increase in the number of microglia, and the numbers declined in the treatment groups, RS 10, RS 20, RS10/10 and DPZ + RS (p < 0.001). Astrocyte count was increased in the treatment groups in contrast to the AD group (p < 0.05). The DPZ + RS combination group revealed substantial elevation in the number of astrocytes and decreased microglial number among all the groups (p < 0.001). Conclusion RS administration has diminished the microglial number and elevated the number of astrocytes. The elevated reactive astrocytes have decreased the microglial population. However, the limitation of our study is utilizing the colchicine for the induction of neurodegeneration. Using the transgenic models of AD may give a better insight into the pathogenesis and effect of RS. Another limitation of this study is the administration of RS and DPZ through different routes. The prospects of this research include studying the probiotic nature of RS and the effect of RS in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Y. Lakshmisha Rao
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. Ganaraja
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Pooja K. Suresh
- Department of Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, Antigua, West Indies Antigua and Barbuda
| | - Sheetal D. Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Poornima A. Manjrekar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. Gaurav Sharma
- Senior Registrar in Trauma and Orthopaedic Surgery, Hampshire Hospitals NHS Foundation Trust, Basingstoke and North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA UK
| |
Collapse
|
8
|
Luo BL, Zhang ZZ, Chen J, Liu X, Zhang YM, Yang QG, Chen GH. Effects of gestational inflammation on age-related cognitive decline and hippocampal Gdnf-GFRα1 levels in F1 and F2 generations of CD-1 Mice. BMC Neurosci 2023; 24:26. [PMID: 37055728 PMCID: PMC10103445 DOI: 10.1186/s12868-023-00793-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND It has been reported that age-associated cognitive decline (AACD) accelerated by maternal lipopolysaccharide (LPS) insult during late pregnancy can be transmitted to the second generation in a sex-specificity manner. In turn, recent studies indicated that glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα1) are critical for normal cognitive function. Based on this evidence, we aimed to explore whether Gdnf-GFRα1 expression contributes to cognitive decline in the F1 and F2 generations of mouse dams exposed to lipopolysaccharide (LPS) during late gestation, and to evaluate also the potential interference effect of pro-inflammatory cytokines. METHODS During gestational days 15-17, pregnant CD-1 mice (8-10 weeks old) received a daily intraperitoneal injection of LPS (50 μg/kg) or saline (control). In utero LPS-exposed F1 generation mice were selectively mated to produce F2 generation mice. In F1 and F2 mice aged 3 and 15 months, the Morris water maze (MWM) was used to evaluated the spatial learning and memory ability, the western blotting and RT-PCR were used for analyses of hippocampal Gdnf and GFRα1 expression, and ELISA was used to analyse IL-1β, IL-6 and TNF-α levels in serum. RESULTS Middle-aged F1 offspring from LPS-treated mothers exhibited longer swimming latency and distance during the learning phase, lower percentage swimming time and distance in targe quadrant during memory phase, and lower hippocampal levels of Gdnf and GFRα1 gene products compared to age-matched controls. Similarly, the middle-aged F2 offspring from the Parents-LPS group had longer swimming latency and distance in the learning phase, and lower percentage swimming time and distance in memory phase than the F2-CON group. Moreover, the 3-month-old Parents-LPS and 15-month-old Parents- and Father-LPS groups had lower GDNF and GFRα1 protein and mRNAs levels compared to the age-matched F2-CON group. Furthermore, hippocampal levels of Gdnf and GFRα1 were correlated with impaired cognitive performance in the Morris water maze after controlling for circulating pro-inflammatory cytokine levels. CONCLUSIONS Our findings indicate that accelerated AACD by maternal LPS exposure can be transmitted across at least two generations through declined Gdnf and GFRα1 expression, mainly via paternal linage.
Collapse
Affiliation(s)
- Bao-Ling Luo
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, People's Republic of China
| | - Zhe-Zhe Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, People's Republic of China
| | - Jing Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, People's Republic of China
| | - Xue Liu
- Department of Geriatrics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, People's Republic of China
| | - Qi-Gang Yang
- Department of Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, People's Republic of China.
| |
Collapse
|
9
|
Tong SY, Wang RW, Li Q, Liu Y, Yao XY, Geng DQ, Gao DS, Ren C. Serum glial cell line-derived neurotrophic factor (GDNF) a potential biomarker of executive function in Parkinson's disease. Front Neurosci 2023; 17:1136499. [PMID: 36908789 PMCID: PMC9995904 DOI: 10.3389/fnins.2023.1136499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Evidence shows that the impairment of executive function (EF) is mainly attributed to the degeneration of frontal-striatal dopamine pathway. Glial cell line-derived neurotrophic factor (GDNF), as the strongest protective neurotrophic factor for dopaminergic neurons (DANs), may play a role in EF to some extent. This study mainly explored the correlation between serum GDNF concentration and EF performance in Parkinson's disease (PD). Methods This study recruited 45 healthy volunteers (health control, HC) and 105 PD patients, including 44 with mild cognitive impairment (PD-MCI), 20 with dementia (PD-D), and 20 with normal cognitive function (PD-N). Neuropsychological tests were performed to evaluate EF (working memory, inhibitory control, and cognitive flexibility), attention, language, memory, and visuospatial function. All subjects were tested for serum GDNF and homovanillic acid (HVA) levels by ELISA and LC-ESI-MS/MS, respectively. Results PD-MCI patients showed impairments in the trail making test (TMT) A (TMT-A), TMT-B, clock drawing test (CDT) and semantic fluency test (SFT), whereas PD-D patients performed worse in most EF tests. With the deterioration of cognitive function, the concentration of serum GDNF and HVA in PD patients decreased. In the PD group, the serum GDNF and HVA levels were negatively correlated with TMT-A (r GDNF = -0.304, P < 0.01; r HVA = -0.334, P < 0.01) and TMT-B (r GDNF = -0.329, P < 0.01; r HVA = -0.323, P < 0.01) scores. Serum GDNF levels were positively correlated with auditory verbal learning test (AVLT-H) (r = 0.252, P < 0.05) and SFT (r = 0.275, P < 0.05) scores. Serum HVA levels showed a positively correlation with digit span test (DST) (r = 0.277, P < 0.01) scores. Stepwise linear regression analysis suggested that serum GDNF and HVA concentrations and UPDRS-III were the influence factors of TMT-A and TMT-B performances in PD patients. Conclusion The decrease of serum GDNF concentration in PD patients was associated with impaired inhibitory control, cognitive flexibility, and attention performances. The changes of GDNF and HVA might synergistically participate in the occurrence and development of executive dysfunction in PD patients.
Collapse
Affiliation(s)
- Shu-Yan Tong
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| | - Rui-Wen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Qian Li
- Department of Scientific Research, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Ren
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.,Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, Shandong, China.,Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| |
Collapse
|
10
|
Effects of Subchronic Aluminum Exposure on Learning, Memory, and Neurotrophic Factors in Rats. Neurotox Res 2022; 40:2046-2060. [PMID: 36342585 DOI: 10.1007/s12640-022-00599-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Aluminum (Al) is a neurotoxin that gradually accumulates in the brain in human life, resulting in oxidative brain injury related to Alzheimer's disease (AD) and other diseases. In this study, the learning and memory of rats exposed to different aluminum concentrations (0.0 g/L, 2.0 g/L, 4.0 g/L, and 8.0 g/L) were studied, and the learning and memory of rats were observed by shuttle box experiment. With hematoxylin and eosin staining, Western blot, immunofluorescence, and RT-PCR, the morphology of nerve cells in the hippocampus of rat brain were observed, and the levels of activator protein-1 (AP-1) gene and protein, nerve growth factor (NGF), neurotrophin-3 (NT3), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) gene and protein level, etc. The experimental results showed that subchronic aluminum exposure damaged learning and memory in rats. The cognitive function damage in rats was more evident after increasing the aluminum intake dose. The more aluminum intake, the more pronounced the histological changes in the hippocampus will be. The expression level and protein content of neurotrophic factors in the hippocampus of rats showed a negative correlation with aluminum intake. In this experiment, we explored the mechanism of aluminum exposure in learning and memory disorders, and provided some data reference for further elucidation of the damage mechanism of aluminum on the nervous system and subsequent preventive measures.
Collapse
|
11
|
Amyloidogenesis and Neurotrophic Dysfunction in Alzheimer’s Disease: Do They have a Common Regulating Pathway? Cells 2022; 11:cells11203201. [PMID: 36291068 PMCID: PMC9600014 DOI: 10.3390/cells11203201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
The amyloid cascade hypothesis has predominately been used to describe the pathogenesis of Alzheimer’s disease (AD) for decades, as Aβ oligomers are thought to be the prime cause of AD. Meanwhile, the neurotrophic factor hypothesis has also been proposed for decades. Accumulating evidence states that the amyloidogenic process and neurotrophic dysfunction are mutually influenced and may coincidently cause the onset and progress of AD. Meanwhile, there are intracellular regulators participating both in the amyloidogenic process and neurotrophic pathways, which might be the common original causes of amyloidogenesis and neurotrophic dysfunction. In this review, the current understanding regarding the role of neurotrophic dysfunction and the amyloidogenic process in AD pathology is briefly summarized. The mutual influence of these two pathogenesis pathways and their potential common causal pathway are further discussed. Therapeutic strategies targeting the common pathways to simultaneously prevent amyloidogenesis and neurotrophic dysfunction might be anticipated for the disease-modifying treatment of AD.
