1
|
Konishi K, Jacobs EG, Aroner S, De Vivo I, Smith B, Scribner-Weiss B, Makris N, Seitz-Holland J, Remington A, Aizley H, Kubicki M, Goldstein JM. Leukocyte telomere length and memory circuitry and cognition in early aging: Impact of sex and menopausal status. Horm Behav 2024; 165:105631. [PMID: 39232410 PMCID: PMC11438173 DOI: 10.1016/j.yhbeh.2024.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Telomere length (TL) is an important cellular marker of biological aging impacting the brain and heart. However, how it is related to the brain (e.g., cognitive function and neuroanatomic architecture), and how these relationships may vary by sex and reproductive status, is not well established. Here we assessed the association between leukocyte TL and memory circuitry regional brain volumes and memory performance in early midlife, in relation to sex and reproductive status. Participants (N = 198; 95 females, 103 males; ages 45-55) underwent structural MRI and neuropsychological assessments of verbal, associative, and working memory. Overall, shorter TL was associated with smaller white matter volume in the parahippocampal gyrus and dorsolateral prefrontal cortex. In males, shorter TL was associated with worse working memory performance and corresponding smaller white matter volumes in the parahippocampal gyrus, anterior cingulate cortex, and dorsolateral prefrontal cortex. In females, the impact of cellular aging was revealed over the menopausal transition. In postmenopausal females, shorter TL was associated with poor associative memory performance and smaller grey matter volume in the right hippocampus. In contrast, TL was not related to memory performance or grey and white matter volumes in any memory circuitry region in pre/perimenopausal females. Results demonstrated that shorter TL is associated with worse memory function and smaller volume in memory circuitry regions in early midlife, an association that differs by sex and reproductive status. Taken together, TL may serve as an early indicator of sex-dependent brain abnormalities in early midlife.
Collapse
Affiliation(s)
- Kyoko Konishi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Emily G Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara 93111, United States of America
| | - Sarah Aroner
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Immaculata De Vivo
- Department of Epidemiology, T.H. Chan School of Public Health, Boston, MA 02120, United States of America
| | - Brianna Smith
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Blair Scribner-Weiss
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, United States of America
| | - Nikos Makris
- Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America
| | - Johanna Seitz-Holland
- Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America
| | - Anne Remington
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Harlyn Aizley
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Marek Kubicki
- Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America
| | - Jill M Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
2
|
Qiu H, Shi M, Zhong Z, Hu H, Sang H, Zhou M, Feng Z. Causal Relationship between Aging and Anorexia Nervosa: A White-Matter-Microstructure-Mediated Mendelian Randomization Analysis. Biomedicines 2024; 12:1874. [PMID: 39200338 PMCID: PMC11351342 DOI: 10.3390/biomedicines12081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
This study employed a two-step Mendelian randomization analysis to explore the causal relationship between telomere length, as a marker of aging, and anorexia nervosa and to evaluate the mediating role of changes in the white matter microstructure across different brain regions. We selected genetic variants associated with 675 diffusion magnetic resonance imaging phenotypes representing changes in brain white matter. F-statistics confirmed the validity of the instruments, ensuring robust causal inference. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy tests, and leave-one-out tests, validated the results. The results show that telomere length is significantly negatively correlated with anorexia nervosa in a unidirectional manner (p = 0.017). Additionally, changes in specific white matter structures, such as the internal capsule, corona radiata, posterior thalamic radiation, left cingulate gyrus, left longitudinal fasciculus, and left forceps minor (p < 0.05), were identified as mediators. These findings enhance our understanding of the neural mechanisms, underlying the exacerbation of anorexia nervosa with aging; emphasize the role of brain functional networks in disease progression; and provide potential biological targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Haoyuan Qiu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Zicheng Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Haoran Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Hunini Sang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Croons H, Martens DS, Vanderstukken C, Sleurs H, Rasking L, Peusens M, Renaers E, Plusquin M, Nawrot TS. Telomere length in early childhood and its association with attention: a study in 4-6 year old children. Front Pediatr 2024; 12:1358272. [PMID: 38919841 PMCID: PMC11196792 DOI: 10.3389/fped.2024.1358272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Telomere length (TL), a marker of cellular aging, has been studied in adults with regard to its connection to cognitive function. However, little is known about the association between TL and cognitive development in children. This study investigated the interplay between TL and cognitive functioning in 283 Belgian children aged four to six years of the Environmental Influence on Aging in Early Life (ENVIRONAGE) birth cohort. Child leukocyte TL was measured using qPCR, while cognitive functioning, including attention and memory, was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Linear regression models were employed to examine the association between TL and cognitive outcomes, adjusting for potential confounders. We found an inverse association between TL and the spatial errors made during the Motor Screening task (p = 0.017), indicating a higher motor accuracy in children with longer telomeres. No significant associations were found between TL and other cognitive outcomes. Our results suggest a specific link between TL and motor accuracy but not with the other cognitive domains.
