1
|
Sentis AI, Rasero J, Gianaros PJ, Verstynen TD. Cortical and subcortical brain networks predict prevailing heart rate. Psychophysiology 2024; 61:e14641. [PMID: 38951745 DOI: 10.1111/psyp.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Resting heart rate may confer risk for cardiovascular disease (CVD) and other adverse cardiovascular events. While the brainstem's autonomic control over heart rate is well established, less is known about the regulatory role of higher level cortical and subcortical brain regions, especially in humans. This study sought to characterize the brain networks that predict variation in prevailing heart rate in otherwise healthy adults. We used machine learning approaches designed for complex, high-dimensional data sets, to predict variation in instantaneous heart period (the inter-heartbeat-interval) from whole-brain hemodynamic signals measured by fMRI. Task-based and resting-state fMRI, as well as peripheral physiological recordings, were taken from two data sets that included extensive repeated measurements within individuals. Our models reliably predicted instantaneous heart period from whole-brain fMRI data both within and across individuals, with prediction accuracies being highest when measured within-participants. We found that a network of cortical and subcortical brain regions, many linked to visceral motor and visceral sensory processes, were reliable predictors of variation in heart period. This adds to evidence on brain-heart interactions and constitutes an incremental step toward developing clinically applicable biomarkers of brain contributions to CVD risk.
Collapse
Affiliation(s)
- Amy Isabella Sentis
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Carnegie Mellon Neuroscience Institute, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Javier Rasero
- Carnegie Mellon Neuroscience Institute, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
| | - Peter J Gianaros
- Carnegie Mellon Neuroscience Institute, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy D Verstynen
- Carnegie Mellon Neuroscience Institute, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Ma L, Keen LD, Steinberg JL, Eddie D, Tan A, Keyser-Marcus L, Abbate A, Moeller FG. Relationship between central autonomic effective connectivity and heart rate variability: A Resting-state fMRI dynamic causal modeling study. Neuroimage 2024; 300:120869. [PMID: 39332747 DOI: 10.1016/j.neuroimage.2024.120869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
The central autonomic network (CAN) serves as a regulatory hub with top-down regulatory control and integration of bottom-up physiological feedback via the autonomic nervous system. Heart rate variability (HRV)-the time variance of the heart's beat-to-beat intervals-is an index of the CAN's affective and behavioral regulatory capacity. Although neural functional connectivities that are associated with HRV and CAN have been well studied, no published report to date has studied effective (directional) connectivities (EC) that are associated with HRV and CAN. Better understanding of neural EC in the brain has the potential to improve our understanding of how the CAN sub-regions regulate HRV. To begin to address this knowledge gap, we employed resting-state functional magnetic resonance imaging and dynamic causal modeling (DCM) with parametric empirical Bayes analyses in 34 healthy adults (19 females; mean age= 32.68 years [SD= 14.09], age range 18-68 years) to examine the bottom-up and top-down neural circuits associated with HRV. Throughout the whole brain, we identified 12 regions associated with HRV. DCM analyses revealed that the ECs from the right amygdala to the anterior cingulate cortex and to the ventrolateral prefrontal cortex had a negative linear relationship with HRV and a positive linear relationship with heart rate. These findings suggest that ECs from the amygdala to the prefrontal cortex may represent a neural circuit associated with regulation of cardiodynamics.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, 203 East Cary Street, Suite 202, Richmond 23219, VA, United States; Department of Psychiatry, Virginia Commonwealth University, VA, United States.
| | - Larry D Keen
- Department of Psychology, Virginia State University, VA, United States
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, 203 East Cary Street, Suite 202, Richmond 23219, VA, United States; Department of Psychiatry, Virginia Commonwealth University, VA, United States; C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, VA, United States
| | - David Eddie
- Recovery Research Institute, Center for Addiction Medicine, Massachusetts General Hospital, MA, United States; Department of Psychiatry, Harvard Medical School, MA, United States
| | - Alex Tan
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Lori Keyser-Marcus
- Department of Psychiatry, Virginia Commonwealth University, VA, United States
| | - Antonio Abbate
- Department of Psychiatry, Harvard Medical School, MA, United States
| | - F Gerard Moeller
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, 203 East Cary Street, Suite 202, Richmond 23219, VA, United States; Department of Psychiatry, Virginia Commonwealth University, VA, United States; Department of Pharmacology and Toxicology, Virginia Commonwealth University, VA, United States; Department of Neurology, Virginia Commonwealth University, VA, United States; C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, VA, United States
| |
Collapse
|
3
|
Yu JX, Hussein A, Mah L, Jean Chen J. The associations among glycemic control, heart variability, and autonomic brain function in healthy individuals: Age- and sex-related differences. Neurobiol Aging 2024; 142:41-51. [PMID: 39128180 DOI: 10.1016/j.neurobiolaging.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION The purpose of this study was to clarify the relationships between glycemia and function of the autonomic nervous system (ANS), assessed via resting-state functional connectivity (FC) and heart-rate variability (HRV). METHODS Data for this study were extracted from the Leipzig Study for Mind-Body-Emotion Interactions, including 146 healthy adults (114 young, 32 older). Variables of interest were glycated hemoglobin (HbA1c), resting-state FC in the salience aspect of the central-autonomic (S-CAN) and salience network (SN) and HRV (RMSSD and high-frequency HRV (HF-HRV)). RESULTS HbA1c was inversely correlated with FC in the S-CAN but not SN. HbA1c was inversely correlated with HRV. Both RMSSD and log(HF-HRV) were correlated with FC in the S-CAN and SN. Age- (not sex-related) differences were observed in the Hb1Ac-FC associations (stronger in older adults) while sex- (not age-related) differences were observed in the HRV-FC (stronger in females). CONCLUSIONS These findings extend the diabetes literature to healthy adults in relating glycemia and brain function. The age- and sex-related differences in these relationships highlight the need to account for the potential effects of age and sex in future investigations.
Collapse
Affiliation(s)
- Jeffrey X Yu
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ahmad Hussein
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Linda Mah
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Coll MP, Walden Z, Bourgoin PA, Taylor V, Rainville P, Robert M, Nguyen DK, Jolicoeur P, Roy M. Pain reflects the informational value of nociceptive inputs. Pain 2024; 165:e115-e125. [PMID: 38713801 DOI: 10.1097/j.pain.0000000000003254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/13/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Pain perception and its modulation are fundamental to human learning and adaptive behavior. This study investigated the hypothesis that pain perception is tied to pain's learning function. Thirty-one participants performed a threat conditioning task where certain cues were associated with a possibility of receiving a painful electric shock. The cues that signaled potential pain or safety were regularly changed, requiring participants to continually establish new associations. Using computational models, we quantified participants' pain expectations and prediction errors throughout the task and assessed their relationship with pain perception and electrophysiological responses. Our findings suggest that subjective pain perception increases with prediction error, that is, when pain was unexpected. Prediction errors were also related to physiological nociceptive responses, including the amplitude of nociceptive flexion reflex and electroencephalography markers of cortical nociceptive processing (N1-P2-evoked potential and gamma-band power). In addition, higher pain expectations were related to increased late event-related potential responses and alpha/beta decreases in amplitude during cue presentation. These results further strengthen the idea of a crucial link between pain and learning and suggest that understanding the influence of learning mechanisms in pain modulation could help us understand when and why pain perception is modulated in health and disease.
Collapse
Affiliation(s)
- Michel-Pierre Coll
- École de Psychologie, Université Laval, Québec, QC, Canada
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, QC, Canada
| | - Zoey Walden
- Department of Psychology, McGill University, 2001 McGill College, Montréal, QC, Canada
| | | | - Veronique Taylor
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - Pierre Rainville
- Research Center of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Université de Montréal, Montréal, QC, Canada
| | - Manon Robert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Pierre Jolicoeur
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Roy
- Department of Psychology, McGill University, 2001 McGill College, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Ritz T, Schulz A, Khalsa S. The golden age of integrative neuroscience? The brain joins the body in the latest renaissance of interoception research. Biol Psychol 2024; 192:108851. [PMID: 39069198 DOI: 10.1016/j.biopsycho.2024.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| | - André Schulz
- Institute for Health and Behaviour, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg
| | - Sahib Khalsa
- Department of Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA; Laureate Institute for Brain Research, Tulsa, OK, USA
| |
Collapse
|
6
|
Sudimac S, Kühn S. Can a nature walk change your brain? Investigating hippocampal brain plasticity after one hour in a forest. ENVIRONMENTAL RESEARCH 2024; 262:119813. [PMID: 39155041 DOI: 10.1016/j.envres.2024.119813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
In cities, the incidence of mental disorders is higher, while visits to nature have been reported to benefit mental health and brain function. However, there is a lack of knowledge about how exposure to natural and urban environments affects brain structure. To explore the causal relationship between exposure to these environments and the hippocampal formation, 60 participants were sent on a one hour walk in either a natural (forest) or an urban environment (busy street), and high-resolution hippocampal imaging was performed before and after the walks. We found that the participants who walked in the forest had an increase in subiculum volume, a hippocampal subfield involved in stress response inhibition, while no change was observed after the urban walk. However, this result did not withstand Bonferroni correction for multiple comparisons. Furthermore, the increase in subiculum volume after the forest walk was associated with a decrease in self-reported rumination. These results indicate that visits to nature can lead to observable alterations in brain structure, with potential benefits for mental health and implications for public health and urban planning policies.
Collapse
Affiliation(s)
- Sonja Sudimac
- Max Planck Institute for Human Development, Center for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany.
| | - Simone Kühn
- Max Planck Institute for Human Development, Center for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany; University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Martinistr. 52, 20251, Hamburg, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin, Germany and London, UK, Lentzeallee 94, 14195, Berlin, Germany
| |
Collapse
|
7
|
Cohanpour M, Aly M, Gottlieb J. Neural Representations of Sensory Uncertainty and Confidence Are Associated with Perceptual Curiosity. J Neurosci 2024; 44:e0974232024. [PMID: 38969505 PMCID: PMC11326865 DOI: 10.1523/jneurosci.0974-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
Humans are immensely curious and motivated to reduce uncertainty, but little is known about the neural mechanisms that generate curiosity. Curiosity is inversely associated with confidence, suggesting that it is triggered by states of low confidence (subjective uncertainty), but the neural mechanisms of this link, have been little investigated. Inspired by studies of sensory uncertainty, we hypothesized that visual areas provide multivariate representations of uncertainty, which are read out by higher-order structures to generate signals of confidence and, ultimately, curiosity. We scanned participants (17 female, 15 male) using fMRI while they performed a new task in which they rated their confidence in identifying distorted images of animals and objects and their curiosity to see the clear image. We measured the activity evoked by each image in the occipitotemporal cortex (OTC) and devised a new metric of "OTC Certainty" indicating the strength of evidence this activity conveys about the animal versus object categories. We show that, perceptual curiosity peaked at low confidence and OTC Certainty negatively correlated with curiosity, establishing a link between curiosity and a multivariate representation of sensory uncertainty. Moreover, univariate (average) activity in two frontal areas-vmPFC and ACC-correlated positively with confidence and negatively with curiosity, and the vmPFC mediated the relationship between OTC Certainty and curiosity. The results reveal novel mechanisms through which uncertainty about an event generates curiosity about that event.
Collapse
Affiliation(s)
- Michael Cohanpour
- Department of Neuroscience, Columbia University, New York, New York 10025
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10025
| | - Mariam Aly
- Department of Psychology, Columbia University, New York, New York 10025
| | - Jacqueline Gottlieb
- Department of Neuroscience, Columbia University, New York, New York 10025
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10025
- Kavli Institute for Brain Science, Columbia University, New York, New York 10025
| |
Collapse
|
8
|
Ying X, Gao Y, Liao L. Brain Responses Difference between Sexes for Strong Desire to Void: A Functional Magnetic Resonance Imaging Study in Adults Based on Graph Theory. J Clin Med 2024; 13:4284. [PMID: 39124552 PMCID: PMC11313296 DOI: 10.3390/jcm13154284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Background: The alternations of brain responses to a strong desire to void were unclear, and the gender differences under the strong desire to void remain controversial. The present study aims to identify the functional brain network's topologic property changes evoked by a strong desire to void in healthy male and female adults with synchronous urodynamics using a graph theory analysis. Methods: The bladders of eleven healthy males and eleven females were filled via a catheter using a specific infusion and withdrawal pattern. A resting-state functional magnetic resonance imaging (fMRI) was performed on the enrolled subjects, scanning under both the empty bladder and strong desire to void states. An automated anatomical labeling (AAL) atlas was used to identify the ninety cortical and subcortical regions. Pearson's correlation calculations were performed to establish a brain connection matrix. A paired t-test (p < 0.05) and Bonferroni correction were applied to identify the significant statistical differences in topological properties between the two states, including small-world network property parameters [gamma (γ) and lambda (λ)], characteristic path length (Lp), clustering coefficient (Cp), global efficiency (Eglob), local efficiency (Eloc), and regional nodal efficiency (Enodal). Results: The final data suggested that females and males had different brain response patterns to a strong desire to void, compared with an empty bladder state. Conclusions: More brain regions involving emotion, cognition, and social work were active in females, and males might obtain a better urinary continence via a compensatory mechanism.