Collapse
|
12
|
Enhanced Cognition and Neurogenesis in miR-146b Deficient Mice. Cells 2022; 11:cells11132002. [PMID: 35805086 PMCID: PMC9265316 DOI: 10.3390/cells11132002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
The miR-146 family consists of two microRNAs (miRNAs), miR-146a and miR-146b, which are both known to suppress a variety of immune responses. Here in this study, we show that miR-146b is abundantly expressed in neuronal cells, while miR-146a is mainly expressed in microglia and astroglia of adult mice. Accordingly, miR-146b deficient (Mir146b-/-) mice exhibited anxiety-like behaviors and enhanced cognition. Characterization of cellular composition of Mir146b-/- mice using flow cytometry revealed an increased number of neurons and a decreased abundancy of astroglia in the hippocampus and frontal cortex, whereas microglia abundancy remained unchanged. Immunohistochemistry showed a higher density of neurons in the frontal cortex of Mir146b-/- mice, enhanced hippocampal neurogenesis as evidenced by an increased proliferation, and survival of newly generated cells with enhanced maturation into neuronal phenotype. No microglial activation or signs of neuroinflammation were observed in Mir146b-/- mice. Further analysis demonstrated that miR-146b deficiency is associated with elevated expression of glial cell line-derived neurotrophic factor (Gdnf) mRNA in the hippocampus, which might be at least in part responsible for the observed neuronal expansion and the behavioral phenotype. This hypothesis is partially supported by the positive correlation between performance of mice in the object recognition test and Gdnf mRNA expression in Mir146b-/- mice. Together, these results show the distinct function of miR-146b in controlling behaviors and provide new insights in understanding cell-specific function of miR-146b in the neuronal and astroglial organization of the mouse brain.
Collapse
|
13
|
The Effects of the Task Balance Training Program on the Glial Cell Line-Derived Neurotrophic Factor Levels, Cognitive Function, and Postural Balance in Old People. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9887985. [PMID: 35360515 PMCID: PMC8964155 DOI: 10.1155/2022/9887985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/23/2022]
Abstract
Exercise in the form of physical activity can provide neuroprotective benefits. The purpose of this study is to determine the effect of the task balance training program (TBT program) on the glial cell-derived neurotrophic factor levels, cognitive function, and postural balance in old people. The population of this study was the old people members of the Batara Hati Mulia Gowa Foundation who were willing to participate in the study (n = 66). The sample of this study was obtained through a random sampling technique to determine the treatment (n = 32) and control (n = 34) groups. Before and after implementing the TBT program, glial cell-derived neurotrophic factor (GDNF) level measurement and cognitive function and postural balance assessment were performed. Cognitive function was measured by using Montreal cognitive assessment (MoCA). Postural balance was measured in two ways by using the timed up and go (TUG) test and Tinetti performance-oriented mobility assessment (POMA). The treatment group showed significantly greater changes than the control group in GDNF levels (2.24 (±0.63) vs. 1.24 (±0.43), P = 0.001), cognitive function (24.66 (±3.42) vs. 19.18 (±2.67), P = 0.001), and postural balance (TUG [14.00 (±4.04) vs. 18.68 (±3.98)]; POMA [26.53 (±1.74) vs. 23.47 (±3.06)], P = 0.001) after training. The treatment group also showed a significant relationship between GDNF levels and cognitive function (r = 0.840, P = 0.001) and postural balance (TUG [r = 0.814, P = 0.001]; POMA [r = 0.630, P = 0.001]). The TBT program affects the levels of GDNF in old people. The TBT program involves cognitive function improvement and affects postural balance changes in old people.
Collapse
|
14
|
Effects of Physical Training in Different Modes on Cognitive Function and GNDF Level in Old Mice. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Chiavellini P, Canatelli-Mallat M, Lehmann M, Goya RG, Morel GR. Therapeutic potential of glial cell line-derived neurotrophic factor and cell reprogramming for hippocampal-related neurological disorders. Neural Regen Res 2022; 17:469-476. [PMID: 34380873 PMCID: PMC8504380 DOI: 10.4103/1673-5374.320966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hippocampus serves as a pivotal role in cognitive and emotional processes, as well as in the regulation of the hypothalamus-pituitary axis. It is known to undergo mild neurodegenerative changes during normal aging and severe atrophy in Alzheimer’s disease. Furthermore, dysregulation in the hippocampal function leads to epilepsy and mood disorders. In the first section, we summarized the most salient knowledge on the role of glial cell-line-derived neurotrophic factor and its receptors focused on aging, cognition and neurodegenerative and hippocampal-related neurological diseases mentioned above. In the second section, we reviewed the therapeutic approaches, particularly gene therapy, using glial cell-line-derived neurotrophic factor or its gene, as a key molecule in the development of neurological disorders. In the third section, we pointed at the potential of regenerative medicine, as an emerging and less explored strategy for the treatment of hippocampal disorders. We briefly reviewed the use of partial reprogramming to restore brain functions, non-neuronal cell reprogramming to generate neural stem cells, and neural progenitor cells as source-specific neuronal types to be implanted in animal models of specific neurodegenerative disorders.
Collapse
Affiliation(s)
- Priscila Chiavellini
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Martina Canatelli-Mallat
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Marianne Lehmann
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Rodolfo G Goya
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina
| |
Collapse
|
16
|
Mirzaei N, Davis N, Chau TW, Sastre M. Astrocyte Reactivity in Alzheimer's Disease: Therapeutic Opportunities to Promote Repair. Curr Alzheimer Res 2021; 19:1-15. [PMID: 34719372 DOI: 10.2174/1567205018666211029164106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/02/2021] [Accepted: 07/31/2021] [Indexed: 11/22/2022]
Abstract
Astrocytes are fast climbing the ladder of importance in neurodegenerative disorders, particularly in Alzheimer's disease (AD), with the prominent presence of reactive astrocytes sur- rounding amyloid β- plaques, together with activated microglia. Reactive astrogliosis, implying morphological and molecular transformations in astrocytes, seems to precede neurodegeneration, suggesting a role in the development of the disease. Single-cell transcriptomics has recently demon- strated that astrocytes from AD brains are different from "normal" healthy astrocytes, showing dys- regulations in areas such as neurotransmitter recycling, including glutamate and GABA, and im- paired homeostatic functions. However, recent data suggest that the ablation of astrocytes in mouse models of amyloidosis results in an increase in amyloid pathology as well as in the inflammatory profile and reduced synaptic density, indicating that astrocytes mediate neuroprotective effects. The idea that interventions targeting astrocytes may have great potential for AD has therefore emerged, supported by a range of drugs and stem cell transplantation studies that have successfully shown a therapeutic effect in mouse models of AD. In this article, we review the latest reports on the role and profile of astrocytes in AD brains and how manipulation of astrocytes in animal mod- els has paved the way for the use of treatments enhancing astrocytic function as future therapeutic avenues for AD.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048. United States
| | - Nicola Davis
- Department of Brain Sciences, Imperial College London, Hammer-smith Hospital, Du Cane Road, LondonW12 0NN. United Kingdom
| | - Tsz Wing Chau
- Department of Brain Sciences, Imperial College London, Hammer-smith Hospital, Du Cane Road, LondonW12 0NN. United Kingdom
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammer-smith Hospital, Du Cane Road, LondonW12 0NN. United Kingdom
| |
Collapse
|
17
|
Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and Astrocytes in Alzheimer's Disease in the Context of the Aberrant Copper Homeostasis Hypothesis. Biomolecules 2021; 11:1598. [PMID: 34827595 PMCID: PMC8615684 DOI: 10.3390/biom11111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Evidence of copper's (Cu) involvement in Alzheimer's disease (AD) is available, but information on Cu involvement in microglia and astrocytes during the course of AD has yet to be structurally discussed. This review deals with this matter in an attempt to provide an updated discussion on the role of reactive glia challenged by excess labile Cu in a wide picture that embraces all the major processes identified as playing a role in toxicity induced by an imbalance of Cu in AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, AIIMS, Kalyani 741245, West Bengal, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala 133207, Haryana, India;
| | - Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India;
| | - Mario Picozza
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| |
Collapse
|
18
|
Mitra S, Turconi G, Darreh-Shori T, Mätlik K, Aquilino M, Eriksdotter M, Andressoo JO. Increased Endogenous GDNF in Mice Protects Against Age-Related Decline in Neuronal Cholinergic Markers. Front Aging Neurosci 2021; 13:714186. [PMID: 34475820 PMCID: PMC8406776 DOI: 10.3389/fnagi.2021.714186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Gradual decline in cholinergic transmission and cognitive function occurs during normal aging, whereas pathological loss of cholinergic function is a hallmark of different types of dementia, including Alzheimer’s disease (AD), Lewy body dementia (LBD), and Parkinson’s disease dementia (PDD). Glial cell line-derived neurotrophic factor (GDNF) is known to modulate and enhance the dopamine system. However, how endogenous GDNF influences brain cholinergic transmission has remained elusive. In this study, we explored the effect of a twofold increase in endogenous GDNF (Gdnf hypermorphic mice, Gdnfwt/hyper) on cholinergic markers and cognitive function upon aging. We found that Gdnfwt/hyper mice resisted an overall age-associated decline in the cholinergic index observed in the brain of Gdnfwt/wt animals. Biochemical analysis revealed that the level of nerve growth factor (NGF), which is important for survival and function of central cholinergic neurons, was significantly increased in several brain areas of old Gdnfwt/hyper mice. Analysis of expression of genes involved in cholinergic transmission in the cortex and striatum confirmed modulation of cholinergic pathways by GDNF upon aging. In line with these findings, Gdnfwt/hyper mice did not undergo an age-related decline in cognitive function in the Y-maze test, as observed in the wild type littermates. Our results identify endogenous GDNF as a potential modulator of cholinergic transmission and call for future studies on endogenous GDNF function in neurodegenerative disorders characterized by cognitive impairments, including AD, LBD, and PDD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Giorgio Turconi
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Kärt Mätlik
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Matilde Aquilino