Collapse
Affiliation(s)
- Hanne Croons
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Martien Peusens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Eleni Renaers
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
| |
Collapse
|
4
|
Zhong M, Salberg S, Sampangi S, van der Walt A, Butzkueven H, Mychasiuk R, Jokubaitis V. Leukocyte telomere length in multiple sclerosis: relationship between disability severity and pregnancy history. Mult Scler Relat Disord 2024; 86:105607. [PMID: 38631073 DOI: 10.1016/j.msard.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Aging-related processes contribute to neurodegeneration and disability in multiple sclerosis (MS). Biomarkers of biological aging such as leukocyte telomere length (LTL) could help personalise prognosis. Pregnancy has been shown to be protective against disability accumulation in women with MS, though it is unclear if this effect relates to aging mechanisms or LTL. OBJECTIVES This study aimed to cross-sectionally characterise LTL in a cohort of individuals with MS, and to correlate LTL with disability severity and pregnancy history. METHODS We extracted DNA from the whole blood of 501 people with MS in Melbourne, Australia. Expanded Disability Status Scale (EDSS) score and demographic data, as well as pregnancy history for 197 females, were obtained at sample collection. Additional data were extracted from the MSBase Registry. LTL was determined in base pairs (bp) using real-time quantitative polymerase chain reaction. RESULTS A relationship between EDSS score and shorter LTL was robust to multivariable adjustment for demographic and clinical factors including chronological age, with an adjusted LTL reduction per 1.0 increase in EDSS of 97.1 bp (95 % CI = 9.7-184.5 bp, p = 0.030). Adjusted mediation analysis found chronological age accounted for 33.6 % of the relationship between LTL and EDSS score (p = 0.018). In females with pregnancy data, history of pregnancy was associated with older age (median 49.7 vs 33.0 years, p < 0.001). There were no significant relationships between adjusted LTL and any history of pregnancy (LTL increase of 65.3 bp, 95 % CI = -471.0-601.5 bp, p = 0.81) or number of completed pregnancies (LTL increase of 14.6 bp per pregnancy, 95 % CI = -170.3-199.6 bp, p = 0.87). CONCLUSIONS The correlation between LTL and disability independent of chronological age and other factors points to a link between neurological reserve in MS and biological aging, and a potential research target for pathophysiological and therapeutic mechanisms. Although LTL did not significantly differ by pregnancy history, longitudinal analyses could help identify interactions with prospectively captured pregnancy effects.
Collapse
Affiliation(s)
- Michael Zhong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia.
| | - Sabrina Salberg
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandeep Sampangi
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
5
|
Topiwala A, Nichols TE, Williams LZJ, Robinson EC, Alfaro-Almagro F, Taschler B, Wang C, Nelson CP, Miller KL, Codd V, Samani NJ, Smith SM. Telomere length and brain imaging phenotypes in UK Biobank. PLoS One 2023; 18:e0282363. [PMID: 36947528 PMCID: PMC10032499 DOI: 10.1371/journal.pone.0282363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023] Open
Abstract
Telomeres form protective caps at the ends of chromosomes, and their attrition is a marker of biological aging. Short telomeres are associated with an increased risk of neurological and psychiatric disorders including dementia. The mechanism underlying this risk is unclear, and may involve brain structure and function. However, the relationship between telomere length and neuroimaging markers is poorly characterized. Here we show that leucocyte telomere length (LTL) is associated with multi-modal MRI phenotypes in 31,661 UK Biobank participants. Longer LTL is associated with: i) larger global and subcortical grey matter volumes including the hippocampus, ii) lower T1-weighted grey-white tissue contrast in sensory cortices, iii) white-matter microstructure measures in corpus callosum and association fibres, iv) lower volume of white matter hyperintensities, and v) lower basal ganglia iron. Longer LTL was protective against certain related clinical manifestations, namely all-cause dementia (HR 0.93, 95% CI: 0.91-0.96), but not stroke or Parkinson's disease. LTL is associated with multiple MRI endophenotypes of neurodegenerative disease, suggesting a pathway by which longer LTL may confer protective against dementia.