Collapse
Affiliation(s)
- Xiaoqian Ying
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
- Rehabilitation School, Capital Medical University, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068, China
| | - Yi Gao
- Department of Neurourology, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068, China
| | - Limin Liao
- Rehabilitation School, Capital Medical University, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068, China
- Department of Urology, Capital Medical University, Beijing 100068, China
| |
Collapse
|
9
|
Fischbach AK, Satpute AB, Quigley K, Kragel PA, Chen D, Bianciardi M, Wald L, Wager TD, Choi JK, Zhang J, Barrett LF, Theriault JE. Seven Tesla Evidence for Columnar and Rostral-Caudal Organization of the Human Periaqueductal Gray Response in the Absence of Threat: A Working Memory Study. J Neurosci 2024; 44:e1757232024. [PMID: 38664013 PMCID: PMC11211719 DOI: 10.1523/jneurosci.1757-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024] Open
Abstract
The periaqueductal gray (PAG) is a small midbrain structure that surrounds the cerebral aqueduct, regulates brain-body communication, and is often studied for its role in "fight-or-flight" and "freezing" responses to threat. We used ultra-high-field 7 T fMRI to resolve the PAG in humans and distinguish it from the cerebral aqueduct, examining its in vivo function during a working memory task (N = 87). Both mild and moderate cognitive demands elicited spatially similar patterns of whole-brain blood oxygenation level-dependent (BOLD) response, and moderate cognitive demand elicited widespread BOLD increases above baseline in the brainstem. Notably, these brainstem increases were not significantly greater than those in the mild demand condition, suggesting that a subthreshold brainstem BOLD increase occurred for mild cognitive demand as well. Subject-specific masks were group aligned to examine PAG response. In PAG, both mild and moderate demands elicited a well-defined response in ventrolateral PAG, a region thought to be functionally related to anticipated painful threat in humans and nonhuman animals-yet, the present task posed only the most minimal (if any) "threat," with the cognitive tasks used being approximately as challenging as remembering a phone number. These findings suggest that the PAG may play a more general role in visceromotor regulation, even in the absence of threat.
Collapse
Affiliation(s)
| | - Ajay B Satpute
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Karen Quigley
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Philip A Kragel
- Department of Psychology, Emory University, Atlanta, Georgia 30322
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Larry Wald
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Ji-Kyung Choi
- Department of Surgery, University of California, San Francisco, California 94143
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | | | - Jordan E Theriault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
10
|
Patel M, Braun JA, Henderson LA, Dawood T, Macefield VG. The effects of electrical stimulation of ventromedial prefrontal cortex on skin sympathetic nerve activity. Cereb Cortex 2024; 34:bhae235. [PMID: 38839074 DOI: 10.1093/cercor/bhae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Skin sympathetic nerve activity (SSNA) is primarily involved in thermoregulation and emotional expression; however, the brain regions involved in the generation of SSNA are not completely understood. In recent years, our laboratory has shown that blood-oxygen-level-dependent signal intensity in the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are positively correlated with bursts of SSNA during emotional arousal and increases in signal intensity in the vmPFC occurring with increases in spontaneous bursts of SSNA even in the resting state. We have recently shown that unilateral transcranial alternating current stimulation (tACS) of the dlPFC causes modulation of SSNA but given that the current was delivered between electrodes over the dlPFC and the nasion, it is possible that the effects were due to current acting on the vmPFC. To test this, we delivered tACS to target the right vmPFC or dlPFC and nasion and recorded SSNA in 11 healthy participants by inserting a tungsten microelectrode into the right common peroneal nerve. The similarity in SSNA modulation between ipsilateral vmPFC and dlPFC suggests that the ipsilateral vmPFC, rather than the dlPFC, may be causing the modulation of SSNA during ipsilateral dlPFC stimulation.
Collapse
Affiliation(s)
- Mariya Patel
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Joe A Braun
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Sydney, NSW 2006, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
11
|
Tyra AT, Fergus TA, Ginty AT. Emotion suppression and acute physiological responses to stress in healthy populations: a quantitative review of experimental and correlational investigations. Health Psychol Rev 2024; 18:396-420. [PMID: 37648224 DOI: 10.1080/17437199.2023.2251559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Emotion suppression may be linked to poor health outcomes through elevated stress-related physiology. The current meta-analyses investigate the magnitude of the association between suppression and physiological responses to active psychological stress tasks administered in the laboratory. Relevant articles were identified through Medline, PsychINFO, PubMed, and ProQuest. Studies were eligible if they (a) used a sample of healthy, human subjects; (b) assessed physiology during a resting baseline and active psychological stress task; and (c) measured self-report or experimentally manipulated suppression. Twenty-four studies were identified and grouped within two separate random effects meta-analyses based on study methodology, namely, manipulated suppression (k = 12) and/or self-report (k = 14). Experimentally manipulated suppression was associated with greater physiological stress reactivity compared to controls (Hg = 0.20, 95% CI [0.08, 0.33]), primarily driven by cardiac, hemodynamic, and neuroendocrine parameters. Self-report trait suppression was not associated with overall physiological stress reactivity but was associated with greater neuroendocrine reactivity (r = 0.08, 95% CI [0.01, 0.14]). Significant moderator variables were identified (i.e., type/duration of stress task, nature of control instructions, type of physiology, and gender). This review suggests that suppression may exacerbate stress-induced physiological arousal; however, this may differ based upon the chosen methodological assessment of suppression.
Collapse
Affiliation(s)
- Alexandra T Tyra
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Thomas A Fergus
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| |
Collapse
|
12
|
Li M, Schilling KG, Gao F, Xu L, Choi S, Gao Y, Zu Z, Anderson AW, Ding Z, Landman BA, Gore JC. Quantification of mediation effects of white matter functional characteristics on cognitive decline in aging. Cereb Cortex 2024; 34:bhae114. [PMID: 38517178 PMCID: PMC10958767 DOI: 10.1093/cercor/bhae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024] Open
Abstract
Cognitive decline with aging involves multifactorial processes, including changes in brain structure and function. This study focuses on the role of white matter functional characteristics, as reflected in blood oxygenation level-dependent signals, in age-related cognitive deterioration. Building on previous research confirming the reproducibility and age-dependence of blood oxygenation level-dependent signals acquired via functional magnetic resonance imaging, we here employ mediation analysis to test if aging affects cognition through white matter blood oxygenation level-dependent signal changes, impacting various cognitive domains and specific white matter regions. We used independent component analysis of resting-state blood oxygenation level-dependent signals to segment white matter into coherent hubs, offering a data-driven view of white matter's functional architecture. Through correlation analysis, we constructed a graph network and derived metrics to quantitatively assess regional functional properties based on resting-state blood oxygenation level-dependent fluctuations. Our analysis identified significant mediators in the age-cognition relationship, indicating that aging differentially influences cognitive functions by altering the functional characteristics of distinct white matter regions. These findings enhance our understanding of the neurobiological basis of cognitive aging, highlighting the critical role of white matter in maintaining cognitive integrity and proposing new approaches to assess interventions targeting cognitive decline in older populations.
Collapse
Affiliation(s)
- Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Soyoung Choi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, United States
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, United States
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, United States
- Department of Computer Science, Vanderbilt University, Nashville, TN 37240, United States
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, United States
- Department of Computer Science, Vanderbilt University, Nashville, TN 37240, United States
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, United States
| |
Collapse
|
13
|
Pavuluri K, Huston J, Ehman RL, Manduca A, Jack CR, Senjem ML, Vemuri P, Murphy MC. Associations between vascular health, brain stiffness and global cognitive function. Brain Commun 2024; 6:fcae073. [PMID: 38505229 PMCID: PMC10950054 DOI: 10.1093/braincomms/fcae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
Vascular brain injury results in loss of structural and functional connectivity and leads to cognitive impairment. Its various manifestations, including microinfarcts, microhaemorrhages and white matter hyperintensities, result in microstructural tissue integrity loss and secondary neurodegeneration. Among these, tissue microstructural alteration is a relatively early event compared with atrophy along the aging and neurodegeneration continuum. Understanding its association with cognition may provide the opportunity to further elucidate the relationship between vascular health and clinical outcomes. Magnetic resonance elastography offers a non-invasive approach to evaluate tissue mechanical properties, providing a window into the microstructural integrity of the brain. This retrospective study evaluated brain stiffness as a potential biomarker for vascular brain injury and its role in mediating the impact of vascular dysfunction on cognitive impairment. Seventy-five participants from the Mayo Clinic Study of Aging underwent brain imaging using a 3T MR imager with a spin-echo echo-planar imaging sequence for magnetic resonance elastography and T1- and T2-weighted pulse sequences. This study evaluated the effects of vascular biomarkers (white matter hyperintensities and cardiometabolic condition score) on brain stiffness using voxelwise analysis. Partial correlation analysis explored associations between brain stiffness, white matter hyperintensities, cardiometabolic condition and global cognition. Mediation analysis determined the role of stiffness in mediating the relationship between vascular biomarkers and cognitive performance. Statistical significance was set at P-values < 0.05. Diagnostic accuracy of magnetic resonance elastography stiffness for white matter hyperintensities and cardiometabolic condition was evaluated using receiver operator characteristic curves. Voxelwise linear regression analysis indicated white matter hyperintensities negatively correlate with brain stiffness, specifically in periventricular regions with high white matter hyperintensity levels. A negative association between cardiovascular risk factors and stiffness was also observed across the brain. No significant patterns of stiffness changes were associated with amyloid load. Global stiffness (µ) negatively correlated with both white matter hyperintensities and cardiometabolic condition when all other covariables including amyloid load were controlled. The positive correlation between white matter hyperintensities and cardiometabolic condition weakened and became statistically insignificant when controlling for other covariables. Brain stiffness and global cognition were positively correlated, maintaining statistical significance after adjusting for all covariables. These findings suggest mechanical alterations are associated with cognitive dysfunction and vascular brain injury. Brain stiffness significantly mediated the indirect effects of white matter hyperintensities and cardiometabolic condition on global cognition. Local cerebrovascular diseases (assessed by white matter hyperintensities) and systemic vascular risk factors (assessed by cardiometabolic condition) impact brain stiffness with spatially and statistically distinct effects. Global brain stiffness is a significant mediator between vascular disease measures and cognitive function, highlighting the value of magnetic resonance elastography-based mechanical assessments in understanding this relationship.
Collapse
Affiliation(s)
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Armando Manduca
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
14
|
Yang FN, Liu TT, Wang Z. Corticostriatal connectivity mediates the reciprocal relationship between parent-reported sleep duration and impulsivity in early adolescents. J Child Psychol Psychiatry 2023; 64:1545-1554. [PMID: 37248201 PMCID: PMC10592631 DOI: 10.1111/jcpp.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Adolescence, a developmental period characterized by significant changes in sleep, is associated with normative increases in impulsivity. While short sleep duration has been linked to elevated impulsivity, the neural mechanism underlying the relationship between short sleep duration and elevated impulsivity remains poorly understood. METHODS We analyzed a dataset of 7,884 drug-naive 9-10 year-olds from the Adolescent Brain Cognitive Development (ABCD) study. Among them, 5,166 have two-year follow-up neuroimaging data. Linear mixed-effects models, mediation analyses, and longitudinal mediation analyses were used to investigate the relationship between parent-reported sleep duration, impulsivity, and functional and structural connectivity between the cortex and the striatum. RESULTS We found that less sleep duration is significantly associated with higher positive and negative urgency, which are two affect-related components of impulsivity. In addition, we observed a link between short sleep duration and reduced corticostriatal connectivity. Neural pathways associated with short sleep duration-functional connectivity between the cingulo-opercular network and the left caudate, and between the cingulo-parietal network and the right pallidum-mediated the association between sleep duration and positive urgency both at baseline and two-year follow-up. Longitudinal mediation analyses further revealed that short sleep duration and elevated positive urgency exacerbated each other through these two corticostriatal connectivities. CONCLUSIONS These findings highlight the key role of corticostriatal connectivities in the reciprocal relationship between short sleep duration and elevated impulsivity. Given the increasing prevalence of short sleep duration in adolescents, the link between sleep duration, impulsivity, and corticostriatal connectivities has important implications for timely interventions to address impulsive problems in early adolescents.