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021; 10:cells10082019. [PMID: 34440788 PMCID: PMC8395029 DOI: 10.3390/cells10082019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders whose incidence is likely to duplicate in the next 30 years along with the progressive aging of the western population. Non-cell-specific therapeutics or therapeutics designed to tackle aberrant pathways within neurons failed to slow down or halt neurodegeneration. Yet, in the last few years, our knowledge of the importance of glial cells to maintain the central nervous system homeostasis in health conditions has increased exponentially, along with our awareness of their fundamental and multifaced role in pathological conditions. Among glial cells, astrocytes emerge as promising therapeutic targets in various neurodegenerative disorders. In this review, we present the latest evidence showing the astonishing level of specialization that astrocytes display to fulfill the demands of their neuronal partners as well as their plasticity upon injury. Then, we discuss the controversies that fuel the current debate on these cells. We tackle evidence of a potential beneficial effect of cell therapy, achieved by transplanting astrocytes or their precursors. Afterwards, we introduce the different strategies proposed to modulate astrocyte functions in neurodegeneration, ranging from lifestyle changes to environmental cues. Finally, we discuss the challenges and the recent advancements to develop astrocyte-specific delivery systems.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| | - Agostino Possenti
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| |
Collapse
|
20
|
Shi MY, Ma CC, Chen FF, Zhou XY, Li X, Tang CX, Zhang L, Gao DS. Possible role of glial cell line-derived neurotrophic factor for predicting cognitive impairment in Parkinson's disease: a case-control study. Neural Regen Res 2021; 16:885-892. [PMID: 33229724 PMCID: PMC8178776 DOI: 10.4103/1673-5374.297091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the protection of dopaminergic neurons, but there are few reports of the relationship between GDNF and its precursors (α-pro-GDNF and β-pro-GDNF) and cognitive impairment in Parkinson’s disease. This study aimed to investigate the relationship between the serum levels of GDNF and its precursors and cognitive impairment in Parkinson’s disease, and to assess their potential as a diagnostic marker. Fifty-three primary outpatients and hospitalized patients with Parkinson’s disease (23 men and 30 women) with an average age of 66.58 years were enrolled from the Affiliated Hospital of Xuzhou Medical University of China in this case-control study. The patients were divided into the Parkinson’s disease with cognitive impairment group (n = 27) and the Parkinson’s disease with normal cognitive function group (n = 26) based on their Mini-Mental State Examination, Montreal Cognitive Assessment, and Clinical Dementia Rating scores. In addition, 26 age- and sex-matched healthy subjects were included as the healthy control group. Results demonstrated that serum GDNF levels were significantly higher in the Parkinson’s disease with normal cognitive function group than in the other two groups. There were no significant differences in GDNF precursor levels among the three groups. Correlation analysis revealed that serum GDNF levels, GDNF/α-pro-GDNF ratios, and GDNF/β-pro-GDNF ratios were moderately or highly correlated with the Mini-Mental State Examination, Montreal Cognitive Assessment, and Clinical Dementia Rating scores. To explore the risk factors for cognitive impairment in patients with Parkinson’s disease, logistic regression analysis and stepwise linear regression analysis were performed. Both GDNF levels and Hoehn-Yahr stage were risk factors for cognitive impairment in Parkinson’s disease, and were the common influencing factors for cognitive scale scores. Neither α-pro-GDNF nor β-pro-GDNF was risk factors for cognitive impairment in Parkinson’s disease. A receiver operating characteristic curve of GDNF was generated to predict cognitive function in Parkinson’s disease (area under the curve = 0.859). This result indicates that the possibility that serum GDNF can correctly distinguish whether patients with Parkinson’s disease have cognitive impairment is 0.859. Together, these results suggest that serum GDNF may be an effective diagnostic marker for cognitive impairment in Parkinson’s disease. However, α-pro-GDNF and β-pro-GDNF are not useful for predicting cognitive impairment in this disease. This study was approved by Ethics Committee of the Affiliated Hospital of Xuzhou Medical University, China (approval No. XYFY2017-KL047-01) on November 30, 2017.
Collapse
Affiliation(s)
- Ming-Yu Shi
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou; Department of Neurology, the First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Cheng-Cheng Ma
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Fang-Fang Chen
- Department of Neurology, Suqian First People's Hospital, Suqian, Jiangsu Province, China
| | - Xiao-Yu Zhou
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue Li
- Department of Operating Room, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chuan-Xi Tang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lin Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dian-Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
21
|
Hattiangady B, Kuruba R, Shuai B, Grier R, Shetty AK. Hippocampal Neural Stem Cell Grafting after Status Epilepticus Alleviates Chronic Epilepsy and Abnormal Plasticity, and Maintains Better Memory and Mood Function. Aging Dis 2020; 11:1374-1394. [PMID: 33269095 PMCID: PMC7673840 DOI: 10.14336/ad.2020.1020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hippocampal damage after status epilepticus (SE) leads to multiple epileptogenic changes, which lead to chronic temporal lobe epilepsy (TLE). Morbidities such as spontaneous recurrent seizures (SRS) and memory and mood impairments are seen in a significant fraction of SE survivors despite the administration of antiepileptic drugs after SE. We examined the efficacy of bilateral intra-hippocampal grafting of neural stem/progenitor cells (NSCs) derived from the embryonic day 19 rat hippocampi, six days after SE for restraining SE-induced SRS, memory, and mood impairments in the chronic phase. Grafting of NSCs curtailed the progression of SRS at 3-5 months post-SE and reduced the frequency and severity of SRS activity when examined at eight months post-SE. Reduced SRS activity was also associated with improved memory function. Graft-derived cells migrated into different hippocampal cell layers, differentiated into GABA-ergic interneurons, astrocytes, and oligodendrocytes. Significant percentages of graft-derived cells also expressed beneficial neurotrophic factors such as the fibroblast growth factor-2, brain-derived neurotrophic factor, insulin-like growth factor-1 and glial cell line-derived neurotrophic factor. NSC grafting protected neuropeptide Y- and parvalbumin-positive host interneurons, diminished the abnormal migration of newly born neurons, and rescued the reelin+ interneurons in the dentate gyrus. Besides, grafting led to the maintenance of a higher level of normal neurogenesis in the chronic phase after SE and diminished aberrant mossy fiber sprouting in the dentate gyrus. Thus, intrahippocampal grafting of hippocampal NSCs shortly after SE considerably curbed the progression of epileptogenic processes and SRS, which eventually resulted in less severe chronic epilepsy devoid of significant cognitive and mood impairments.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Ramkumar Kuruba
- 3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Bing Shuai
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Remedios Grier
- 3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Ashok K Shetty
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Sharif M, Noroozian M, Hashemian F. Do serum GDNF levels correlate with severity of Alzheimer's disease? Neurol Sci 2020; 42:2865-2872. [PMID: 33215334 DOI: 10.1007/s10072-020-04909-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION A growing body of evidence that glial cell line-derived neurotrophic factor (GDNF) levels are probably involved in pathogenesis and disease course of Alzheimer's disease (AD) suggested that its blood levels could potentially be used as a biomarker of AD. The aim of this study was to compare serum GDNF levels in patients with AD and age-matched controls. METHODS Serum concentrations of GDNF were compared in 25 AD patients and 25 healthy volunteers using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). Severity of the disease in AD patients was assessed using Functional Assessment Staging (FAST). Cognitive assessment of the patients was done using the Mini-Mental State Examination (MMSE). RESULTS Mean GDNF levels were found to be 2.45 ± 0.93 ng/ml in AD patients and 4.61 ± 3.39 ng/ml in age-matched controls. There was a statistically significant difference in GDNF serum levels in patients with AD compared to age-matched controls (p = 0.001). Moreover, GDNF serum levels were significantly correlated with disease severity (p < 0.001) and cognitive impairment (p < 0.001). CONCLUSION This study showed that serum levels of GDNF are significantly decreased in AD patients in comparison with age-matched controls, thus suggesting a potential role of GDNF as a disease biomarker. However, a comprehensive study of changes in serum levels of multiple neurotrophic factors reflective of different neurobiological pathways in large-scale population studies is recommended.
Collapse
Affiliation(s)
- Maryam Sharif
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran
| | - Maryam Noroozian
- Memory and Behavioral Neurology Division, Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Hashemian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran.
| |
Collapse
|
23
|
Coll L, Rodriguez SS, Goya RG, Morel GR. A regulatable adenovector system for GDNF and GFP delivery in the rat hippocampus. Neuropeptides 2020; 83:102072. [PMID: 32690313 DOI: 10.1016/j.npep.2020.102072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 11/29/2022]
Abstract
Spatial memory performance declines in both normal aging and Alzheimer's disease. This cognitive deficit is related to hippocampus dysfunction. Gene therapy using neurotrophic factors like Glial cell line-derived neurotrophic factor (GDNF) emerges as a promising approach to ameliorate age-related cognitive deficits. We constructed a two vector regulatable system (2VRS) which consists of a recombinant adenoviral vector (RAd) harboring a Tet-Off bidirectional promoter flanked by GDNF and Green Fluorescent Protein (GFP) genes. A second adenovector, RAd-tTA, constitutively expresses the regulatory protein tTA. When cells are cotransduced by the 2VRS, tTA activates the bidirectional promoter and both transgenes are expressed. In the presence of the antibiotic doxycycline (DOX) transgene expression is silenced. We tested the 2VRS in CHO-K1 cells where we observed a dose-dependent GFP expression that was completely inhibited by DOX (1 mg/ml). The 2VRS injected in the hippocampal CA1 region transduced both neurons and astrocytes and was efficiently inhibited by DOX added to the drinking water. In order to assess GDNF biological activity we injected 2VRS and its Control (CTRL) vector in the hypothalamus and monitored body weight for one month. The results showed that GDNF retards weight recovery 6 days more than CTRL. In conclusion, our 2VRS demonstrated optimal GFP expression and showed a bioactive effect of transgenic GDNF in the brain.