Collapse
Affiliation(s)
- Anya Topiwala
- Nuffield Department Population Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Thomas E. Nichols
- Nuffield Department Population Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, United Kingdom
| | - Logan Z. J. Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Emma C. Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Fidel Alfaro-Almagro
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, United Kingdom
| | - Bernd Taschler
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, United Kingdom
| | - Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Stephen M. Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| |
Collapse
|
6
|
Genetically predicted telomere length and Alzheimer’s disease endophenotypes: a Mendelian randomization study. Alzheimers Res Ther 2022; 14:167. [PMID: 36345036 PMCID: PMC9641781 DOI: 10.1186/s13195-022-01101-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022]
Abstract
Telomere length (TL) is associated with biological aging, consequently influencing the risk of age-related diseases such as Alzheimer’s disease (AD). We aimed to evaluate the potential causal role of TL in AD endophenotypes (i.e., cognitive performance, N = 2233; brain age and AD-related signatures, N = 1134; and cerebrospinal fluid biomarkers (CSF) of AD and neurodegeneration, N = 304) through a Mendelian randomization (MR) analysis. Our analysis was conducted in the context of the ALFA (ALzheimer and FAmilies) study, a population of cognitively healthy individuals at risk of AD. A total of 20 single nucleotide polymorphisms associated with TL were used to determine the effect of TL on AD endophenotypes. Analyses were adjusted by age, sex, and years of education. Stratified analyses by APOE-ɛ4 status and polygenic risk score of AD were conducted. MR analysis revealed significant associations between genetically predicted longer TL and lower levels of CSF Aβ and higher levels of CSF NfL only in APOE-ɛ4 non-carriers. Moreover, inheriting longer TL was associated with greater cortical thickness in age and AD-related brain signatures and lower levels of CSF p-tau among individuals at a high genetic predisposition to AD. Further observational analyses are warranted to better understand these associations.
Collapse
|
7
|
Gampawar P, Schmidt R, Schmidt H. Telomere length and brain aging: A systematic review and meta-analysis. Ageing Res Rev 2022; 80:101679. [PMID: 35777725 DOI: 10.1016/j.arr.2022.101679] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
The current evidence on the association of leukocyte telomere length (LTL) with age-related structural and cognitive changes in the brain is mixed. Herein conforming to PRISMA 2020 guidelines, we performed a systematic review and meta-analysis using data from 27 observational studies in non-demented individuals. We used effect size and p-value based meta-analysis methods considering marked heterogeneity among studies. We found that the longer LTL was associated with higher brain volume (β = 0.43, 95%CI: 0.36-0.50%, p = 0.008, N = 1102) and with higher global cognition (β = 0.01; 95%CI: 0.00-0.02, p = 0.03, N = 19609) by effect size based meta-analysis and with brain volume, hippocampal volume, global cognition, cognitive domains of attention/speed as well as executive functions by p-value based meta-analysis. No significant association of LTL with brain white matter hyperintensities was detected. Furthermore, the evidence strongly suggests a subgroup-specific canonical effect of telomeres, notably in older individuals and females. In conclusion, we provide meta-analytic evidence on the beneficial effect of telomeres on brain structure as well as cognition and advocate for a beneficial subgroup-specific effect that warrants further attention.