Collapse
Affiliation(s)
- Fan Nils Yang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tina Tong Liu
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Koban L, Andrews-Hanna JR, Ives L, Wager TD, Arch JJ. Brain mediators of biased social learning of self-perception in social anxiety disorder. Transl Psychiatry 2023; 13:292. [PMID: 37660045 PMCID: PMC10475036 DOI: 10.1038/s41398-023-02587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/04/2023] Open
Abstract
Social anxiety disorder (SAD) is characterized by an excessive fear of social evaluation and a persistently negative view of the self. Here we test the hypothesis that negative biases in brain responses and in social learning of self-related information contribute to the negative self-image and low self-esteem characteristic of SAD. Adult participants diagnosed with social anxiety (N = 21) and matched controls (N = 23) rated their performance and received social feedback following a stressful public speaking task. We investigated how positive versus negative social feedback altered self-evaluation and state self-esteem and used functional Magnetic Resonance Imaging (fMRI) to characterize brain responses to positive versus negative feedback. Compared to controls, participants with SAD updated their self-evaluation and state self-esteem significantly more based on negative compared to positive social feedback. Responses in the frontoparietal network correlated with and mirrored these behavioral effects, with greater responses to positive than negative feedback in non-anxious controls but not in participants with SAD. Responses to social feedback in the anterior insula and other areas mediated the effects of negative versus positive feedback on changes in self-evaluation. In non-anxious participants, frontoparietal brain areas may contribute to a positive social learning bias. In SAD, frontoparietal areas are less recruited overall and less attuned to positive feedback, possibly reflecting differences in attention allocation and cognitive regulation. More negatively biased brain responses and social learning could contribute to maintaining a negative self-image in SAD and other internalizing disorders, thereby offering important new targets for interventions.
Collapse
Affiliation(s)
- Leonie Koban
- Lyon Neuroscience Research Center (CRNL), CNRS, INSERM, Université Claude Bernard Lyon 1, Bron, France.
| | | | - Lindsay Ives
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Tor D Wager
- Department of Cognitive and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Joanna J Arch
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
16
|
Shao H, Li S. A new perspective on HIV: effects of HIV on brain-heart axis. Front Cardiovasc Med 2023; 10:1226782. [PMID: 37600062 PMCID: PMC10436320 DOI: 10.3389/fcvm.2023.1226782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
The human immunodeficiency virus (HIV) infection can cause damage to multiple systems within the body, and the interaction among these various organ systems means that pathological changes in one system can have repercussions on the functions of other systems. However, the current focus of treatment and research on HIV predominantly centers around individual systems without considering the comprehensive relationship among them. The central nervous system (CNS) and cardiovascular system play crucial roles in supporting human life, and their functions are closely intertwined. In this review, we examine the effects of HIV on the CNS, the resulting impact on the cardiovascular system, and the direct damage caused by HIV to the cardiovascular system to provide new perspectives on HIV treatment.
Collapse
Affiliation(s)
| | - Sijun Li
- Department of Internal Medicine, The Fourth People's Hospital of Nanning, Nanning, China
| |
Collapse
|
17
|
Zhang J, Chen D, Srirangarajan T, Theriault J, Kragel PA, Hartley L, Lee KM, McVeigh K, Wager TD, Wald LL, Satpute AB, Quigley KS, Whitfield-Gabrieli S, Barrett LF, Bianciardi M. Cortical and subcortical mapping of the allostatic-interoceptive system in the human brain: replication and extension with 7 Tesla fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.548178. [PMID: 37546889 PMCID: PMC10401932 DOI: 10.1101/2023.07.20.548178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The brain continuously anticipates the energetic needs of the body and prepares to meet those needs before they arise, a process called allostasis. In support of allostasis, the brain continually models the internal state of the body, a process called interoception. Using published tract-tracing studies in non-human animals as a guide, we previously identified a large-scale system supporting allostasis and interoception in the human brain with functional magnetic resonance imaging (fMRI) at 3 Tesla. In the present study, we replicated and extended this system in humans using 7 Tesla fMRI (N = 91), improving the precision of subgenual and pregenual anterior cingulate topography as well as brainstem nuclei mapping. We verified over 90% of the anatomical connections in the hypothesized allostatic-interoceptive system observed in non-human animal research. We also identified functional connectivity hubs verified in tract-tracing studies but not previously detected using 3 Tesla fMRI. Finally, we demonstrated that individuals with stronger fMRI connectivity between system hubs self-reported greater interoceptive awareness, building on construct validity evidence from our earlier paper. Taken together, these results strengthen evidence for the existence of a whole-brain system supporting interoception in the service of allostasis and we consider the implications for mental and physical health.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Jordan Theriault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02139
| | | | - Ludger Hartley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kent M. Lee
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kieran McVeigh
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Lawrence L. Wald
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02139
| | - Ajay B. Satpute
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA 02115
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02139
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02139
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02139
- Division of Sleep Medicine, Harvard University, Boston, MA
| |
Collapse
|
18
|
DaSilva AF, Kim DJ, Lim M, Nascimento TD, Scott PJH, Smith YR, Koeppe RA, Zubieta JK, Kaciroti N. Effect of High-Definition Transcranial Direct Current Stimulation on Headache Severity and Central µ-Opioid Receptor Availability in Episodic Migraine. J Pain Res 2023; 16:2509-2523. [PMID: 37497372 PMCID: PMC10368121 DOI: 10.2147/jpr.s407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Objective The current understanding of utilizing HD-tDCS as a targeted approach to improve headache attacks and modulate endogenous opioid systems in episodic migraine is relatively limited. This study aimed to determine whether high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) can improve clinical outcomes and endogenous µ-opioid receptor (µOR) availability for episodic migraineurs. Methods In a randomized, double-blind, and sham-controlled trial, 25 patients completed 10-daily 20-min M1 HD-tDCS, repeated Positron Emission Tomography (PET) scans with a selective agonist for µOR. Twelve age- and sex-matched healthy controls participated in the baseline PET/MRI scan without neuromodulation. The primary endpoints were moderate-to-severe (M/S) headache days and responder rate (≥50% reduction on M/S headache days from baseline), and secondary endpoints included the presence of M/S headache intensity and the use of rescue medication over 1-month after treatment. Results In a one-month follow-up, at initial analysis, both the active and sham groups exhibited no significant differences in their primary outcomes (M/S headache days and responder rates). Similarly, secondary outcomes (M/S headache intensity and the usage of rescue medication) also revealed no significant differences between the two groups. However, subsequent analyses showed that active M1 HD-tDCS, compared to sham, resulted in a more beneficial response predominantly in higher-frequency individuals (>3 attacks/month), as demonstrated by the interaction between treatment indicator and baseline frequency of migraine attacks on the primary outcomes. These favorable outcomes were also confirmed for the secondary endpoints in higher-frequency patients. Active treatment also resulted in increased µOR concentration compared to sham in the limbic and descending pain modulatory pathway. Our exploratory mediation analysis suggests that the observed clinical efficacy of HD-tDCS in patients with higher-frequency conditions might be potentially mediated through an increase in µOR availability. Conclusion The 10-daily M1 HD-tDCS can improve clinical outcomes in episodic migraineurs with a higher baseline frequency of migraine attacks (>3 attacks/month). This improvement may be, in part, facilitated by the increase in the endogenous µOR availability. Clinical Trial Registration www.ClinicalTrials.gov, identifier - NCT02964741.
Collapse
Affiliation(s)
- Alexandre F DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Dajung J Kim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Manyoel Lim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Thiago D Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, Mass General Brigham, Newton-Wellesley Hospital, Newton, MA, USA
| | - Niko Kaciroti
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Immanuel SA, Shahrbabaki SS, Baumert M. Symbolic dynamics of sleep heart rate variability is associated with cognitive decline in older men. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083241 DOI: 10.1109/embc40787.2023.10340848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
We aimed to investigate the association between autonomic and cognitive functions in older men. We investigated heart rate variability (HRV) during sleep using time domain metrics and symbolic dynamics analysis of inter-beat intervals. These metrics were statistically analysed for associations with cognitive function which was elicited by administering the modified mini-mental state examination (3MS) and the Trail making test part-B in older men participating in the MrOS sleep study.Multivariable linear regression adjusted for age, body-mass-index (BMI), apnea-hypopnea index (AHI) and arousal index (A.I.) showed that symbolic dynamics of HRV especially the 0V% which is a measure of sympathetic outflow to the heart during rapid eye movement (REM) sleep is significantly associated with 3MS and Trail B scores. In conclusion, nonlinear HRV during sleep provides a unique window to probe the association between cognitive and autonomic function.Clinical Relevance- This study shows that cognitive decline is associated with altered cardiac autonomic function.
Collapse
|
20
|
Rasooli A, Adab HZ, Van Ruitenbeek P, Weerasekera A, Chalavi S, Cuypers K, Levin O, Dhollander T, Peeters R, Sunaert S, Mantini D, Swinnen SP. White matter and neurochemical mechanisms underlying age-related differences in motor processing speed. iScience 2023; 26:106794. [PMID: 37255665 PMCID: PMC10225899 DOI: 10.1016/j.isci.2023.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is associated with changes in the central nervous system and leads to reduced life quality. Here, we investigated the age-related differences in the CNS underlying motor performance deficits using magnetic resonance spectroscopy and diffusion MRI. MRS measured N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) concentrations in the sensorimotor and occipital cortex, whereas dMRI quantified apparent fiber density (FD) in the same voxels to evaluate white matter microstructural organization. We found that aging was associated with increased reaction time and reduced FD and NAA concentration in the sensorimotor voxel. Both FD and NAA mediated the association between age and reaction time. The NAA concentration was found to mediate the association between age and FD in the sensorimotor voxel. We propose that the age-related decrease in NAA concentration may result in reduced axonal fiber density in the sensorimotor cortex which may ultimately account for the response slowness of older participants.
Collapse
Affiliation(s)
- Amirhossein Rasooli
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Peter Van Ruitenbeek
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Akila Weerasekera
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Ronald Peeters
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Eskelin JJ, Lundblad LC, Wallin BG, Karlsson T, Riaz B, Lundqvist D, Schneiderman JF, Elam M. From MEG to clinical EEG: evaluating a promising non-invasive estimator of defense-related muscle sympathetic nerve inhibition. Sci Rep 2023; 13:9507. [PMID: 37308784 DOI: 10.1038/s41598-023-36753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023] Open
Abstract
Sudden, unexpected stimuli can induce a transient inhibition of sympathetic vasoconstriction to skeletal muscle, indicating a link to defense reactions. This phenomenon is relatively stable within, but differs between, individuals. It correlates with blood pressure reactivity which is associated with cardiovascular risk. Inhibition of muscle sympathetic nerve activity (MSNA) is currently characterized through invasive microneurography in peripheral nerves. We recently reported that brain neural oscillatory power in the beta spectrum (beta rebound) recorded with magnetoencephalography (MEG) correlated closely with stimulus-induced MSNA inhibition. Aiming for a clinically more available surrogate variable reflecting MSNA inhibition, we investigated whether a similar approach with electroencephalography (EEG) can accurately gauge stimulus-induced beta rebound. We found that beta rebound shows similar tendencies to correlate with MSNA inhibition, but these EEG data lack the robustness of previous MEG results, although a correlation in the low beta band (13-20 Hz) to MSNA inhibition was found (p = 0.021). The predictive power is summarized in a receiver-operating-characteristics curve. The optimum threshold yielded sensitivity and false-positive rate of 0.74 and 0.33 respectively. A plausible confounder is myogenic noise. A more complicated experimental and/or analysis approach is required for differentiating MSNA-inhibitors from non-inhibitors based on EEG, as compared to MEG.