Collapse
Affiliation(s)
- Lucía Coll
- National University of Lujan (UNLu), Lujan, Argentina
| | - Silvia S Rodriguez
- Multidisciplinary Institute of Cell Biology (IMBICE), La Plata, Argentina
| | - Rodolfo G Goya
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina..
| |
Collapse
|
24
|
Poon CH, Wang Y, Fung ML, Zhang C, Lim LW. Rodent Models of Amyloid-Beta Feature of Alzheimer's Disease: Development and Potential Treatment Implications. Aging Dis 2020; 11:1235-1259. [PMID: 33014535 PMCID: PMC7505263 DOI: 10.14336/ad.2019.1026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/26/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide and causes severe financial and social burdens. Despite much research on the pathogenesis of AD, the neuropathological mechanisms remain obscure and current treatments have proven ineffective. In the past decades, transgenic rodent models have been used to try to unravel this disease, which is crucial for early diagnosis and the assessment of disease-modifying compounds. In this review, we focus on transgenic rodent models used to study amyloid-beta pathology in AD. We also discuss their possible use as promising tools for AD research. There is still no effective treatment for AD and the development of potent therapeutics are urgently needed. Many molecular pathways are susceptible to AD, ranging from neuroinflammation, immune response, and neuroplasticity to neurotrophic factors. Studying these pathways may shed light on AD pathophysiology as well as provide potential targets for the development of more effective treatments. This review discusses the advantages and limitations of these models and their potential therapeutic implications for AD.
Collapse
Affiliation(s)
- Chi Him Poon
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yingyi Wang
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Lung Fung
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chengfei Zhang
- 2Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Lee Wei Lim
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Petukhova EO, Mukhamedshina YO, Salafutdinov II, Garanina EE, Kaligin MS, Leushina AV, Rizvanov AA, Reis HJ, Palotás A, Zefirov AL, Mukhamedyarov MA. Effects of Transplanted Umbilical Cord Blood Mononuclear Cells Overexpressing GDNF on Spatial Memory and Hippocampal Synaptic Proteins in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 69:443-453. [PMID: 30958382 DOI: 10.3233/jad-190150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/OBJECTIVE Alzheimer's disease (AD) is a progressive incurable neurodegenerative disorder. Glial cell line-derived neurotrophic factor (GDNF) is a prominent regulator of brain tissue and has an impressive potential for use in AD therapy. While its metabolism is still not fully understood, delivering neuropeptides such as GDNF via umbilical cord blood mononuclear cells (UCBMCs) to the sites of neurodegeneration is a promising approach in the development of innovative therapeutic avenues. METHODS UCBMCs were transduced with adenoviral vectors expressing GDNF and injected into AD transgenic mice. Various parameters including homing and survival of transplanted cells, expression of GDNF and synaptic proteins, as well as spatial memory were evaluated. RESULTS UCBMCs were observed in the hippocampus and cortex several weeks after transplantation, and their long-term presence was associated with improved spatial memory. Post-synaptic density protein 95 (PSD-95) and synaptophysin levels in the hippocampus were also effectively restored following the procedure in AD mice. CONCLUSIONS Our data indicate that gene-cell therapy with GDNF-overexpressing UCBMCs may produce long-lasting neuroprotection and stimulation of synaptogenesis. Such adenoviral constructs could potentially possess a high therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
| | - Yana O Mukhamedshina
- Kazan State Medical University, Kazan, Russia.,Kazan Federal University, Kazan, Russia
| | - Ilnur I Salafutdinov
- Kazan State Medical University, Kazan, Russia.,Kazan Federal University, Kazan, Russia
| | | | | | | | | | - Helton J Reis
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - András Palotás
- Kazan Federal University, Kazan, Russia.,Asklepios-Med, Szeged, Hungary
| | | | | |
Collapse
|
26
|
Maximizing lentiviral vector gene transfer in the CNS. Gene Ther 2020; 28:75-88. [PMID: 32632267 PMCID: PMC7902268 DOI: 10.1038/s41434-020-0172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/20/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Gene transfer is a widely developed technique for studying and treating genetic diseases. However, the development of therapeutic strategies is challenging, due to the cellular and functional complexity of the central nervous system (CNS), its large size and restricted access. We explored two parameters for improving gene transfer efficacy and capacity for the selective targeting of subpopulations of cells with lentiviral vectors (LVs). We first developed a second-generation LV specifically targeting astrocytes for the efficient expression or silencing of genes of interest, and to better study the importance of cell subpopulations in neurological disorders. We then made use of the retrograde transport properties of a chimeric envelope to target brain circuits affected in CNS diseases and achieve a broad distribution. The combination of retrograde transport and specific tropism displayed by this LV provides opportunities for delivering therapeutic genes to specific cell populations and ensuring high levels of transduction in interconnected brain areas following local administration. This new LV and delivery strategy should be of greater therapeutic benefit and opens up new possibilities for the preclinical development of gene therapy for neurodegenerative diseases.
Collapse
|
27
|
Xiao H, Wang Y, Wu Y, Li H, Liang X, Lin Y, Kong L, Ni Y, Deng Y, Li Y, Li W, Yang J. Osthole ameliorates cognitive impairments via augmenting neuronal population in APP / PS1 transgenic mice. Neurosci Res 2020; 164:33-45. [PMID: 32302734 DOI: 10.1016/j.neures.2020.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with notable factors of dysfunction in multiple neurological changes, encompassing neuronal loss in the frontal cortex and hippocampal regions. Dysfunction of proliferation and self-renewal of neural stem cells (NSCs) was observed in AD patients and animals. Thereby, mobilizing endogenous neurogenesis by pharmacological agents would provide a promising route for neurodegeneration. Osthole (Ost), a natural coumarin derivative, has been reported to exert extensive neuroprotective effects in AD. However, whether ost can facilitate endogenous neurogenesis against AD in vivo is still unknown. In this study, by using Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, Nissl staining, immunofluorescence analysis and western blot, we demonstrated that oral administration of ost could improve the learning and memory function, inhibit neuronal apoptosis, elevate the expression of glial cell line derived neurotrophic factor (GDNF), synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Moreover, ost could remarkably enhance proliferation of NSCs and increase the amount of mature neurons in APP/PS1 transgenic mice. Together, our findings demonstrated that ost possessed the ability of promoting endogenous neurogenesis and ost could be served as a plausible agent to reverse or slow down the progress of AD.
Collapse
Affiliation(s)
- Honghe Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Yuying Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yutong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hongyan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xicai Liang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yin Lin
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yingnan Ni
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Deng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wanyi Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
28
|
Turconi G, Kopra J, Võikar V, Kulesskaya N, Vilenius C, Piepponen TP, Andressoo JO. Chronic 2-Fold Elevation of Endogenous GDNF Levels Is Safe and Enhances Motor and Dopaminergic Function in Aged Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:831-842. [PMID: 32368564 PMCID: PMC7191127 DOI: 10.1016/j.omtm.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) supports function and survival of dopamine neurons that degenerate in Parkinson’s disease (PD). Ectopic delivery of GDNF in clinical trials to treat PD is safe but lacks significant therapeutic effect. In pre-clinical models, ectopic GDNF is effective but causes adverse effects, including downregulation of tyrosine hydroxylase, only a transient boost in dopamine metabolism, aberrant neuronal sprouting, and hyperactivity. Hindering development of GDNF mimetic increased signaling via GDNF receptor RET by activating mutations results in cancer. Safe and effective mode of action must be defined first in animal models to develop successful GDNF-based therapies. Previously we showed that about a 2-fold increase in endogenous GDNF expression is safe and results in increased motor and dopaminergic function and protection in a PD model in young animals. Recently, similar results were reported using a novel Gdnf mRNA-targeting strategy. Next, it is important to establish the safety of a long-term increase in endogenous GDNF expression. We report behavioral, dopamine system, and cancer analysis of five cohorts of aged mice with a 2-fold increase in endogenous GDNF. We found a sustained increase in dopamine levels, improvement in motor learning, and no side effects or cancer. These results support the rationale for further development of endogenous GDNF-based treatments and GDNF mimetic.
Collapse
Affiliation(s)
- Giorgio Turconi
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, Haartmaninkatu 8, University of Helsinki, Helsinki 00014, Finland
| | - Jaakko Kopra
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, Helsinki 00014, Finland
| | - Vootele Võikar
- Neuroscience Center/Laboratory Animal Center, Mustialankatu 1, University of Helsinki, Helsinki 00014, Finland
| | - Natalia Kulesskaya
- Neuroscience Center/Laboratory Animal Center, Mustialankatu 1, University of Helsinki, Helsinki 00014, Finland
| | - Carolina Vilenius
- Institute of Biotechnology, Viikinkaari 5D, University of Helsinki, Helsinki 00014, Finland
| | - T Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, Helsinki 00014, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, Haartmaninkatu 8, University of Helsinki, Helsinki 00014, Finland.,Institute of Biotechnology, Viikinkaari 5D, University of Helsinki, Helsinki 00014, Finland.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm 141 83, Sweden
| |
Collapse
|
29
|
Liu Y, Tong S, Ding L, Liu N, Gao D. Serum levels of glial cell line-derived neurotrophic factor and multiple neurotransmitters: In relation to cognitive performance in Parkinson's disease with mild cognitive impairment. Int J Geriatr Psychiatry 2020; 35:153-162. [PMID: 31650626 DOI: 10.1002/gps.5222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/24/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Mild cognitive impairment is a common non-motor feature of Parkinson's disease, termed PD-MCI. But there is a scarcity of data on the role of glial cell line-derived neurotrophic factor (GDNF) and neurotransmitters in pathogenesis of PD-MCI. The aim of this project was to detect the serum levels of GDNF and multiple neurotranmitters and explore their relationships with cognitive performance in PD-MCI patients. METHODS Neuropsychological testing was administered to PD patients and healthy controls to investigate different domains of cognitive function. Serum levels of GDNF and four cognition-related neurotransmitters including Dopamine metabolites Homovanillic acid (HVA), acetylcholine (Ach), γ-aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) were detected by enzyme-linked immunosorbent assay and liquid chromatography-electrospray ionization tandem mass spectrometry analysis respectively. RESULTS The more serious cognitive impairment of PD, the lower levels of GDNF, HVA and 5-HT. In PD-MCI patients, the levels of GDNF, HVA, Ach, 5-HT, and GABA had a significant positive correlation with Digit span backward test (DSB-T) scores and negative correlation with the scores of Trail Making Test A (TMT-A) and Trail Making Test B (TMT-B) respectively. Effect size analysis showed that GDNF and GDNF*Ach have a significant effect on DSB-T, TMT-A and TMT-B respectively; GDNF*HVA, GDNF*5-HT and GDNF*GABA play important part in Auditory Verbal Learning Test separately. CONCLUSIONS Serum GDNF may be involved in the impairment of attention, memory and executive function of PD-MCI patients, by acting alone or in conjunction with neurotransmitters (HVA, 5-HT, GABA, and Ach).