Collapse
Affiliation(s)
- Piyush Gampawar
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria.
| |
Collapse
|
8
|
Almuwaqqat Z, Wittbrodt MT, Moazzami K, Nye JA, Lima BB, Shah AJ, Alkhalaf J, Pearce B, Sun YV, Quyyumi AA, Vaccarino V, Bremner JD. Neural correlates of stress and leucocyte telomere length in patients with coronary artery disease. J Psychosom Res 2022; 155:110760. [PMID: 35217318 PMCID: PMC8940678 DOI: 10.1016/j.jpsychores.2022.110760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accelerated biological aging, as indicated by telomere shortening, is associated with CAD pathogenesis. In a cross-sectional study, we investigated neural correlates of acute psychological stress and short telomeres in patients with CAD. METHODS Individuals with CAD (N = 168) underwent a validated mental stress protocol including public speaking and mental arithmetic. Imaging of the brain with [O-15] water and high-resolution positron emission tomography (HR-PET) was performed during mental stress and control conditions. Blood flow during stressful tasks (average of speech and arithmetic) and control tasks were assessed. Telomere length in peripheral leucocytes was measured by quantitative polymerase chain reaction and expressed as Telomere/Single Copy Gene (T/S) ratio. Voxel-wise regression models were constructed to assess the association between brain areas and activity during rest and mental stress after adjustments for demographic factors and clinical characteristics. RESULTS The mean (SD) age of the sample was 62 (8) years, and 69% were men. Increased activation with mental stress in the lingual gyrus, cerebellum and superior and inferior frontal gyri were associated with reduced telomere length; 1.6 higher voxel activation of these areas was associated with 0.1 T/S-units reduction in telomere length (P < 0.005). Additionally, during neutral counting and speaking tasks, brain activity in the precentral, middle and superior frontal and middle temporal gyri was inversely associated with telomere length. Results remained consistent after adjustment for demographic and clinical risk factors. CONCLUSION Increased stress-induced activity in brain areas mediating the stress response was associated with shortened telomere length in CAD patients.
Collapse
Affiliation(s)
- Zakaria Almuwaqqat
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States of America
| | - Kasra Moazzami
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Jonathan A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Bruno B Lima
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Amit J Shah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America; Atlanta VA Medical Center, Decatur, Georgia
| | - Jamil Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Brad Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Arshed A Quyyumi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Viola Vaccarino
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America; Atlanta VA Medical Center, Decatur, Georgia.
| |
Collapse
|
9
|
Differences between multimodal brain-age and chronological-age are linked to telomere shortening. Neurobiol Aging 2022; 115:60-69. [DOI: 10.1016/j.neurobiolaging.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022]
|
10
|
Yu G, Lu L, Ma Z, Wu S. Genetically Predicted Telomere Length and Its Relationship With Alzheimer's Disease. Front Genet 2021; 12:595864. [PMID: 33679878 PMCID: PMC7934420 DOI: 10.3389/fgene.2021.595864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Are shorter telomeres causal risk factors for Alzheimer’s disease (AD)? This study aimed to examine if shorter telomeres were causally associated with a higher risk of AD using Mendelian randomization (MR) analysis. Two-sample MR methods were applied to the summary effect sizes and standard errors from a genome-wide association study for AD. Twenty single nucleotide polymorphisms of genome-wide significance were selected as instrumental variables for leukocyte telomere length. The main analyses were performed primarily using the random-effects inverse-variance weighted method and complemented with the other three methods: weighted median approaches, MR-Egger regression, and weighted mode approach. The intercept of MR-Egger regression was used to assess horizontal pleiotropy. We found that longer telomeres were associated with lower risks of AD (odds ratio = 0.79, 95% confidence interval: 0.67, 0.93, P = 0.004). Comparable results were obtained using weighted median approaches, MR-Egger regression, and weighted mode approaches. The intercept of the MR-Egger regression was close to zero. This may show that there was not suggestive of horizontal pleiotropy. Our findings provided additional evidence regarding the putative causal association between shorter telomere length and the higher risk of AD.