Collapse
Affiliation(s)
- John J Eskelin
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden.
| | - Linda C Lundblad
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - B Gunnar Wallin
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Tomas Karlsson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Bushra Riaz
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Justin F Schneiderman
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Mikael Elam
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| |
Collapse
|
22
|
Blythe JS, Thomaidou MA, Peerdeman KJ, van Laarhoven AI, van Schothorst MM, Veldhuijzen DS, Evers AW. Placebo effects on cutaneous pain and itch: a systematic review and meta-analysis of experimental results and methodology. Pain 2023; 164:1181-1199. [PMID: 36718994 PMCID: PMC10184563 DOI: 10.1097/j.pain.0000000000002820] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 02/01/2023]
Abstract
ABSTRACT Placebo effects, positive treatment outcomes that go beyond treatment processes, can alter sensations through learning mechanisms. Understanding how methodological factors contribute to the magnitude of placebo effects will help define the mechanisms by which these effects occur. We conducted a systematic review and meta-analysis of experimental placebo studies in cutaneous pain and itch in healthy samples, focused on how differences in methodology contribute to the resulting placebo effect magnitude. We conducted meta-analyses by learning mechanism and sensation, namely, for classical conditioning with verbal suggestion, verbal suggestion alone, and observational learning, separately for pain and itch. We conducted subgroup analyses and meta-regression on the type of sensory stimuli, placebo treatment, number of acquisition and evocation trials, differences in calibrated intensities for placebo and control stimuli during acquisition, age, and sex. We replicated findings showing that a combination of classical conditioning with verbal suggestion induced larger placebo effects on pain ( k = 68, g = 0 . 59) than verbal suggestion alone ( k = 39, g = 0.38) and found a smaller effect for itch with verbal suggestion alone ( k = 7, g = 0.14). Using sham electrodes as placebo treatments corresponded with larger placebo effects on pain than when topical gels were used. Other methodological and demographic factors did not significantly affect placebo magnitudes. Placebo effects on pain and itch reliably occur in experimental settings with varied methods, and conditioning with verbal suggestion produced the strongest effects. Although methods may shape the placebo effect to some extent, these effects appear robust overall, and their underlying learning mechanisms may be harnessed for applications outside the laboratory.
Collapse
Affiliation(s)
- Joseph S. Blythe
- Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Mia A. Thomaidou
- Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Kaya J. Peerdeman
- Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Antoinette I.M. van Laarhoven
- Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
- Department of Psychiatry, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Dieuwke S. Veldhuijzen
- Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Andrea W.M. Evers
- Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
- Medical Delta Healthy Society, Leiden University, Technical University Delft, and Erasmus University Rotterdam, Rotterdam, the Netherlands
- Department of Psychiatry, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
23
|
O' Riordan A, Howard S, Gallagher S. Blunted cardiovascular reactivity to psychological stress and prospective health: a systematic review. Health Psychol Rev 2023; 17:121-147. [PMID: 35445639 DOI: 10.1080/17437199.2022.2068639] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 04/18/2022] [Indexed: 01/04/2023]
Abstract
Novel research demonstrates that lower or 'blunted' cardiovascular reactions to stress are associated with a range of adverse outcomes. The aim of the current review was (1) to examine the prospective outcomes predicted by blunted cardiovascular reactivity and (2) to identify a range of blunted cardiovascular reaction levels that predict these outcomes. Electronic databases were systematically searched (Medline, PsycArticles, PsycInfo, CINAHL, PubMed, Web of Science). Studies were included if they examined the prospective influence of blunted cardiovascular reactivity to psychological stress (SBP, DBP or HR) on a negative health, behavioural or psychological outcome. A total of 23 studies were included in the review. Blunted reactivity predicted (1) adverse cardiovascular health, primarily in cardiac samples (e.g., myocardial infarction, carotid atherosclerosis) and (2) outcomes associated with motivational and behavioural dysregulation in healthy samples (e.g., obesity, smoking addiction, depression). The cardiovascular reactivity threshold levels that were predictive of adverse health outcomes ranged between -3.00-12.59 bpm (14.41% to 136.59% lower than the sample mean) and -2.4-5.00 mmhg (65.99% to 133.80% lower than sample mean), for HR and DBP respectively. We posit that blunted reactions lower than, or equal to, the ranges reported here may be utilised by clinicians and researchers to identify individuals who are at increased risk of adverse cardiovascular health outcomes, as well as outcomes associated with motivational and behavioural dysregulation.
Collapse
Affiliation(s)
- Adam O' Riordan
- Department of Psychology, Centre for Social Issues Research, Study of Anxiety, Stress and Health Laboratory, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Siobhán Howard
- Department of Psychology, Centre for Social Issues Research, Study of Anxiety, Stress and Health Laboratory, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Stephen Gallagher
- Department of Psychology, Centre for Social Issues Research, Study of Anxiety, Stress and Health Laboratory, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
24
|
Nath T, Caffo B, Wager T, Lindquist MA. A machine learning based approach towards high-dimensional mediation analysis. Neuroimage 2023; 268:119843. [PMID: 36586543 PMCID: PMC10332048 DOI: 10.1016/j.neuroimage.2022.119843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Mediation analysis is used to investigate the role of intermediate variables (mediators) that lie in the path between an exposure and an outcome variable. While significant research has focused on developing methods for assessing the influence of mediators on the exposure-outcome relationship, current approaches do not easily extend to settings where the mediator is high-dimensional. These situations are becoming increasingly common with the rapid increase of new applications measuring massive numbers of variables, including brain imaging, genomics, and metabolomics. In this work, we introduce a novel machine learning based method for identifying high dimensional mediators. The proposed algorithm iterates between using a machine learning model to map the high-dimensional mediators onto a lower-dimensional space, and using the predicted values as input in a standard three-variable mediation model. Hence, the machine learning model is trained to maximize the likelihood of the mediation model. Importantly, the proposed algorithm is agnostic to the machine learning model that is used, providing significant flexibility in the types of situations where it can be used. We illustrate the proposed methodology using data from two functional Magnetic Resonance Imaging (fMRI) studies. First, using data from a task-based fMRI study of thermal pain, we combine the proposed algorithm with a deep learning model to detect distributed, network-level brain patterns mediating the relationship between stimulus intensity (temperature) and reported pain at the single trial level. Second, using resting-state fMRI data from the Human Connectome Project, we combine the proposed algorithm with a connectome-based predictive modeling approach to determine brain functional connectivity measures that mediate the relationship between fluid intelligence and working memory accuracy. In both cases, our multivariate mediation model links exposure variables (thermal pain or fluid intelligence), high dimensional brain measures (single-trial brain activation maps or resting-state brain connectivity) and behavioral outcomes (pain report or working memory accuracy) into a single unified model. Using the proposed approach, we are able to identify brain-based measures that simultaneously encode the exposure variable and correlate with the behavioral outcome.
Collapse
Affiliation(s)
- Tanmay Nath
- The Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.
| | - Brian Caffo
- The Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Tor Wager
- The Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Martin A Lindquist
- The Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Blythe JS, Mansueto AC, Duken SB, Cremers HR. The generalization of behavioral control over physical threats to social stressors in humans: A pilot fMRI study. Psychiatry Res Neuroimaging 2023; 329:111598. [PMID: 36680844 DOI: 10.1016/j.pscychresns.2023.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Behavioral control, the ability to manage one's exposure to a given stressor, influences the impacts of both the present and future stressors. Behavioral control over a stressor may decrease stress caused by the stressor, and promote resilience towards future stressors. A lack of behavioral control may exacerbate the stress response and lead to learned helplessness, a generalized view that one cannot control other, unrelated stressors in their environment. The ventromedial prefrontal cortex (vmPFC) may detect the presence of behavioral control over a stressor and communicate this to subcortical regions involved in stress responses, such as the nucleus accumbens (NAc). Building on previous research in animals and humans, we piloted a paradigm to investigate how behavioral control over a physical threat (electric shocks), generalized to responses for a subsequent social stressor (anticipation of public speaking). Our manipulation of behavioral control effected perceived control between groups, increased stress across but not between groups, and no effects generalized to the subsequent social stressor in behavioral, physiological, or neural responses. We discuss refinements to the paradigm to strengthen the manipulation, the potential impacts of statistical power on the present results, and metrics to measure the generalization of behavioral control in addition to vmPFC-subcortical connectivity.
Collapse
Affiliation(s)
- Joseph S Blythe
- University of Amsterdam, Department of Clinical Psychology, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands; Leiden University, Health, Medical and Neuropsychology Unit, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands.
| | - Alessandra C Mansueto
- University of Amsterdam, Department of Clinical Psychology, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands; University of Amsterdam, Department of Developmental Psychology, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands; University of Amsterdam, Department of Psychological Methods, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands; University of Amsterdam, Center for Urban Mental Health, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands; University of Amsterdam, Amsterdam School of Communication Research (ASCoR), Postbus 15791, 1001 NG Amsterdam, The Netherlands
| | - Sascha B Duken
- University of Amsterdam, Department of Clinical Psychology, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Henk R Cremers
- University of Amsterdam, Department of Clinical Psychology, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| |
Collapse
|
26
|
Moses TE, Gray E, Mischel N, Greenwald MK. Effects of neuromodulation on cognitive and emotional responses to psychosocial stressors in healthy humans. Neurobiol Stress 2023; 22:100515. [PMID: 36691646 PMCID: PMC9860364 DOI: 10.1016/j.ynstr.2023.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Physiological and psychological stressors can exert wide-ranging effects on the human brain and behavior. Research has improved understanding of how the sympatho-adreno-medullary (SAM) and hypothalamic-pituitary-adrenocortical (HPA) axes respond to stressors and the differential responses that occur depending on stressor type. Although the physiological function of SAM and HPA responses is to promote survival and safety, exaggerated psychobiological reactivity can occur in psychiatric disorders. Exaggerated reactivity may occur more for certain types of stressors, specifically, psychosocial stressors. Understanding stressor effects and how the body regulates these responses can provide insight into ways that psychobiological reactivity can be modulated. Non-invasive neuromodulation is one way that responding to stressors may be altered; research into these interventions may provide further insights into the brain circuits that modulate stress reactivity. This review focuses on the effects of acute psychosocial stressors and how neuromodulation might be effective in altering stress reactivity. Although considerable research into stress interventions focuses on treating pathology, it is imperative to first understand these mechanisms in non-clinical populations; therefore, this review will emphasize populations with no known pathology and consider how these results may translate to those with psychiatric pathologies.
Collapse
Affiliation(s)
| | | | | | - Mark K. Greenwald
- Corresponding author. Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
| |
Collapse
|
27
|
Kuhn L, Noack H, Wagels L, Prothmann A, Schulik A, Aydin E, Nieratschker V, Derntl B, Habel U. Sex-dependent multimodal response profiles to psychosocial stress. Cereb Cortex 2023; 33:583-596. [PMID: 35238348 DOI: 10.1093/cercor/bhac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Sex differences in stress reactions are often reported in the literature. However, the sex-dependent interplay of different facets of stress is still not fully understood. Particularly in neuroimaging research, studies on large samples combining different indicators of stress remain scarce. MATERIALS AND METHODS In a functional magnetic resonance imaging study, a sample of 140 healthy participants (67 females using oral contraceptives) underwent a standardized stress induction protocol, the ScanSTRESS. During the experiment, salivary cortisol and subjective ratings were obtained at multiple time points and heart rate was recorded. RESULTS Sex differences emerged in different facets of the stress response:Women reacted with enhanced subjective feelings of stress and increases in heart rate, while men showed more pronounced neural activation in stress-related brain regions such as the inferior frontal gyrus and insula. Subjective feelings of stress and (para) hippocampal activity were negatively related in women,whereas a slightly positive association was observed in men. DISCUSSION These results provide further insight in the sex-specific stress response patterns. Moreover, they emphasize the role of the hippocampus in the regulation of the stress response. This paves the way for the identification of sex-dependent vulnerability factors that can, in the future, be implemented in the prevention and treatment of stress-related disorders.