Collapse
Affiliation(s)
- Yi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University. 209 Tongshan Road, Xuzhou, PR China
| | - Shuyan Tong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University. 209 Tongshan Road, Xuzhou, PR China
| | - Li Ding
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University. 209 Tongshan Road, Xuzhou, PR China
| | - Na Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University. 209 Tongshan Road, Xuzhou, PR China
| | - Dianshuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University. 209 Tongshan Road, Xuzhou, PR China
| |
Collapse
|
30
|
Hirbec H, Déglon N, Foo LC, Goshen I, Grutzendler J, Hangen E, Kreisel T, Linck N, Muffat J, Regio S, Rion S, Escartin C. Emerging technologies to study glial cells. Glia 2020; 68:1692-1728. [PMID: 31958188 DOI: 10.1002/glia.23780] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing "glio-scientists" to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high-content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting-edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)-derived human glial cells, viral vectors, in situ glia imaging, opto- and chemogenetic approaches, and high-content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific "gliobiological" questions can now be tackled.
Collapse
Affiliation(s)
- Hélène Hirbec
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lynette C Foo
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Grutzendler
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emilie Hangen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathalie Linck
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, and Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | - Sara Regio
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sybille Rion
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
31
|
Zhang P, Li YX, Zhang ZZ, Yang Y, Rao JX, Xia L, Li XY, Chen GH, Wang F. Astroglial Mechanisms Underlying Chronic Insomnia Disorder: A Clinical Study. Nat Sci Sleep 2020; 12:693-704. [PMID: 33117005 PMCID: PMC7549496 DOI: 10.2147/nss.s263528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The objective of this study was to investigate whether the serum biomarkers S100 calcium binding protein B (S100B), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) change in patients with chronic insomnia disorder (CID), and if this is the case, whether the altered levels of these serum biomarkers are associated with poor sleep quality and cognitive decline in CID. PATIENTS AND METHODS Fifty-seven CID outpatients constituted the CID group; thirty healthy controls (HC) were also enrolled. Questionnaires, polysomnography, Chinese-Beijing Version of Montreal Cognitive Assessment (MoCA-C) and Nine Box Maze Test (NBMT) were used to assess their sleep and neuropsychological function. Serum S100B, GFAP, BDNF, and GDNF were evaluated using enzyme-linked immunosorbent assay. RESULTS The CID group had higher levels of S100B and GFAP and lower levels of BDNF and GDNF than the HC group. Spearman correlation analysis revealed that poor sleep quality, assessed by subjective and objective measures, was positively correlated with S100B level and negatively correlated with BDNF level. GFAP level correlated positively with poor subjective sleep quality. Moreover, S100B and GFAP levels correlated negatively with general cognitive function assessed using MoCA-C. GFAP level correlated positively with poor spatial working memory (SWM) in the NBMT; BDNF level was linked to poor SWM and object recognition memory (ORcM) in the NBMT. However, principal component analysis revealed that serum S100B level was positively linked to the errors in object working memories, BDNF and GDNF concentrations were negatively linked with errors in ORcM, and GFAP concentration was positively correlated with the errors in the SWM and spatial reference memories. CONCLUSION Serum S100B, GFAP, BDNF, and GDNF levels were altered in patients with CID, indicating astrocyte damage, and were associated with insomnia severity or/and cognitive dysfunction.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Ying-Xue Li
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Zhe-Zhe Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Ye Yang
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Ji-Xian Rao
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Lan Xia
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China
| | - Xue-Yan Li
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Gui-Hai Chen
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| |
Collapse
|
32
|
Impact of Auditory Integration Therapy (AIT) on the Plasma Levels of Human Glial Cell Line-Derived Neurotrophic Factor (GDNF) in Autism Spectrum Disorder. J Mol Neurosci 2019; 68:688-695. [PMID: 31073917 DOI: 10.1007/s12031-019-01332-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/25/2019] [Indexed: 01/14/2023]
Abstract
Neurotrophic factors, including the glial cell line-derived neurotrophic factor (GDNF), are of importance for synaptic plasticity regulation, intended as the synapses' ability to strengthen or weaken their responses to differences in neuronal activity. Such plasticity is essential for sensory processing, which has been shown to be impaired in autism spectrum disorder (ASD). This study is the first to investigate the impact of auditory integration therapy (AIT) of sensory processing abnormalities in autism on plasma GDNF levels. Fifteen ASD children, aged between 5 and 12 years, were enrolled and underwent the present research study. AIT was performed throughout 10 days with a 30-min session twice a day. Before and after AIT, Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and Short Sensory Profile (SSP) scores were calculated, and plasma GDNF levels were assayed by an EIA test. A substantial decline in autistic behavior was observed after AIT in the scaling parameters used. Median plasma GDNF level was 52.142 pg/ml before AIT. This level greatly increased immediately after AIT to 242.05 pg/ml (P < 0.001). The levels were depressed to 154.00 pg/ml and 125.594 pg/ml 1 month and 3 months later, respectively, but they were still significantly higher compared with the levels before the treatment (P = 0.001, P = 0.01, respectively). There was an improvement in the measures of autism severity as an effect of AIT which induced the up-regulation of GDNF in plasma. Further research, on a large scale, is needed to evaluate if the cognitive improvement of ASD children after AIT is related or not connected to the up-regulation of GDNF.
Collapse
|
33
|
Tavakol S, Hoveizi E, Tavakol B, Azedi F, Ebrahimi‐Barough S, Keyhanvar P, Joghataei MT. Small molecule of sphingosine as a rescue of dopaminergic cells: A cell therapy approach in neurodegenerative diseases therapeutics. J Cell Physiol 2019; 234:11401-11410. [DOI: 10.1002/jcp.27774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
- Pharmaceutical Sciences Research Center, Pharmaceutical Sciences Branch, Islamic Azad University Tehran Medical Unit Tehran Iran
| | - Elham Hoveizi
- Department of Biology Faculty of Sciences, Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Behnaz Tavakol
- School of Medicine, Kashan University of Medical Sciences Isfahan Iran
| | - Fereshteh Azedi
- Department of Neuroscience Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences Tehran Iran
| | - Somayeh Ebrahimi‐Barough
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Peyman Keyhanvar
- School of Advanced medical sciences, Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
34
|
Cunningham C, Dunne A, Lopez-Rodriguez AB. Astrocytes: Heterogeneous and Dynamic Phenotypes in Neurodegeneration and Innate Immunity. Neuroscientist 2018; 25:455-474. [PMID: 30451065 DOI: 10.1177/1073858418809941] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Astrocytes are the most numerous cell type in the brain and perform several essential functions in supporting neuronal metabolism and actively participating in neural circuit and behavioral function. They also have essential roles as innate immune cells in responding to local neuropathology, and the manner in which they respond to brain injury and degeneration is the subject of increasing attention in neuroscience. Although activated astrocytes have long been thought of as a relatively homogenous population, which alter their phenotype in a relatively stereotyped way upon central nervous system injury, the last decade has revealed substantial heterogeneity in the basal state and significant heterogeneity of phenotype during reactive astrocytosis. Thus, phenotypic diversity occurs at two distinct levels: that determined by regionality and development and that determined by temporally dynamic changes to the environment of astrocytes during pathology. These inflammatory and pathological states shape the phenotype of these cells, with different consequences for destruction or recovery of the local tissue, and thus elucidating these phenotypic changes has significant therapeutic implications. In this review, we will focus on the phenotypic heterogeneity of astrocytes in health and disease and their propensity to change that phenotype upon subsequent stimuli.
Collapse
Affiliation(s)
- Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland.,School of Medicine, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| |
Collapse
|
35
|
Gu QF, Yu JZ, Wu H, Li YH, Liu CY, Feng L, Zhang GX, Xiao BG, Ma CG. Therapeutic effect of Rho kinase inhibitor FSD-C10 in a mouse model of Alzheimer's disease. Exp Ther Med 2018; 16:3929-3938. [PMID: 30344671 PMCID: PMC6176147 DOI: 10.3892/etm.2018.6701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
Fasudil, a Rho kinase (ROCK) inhibitor, effectively inhibits disease severity in a mouse model of Alzheimer's disease (AD). However, given its significant limitations, including a relatively narrow safety window and poor oral bioavailability, Fasudil is not suitable for long-term use. Thus, screening for ROCK inhibitor(s) that are more efficient, safer, can be used orally and suitable for long-term use in the treatment of neurodegenerative disorders is required. The main purpose of the present study is to explore whether FSD-C10, a novel ROCK inhibitor, has therapeutic potential in amyloid precursor protein/presenilin-1 transgenic (APP/PS1 Tg) mice, and to determine possible mechanisms of its action. The results showed that FSD-C10 effectively improved learning and memory impairment, accompanied by reduced expression of amyloid-β 1-42 (Aβ1-42), Tau protein phosphorylation (P-tau) and β-site APP-cleaving enzyme in the hippocampus and cortex area of brain. In addition, FSD-C10 administration boosted the expression of synapse-associated proteins, such as postynaptic density protein 95, synaptophsin, α-amino 3-hydroxy-5-methyl-4-isoxa-zolep-propionate receptor and neurotrophic factors, e,g., brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Taken together, our results demonstrate that FSD-C10 has therapeutic potential in the AD mouse model, possibly through inhibiting the formation of Aβ1-42 and P-tau, and promoting the generation of synapse-associated proteins and neurotrophic factors.