Collapse
Affiliation(s)
- Guangping Yu
- Wuqing Center for Disease Control and Prevention, Tianjin, China
| | | | - Zaihong Ma
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shouhai Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Palmos AB, Duarte RRR, Smeeth DM, Hedges EC, Nixon DF, Thuret S, Powell TR. Telomere length and human hippocampal neurogenesis. Neuropsychopharmacology 2020; 45:2239-2247. [PMID: 32920596 PMCID: PMC7784985 DOI: 10.1038/s41386-020-00863-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Short telomere length is a risk factor for age-related disease, but it is also associated with reduced hippocampal volumes, age-related cognitive decline and psychiatric disorder risk. The current study explored whether telomere shortening might have an influence on cognitive function and psychiatric disorder pathophysiology, via its hypothesised effects on adult hippocampal neurogenesis. We modelled telomere shortening in human hippocampal progenitor cells in vitro using a serial passaging protocol that mimics the end-replication problem. Serially passaged progenitors demonstrated shorter telomeres (P ≤ 0.05), and reduced rates of cell proliferation (P ≤ 0.001), with no changes in the ability of cells to differentiate into neurons or glia. RNA-sequencing and gene-set enrichment analyses revealed an effect of cell ageing on gene networks related to neurogenesis, telomere maintenance, cell senescence and cytokine production. Downregulated transcripts in our model showed a significant overlap with genes regulating cognitive function (P ≤ 1 × 10-5), and risk for schizophrenia (P ≤ 1 × 10-10) and bipolar disorder (P ≤ 0.005). Collectively, our results suggest that telomere shortening could represent a mechanism that moderates the proliferative capacity of human hippocampal progenitors, which may subsequently impact on human cognitive function and psychiatric disorder pathophysiology.
Collapse
Affiliation(s)
- Alish B. Palmos
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Rodrigo R. R. Duarte
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| | - Demelza M. Smeeth
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Erin C. Hedges
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Douglas F. Nixon
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| | - Sandrine Thuret
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timothy R. Powell
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| |
Collapse
|
12
|
Squassina A, Manchia M, Pisanu C, Ardau R, Arzedi C, Bocchetta A, Caria P, Cocco C, Congiu D, Cossu E, Dettori T, Frau DV, Garzilli M, Manca E, Meloni A, Montis MA, Mura A, Nieddu M, Noli B, Paribello P, Pinna F, Robledo R, Severino G, Sogos V, Del Zompo M, Ferri GL, Chillotti C, Vanni R, Carpiniello B. Telomere attrition and inflammatory load in severe psychiatric disorders and in response to psychotropic medications. Neuropsychopharmacology 2020; 45:2229-2238. [PMID: 32919410 PMCID: PMC7784910 DOI: 10.1038/s41386-020-00844-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Individuals with severe psychiatric disorders have a reduced life expectancy compared to the general population. At the biological level, patients with these disorders present features that suggest the involvement of accelerated aging, such as increased circulating inflammatory markers and shorter telomere length (TL). To date, the role of the interplay between inflammation and telomere dynamics in the pathophysiology of severe psychiatric disorders has been scarcely investigated. In this study we measured T-lymphocytes TL with quantitative fluorescent in situ hybridization (Q-FISH) and plasma levels of inflammatory markers in a cohort comprised of 40 patients with bipolar disorder (BD), 41 with schizophrenia (SZ), 37 with major depressive disorder (MDD), and 36 non-psychiatric controls (NPC). TL was shorter in SZ and in MDD compared to NPC, while it was longer in BD (model F6, 137 = 20.128, p = 8.73 × 10-17, effect of diagnosis, F3 = 31.870; p = 1.08 × 10-15). There was no effect of the different classes of psychotropic medications, while duration of treatment with mood stabilizers was associated with longer TL (Partial correlation controlled for age and BMI: correlation coefficient = 0.451; p = 0.001). Levels of high-sensitivity C-Reactive Protein (hsCRP) were higher in SZ compared to NPC (adjusted p = 0.027), and inversely correlated with TL in the whole sample (r = -0.180; p = 0.042). Compared to NPC, patients with treatment resistant (TR) SZ had shorter TL (p = 0.001), while patients with TR MDD had higher levels of tumor necrosis factor-α (TNFα) compared to NPC (p = 0.028) and to non-TR (p = 0.039). Comorbidity with cardio-metabolic disorders did not influence the observed differences in TL, hsCRP, and TNFα among the diagnostic groups. Our study suggests that patients with severe psychiatric disorders present reduced TL and increased inflammation.