Collapse
Affiliation(s)
- Leandra Kuhn
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraβe 30, 52074 Aachen, Germany
| | - Hannes Noack
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Calwerstraβe 14, 72076 Tübingen, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraβe 30, 52074 Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Wilhelm-Johnen-Straβe, 52425 Jülich, Germany
| | - Anna Prothmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraβe 30, 52074 Aachen, Germany
| | - Anna Schulik
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraβe 30, 52074 Aachen, Germany
| | - Ece Aydin
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, (Haus B), 72076 Tübingen, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Calwerstraβe 14, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Calwerstraβe 14, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany.,Lead Research Network, University of Tübingen, Europastraβe 6, 72072 Tübingen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraβe 30, 52074 Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Wilhelm-Johnen-Straβe, 52425 Jülich, Germany
| |
Collapse
|
28
|
Pinto AM, Geenen R, Wager TD, Lumley MA, Häuser W, Kosek E, Ablin JN, Amris K, Branco J, Buskila D, Castelhano J, Castelo-Branco M, Crofford LJ, Fitzcharles MA, López-Solà M, Luís M, Marques TR, Mease PJ, Palavra F, Rhudy JL, Uddin LQ, Castilho P, Jacobs JWG, da Silva JAP. Emotion regulation and the salience network: a hypothetical integrative model of fibromyalgia. Nat Rev Rheumatol 2023; 19:44-60. [PMID: 36471023 DOI: 10.1038/s41584-022-00873-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/09/2022]
Abstract
Fibromyalgia is characterized by widespread pain, fatigue, sleep disturbances and other symptoms, and has a substantial socioeconomic impact. Current biomedical and psychosocial treatments are unsatisfactory for many patients, and treatment progress has been hindered by the lack of a clear understanding of the pathogenesis of fibromyalgia. We present here a model of fibromyalgia that integrates current psychosocial and neurophysiological observations. We propose that an imbalance in emotion regulation, reflected by an overactive 'threat' system and underactive 'soothing' system, might keep the 'salience network' (also known as the midcingulo-insular network) in continuous alert mode, and this hyperactivation, in conjunction with other mechanisms, contributes to fibromyalgia. This proposed integrative model, which we term the Fibromyalgia: Imbalance of Threat and Soothing Systems (FITSS) model, should be viewed as a working hypothesis with limited supporting evidence available. We hope, however, that this model will shed new light on existing psychosocial and biological observations, and inspire future research to address the many gaps in our knowledge about fibromyalgia, ultimately stimulating the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Ana Margarida Pinto
- University of Coimbra, Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences, Coimbra, Portugal
- University of Coimbra, University Clinic of Rheumatology, Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Psychological Medicine Institute, Faculty of Medicine, Coimbra, Portugal
| | - Rinie Geenen
- Department of Psychology, Utrecht University, Utrecht, The Netherlands
- Altrecht Psychosomatic Medicine Eikenboom, Zeist, The Netherlands
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Mark A Lumley
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Winfried Häuser
- Department Psychosomatic Medicine and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jacob N Ablin
- Internal Medicine H, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Kirstine Amris
- The Parker Institute, Department of Rheumatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Jaime Branco
- Rheumatology Department, Egas Moniz Hospital - Lisboa Ocidental Hospital Centre (CHLO-EPE), Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Chronic Diseases Research Centre (CEDOC), NOVA Medical School, NOVA University Lisbon (NMS/UNL), Lisbon, Portugal
| | - Dan Buskila
- Ben Gurion University of the Negev Beer-Sheba, Beersheba, Israel
| | - João Castelhano
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Coimbra, Portugal
| | - Miguel Castelo-Branco
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Coimbra, Portugal
| | - Leslie J Crofford
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary-Ann Fitzcharles
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Marina López-Solà
- Serra Hunter Programme, Department of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mariana Luís
- Rheumatology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip J Mease
- Swedish Medical Center/Providence St. Joseph Health, Seattle, WA, USA
- University of Washington School of Medicine, Seattle, WA, USA
| | - Filipe Palavra
- Centre for Child Development, Neuropediatric Unit, Paediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (i.CBR), Faculty of Medicine, Coimbra, Portugal
| | - Jamie L Rhudy
- Department of Psychology, University of Tulsa, Tulsa, OK, USA
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Paula Castilho
- University of Coimbra, Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences, Coimbra, Portugal
| | - Johannes W G Jacobs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - José A P da Silva
- University of Coimbra, University Clinic of Rheumatology, Faculty of Medicine, Coimbra, Portugal.
- Rheumatology Department, Coimbra Hospital and University Centre, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (i.CBR), Faculty of Medicine, Coimbra, Portugal.
| |
Collapse
|
29
|
Klugah-Brown B, Zhou X, Wang L, Gan X, Zhang R, Liu X, Song X, Zhao W, Biswal BB, Yu F, Montag C, Becker B. Associations between levels of Internet Gaming Disorder symptoms and striatal morphology-replication and associations with social anxiety. PSYCHORADIOLOGY 2022; 2:207-215. [PMID: 38665272 PMCID: PMC10917202 DOI: 10.1093/psyrad/kkac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 04/28/2024]
Abstract
Background Brain structural alterations of the striatum have been frequently observed in internet gaming disorder (IGD); however, the replicability of the results and the associations with social-affective dysregulations such as social anxiety remain to be determined. Methods The present study combined a dimensional neuroimaging approach with both voxel-wise and data-driven multivariate approaches to (i) replicate our previous results on a negative association between IGD symptom load (assessed by the Internet Gaming Disorder Scale-Short Form) and striatal volume, (ii) extend these findings to female individuals, and (iii) employ multivariate and mediation models to determine common brain structural representations of IGD and social anxiety (assessed by the Liebowitz Social Anxiety Scale). Results In line with the original study, the voxel-wise analyses revealed a negative association between IGD and volumes of the bilateral caudate. Going beyond the earlier study investigating only male participants, the present study demonstrates that the association in the right caudate was comparable in both the male and the female subsamples. Further examination using the multivariate approach revealed regionally different associations between IGD and social anxiety with striatal density representations in the dorsal striatum (caudate) and ventral striatum (nucleus accumbens). Higher levels of IGD were associated with higher social anxiety and the association was critically mediated by the multivariate neurostructural density variations of the striatum. Conclusions Altered striatal volumes may represent a replicable and generalizable marker of IGD symptoms. However, exploratory multivariate analyses revealed more complex and regional specific associations between striatal density and IGD as well as social anxiety symptoms. Variations in both tendencies may share common structural brain representations, which mediate the association between increased IGD and social anxiety.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinqi Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, 89069 Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| |
Collapse
|
30
|
Nanni-Zepeda M, Alizadeh S, Chand T, Kasties V, Fan Y, van der Meer J, Herrmann L, Vester JC, Schulz M, Naschold B, Walter M. Trait anxiety is related to Nx4's efficacy on stress-induced changes in amygdala-centered resting state functional connectivity: a placebo-controlled cross-over trial in mildly to moderately stressed healthy volunteers. BMC Neurosci 2022; 23:68. [PMID: 36434512 PMCID: PMC9694608 DOI: 10.1186/s12868-022-00754-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The multicomponent drug Neurexan (Nx4) was shown to reduce the neural stress network activation. We now investigated its effects on stress-induced resting state functional connectivity (RSFC) in dependence of trait anxiety (TA), an acknowledged vulnerability factor for stress-induced psychopathologies. METHODS Nx4 was tested in a randomized placebo-controlled crossover trial. Resting state fMRI scans were performed before and after a psychosocial stress task and exploratively analyzed for amygdala centered RSFC. Effects of Nx4 on stress-induced RSFC changes were evaluated and correlated to TA levels. A subgroup analysis based on TA scores was performed. RESULTS Multiple linear regression analysis revealed a significant correlation between TA and Nx4 effect on stress-induced RSFC changes between right amygdala and pregenual anterior cingulate cortex (pgACC) and ventro-medial prefrontal cortex (vmPFC). For participants with above average TA, a significant amelioration of the stress-induced RSFC changes was observed. CONCLUSIONS The data add evidence to the hypothesis that Nx4's clinical efficacy is based on a dampened activation of the neural stress network, with a greater neural response in subjects with anxious personality traits. Further studies assessing clinically relevant outcome measures in parallel to fMRI are encouraged to evaluate the real-world benefit of Nx4. Trial registration NCT02602275.
Collapse
Affiliation(s)
- Melanni Nanni-Zepeda
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Sarah Alizadeh
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Tara Chand
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Vanessa Kasties
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany
| | - Yan Fan
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany
| | - Johan van der Meer
- grid.509540.d0000 0004 6880 3010Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Luisa Herrmann
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Johannes C. Vester
- idv Data Analysis and Study Planning, Tassilostraße 6, 82131 Gauting, Germany
| | - Myron Schulz
- grid.476093.f0000 0004 0629 2294Biologische Heilmittel Heel GmbH, Dr.-Reckeweg-Str. 2-4, 76532 Baden-Baden, Germany
| | - Britta Naschold
- grid.476093.f0000 0004 0629 2294Biologische Heilmittel Heel GmbH, Dr.-Reckeweg-Str. 2-4, 76532 Baden-Baden, Germany
| | - Martin Walter
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| |
Collapse
|
31
|
Atlas LY, Dildine TC, Palacios-Barrios EE, Yu Q, Reynolds RC, Banker LA, Grant SS, Pine DS. Instructions and experiential learning have similar impacts on pain and pain-related brain responses but produce dissociations in value-based reversal learning. eLife 2022; 11:e73353. [PMID: 36317867 PMCID: PMC9681218 DOI: 10.7554/elife.73353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Recent data suggest that interactions between systems involved in higher order knowledge and associative learning drive responses during value-based learning. However, it is unknown how these systems impact subjective responses, such as pain. We tested how instructions and reversal learning influence pain and pain-evoked brain activation. Healthy volunteers (n=40) were either instructed about contingencies between cues and aversive outcomes or learned through experience in a paradigm where contingencies reversed three times. We measured predictive cue effects on pain and heat-evoked brain responses using functional magnetic resonance imaging. Predictive cues dynamically modulated pain perception as contingencies changed, regardless of whether participants received contingency instructions. Heat-evoked responses in the insula, anterior cingulate, and other regions updated as contingencies changed, and responses in the prefrontal cortex mediated dynamic cue effects on pain, whereas responses in the brainstem's rostroventral medulla (RVM) were shaped by initial contingencies throughout the task. Quantitative modeling revealed that expected value was shaped purely by instructions in the Instructed Group, whereas expected value updated dynamically in the Uninstructed Group as a function of error-based learning. These differences were accompanied by dissociations in the neural correlates of value-based learning in the rostral anterior cingulate, thalamus, and posterior insula, among other regions. These results show how predictions dynamically impact subjective pain. Moreover, imaging data delineate three types of networks involved in pain generation and value-based learning: those that respond to initial contingencies, those that update dynamically during feedback-driven learning as contingencies change, and those that are sensitive to instruction. Together, these findings provide multiple points of entry for therapies designs to impact pain.