Collapse
Affiliation(s)
- Qing-Fang Gu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Jie-Zhong Yu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Hao Wu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Yan-Hua Li
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Chun-Yun Liu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Ling Feng
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200025, P.R. China
| | - Cun-Gen Ma
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China.,2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
36
|
Valvassori SS, Borges C, Bavaresco DV, Varela RB, Resende WR, Peterle BR, Arent CO, Budni J, Quevedo J. Hypericum perforatum chronic treatment affects cognitive parameters and brain neurotrophic factor levels. ACTA ACUST UNITED AC 2018; 40:367-375. [PMID: 30110089 PMCID: PMC6899380 DOI: 10.1590/1516-4446-2017-2271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022]
Abstract
Objective: To evaluate the effects of Hypericum perforatum (hypericum) on cognitive behavior and neurotrophic factor levels in the brain of male and female rats. Methods: Male and female Wistar rats were treated with hypericum or water during 28 days by gavage. The animals were then subjected to the open-field test, novel object recognition and step-down inhibitory avoidance test. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-line derived neurotrophic factor (GDNF) levels were evaluated in the hippocampus and frontal cortex. Results: Hypericum impaired the acquisition of short- and long-term aversive memory in male rats, evaluated in the inhibitory avoidance test. Female rats had no immediate memory acquisition and decreased short-term memory acquisition in the inhibitory avoidance test. Hypericum also decreased the recognition index of male rats in the object recognition test. Female rats did not recognize the new object in either the short-term or the long-term memory tasks. Hypericum decreased BDNF in the hippocampus of male and female rats. Hypericum also decreased NGF in the hippocampus of female rats. Conclusions: The long-term administration of hypericum appears to cause significant cognitive impairment in rats, possibly through a reduction in the levels of neurotrophic factors. This effect was more expressive in females than in males.
Collapse
Affiliation(s)
- Samira S Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Laboratório de Sinalização Neural e Psicofarmacologia, PPGCS, UNASAU, UNESC, Criciúma, SC, Brazil
| | - Cenita Borges
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Daniela V Bavaresco
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Laboratório de Sinalização Neural e Psicofarmacologia, PPGCS, UNASAU, UNESC, Criciúma, SC, Brazil
| | - Roger B Varela
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Laboratório de Sinalização Neural e Psicofarmacologia, PPGCS, UNASAU, UNESC, Criciúma, SC, Brazil
| | - Wilson R Resende
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Laboratório de Sinalização Neural e Psicofarmacologia, PPGCS, UNASAU, UNESC, Criciúma, SC, Brazil
| | - Bruna R Peterle
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Laboratório de Sinalização Neural e Psicofarmacologia, PPGCS, UNASAU, UNESC, Criciúma, SC, Brazil
| | - Camila O Arent
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Unidade Acadêmica de Ciências da Saúde (UNASAU), Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Department of Psychiatry and Behavioral Sciences, Center for Experimental Models in Psychiatry, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
37
|
Mätlik K, Võikar V, Vilenius C, Kulesskaya N, Andressoo JO. Two-fold elevation of endogenous GDNF levels in mice improves motor coordination without causing side-effects. Sci Rep 2018; 8:11861. [PMID: 30089897 PMCID: PMC6082872 DOI: 10.1038/s41598-018-29988-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/20/2018] [Indexed: 01/11/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of dopaminergic neurons in vitro and in vivo. For this reason, GDNF is currently in clinical trials for the treatment of Parkinson’s disease (PD). However, how endogenous GDNF influences dopamine system function and animal behavior is not fully understood. We recently generated GDNF hypermorphic mice that express increased levels of endogenous GDNF from the native locus, resulting in augmented function of the nigrostriatal dopamine system. Specifically, Gdnf wt/hyper mice have a mild increase in striatal and midbrain dopamine levels, increased dopamine transporter activity, and 15% increased numbers of midbrain dopamine neurons and striatal dopaminergic varicosities. Since changes in the dopamine system are implicated in several neuropsychiatric diseases, including schizophrenia, attention deficit hyperactivity disorder (ADHD) and depression, and ectopic GDNF delivery associates with side-effects in PD models and clinical trials, we further investigated Gdnf wt/hyper mice using 20 behavioral tests. Despite increased dopamine levels, dopamine release and dopamine transporter activity, there were no differences in psychiatric disease related phenotypes. However, compared to controls, male Gdnf wt/hyper mice performed better in tests measuring motor function. Therefore, a modest elevation of endogenous GDNF levels improves motor function but does not induce adverse behavioral outcomes.
Collapse
Affiliation(s)
- Kärt Mätlik
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vootele Võikar
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Carolina Vilenius
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Natalia Kulesskaya
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
38
|
Zhang Y, Sha R, Wang K, Li H, Yan B, Zhou N. Protective effects of tetrahydropalmatine against ketamine-induced learning and memory injury via antioxidative, anti-inflammatory and anti-apoptotic mechanisms in mice. Mol Med Rep 2018; 17:6873-6880. [PMID: 29512789 DOI: 10.3892/mmr.2018.8700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Tetrahydropalmatine exerts numerous pharmacological activities, including analgesic and narcotic effects; anti-arrhythmic, blood pressure lowering and cardioprotective effects; protective effects against cerebral ischemia-reperfusion injury; inhibition of platelet aggregation; prevention of ulcerative diseases and inhibition of gastric acid secretion; antitumor effects; and beneficial effects on the withdrawal symptoms associated with drug addiction. The present study aimed to investigate the protective effects of tetrahydropalmatine against ketamine‑induced learning and memory impairment in mice. The Morris water maze test and open field test were used to analyzed learning and memory impairment in mice. ELISA kits and western blotting were used to analyze oxidative stress, inflammation factors, caspease‑3 and caspase‑9, iNOS, glial fibrillary acidic protein (GFAP), glial cell‑derived neurotrophic factor (GDNF), cytochrome c and phospholipase C (PLC)‑γ1 protein expression. The results demonstrated that tetrahydropalmatine treatment significantly decreased escape latency in the learning phase and increased the number of platform site crossings in ketamine‑induced mice. In addition, tetrahydropalmatine significantly inhibited oxidative stress, inflammation and acetylcholinesterase activity, and decreased acetylcholine levels in ketamine‑induced mice. Tetrahydropalmatine also suppressed iNOS protein expression, weakened caspase‑3 and caspase‑9 activation, inhibited nuclear factor‑κB, glial fibrillary acidic protein, cytochrome c and phospholipase C‑γ1 protein expression, and induced glial cell‑derived neurotrophic factor protein expression in ketamine‑induced mice. Taken together, these results indicated that tetrahydropalmatine may protect against ketamine‑induced learning and memory impairment in mice via antioxidative, anti‑inflammatory and anti‑apoptotic mechanisms. The present study provided an experimental basis for the clinical application of tetrahydropalmatine to reduce the severe side effects associated with ketamine therapy in future studies.
Collapse
Affiliation(s)
- Yonglai Zhang
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Rui Sha
- Department of Anesthesiology, Oncology Ward, Chinese Medicine Hospital in Shandong Province, Jinan, Shandong 250117, P.R. China
| | - Kaiguo Wang
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Hao Li
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Bo Yan
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Naibao Zhou
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
39
|
Fakhoury M. Microglia and Astrocytes in Alzheimer's Disease: Implications for Therapy. Curr Neuropharmacol 2018; 16:508-518. [PMID: 28730967 PMCID: PMC5997862 DOI: 10.2174/1570159x15666170720095240] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the progressive loss of neurons, which typically leads to severe impairments in cognitive functions including memory and learning. Key pathological features of this disease include the deposition of highly insoluble amyloid β peptides and the formation of neurofibrillary tangles (NFTs) in the brain. Mounting evidence also implicates sustained glial-mediated inflammation as a major contributor of the neurodegenerative processes and cognitive deficits observed in AD. METHODS This paper provides an overview of findings from both human and animal studies investigating the role of microglia and astrocytes in AD, and discusses potential avenues for therapeutic intervention. RESULTS Glial-mediated inflammation is a 'double-edged sword', performing both detrimental and beneficial functions in AD. Despite tremendous effort in elucidating the molecular and cellular mechanisms underlying AD pathology, to date, there is no treatment that could prevent or cure this disease. Current treatments are only useful in slowing down the progression of AD and helping patients manage some of their behavioral and cognitive symptoms. CONCLUSION A better understanding of the role of microglia and astrocytes in the regulation of AD pathology is needed as this could pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Lee HA, Park JH, Kim DW, Lee CH, Hwang IK, Kim H, Shin MC, Cho JH, Lee JC, Noh Y, Kim SS, Won MH, Ahn JH. Age‑dependent alteration in the expression of oligodendrocyte‑specific protein in the gerbil hippocampus. Mol Med Rep 2017; 17:3615-3620. [PMID: 29286168 PMCID: PMC5802163 DOI: 10.3892/mmr.2017.8337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/24/2017] [Indexed: 11/23/2022] Open
Abstract
Oligodendrocytes are myelin-forming cells in the central nervous system. Research into the effects of aging on oligodendrocyte protein expression remains limited. The present study aimed to determine the alterations in oligodendrocyte-specific protein (OSP) expression in the gerbil hippocampus at 1, 2, 3, 4, 6 and 24 months of age with western blot and immunohistochemistry analyses. OSP expression levels in the hippocampus were highest at 6 months of age. OSP immunoreactivity was identified in numerous cell bodies at 1 month, although the number of OSP immunoreactive cells was different according to hippocampal subregion. The number of OSP immunoreactive cells significantly decreased at 2 months and, thereafter, numbers decreased gradually. The detection of OSP immunoreactive fibers was negligible in all layers in the hippocampal subregions until 4 months. OSP immunoreactive fibers were abundant at 6 and 24 months, although the fiber distribution patterns in the CA1-3 areas and dentate gyrus were different. The results demonstrated that OSP expression in the gerbil hippocampus was age-dependent. The detection of OSP immunoreactive cell bodies and fibers was significantly different according to the layers of hippocampal subregions, indicating that myelination may be continuously altered in the hippocampus during normal aging.