Collapse
Affiliation(s)
- Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy.
| | - Mirko Manchia
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Carlo Arzedi
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Alberto Bocchetta
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Eleonora Cossu
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Tinuccia Dettori
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Daniela Virginia Frau
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Mario Garzilli
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Elias Manca
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Maria Antonietta Montis
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Andrea Mura
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mariella Nieddu
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Cagliari, Italy
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gian Luca Ferri
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Roberta Vanni
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Bernardo Carpiniello
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
Nyberg L, Boraxbekk CJ, Sörman DE, Hansson P, Herlitz A, Kauppi K, Ljungberg JK, Lövheim H, Lundquist A, Adolfsson AN, Oudin A, Pudas S, Rönnlund M, Stiernstedt M, Sundström A, Adolfsson R. Biological and environmental predictors of heterogeneity in neurocognitive ageing: Evidence from Betula and other longitudinal studies. Ageing Res Rev 2020; 64:101184. [PMID: 32992046 DOI: 10.1016/j.arr.2020.101184] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Individual differences in cognitive performance increase with advancing age, reflecting marked cognitive changes in some individuals along with little or no change in others. Genetic and lifestyle factors are assumed to influence cognitive performance in ageing by affecting the magnitude and extent of age-related brain changes (i.e., brain maintenance or atrophy), as well as the ability to recruit compensatory processes. The purpose of this review is to present findings from the Betula study and other longitudinal studies, with a focus on clarifying the role of key biological and environmental factors assumed to underlie individual differences in brain and cognitive ageing. We discuss the vital importance of sampling, analytic methods, consideration of non-ignorable dropout, and related issues for valid conclusions on factors that influence healthy neurocognitive ageing.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Daniel Eriksson Sörman
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Patrik Hansson
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden
| | - Agneta Herlitz
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jessica K Ljungberg
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Statistics, USBE, Umeå University, 901 87 Umeå, Sweden
| | | | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, S-90187 Umeå, Sweden; Environment Society and Health, Occupational and Environmental Medicine, Lund University
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | | | - Mikael Stiernstedt
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Anna Sundström
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden; Centre for Demographic and Ageing Research (CEDAR), Umeå University, Umeå, S-90187, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
14
|
The functional and structural connectomes of telomere length and their association with cognition in mild cognitive impairment. Cortex 2020; 132:29-40. [PMID: 32919107 DOI: 10.1016/j.cortex.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/21/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
Previous findings on the relationship between telomere length and cognition have inconclusive, despite the relatively consistent telomere-shortening associated atrophy in the subcortical regions. Perhaps, there could be other more important telomere-associated factors in the brain, such as functional connectivity (FC) and structural connectivity (SC) that modulate cognition. The current study examined the relationship between telomere length, connectivity, and cognition. Telomere length measurements, neurocognitive scores, diffusion tensor and resting-state functional magnetic resonance imaging scans were collected from 82 older adults with mild cognitive impairment. SC and FC matrices were derived from these scans and, in various combinations, entered into connectome-based predictive models to predict telomere length. The telomere-associated features were then used to predict memory and executive functions. Leave-one-out cross-validation was performed. Predictive accuracy was assessed via the correlation between predicted and observed scores (rpredicted-observed). Correlation analyses were carried out between cognition and telomere length. Telomere length was significantly and negatively correlated with executive functions (EF), after controlling for demographical confounds. Telomere length was best predicted by negative SC and positive FC features (rpredicted-observed = .57; p < .001). The telomere-associated negative SC features significantly predicted EF scores (rpredicted-observed = -.26; p = .015). Telomere-shortening was associated with better EF and alterations in both FC and SC. This enhanced EF can be partly attributed to the telomere-associated changes in SC. Given that telomere is known to be a nonspecific marker of health, our findings illustrated a potential clinical use of telomere length to predict individualized health-related information from FC and SC features.