Collapse
Affiliation(s)
- Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
- National Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Troy C Dildine
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
- Department of Clinical Neuroscience, Karolinska InstitutetSolnaSweden
| | | | - Qingbao Yu
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Richard C Reynolds
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Lauren A Banker
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Shara S Grant
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Daniel S Pine
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
32
|
Bottemanne H, Morlaas O, Claret A, Sharot T, Fossati P, Schmidt L. Evaluation of Early Ketamine Effects on Belief-Updating Biases in Patients With Treatment-Resistant Depression. JAMA Psychiatry 2022; 79:1124-1132. [PMID: 36169969 PMCID: PMC9520441 DOI: 10.1001/jamapsychiatry.2022.2996] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
IMPORTANCE Clinical research has shown that persistent negative beliefs maintain depression and that subanesthetic ketamine infusions induce rapid antidepressant responses. OBJECTIVE To evaluate whether ketamine alters belief updating and how such cognitive effects are associated with the clinical effects of ketamine. DESIGN, SETTING, AND PARTICIPANTS This study used an observational case-control protocol with a mixed-effects design that nested 2 groups by 2 testing time points. Observers were not blinded. Patients with treatment-resistant depression (TRD) and healthy volunteer participants aged 34 to 68 years were included. Patients with TRD were diagnosed with major depressive disorder or bipolar depression, had a Montgomery-Åsberg Depression Rating Scale score greater than 20, a Maudsley Staging Method score greater than 7, and failed to respond to at least 2 prior antidepressant trials. Exclusion criteria were any other psychiatric, neurological, or neurosurgical comorbidities, substance use or addictive disorders, and recreational ketamine consumption. Data were collected from January to February 2019 and from May to December 2019, and data were analyzed from January 2020 to July 2021. EXPOSURES Patients with TRD were observed 24 hours before single ketamine infusion, 4 hours after the infusion, and 4 hours after the third infusion, which was 1 week after the first infusion. Healthy control participants were observed twice 1 week apart without ketamine exposure. MAIN OUTCOMES AND MEASURES Montgomery-Åsberg Depression Rating Scale score and belief updating after belief updating when patients received good news and bad news measured by a cognitive belief-updating task and mathematically formalized by a computational reinforcement learning model. RESULTS Of 56 included participants, 29 (52%) were male, and the mean (SEM) age was 52.3 (1.2) years. A total of 26 patients with TRD and 30 control participants were included. A significant group × testing time point × news valence interaction showed that patients with TRD updated their beliefs more after good than bad news following a single ketamine infusion (controlled for age and education: β = -0.91; 95% CI, -1.58 to -0.24; t216 = -2.67; P = .008) than controls. Computational modeling showed that this effect was associated with asymmetrical learning rates (LRs) after ketamine treatment (good news LRs after ketamine, 0.51 [SEM, 0.04]; bad news LRs after ketamine 0.36 [SEM, 0.03], t25 = 3.8; P < .001) and partially mediated early antidepressant responses (path a*b: β = -1.00 [SEM, 0.66]; t26 = -1.53; z = -1.98; P = .04). CONCLUSIONS AND RELEVANCE These findings provide novel insights into the cognitive mechanisms of the action of ketamine in patients with TRD, with promising perspectives for augmented psychotherapy for individuals with mood disorders.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Control-Interoception Attention Team, Paris Brain Institute, Sorbonne University, National Institute of Health and Medical Research, French National Centre for Scientific Research, Assistance Publique–Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, DMU Neuroscience, Paris, France,Department of Psychiatry, Pitié-Salpêtrière Hospital, DMU Neuroscience, Sorbonne University, Assistance Publique–Hôpitaux de Paris, Paris, France,Department of Philosophy, Sorbonne University, SND Research Unit, UMR 8011, Paris, France
| | - Orphee Morlaas
- Control-Interoception Attention Team, Paris Brain Institute, Sorbonne University, National Institute of Health and Medical Research, French National Centre for Scientific Research, Assistance Publique–Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, DMU Neuroscience, Paris, France
| | - Anne Claret
- Department of Psychiatry, Pitié-Salpêtrière Hospital, DMU Neuroscience, Sorbonne University, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Tali Sharot
- Affective Brain Lab, Department of Experimental Psychology, University College London, London, United Kingdom,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Philippe Fossati
- Control-Interoception Attention Team, Paris Brain Institute, Sorbonne University, National Institute of Health and Medical Research, French National Centre for Scientific Research, Assistance Publique–Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, DMU Neuroscience, Paris, France,Department of Psychiatry, Pitié-Salpêtrière Hospital, DMU Neuroscience, Sorbonne University, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Liane Schmidt
- Control-Interoception Attention Team, Paris Brain Institute, Sorbonne University, National Institute of Health and Medical Research, French National Centre for Scientific Research, Assistance Publique–Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, DMU Neuroscience, Paris, France
| |
Collapse
|
33
|
Yang FN, Xie W, Wang Z. Effects of sleep duration on neurocognitive development in early adolescents in the USA: a propensity score matched, longitudinal, observational study. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:705-712. [PMID: 35914537 PMCID: PMC9482948 DOI: 10.1016/s2352-4642(22)00188-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Although the American Academy of Sleep Medicine suggests at least 9 h of sleep per day for 6-12-year-olds, children in recent generations often report sleeping less than this amount. Because early adolescence is a crucial period for neurocognitive development, we aimed to investigate how insufficient sleep affects children's mental health, cognition, brain function, and brain structure over 2 years. METHODS In this propensity score matched, longitudinal, observational cohort study, we obtained data from a population-based sample of 9-10-year-olds from 21 US study sites in the ongoing Adolescent Brain Cognitive Development (ABCD) study. Participants were categorised as having sufficient sleep or insufficient sleep on the basis of a cutoff of 9 h sleep per day. Using propensity score matching, we matched these two groups of participants on 11 key covariates, including sex, socioeconomic status, and puberty status. Participants were excluded from our analysis if they did not pass a baseline resting-state functional MRI quality check or had missing data for the covariates involved in propensity score matching. Outcome measures retrieved from the ABCD study were behavioural problems, mental health, cognition, and structural and resting-state functional brain measures, assessed at baseline and at 2-year follow-up. We examined group differences on these outcomes over those 2 years among all eligible participants. We then did mediation analyses of the neural correlates of behavioural changes induced by insufficient sleep. FINDINGS Between Sept 1, 2016, and Oct 15, 2018, 11 878 individuals had baseline data collected for the ABCD study, of whom 8323 were eligible and included in this study (4142 participants in the sufficient sleep group and 4181 in the insufficient sleep group). Follow-up data were collected from July 30, 2018, to Jan 15, 2020. We identified 3021 matched sufficient sleep-insufficient sleep pairs at baseline and 749 matched pairs at 2-year follow-up, and observed similar differences between the groups in behaviour and neural measures at both timepoints; the effect sizes of between-group differences in behavioural measures at these two timepoints were significantly correlated with each other (r=0·85, 95% CI 0·73-0·92; p<0·0001). A similar pattern was observed in resting-state functional connectivity (r=0·54, 0·45-0·61; p<0·0001) and in structural measures (eg, in grey matter volume r=0·61, 0·51-0·69; p<0·0001). We found that cortico-basal ganglia functional connections mediate the effects of insufficient sleep on depression, thought problems, and crystallised intelligence, and that structural properties of the anterior temporal lobe mediate the effect of insufficient sleep on crystallised intelligence. INTERPRETATION These results provide population-level evidence for the long-lasting effect of insufficient sleep on neurocognitive development in early adolescence. These findings highlight the value of early sleep intervention to improve early adolescents' long-term developmental outcomes. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Fan Nils Yang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weizhen Xie
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Sudimac S, Kühn S. A one-hour walk in nature reduces amygdala activity in women, but not in men. Front Psychol 2022; 13:931905. [PMID: 36248579 PMCID: PMC9556704 DOI: 10.3389/fpsyg.2022.931905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Urban dwellers are more likely to develop mental disorders such as mood and anxiety disorder as well as schizophrenia compared to rural dwellers. Moreover, it has been demonstrated that even short-term exposure to nature can improve mood and decrease stress, but the underlying neural mechanisms are currently under investigation. In the present intervention study we examined the effects of a one-hour walk in an urban vs. natural environment on activity in the amygdala, a brain region previously associated with stress processing. Before and after the walk 63 participants underwent an fMRI paradigm inducing social stress. Since there is a pronounced gap in the literature regarding interindividual differences in stress-related neural effects of urban and natural environments, we set out to explore sex differences. We observed that amygdala activity decreased after the walk in nature, but only in women, suggesting that women may profit more from salutogenic effects of nature. Moreover, performance on the arithmetic tasks improved in women after the walk in nature, whereas men performed better after the walk in the urban environment. To our knowledge, this is the first study to report differencial tendencies in men and women concerning the stress-related neural activity as an effect of acute exposure to urban vs. natural environments. Furthermore, our findings highlight the importance of sex differences when exploring effects of the environment on brain function and stress. Evidence for beneficial effects of nature on stress-related brain regions may inform urban design policies to focus on providing more accessible green areas in cities and this study suggests that sex differences in experiencing the environment should be taken into consideration.
Collapse
Affiliation(s)
- Sonja Sudimac
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck Dahlem Campus of Cognition (MPDCC), Max Planck Institute for Human Development, Berlin, Germany
- Max Planck Institute for Human Development, International Max Planck Research School on the Life Course (LIFE), Lentzeallee 94, Berlin, Germany
- *Correspondence: Sonja Sudimac,
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck Dahlem Campus of Cognition (MPDCC), Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin, Germany and London, UK, Lentzeallee 94, Berlin, Germany
| |
Collapse
|
35
|
Sasaoka T, Harada T, Sato D, Michida N, Yonezawa H, Takayama M, Nouzawa T, Yamawaki S. Neural basis for anxiety and anxiety-related physiological responses during a driving situation: an fMRI study. Cereb Cortex Commun 2022; 3:tgac025. [PMID: 35854841 PMCID: PMC9279323 DOI: 10.1093/texcom/tgac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022] Open
Abstract
Although the exteroceptive and interoceptive prediction of a negative event increases a person’s anxiety in daily life situations, the relationship between the brain mechanism of anxiety and the anxiety-related autonomic response has not been fully understood. In this functional magnetic resonance imaging (fMRI) study, we examined the neural basis of anxiety and anxiety-related autonomic responses in a daily driving situation. Participants viewed a driving video clip in the first-person perspective. During the video clip, participants were presented with a cue to indicate whether a subsequent crash could occur (attention condition) or not (safe condition). Enhanced activities in the anterior insula, bed nucleus of the stria terminalis, thalamus, and periaqueductal gray, and higher sympathetic nerve responses (pupil dilation and peripheral arterial stiffness) were triggered by the attention condition but not with the safe condition. Autonomic response-related functional connectivity was detected in the visual cortex, cerebellum, brainstem, and MCC/PCC with the right anterior insula and its adjacent regions as seed regions. Thus, the right anterior insula and adjacent regions, in collaboration with other regions play a role in eliciting anxiety based on the prediction of negative events, by mediating anxiety-related autonomic responses according to interoceptive information.
Collapse
Affiliation(s)
- Takafumi Sasaoka
- Center for Brain, Mind, and KANSEI Sciences Research, Hiroshima University , 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 , Japan
| | - Tokiko Harada
- Center for Brain, Mind, and KANSEI Sciences Research, Hiroshima University , 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 , Japan
| | - Daichi Sato
- Mazda Motor Corporation , 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima, 730-8670 , Japan
| | - Nanae Michida
- Mazda Motor Corporation , 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima, 730-8670 , Japan
| | - Hironobu Yonezawa
- Mazda Motor Corporation , 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima, 730-8670 , Japan
| | - Masatoshi Takayama
- Mazda Motor Corporation , 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima, 730-8670 , Japan
| | - Takahide Nouzawa
- Office of Academic Research and Industry-Academia-Government and Community Collaboration , Hiroshima University, 1-3-2, Kagamiyama, Higashi-Hiroshima, 739-8511 , Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind, and KANSEI Sciences Research, Hiroshima University , 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 , Japan
| |
Collapse
|
36
|
Brain functional connectivities that mediate the association between childhood traumatic events, and adult mental health and cognition. EBioMedicine 2022; 79:104002. [PMID: 35472671 PMCID: PMC9058958 DOI: 10.1016/j.ebiom.2022.104002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Childhood traumatic events are risk factors for psychopathology, but large-scale studies of how childhood traumatic events relate to mental health and cognition in adulthood, and how the brain is involved, are needed. METHODS The associations between childhood traumatic events (such as abuse and neglect, and defined by the 'Childhood Trauma' questions in the UK Biobank database) and brain functional connectivity, mental health problems, and cognitive performance were investigated by a univariate correlation analysis with 19,535 participants aged 45-79 from the UK Biobank dataset. The results were replicated with 17,747 independent participants in the second release from the same dataset. FINDINGS Childhood traumatic events were significantly associated with mental health problems in adulthood including anxiety (r=0.19, p<1.0 × 10-323), depression (r=0.21, p<1.0 × 10-323), and self-harm (r=0.24, p<1.0 × 10-323), and with adult cognitive performance including fluid intelligence (r=-0.05, p=2.8 × 10-10) and prospective memory (r=-0.04, p=6.8 × 10-8). Functional connectivities of the medial and lateral temporal cortex, the precuneus, the medial orbitofrontal cortex; and the superior, middle and inferior prefrontal cortex extending back to precentral regions were negatively correlated with the childhood traumatic events (FDR corrected, p<0.01). These lower functional connectivities significantly mediated the associations between childhood traumatic events and addiction, anxiety, depression and well-being (all p<1.0 × 10-3), and cognitive performance. The association between childhood traumatic events and behavioural measures and functional connectivity were confirmed in a replication with different participants in the second release of the UK Biobank dataset. INTERPRETATION Childhood traumatic events are strongly associated with adult mental health problems mediated by brain functional connectivities in brain areas involved in executive function, emotion, face processing, and memory. This understanding may help with prevention and treatment. FUNDING Funding was provided by the National Key R&D Program of China (No. 2018YFC1312900 and No. 2019YFA0709502).