Collapse
Affiliation(s)
- Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Kangnung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeyoung Kim
- Department of Anesthesiology and Pain Medicine, Chungju Hospital, Konkuk University School of Medicine, Chungju, Chungcheongbuk 27376, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yoohun Noh
- Famenity Biomedical Research Center, Famenity, Inc., Youngin, Gyeonggi 13837, Republic of Korea
| | - Sung-Su Kim
- Famenity Biomedical Research Center, Famenity, Inc., Youngin, Gyeonggi 13837, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
41
|
Li B, Gao Y, Zhang W, Xu JR. Regulation and effects of neurotrophic factors after neural stem cell transplantation in a transgenic mouse model of Alzheimer disease. J Neurosci Res 2017; 96:828-840. [PMID: 29114922 DOI: 10.1002/jnr.24187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022]
Abstract
According to much research, neurodegeneration and cognitive decline in Alzheimer disease (AD) are correlated with alternations of neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor. The experimental illumination of neural stem cell (NSC) transplantation to eliminate AD symptoms is being explored frequently, and we have acknowledged that neurotrophic factors may play a pivotal role in cognitive improvement. However, the relation between the reversal of cognitive deficits after NSC transplantation and directed alternations of neurotrophic factors is not clearly expounded. Meanwhile, reduced inflammatory response, promoted vessel density, and vascular endothelial growth factor (VEGF) can be reflections of improvement in cerebrovascular function. Three weeks after NSC transplantation, spatial learning and memory function in NSC-injected (Tg-NSC) mice were significantly improved compared with vehicle-injected (Tg-Veh) mice. Meanwhile, results obtained by immunofluorescence and Western blot analyses demonstrated that the levels of neurotrophic factors, VEGF, and vessel density in the cortex of Tg-NSC mice were significantly enhanced compared with Tg-Veh mice, while the levels of proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 were significantly decreased. Our results suggest that elevated concentrations of neurotrophic factors probably play a critical role in rescuing cognitive dysfunction in APP/PS1 transgenic mice after NSC transplantation, and neurotrophic factors may improve cerebrovascular function by means such as reducing inflammatory response and promoting angiogenesis.
Collapse
Affiliation(s)
- Bo Li
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yun Gao
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jian-Rong Xu
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Xiao W, Ye F, Liu C, Tang X, Li J, Dong H, Sha W, Zhang X. Cognitive impairment in first-episode drug-naïve patients with schizophrenia: Relationships with serum concentrations of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:163-168. [PMID: 28342945 DOI: 10.1016/j.pnpbp.2017.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/25/2017] [Accepted: 03/19/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Evidence suggests that brain-derived neurotrophic factor (BDNF) and glial cell line -derived neurotrophic factor (GDNF) are important in the regulation of synaptic plasticity, which plays a key role in the cognitive processes in psychiatric disorders. Our work aimed at exploring the associations between serum BDNF and GDNF levels and cognitive functions in first-episode drug-naïve (FEDN) patients with schizophrenia. METHODS The BDNF and GDNF levels of 58 FEDN patients and 55 age- and sex-matched healthy controls were measured and test subjects were examined using several neurocognitive tests including the verbal fluency test (VFT), the trail making test (TMT), the digit span test (DST), and the Stroop test. RESULTS Patients performed significantly worse than controls in nearly all neurocognitive performances except the forward subscale part of the DST. BDNF levels were inversely correlated to TMT-part B scores and positively correlated to VFT-action in the FEDN group. GDNF levels showed a positive correlation with VFT-action scores and a negative correlation with TMT-part B scores of these patients. CONCLUSION Current data suggests that cognitive dysfunction widely exists in the early stages of schizophrenia. BDNF and GDNF may be jointly contributed to the pathological mechanisms involved in cognitive impairment in FEDN patients with schizophrenia.
Collapse
Affiliation(s)
- Wenhuan Xiao
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Fei Ye
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Chunlai Liu
- Department of Psychiatry, Affiliated Kangren Hospital, Ili Kazak Autonomous Prefecture of Xinjiang 835000, PR China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Jin Li
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Hui Dong
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Weiwei Sha
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Xiaobin Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China.
| |
Collapse
|
43
|
Tenenbaum L, Humbert-Claude M. Glial Cell Line-Derived Neurotrophic Factor Gene Delivery in Parkinson's Disease: A Delicate Balance between Neuroprotection, Trophic Effects, and Unwanted Compensatory Mechanisms. Front Neuroanat 2017; 11:29. [PMID: 28442998 PMCID: PMC5385337 DOI: 10.3389/fnana.2017.00029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and Neurturin (NRTN) bind to a receptor complex consisting of a member of the GDNF family receptor (GFR)-α and the Ret tyrosine kinase. Both factors were shown to protect nigro-striatal dopaminergic neurons and reduce motor symptoms when applied terminally in toxin-induced Parkinson's disease (PD) models. However, clinical trials based on intraputaminal GDNF protein administration or recombinant adeno-associated virus (rAAV)-mediated NRTN gene delivery have been disappointing. In this review, several factors that could have limited the clinical benefits are discussed. Retrograde transport of GDNF/NRTN to the dopaminergic neurons soma is thought to be necessary for NRTN/GFR-α/Ret signaling mediating the pro-survival effect. Therefore, the feasibility of treating advanced patients with neurotrophic factors is questioned by recent data showing that: (i) tyrosine hydroxylase-positive putaminal innervation has almost completely disappeared at 5 years post-diagnosis and (ii) in patients enrolled in the rAAV-NRTN trial more than 5 years post-diagnosis, NRTN was almost not transported to the substantia nigra pars compacta. In addition to its anti-apoptotic and neurotrophic properties, GDNF also interferes with dopamine homeostasis via time and dose-dependent effects such as: stimulation of dopamine neuron excitability, inhibition of dopamine transporter activity, tyrosine hydroxylase phosphorylation, and inhibition of tyrosine hydroxylase transcription. Depending on the delivery parameters, the net result of this intricate network of regulations could be either beneficial or deleterious. In conclusion, further unraveling of the mechanism of action of GDNF gene delivery in relevant animal models is still needed to optimize the clinical benefits of this new therapeutic approach. Recent developments in the design of regulated viral vectors will allow to finely adjust the GDNF dose and period of administration. Finally, new clinical studies in less advanced patients are warranted to evaluate the potential of AAV-mediated neurotrophic factors gene delivery in PD. These will be facilitated by the demonstration of the safety of rAAV administration into the human brain.
Collapse
Affiliation(s)
- Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Clinical Neuroscience Department, Center for Neuroscience Research, Lausanne University HospitalLausanne, Switzerland
| | - Marie Humbert-Claude
- Laboratory of Cellular and Molecular Neurotherapies, Clinical Neuroscience Department, Center for Neuroscience Research, Lausanne University HospitalLausanne, Switzerland
| |
Collapse
|
44
|
Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy. Neural Regen Res 2017; 12:549-557. [PMID: 28553325 PMCID: PMC5436343 DOI: 10.4103/1673-5374.205084] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurotrophic factors comprise essential secreted proteins that have several functions in neural and non-neural tissues, mediating the development, survival and maintenance of peripheral and central nervous system. Therefore, neurotrophic factor issue has been extensively investigated into the context of neurodegenerative diseases. Alzheimer's disease and Parkinson's disease show changes in the regulation of specific neurotrophic factors and their receptors, which appear to be critical for neuronal degeneration. Indeed, neurotrophic factors prevent cell death in degenerative processes and can enhance the growth and function of affected neurons in these disorders. Based on recent reports, this review discusses the main findings related to the neurotrophic factor support – mainly brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor – in the survival, proliferation and maturation of affected neurons in Alzheimer's disease and Parkinson's disease as well as their putative application as new therapeutic approach for these diseases management.
Collapse
Affiliation(s)
- Tuane Bazanella Sampaio
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.,Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Anne Suely Savall
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| | | | - Simone Pinton
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| |
Collapse
|
45
|
Nie J, Tian Y, Zhang Y, Lu YL, Li LS, Shi JS. Dendrobium alkaloids prevent Aβ 25-35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice. PeerJ 2016; 4:e2739. [PMID: 27994964 PMCID: PMC5157189 DOI: 10.7717/peerj.2739] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Neuronal and synaptic loss is the most important risk factor for cognitive impairment. Inhibiting neuronal apoptosis and preventing synaptic loss are promising therapeutic approaches for Alzheimer's disease (AD). In this study, we investigate the protective effects of Dendrobium alkaloids (DNLA), a Chinese medicinal herb extract, on β-amyloid peptide segment 25-35 (Aβ25-35)-induced neuron and synaptic loss in mice. METHOD Aβ25-35(10 µg) was injected into the bilateral ventricles of male mice followed by an oral administration of DNLA (40 mg/kg) for 19 days. The Morris water maze was used for evaluating the ability of spatial learning and memory function of mice. The morphological changes were examined via H&E staining and Nissl staining. TUNEL staining was used to check the neuronal apoptosis. The ultrastructure changes of neurons were observed under electron microscope. Western blot was used to evaluate the protein expression levels of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex. RESULTS DNLA significantly attenuated Aβ25-35-induced spatial learning and memory impairments in mice. DNLA prevented Aβ25-35-induced neuronal loss in the hippocampus and cortex, increased the number of Nissl bodies, improved the ultrastructural injury of neurons and increased the number of synapses in neurons. Furthermore, DNLA increased the protein expression of neurotrophic factors BDNF, CNTF and GDNF in the hippocampus and cortex. CONCLUSIONS DNLA can prevent neuronal apoptosis and synaptic loss. This effect is mediated at least in part via increasing the expression of BDNF, GDNF and CNTF in the hippocampus and cortex; improving Aβ-induced spatial learning and memory impairment in mice.