Collapse
|
15
|
Miller JG, Ho TC, Humphreys KL, King LS, Foland-Ross LC, Colich NL, Ordaz SJ, Lin J, Gotlib IH. Early Life Stress, Frontoamygdala Connectivity, and Biological Aging in Adolescence: A Longitudinal Investigation. Cereb Cortex 2020; 30:4269-4280. [PMID: 32215605 PMCID: PMC7264647 DOI: 10.1093/cercor/bhaa057] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Early life stress (ELS) may accelerate frontoamygdala development related to socioemotional processing, serving as a potential source of resilience. Whether this circuit is associated with other proposed measures of accelerated development is unknown. In a sample of young adolescents, we examined the relations among ELS, frontoamygdala circuitry during viewing of emotional faces, cellular aging as measured by telomere shortening, and pubertal tempo. We found that greater cumulative severity of ELS was associated with stronger negative coupling between bilateral centromedial amygdala and the ventromedial prefrontal cortex, a pattern that may reflect more mature connectivity. More negative frontoamygdala coupling (for distinct amygdala subdivisions) was associated with slower telomere shortening and pubertal tempo over 2 years. These potentially protective associations of negative frontoamygdala connectivity were most pronounced in adolescents who had been exposed to higher ELS. Our findings provide support for the formulation that ELS accelerates maturation of frontoamygdala connectivity and provide novel evidence that this neural circuitry confers protection against accelerated biological aging, particularly for adolescents who have experienced higher ELS. Although negative frontoamygdala connectivity may be an adaptation to ELS, frontoamygdala connectivity, cellular aging, and pubertal tempo do not appear to be measures of the same developmental process.
Collapse
Affiliation(s)
- Jonas G Miller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Tiffany C Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Lucy S King
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Lara C Foland-Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Natalie L Colich
- Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Sarah J Ordaz
- Ordaz Psychological Health, Inc., Menlo Park, CA 94025, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Gampawar P, Schmidt R, Schmidt H. Leukocyte Telomere Length Is Related to Brain Parenchymal Fraction and Attention/Speed in the Elderly: Results of the Austrian Stroke Prevention Study. Front Psychiatry 2020; 11:100. [PMID: 32180739 PMCID: PMC7059269 DOI: 10.3389/fpsyt.2020.00100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
There are controversial results if leukocyte telomere length (LTL) is related to structural brain changes and cognitive decline in aging. Here, we investigated the association between LTL and 1) global MRI correlates of brain aging such as brain parenchymal fraction (BPF) and white matter hyperintensities (WMH) load and Fazekas score as well as 2) global (g-factor) and domain-specific cognition such as attention/speed, conceptualization, memory, and visuopractical skills. In total, 909 participants of the Austrian Stroke Prevention Study with LTL, MRI, and cognitive tests were included. There were 388 (42.7%) men, and the mean age was 65.9 years. Longer LTL was significantly associated with larger BPF (β = 0.43, p < 0.001), larger WMH load (β = 0.03, p = 0.04), and score (β = 0.05, p = 0.04) after adjusting for age, sex, vascular risk factors, and ApoE4 carrier status. The effect on BPF was more significant in the subgroups of women (β = 0.51, p = 0.001), age >65 years (β = 0.58, p = 0.002), BMI ≥ 25 (β = 0.40, p = 0.004), education ≤10 years (β = 0.42, p = 0.002), hypertensives (β = 0.51, p = 0.001), cardiovascular disease (CVD) (β = 0.58, p = 0.005), non-diabetics (β = 0.42, p < 0.001), and Apoe4 non-carriers (β = 0.49, p < 0.001). The effect on WMH was significant within the hypertensives (load: β = 0.04, p = 0.02), non-diabetics (load:β = 0.03, p = 0.01; score: β = 0.06, p = 0.02), in those with education ≤10 years (load: β = 0.03, p = 0.04; score: β = 0.07, p = 0.02), in ApoE4 non-carriers (load: β = 0.03, p = 0.02; score: β = 0.07, p = 0.01) and in subjects without CVD (score: β = 0.06, p = 0.05). We only observed a significant association between LTL and the cognitive domain of attention/speed, which was confined to the subgroups of BMI ≥ 25 (β = 0.04, p = 0.05) and education ≤10 years (β = 0.04, p = 0.05). The effect of LTL on attention/speed was partly mediated in both subgroups by BPF (β = 0.02, 95% CI = 0.01:0.03) when tested by bootstrapping. Our results support a strong protective role of longer LTL on global brain volume which in turn may contribute to better cognitive functions, especially in the attention/speed domain in the elderly.