Collapse
|
37
|
Timmers I, López-Solà M, Heathcote LC, Heirich M, Rush GQ, Shear D, Borsook D, Simons LE. Amygdala functional connectivity mediates the association between catastrophizing and threat-safety learning in youth with chronic pain. Pain 2022; 163:719-728. [PMID: 35302974 PMCID: PMC8933619 DOI: 10.1097/j.pain.0000000000002410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT There is a need to identify brain connectivity alterations predictive of transdiagnostic processes that may confer vulnerability for affective symptomology. Here, we tested whether amygdala resting-state functional connectivity (rsFC) mediated the relationship between catastrophizing (negative threat appraisals and predicting poorer functioning) and altered threat-safety discrimination learning (critical to flexibly adapt to new and changing environments) in adolescents with persistent pain. We examined amygdala rsFC in 46 youth with chronic pain and 29 healthy peers (age M = 15.8, SD = 2.9; 64 females) and its relationship with catastrophizing and threat-safety learning. We used a developmentally appropriate threat-safety learning paradigm and performed amygdala seed-based rsFC and whole-brain mediation analyses. Patients exhibited enhanced connectivity between the left amygdala and right supramarginal gyrus (SMG) (cluster-level P-FDR < 0.05), whereas right amygdala rsFC showed no group differences. Only in patients, elevated catastrophizing was associated with facilitated threat-safety learning (CS+>CS-; rp = 0.49, P = 0.001). Furthermore, in patients, elevated catastrophizing was associated with reduced left amygdala connectivity with SMG / parietal operculum, and increased left amygdala connectivity with hippocampus, dorsal striatum, paracingulate, and motor regions (P < 0.001). In addition, blunted left amygdala rsFC with right SMG/parietal operculum mediated the association between catastrophizing and threat-safety learning (P < 0.001). To conclude, rsFC between the left amygdala (a core emotion hub) and inferior parietal lobe (involved in appraisal and integration of bodily signals and attentional reorienting) explains associations between daily-life relevant catastrophizing and threat-safety learning. Findings provide a putative model for understanding pathophysiology involved in core psychological processes that cut across diagnoses, including disabling pain, and are relevant for their etiology.
Collapse
Affiliation(s)
- Inge Timmers
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Marina López-Solà
- Serra Hunter Program, Unit of Psychological Medicine, Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Lauren C Heathcote
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Marissa Heirich
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Gillian Q Rush
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Deborah Shear
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - David Borsook
- Center for Pain and the Brain, Boston Children’s Hospital, Center for Pain and the Brain, Boston, MA 02115, United States
| | - Laura E Simons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| |
Collapse
|
38
|
Quadt L, Critchley H, Nagai Y. Cognition, emotion, and the central autonomic network. Auton Neurosci 2022; 238:102948. [PMID: 35149372 DOI: 10.1016/j.autneu.2022.102948] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
The demands of both mental and physical activity are integrated with the dynamic control of internal bodily states. The set of neural interactions that supports autonomic regulation extends beyond afferent-efferent homeostatic reflexes (interoceptive feedback, autonomic action) to encompass allostatic policies reflecting more abstract and predictive mental representations, often accessed as conscious thoughts and feelings. Historically and heuristically, reason is contrasted with passion, cognition with emotion, and 'cold' with 'hot' cognition. These categories are themselves arbitrary and blurred. Investigations of psychological processes have been generally pursued during states of musculoskeletal quiescence and are thus relatively insensitive to autonomic interaction with attentional, perceptual, mnemonic and decision-making processes. Autonomic psychophysiology has nevertheless highlighted the bidirectional coupling of distinct cognitive domains to the internal states of bodily arousal. More powerfully perhaps, in the context of emotion, autonomically mediated changes in inner bodily physiological states are viewed as intrinsic constituents of the expression of emotions, while their feedback representation is proposed to underpin emotional and motivational feelings. Here, we review the brain systems, encapsulated by the notion of central autonomic network, that provide the interface between cognitive, emotional and autonomic state. These systems span the neuraxis, overlap with the more general governance of behaviour, and represent district levels of proximity to survival-related imperatives. We touch upon the conceptual relevance of prediction and surprise to understanding the integration of cognition and emotion with autonomic control.
Collapse
Affiliation(s)
- Lisa Quadt
- BSMS Department of Neuroscience, University of Brighton and University of Sussex, UK; Sussex Neuroscience, University of Sussex, UK
| | - Hugo Critchley
- BSMS Department of Neuroscience, University of Brighton and University of Sussex, UK; Sussex Neuroscience, University of Sussex, UK; Sackler Centre for Consciousness Science, University of Sussex, UK; Sussex Partnership NHS Foundation Trust, UK.
| | - Yoko Nagai
- BSMS Department of Neuroscience, University of Brighton and University of Sussex, UK; Sussex Neuroscience, University of Sussex, UK
| |
Collapse
|
39
|
Colasante T, Speidel R, Malti T. Kindhearted: Ethical guilt and ethical heart rate reactivity codevelop with aggression across childhood. Int J Psychophysiol 2022; 174:108-118. [PMID: 35182685 DOI: 10.1016/j.ijpsycho.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/11/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
Abstract
Largely cross-sectional evidence indicates that ethical guilt is a robust predictor of childhood aggression. However, the underlying mechanisms of ethical guilt-in part assessed as ethical heart rate (HR) reactivity in the present study-are less clear, and longitudinal associations between ethical guilt, its underlying mechanisms, and aggression have not been explored. The present study used a multicohort longitudinal design to assess these constructs across early and middle childhood. At the beginning of the study and 2 years later, cohorts of 4- and 8-year-olds (ns = 150; N = 300) reported their guilt in response to an ethical transgression (i.e., pushing) and a nonethical transgression (i.e., breaking a classroom rule), and their HR was measured while they imagined committing these acts. Caregivers reported their child's aggression at each time point via questionnaire. Latent difference score models indicated that, regardless of cohort, children who increased in their ability to prioritize ethical guilt over 2 years were more likely to decrease in aggression over the same period. Moreover, children whose HR reactivity became more sensitive to ethical transgressions over time showed corresponding declines in aggression over time. Overall, these findings highlight the potential protective roles of children's capacities to react affectively and autonomically to the gravity of ethical transgressions across early and middle childhood.
Collapse
Affiliation(s)
- Tyler Colasante
- Department of Psychology and Centre for Child Development, Mental Health, and Policy, University of Toronto, Canada.
| | - Ruth Speidel
- Department of Psychology and Centre for Child Development, Mental Health, and Policy, University of Toronto, Canada
| | - Tina Malti
- Department of Psychology and Centre for Child Development, Mental Health, and Policy, University of Toronto, Canada
| |
Collapse
|
40
|
Riaz B, Eskelin JJ, Lundblad LC, Wallin BG, Karlsson T, Starck G, Lundqvist D, Oostenveld R, Schneiderman JF, Elam M. Brain structural and functional correlates to defense-related inhibition of muscle sympathetic nerve activity in man. Sci Rep 2022; 12:1990. [PMID: 35132113 PMCID: PMC8821554 DOI: 10.1038/s41598-022-05910-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
An individual’s blood pressure (BP) reactivity to stress is linked to increased risk of hypertension and cardiovascular disease. However, inter- and intra-individual BP variability makes understanding the coupling between stress, BP reactivity, and long-term outcomes challenging. Previous microneurographic studies of sympathetic signaling to muscle vasculature (i.e. muscle sympathetic nerve activity, MSNA) have established a neural predictor for an individual’s BP reactivity during short-lasting stress. Unfortunately, this method is invasive, technically demanding, and time-consuming and thus not optimal for widespread use. Potential central nervous system correlates have not been investigated. We used MagnetoEncephaloGraphy and Magnetic Resonance Imaging to search for neural correlates to sympathetic response profiles within the central autonomic network and sensorimotor (Rolandic) regions in 20 healthy young males. The main correlates include (a) Rolandic beta rebound and an anterior cingulate cortex (ACC) response elicited by sudden stimulation and (b) cortical thickness in the ACC. Our findings highlight the involvement of the ACC in reactions to stress entailing peripheral sympathetic responses to environmental stimuli. The Rolandic response furthermore indicates a surprisingly strong link between somatosensory and autonomic processes. Our results thus demonstrate the potential in using non-invasive neuroimaging-based measures of stress-related MSNA reactions, previously assessed only using invasive microneurography.
Collapse
Affiliation(s)
- Bushra Riaz
- MedTech West, Sahlgrenska University Hospital, Roda straket 10B, 413 45, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
| | - John J Eskelin
- MedTech West, Sahlgrenska University Hospital, Roda straket 10B, 413 45, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Linda C Lundblad
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden.,Department of Clinical Neurophysiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - B Gunnar Wallin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Tomas Karlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Göran Starck
- Department of Medical Physics and Biomedical Engineering, Department of Medical Radiation Sciences, Sahlgrenska University Hospital and Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Robert Oostenveld
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Justin F Schneiderman
- MedTech West, Sahlgrenska University Hospital, Roda straket 10B, 413 45, Gothenburg, Sweden. .,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden. .,Department of Clinical Neurophysiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| | - Mikael Elam
- MedTech West, Sahlgrenska University Hospital, Roda straket 10B, 413 45, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden.,Department of Clinical Neurophysiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| |
Collapse
|
41
|
Association between parental age, brain structure, and behavioral and cognitive problems in children. Mol Psychiatry 2022; 27:967-975. [PMID: 34650205 DOI: 10.1038/s41380-021-01325-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate the relation between parental age, and behavioral, cognitive and brain differences in the children. METHOD Data with children aged 9-11 of 8709 mothers with parental age 15-45 years were analyzed from the Adolescent Brain Cognitive Development (ABCD) study. A general linear model was used to test the associations of the parental age with brain structure, and behavioral and cognitive problems scores. RESULTS Behavioral and cognitive problems were greater in the children of the younger mothers, and were associated with lower volumes of cortical regions in the children. There was a linear correlation between the behavioral and cognitive problems scores, and the lower brain volumes (r > 0.6), which was evident when parental age was included as a stratification factor. The regions with lower volume included the anterior cingulate cortex, medial and lateral orbitofrontal cortex and amygdala, parahippocampal gyrus and hippocampus, and temporal lobe (FDR corrected p < 0.01). The lower cortical volumes and areas in the children significantly mediated the association between the parental age and the behavioral and cognitive problems in the children (all p < 10-4). The effects were large, such as the 71.4% higher depressive problems score, and 27.5% higher rule-breaking score, in the children of mothers aged 15-19 than the mothers aged 34-35. CONCLUSIONS Lower parental age is associated with behavioral problems and reduced cognitive performance in the children, and these differences are related to lower volumes and areas of some cortical regions which mediate the effects in the children. The findings are relevant to psychiatric understanding and assessment.
Collapse
|
42
|
Çatal Y, Gomez-Pilar J, Northoff G. Intrinsic dynamics and topography of sensory input systems. Cereb Cortex 2022; 32:4592-4604. [PMID: 35094077 PMCID: PMC9614113 DOI: 10.1093/cercor/bhab504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/01/2023] Open
Abstract
The brain is continuously bombarded by external stimuli, which are processed in different input systems. The intrinsic features of these sensory input systems remain yet unclear. Investigating topography and dynamics of input systems is the goal of our study in order to better understand the intrinsic features that shape their neural processing. Using a functional magnetic resonance imaging dataset, we measured neural topography and dynamics of the input systems during rest and task states. Neural dynamics were probed by scale-free activity, measured with the power-law exponent (PLE), as well as by order/disorder as measured with sample entropy (SampEn). Our main findings during both rest and task states are: 1) differences in neural dynamics (PLE, SampEn) between regions within each of the three sensory input systems 2) differences in topography and dynamics among the three input systems; 3) PLE and SampEn correlate and, as demonstrated in simulation, show non-linear relationship in the critical range of PLE; 4) scale-free activity during rest mediates the transition of SampEn from rest to task as probed in a mediation model. We conclude that the sensory input systems are characterized by their intrinsic topographic and dynamic organization which, through scale-free activity, modulates their input processing.
Collapse
Affiliation(s)
- Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, Ontario K1Z 7K4, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid 47011, Spain,Centro de Investigación Biomédica en Red—Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid 28029, Spain
| | | |
Collapse
|
43
|
Bao H, He X, Wang F, Kang D. Study of Brain Structure and Function in Chronic Mountain Sickness Based on fMRI. Front Neurol 2022; 12:763835. [PMID: 35069409 PMCID: PMC8777079 DOI: 10.3389/fneur.2021.763835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: Headache and memory impairment are the primary clinical symptoms of chronic mountain sickness (CMS). In this study, we used voxel-based morphometry (VBM) and the amplitude of the low-frequency fluctuation method (ALFF) based on blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) to identify changes in the brain structure and function caused by CMS. Materials and Methods: T1W anatomical images and a resting-state functional MRI (fMRI) of the whole brain were performed in 24 patients diagnosed with CMS and 25 normal controls matched for age, sex, years of education, and living altitude. MRI images were acquired, followed by VBM and ALFF data analyses. Results: Compared with the control group, the CMS group had increased gray matter volume in the left cerebellum crus II area, left inferior temporal gyrus, right middle temporal gyrus, right insula, right caudate nucleus, and bilateral lentiform nucleus along with decreased gray matter volume in the left middle occipital gyrus and left middle temporal gyrus. White matter was decreased in the bilateral middle temporal gyrus and increased in the right Heschl's gyrus. Resting-state fMRI in patients with CMS showed increased spontaneous brain activity in the left supramarginal gyrus, left parahippocampal gyrus, and left middle temporal gyrus along with decreased spontaneous brain activity in the right cerebellum crus I area and right supplementary motor area. Conclusion: Patients with CMS had differences in gray and white matter volume and abnormal spontaneous brain activity in multiple brain regions compared to the controls. This suggests that long-term chronic hypoxia may induce changes in brain structure and function, resulting in CMS.