Collapse
Affiliation(s)
- Jing Nie
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China
| | - Yong Tian
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College , Zunyi , Guizhou Province , China
| | - Yu Zhang
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College , Zunyi , Guizhou Province , China
| | - Yan-Liu Lu
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College , Zunyi , Guizhou Province , China
| | - Li-Sheng Li
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College , Zunyi , Guizhou Province , China
| | - Jing-Shan Shi
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China
| |
Collapse
|
46
|
de Miranda AS, Brant F, Vieira LB, Rocha NP, Vieira ÉLM, Rezende GHS, de Oliveira Pimentel PM, Moraes MFD, Ribeiro FM, Ransohoff RM, Teixeira MM, Machado FS, Rachid MA, Teixeira AL. A Neuroprotective Effect of the Glutamate Receptor Antagonist MK801 on Long-Term Cognitive and Behavioral Outcomes Secondary to Experimental Cerebral Malaria. Mol Neurobiol 2016; 54:7063-7082. [PMID: 27796746 DOI: 10.1007/s12035-016-0226-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023]
Abstract
Cerebral malaria (CM) is a life-threatening complication of Plasmodium falciparum infection, which can result in long-term cognitive and behavioral deficits despite successful anti-malarial therapy. Due to the substantial social and economic burden of CM, the development of adjuvant therapies is a scientific goal of highest priority. Apart from vascular and immune responses, changes in glutamate system have been reported in CM pathogenesis suggesting a potential therapeutic target. Based on that, we hypothesized that interventions in the glutamatergic system induced by blockage of N-methyl-D-aspartate (NMDA) receptors could attenuate experimental CM long-term cognitive and behavioral outcomes. Before the development of evident CM signs, susceptible mice infected with Plasmodium berghei ANKA (PbA) strain were initiated on treatment with dizocilpine maleate (MK801, 0.5 mg/kg), a noncompetitive NMDA receptor antagonist. On day 5 post-infection, mice were treated orally with a 10-day course chloroquine (CQ, 30 mg/kg). Control mice also received saline, CQ or MK801 + CQ therapy. After 10 days of cessation of CQ treatment, magnetic resonance images (MRI), behavioral and immunological assays were performed. Indeed, MK801 combined with CQ prevented long-term memory impairment and depressive-like behavior following successful PbA infection resolution. In addition, MK801 also modulated the immune system by promoting a balance of TH1/TH2 response and upregulating neurotrophic factors levels in the frontal cortex and hippocampus. Moreover, hippocampus abnormalities observed by MRI were partially prevented by MK801 treatment. Our results indicate that NMDA receptor antagonists can be neuroprotective in CM and could be a valuable adjuvant strategy for the management of the long-term impairment observed in CM.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Departamento de Morfologia, ICB, UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil.
| | - Fátima Brant
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciene Bruno Vieira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália Pessoa Rocha
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Érica Leandro Marciano Vieira
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Henrique Souza Rezende
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Marcio F D Moraes
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Mauro Martins Teixeira
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana Simão Machado
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milene Alvarenga Rachid
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
47
|
Irala D, Bonafina A, Fontanet PA, Alsina FC, Paratcha G, Ledda F. The GDNF-GFRα1 complex promotes the development of hippocampal dendritic arbors and spines via NCAM. Development 2016; 143:4224-4235. [PMID: 27707798 DOI: 10.1242/dev.140350] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022]
Abstract
The formation of synaptic connections during nervous system development requires the precise control of dendrite growth and synapse formation. Although glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are expressed in the forebrain, the role of this system in the hippocampus remains unclear. Here, we investigated the consequences of GFRα1 deficiency for the development of hippocampal connections. Analysis of conditional Gfra1 knockout mice shows a reduction in dendritic length and complexity, as well as a decrease in postsynaptic density specializations and in the synaptic localization of postsynaptic proteins in hippocampal neurons. Gain- and loss-of-function assays demonstrate that the GDNF-GFRα1 complex promotes dendritic growth and postsynaptic differentiation in cultured hippocampal neurons. Finally, in vitro assays revealed that GDNF-GFRα1-induced dendrite growth and spine formation are mediated by NCAM signaling. Taken together, our results indicate that the GDNF-GFRα1 complex is essential for proper hippocampal circuit development.
Collapse
Affiliation(s)
- Dolores Irala
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Antonela Bonafina
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Paula Aldana Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Fernando Cruz Alsina
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| |
Collapse
|
48
|
Combination of grafted Schwann cells and lentiviral-mediated prevention of glial scar formation improve recovery of spinal cord injured rats. J Chem Neuroanat 2016; 76:48-60. [DOI: 10.1016/j.jchemneu.2015.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/26/2015] [Accepted: 12/25/2015] [Indexed: 01/03/2023]
|
49
|
Corpas R, Revilla S, Ursulet S, Castro-Freire M, Kaliman P, Petegnief V, Giménez-Llort L, Sarkis C, Pallàs M, Sanfeliu C. SIRT1 Overexpression in Mouse Hippocampus Induces Cognitive Enhancement Through Proteostatic and Neurotrophic Mechanisms. Mol Neurobiol 2016; 54:5604-5619. [PMID: 27614878 DOI: 10.1007/s12035-016-0087-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/26/2016] [Indexed: 01/08/2023]
Abstract
SIRT1 induces cell survival and has shown neuroprotection against amyloid and tau pathologies in Alzheimer's disease (AD). However, protective effects against memory loss or the enhancement of cognitive functions have not yet been proven. We aimed to investigate the benefits induced by SIRT1 overexpression in the hippocampus of the AD mouse model 3xTg-AD and in control non-transgenic mice. A lentiviral vector encoding mouse SIRT1 or GFP, selectively transducing neurons, was injected into the dorsal CA1 hippocampal area of 4-month-old mice. Six-month overexpression of SIRT1 fully preserved learning and memory in 10-month-old 3xTg-AD mice. Remarkably, SIRT1 also induced cognitive enhancement in healthy non-transgenic mice. Neuron cultures of 3xTg-AD mice, which show traits of AD-like pathology, and neuron cultures from non-transgenic mice were also transduced with lentiviral vectors to analyze beneficial SIRT1 mechanisms. We uncovered novel pathways of SIRT1 neuroprotection through enhancement of cell proteostatic mechanisms and activation of neurotrophic factors not previously reported such as GDNF, present in both AD-like and healthy neurons. Therefore, SIRT1 may increase neuron function and resilience against AD.
Collapse
Affiliation(s)
- Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB) - CSIC, C/Rosselló 161, 6th floor, 08036, Barcelona, Spain
| | - Susana Revilla
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB) - CSIC, C/Rosselló 161, 6th floor, 08036, Barcelona, Spain
| | | | - Marco Castro-Freire
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Perla Kaliman
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB) - CSIC, C/Rosselló 161, 6th floor, 08036, Barcelona, Spain
| | - Valérie Petegnief
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB) - CSIC, C/Rosselló 161, 6th floor, 08036, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | - Mercè Pallàs
- Facultat de Farmàcia, Institut de Neurociències, Universitat de Barcelona and CIBERNED, 08028, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB) - CSIC, C/Rosselló 161, 6th floor, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| |
Collapse
|
50
|
Moore IM(K, Merkle CJ, Byrne H, Ross A, Hawkins AM, Ameli SS, Montgomery DW. Effects of Intraventricular Methotrexate on Neuronal Injury and Gene Expression in a Rat Model. Biol Res Nurs 2016; 18:505-14. [DOI: 10.1177/1099800416644780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Central nervous system (CNS)-directed treatment for acute lymphoblastic leukemia, used to prevent disease recurrence in the brain, is essential for survival. Systemic and intrathecal methotrexate, commonly used for CNS-directed treatment, have been associated with cognitive problems during and after treatment. The cortex, hippocampus, and caudate putamen, important brain regions for learning and memory, may be involved in methotrexate-induced brain injury. Objectives of this study were to (1) quantify neuronal degeneration in selected regions of the cortex, hippocampus, and caudate putamen and (2) measure changes in the expression of genes with known roles in oxidant defense, apoptosis/inflammation, and protection from injury. Male Sprague Dawley rats were administered 2 or 4 mg/kg of methotrexate diluted in artificial cerebrospinal fluid (aCSF) or aCSF only into the left cerebral lateral ventricle. Gene expression changes were measured using customized reverse transcription (RT)2 polymerase chain reaction arrays. The greatest percentage of degenerating neurons in methotrexate-treated animals was in the medial region of the cortex; percentage of degenerating neurons in the dentate gyrus and cornu ammonis 3 regions of the hippocampus was also greater in rats treated with methotrexate compared to perfusion and vehicle controls. There was a greater percentage of degenerating neurons in the inferior cortex of control versus methotrexate-treated animals. Eight genes involved in protection from injury, oxidant defense, and apoptosis/inflammation were significantly downregulated in different brain regions of methotrexate-treated rats. To our knowledge, this is the first study to investigate methotrexate-induced injury in selected brain regions and gene expression changes using a rat model of intraventricular drug administration.
Collapse
Affiliation(s)
| | | | | | - Adam Ross
- College of Nursing, The University of Arizona, Tucson AZ, USA
| | | | - Sara S. Ameli
- College of Nursing, The University of Arizona, Tucson AZ, USA
| | - David W. Montgomery
- College of Nursing, The University of Arizona, Tucson AZ, USA
- Southern Arizona VA Healthcare System, Tucson AZ, USA
| |
Collapse
|