Collapse
Affiliation(s)
- Piyush Gampawar
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signalling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signalling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| |
Collapse
|
17
|
Puhlmann LMC, Valk SL, Engert V, Bernhardt BC, Lin J, Epel ES, Vrtička P, Singer T. Association of Short-term Change in Leukocyte Telomere Length With Cortical Thickness and Outcomes of Mental Training Among Healthy Adults: A Randomized Clinical Trial. JAMA Netw Open 2019; 2:e199687. [PMID: 31553468 PMCID: PMC6763984 DOI: 10.1001/jamanetworkopen.2019.9687] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
Importance Telomere length is associated with the development of age-related diseases and structural differences in multiple brain regions. It remains unclear, however, whether change in telomere length is linked to brain structure change, and to what extent telomere length can be influenced through mental training. Objectives To assess the dynamic associations between leukocyte telomere length (LTL) and cortical thickness (CT), and to determine whether LTL is affected by a longitudinal contemplative mental training intervention. Design, Setting, and Participants An open-label efficacy trial of three 3-month mental training modules with healthy, meditation-naive adults was conducted. Data on LTL and CT were collected 4 times over 9 months between April 22, 2013, and March 31, 2015, as part of the ReSource Project. Data analysis was performed between September 23, 2016, and June 21, 2019. Of 1582 eligible individuals, 943 declined to participate; 362 were randomly selected for participation and assigned to training or retest control cohorts, with demographic characteristics matched. The retest control cohorts underwent all testing but no training. Intention-to-treat analysis was performed. Interventions Training cohort participants completed 3 modules cultivating interoception and attention (Presence), compassion (Affect), or perspective taking (Perspective). Main Outcomes and Measures Change in LTL and CT. Results Of the 362 individuals randomized, 30 participants dropped out before study initiation (initial sample, 332). Data were available for analysis of the training intervention in 298 participants (n = 222 training; n = 76 retest control) (175 women [58.7%]; mean [SD] age, 40.5 [9.3] years). The training modules had no effect on LTL. In 699 observations from all 298 participants, mean estimated changes in the relative ratios of telomere repeat copy number to single-copy gene (T/S) were for no training, 0.004 (95% CI, -0.010 to 0.018); Presence, -0.007 (95% CI, -0.025 to 0.011); Affect, -0.005 (95% CI, -0.019 to 0.010); and Perspective, -0.001 (95% CI, -0.017 to 0.016). Cortical thickness change data were analyzed in 167 observations from 67 retest control participants (37 women [55.2%], mean [SD] age, 39.6 [9.0] years). In this retest control cohort subsample, naturally occurring LTL change was related to CT change in the left precuneus extending to the posterior cingulate cortex (mean t161 = 3.22; P < .001; r = 0.246). At the individual participant level, leukocyte telomere shortening as well as lengthening were observed. Leukocyte telomere shortening was related to cortical thinning (t77 = 2.38; P = .01; r = 0.262), and leukocyte telomere lengthening was related to cortical thickening (t77 = 2.42; P = .009; r = 0.266). All analyses controlled for age, sex, and body mass index. Conclusions and Relevance The findings of this trial indicate an association between short-term change in LTL and concomitant change in plasticity of the left precuneus extending to the posterior cingulate cortex. This result contributes to the evidence that LTL changes more dynamically on the individual level than previously thought. Further studies are needed to determine potential long-term implications of such change in relation to cellular aging and the development of neurodegenerative disorders. No effect of contemplative mental training was noted in what may be, to date, the longest intervention with healthy adults. Trial Registration ClinicalTrials.gov identifier: NCT01833104.
Collapse
Affiliation(s)
- Lara M. C. Puhlmann
- Research Group, “Social Stress and Family Health,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sofie L. Valk
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
| | - Veronika Engert
- Research Group, “Social Stress and Family Health,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Boris C. Bernhardt
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco
| | - Elissa S. Epel
- Department of Psychiatry, University of California, San Francisco
| | - Pascal Vrtička
- Research Group, “Social Stress and Family Health,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tania Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| |
Collapse
|