Collapse
Affiliation(s)
- Haihua Bao
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Xin He
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Fangfang Wang
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Dongjie Kang
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
44
|
Psychophysiology of positive and negative emotions, dataset of 1157 cases and 8 biosignals. Sci Data 2022; 9:10. [PMID: 35058476 PMCID: PMC8776805 DOI: 10.1038/s41597-021-01117-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022] Open
Abstract
AbstractSubjective experience and physiological activity are fundamental components of emotion. There is an increasing interest in the link between experiential and physiological processes across different disciplines, e.g., psychology, economics, or computer science. However, the findings largely rely on sample sizes that have been modest at best (limiting the statistical power) and capture only some concurrent biosignals. We present a novel publicly available dataset of psychophysiological responses to positive and negative emotions that offers some improvement over other databases. This database involves recordings of 1157 cases from healthy individuals (895 individuals participated in a single session and 122 individuals in several sessions), collected across seven studies, a continuous record of self-reported affect along with several biosignals (electrocardiogram, impedance cardiogram, electrodermal activity, hemodynamic measures, e.g., blood pressure, respiration trace, and skin temperature). We experimentally elicited a wide range of positive and negative emotions, including amusement, anger, disgust, excitement, fear, gratitude, sadness, tenderness, and threat. Psychophysiology of positive and negative emotions (POPANE) database is a large and comprehensive psychophysiological dataset on elicited emotions.
Collapse
|
45
|
Yang FN, Liu TT, Wang Z. Functional connectome mediates the association between sleep disturbance and mental health in preadolescence: A longitudinal mediation study. Hum Brain Mapp 2022; 43:2041-2050. [PMID: 35040524 PMCID: PMC8933321 DOI: 10.1002/hbm.25772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/24/2023] Open
Abstract
Sleep disturbance is known to be associated with various mental disorders and often precedes the onset of mental disorders in youth. Given the increasingly acknowledged bidirectional influence between sleep disturbance and mental disorders, we aim to identify a shared neural mechanism that underlies sleep disturbance and mental disorders in preadolescents. We analyzed a dataset of 9,350 9–10 year‐old children, among whom 8,845 had 1‐year follow‐up data, from the Adolescent Brain Cognitive Development (ABCD) study. Linear mixed‐effects models, mediation analysis, and longitudinal mediation analysis were used to investigate the relationship between sleep disturbance, mental disorders, and resting‐state network connectivity. Out of 186 unique connectivities, the effect of total sleep disturbance (TSP, from Sleep Disturbance Scale) and mental problems (MP, from Child Behavior Checklist) converged in the default mode network (DMN) and the dorsal attention network (DAN). Within‐ and between‐network connectivities (DMN‐DAN, DMN‐DMN, DAN‐DAN) mediated the relationship between baseline TSD and MP at 1‐year follow‐up and the relationship between baseline MP and TSD at 1‐year follow‐up. The pathway model in which sleep disturbance and mental problems affect each other through two anticorrelated brain networks (DMN and DAN) suggests a common neural mechanism between them. Longitudinally, a less segregated DMN and DAN is associated with negative outcomes on mental well‐being and sleep disturbance a year later. These findings have important implications for the design of prevention and neurofeedback intervention for mental disorders and sleep problems.
Collapse
Affiliation(s)
- Fan Nils Yang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tina Tong Liu
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Brindle RC, Pearson A, Ginty AT. Adverse childhood experiences (ACEs) relate to blunted cardiovascular and cortisol reactivity to acute laboratory stress: A systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 134:104530. [PMID: 35031343 DOI: 10.1016/j.neubiorev.2022.104530] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/08/2021] [Accepted: 01/09/2022] [Indexed: 12/24/2022]
Abstract
Adverse childhood experiences (ACEs) are associated with poor future mental and physical health. Altered biological reactivity to mental stress may be a possible mechanism linking ACEs to poor health. However, it is not clear if ACEs relate to blunted or exaggerated stress reactivity. This meta-analysis aimed to determine whether exposure to ACEs is associated with cardiovascular and cortisol stress reactivity. A systematic review yielded 37 sources. Random-effects modelling tested the aggregate effects of 83 studies of the association between ACEs and stress reactivity. Exposure to ACEs was associated with relatively blunted cardiovascular and cortisol stress reactivity. Effect sizes did not vary as a function of sample sex or reactivity measure (e.g., heart rate, blood pressure, or cortisol). Meta-regression revealed preliminary evidence of greater blunting in samples of a younger age and samples reporting greater ACE exposure. Subgroup analyses for stress task, ACE measurement instrument, and sample race were not conducted because of a lack of between-study variability. Exposure to ACEs is associated with dysregulation of multiple components of the human stress response system.
Collapse
Affiliation(s)
- Ryan C Brindle
- Department of Cognitive and Behavioral Science, Washington and Lee University, Lexington, VA, United States; Neuroscience Program, Washington and Lee University, Lexington, VA, United States.
| | - Alexandra Pearson
- Department of Cognitive and Behavioral Science, Washington and Lee University, Lexington, VA, United States
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
47
|
Muscatell KA, Merritt CC, Cohen JR, Chang L, Lindquist KA. The Stressed Brain: Neural Underpinnings of Social Stress Processing in Humans. Curr Top Behav Neurosci 2022; 54:373-392. [PMID: 34796448 DOI: 10.1007/7854_2021_281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As humans, we face a variety of social stressors on a regular basis. Given the established role of social stress in influencing physical and psychological functioning, researchers have focused immense efforts on understanding the psychological and physiological changes induced by exposure to acute social stressors. With the advancement of functional magnetic resonance imaging (fMRI), more recent work has sought to identify the neural correlates of processing acute social stress. In this review, we provide an overview of research on the neural underpinnings of social stress processing to date. Specifically, we summarize research that has examined the neural underpinnings of three types of social stressors commonly studied in the literature: social rejection, social evaluation, and racism-related stress. Within our discussion of each type of social stressor, we describe the methods used to induce stress, the brain regions commonly activated among studies investigating that type of stress, and recommendations for future work. This review of the current literature identifies activity in midline regions in both prefrontal and parietal cortices, as well as lateral prefrontal regions, as being associated with processing social rejection. Activity in the insula, thalamus, and inferior frontal gyrus is often found in studies using social evaluation tasks. Finally, racism-related stress is associated with activity in the ventrolateral prefrontal cortex and rostral anterior cingulate cortex. We conclude by taking a "30,000-foot view" of this area of research to provide suggestions for the future of research on the neuroscience of social stress.
Collapse
Affiliation(s)
| | | | - Jessica R Cohen
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
48
|
Sudimac S, Sale V, Kühn S. How nature nurtures: Amygdala activity decreases as the result of a one-hour walk in nature. Mol Psychiatry 2022; 27:4446-4452. [PMID: 36059042 PMCID: PMC9734043 DOI: 10.1038/s41380-022-01720-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022]
Abstract
Since living in cities is associated with an increased risk for mental disorders such as anxiety disorders, depression, and schizophrenia, it is essential to understand how exposure to urban and natural environments affects mental health and the brain. It has been shown that the amygdala is more activated during a stress task in urban compared to rural dwellers. However, no study so far has examined the causal effects of natural and urban environments on stress-related brain mechanisms. To address this question, we conducted an intervention study to investigate changes in stress-related brain regions as an effect of a one-hour walk in an urban (busy street) vs. natural environment (forest). Brain activation was measured in 63 healthy participants, before and after the walk, using a fearful faces task and a social stress task. Our findings reveal that amygdala activation decreases after the walk in nature, whereas it remains stable after the walk in an urban environment. These results suggest that going for a walk in nature can have salutogenic effects on stress-related brain regions, and consequently, it may act as a preventive measure against mental strain and potentially disease. Given rapidly increasing urbanization, the present results may influence urban planning to create more accessible green areas and to adapt urban environments in a way that will be beneficial for citizens' mental health.
Collapse
Affiliation(s)
- Sonja Sudimac
- Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany. .,Max Planck Institute for Human Development, Max Planck Dahlem Campus of Cognition (MPDCC), Lentzeallee 94, 14195, Berlin, Germany. .,Max Planck Institute for Human Development, International Max Planck Research School on the Life Course (LIFE), Lentzeallee 94, 14195, Berlin, Germany.
| | - Vera Sale
- grid.419526.d0000 0000 9859 7917Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Lentzeallee 94, 14195 Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck Institute for Human Development, Max Planck Dahlem Campus of Cognition (MPDCC), Lentzeallee 94, 14195 Berlin, Germany
| | - Simone Kühn
- grid.419526.d0000 0000 9859 7917Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Lentzeallee 94, 14195 Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck Institute for Human Development, Max Planck Dahlem Campus of Cognition (MPDCC), Lentzeallee 94, 14195 Berlin, Germany ,grid.13648.380000 0001 2180 3484University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Martinistr. 52, 20251 Hamburg, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin, Germany and London, UK, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
49
|
Zhang J, Li WC, Andrews G. Applying psychophysiological coherence training based on HRV-biofeedback to enhance pilots’ resilience and wellbeing. TRANSPORTATION RESEARCH PROCEDIA 2022; 66. [PMCID: PMC9732714 DOI: 10.1016/j.trpro.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction. The COVID-19 pandemic not only limited pilots’ proficiency in performing routine tasks, but also increased stress levels and operational risk due to new procedures in flight operations related to safety and health regulations. There is, therefore, an increasing need to improve pilots’ mental and physical health to maintain aviation safety Research question. (1) Does the practice of psychophysiological coherence using heart rate variability (HRV) biofeedback and the Quick Coherence Technique (QCT) improve pilots’ resilience? (2) What effects does psychophysiological coherence practice have on pilots’ resilience and wellbeing? Method. Eighteen commercial pilots’ perceived stress and wellness were evaluated subjectively by the Perceived Stress Scale (PSS) and Ardell Wellness Self-Assessment (AWSA). They were taught the QCT for facilitating psychophysiological coherence, and their HRV data reflecting automatic nervous system (ANS) activities were collected as they practiced QCT via Inner Balance HRV sensors. Results. The QCT training improved pilots’ AWSA scores (t = -3.55, p = .002) and decreased PSS scores (t = 6.37, p < .001). Pilots’ post-training HRV were improved with SDNNs higher than pre-training, t = -4.88, p < .001; normalized low frequency (LF) power increased (t = -10.91, p < .001) and low-frequency to high-frequency (LF/HF) ratios increased (t = -3.92, p = .001). Additionally, pilots’ post-training respiration rates were lower than pre-training, t = -2,45, p = .025. Discussion. Based on the empirical data analysis, HRV-biofeedback QCT can improve psychophysiological coherence and thereby increase pilots’ resilience and wellbeing. Increased post-training SDNNs, normalized LF power, and LF/HF ratio indicate the improvement of ANS control and balance, and stress management capacity. These findings demonstrate the effectiveness of HRV-biofeedback QCT training in improving psychophysiological coherence, which confers real-time and post-practice benefits of optimal energy utility and self-regulation in challenging situations on flight operations and everyday life. Conclusion. This research demonstrates significant benefits of a short session of HRV-biofeedback QCT on pilots’ resilience and cognitive process by improving psychophysiological coherence. HRV-biofeedback QCT training can be an effective intervention for aviation authorities and airline operators to develop peer support programs for pilots to increase psychological resilience and wellbeing. This may be particularly beneficial given the various challenges presented to pilots in their preparation for return to normal operations.
Collapse
Affiliation(s)
- Jingyi Zhang
- Safety and Accident Investigation Centre, Cranfield University, Bedfordshire, United Kingdom
| | - Wen-Chin Li
- Safety and Accident Investigation Centre, Cranfield University, Bedfordshire, United Kingdom
| | | |
Collapse
|
50
|
Sun Y, Xu L, Luo X, Ren Y, Ding X. Unconscious social relation threats: Invisible boss face biases attention. Atten Percept Psychophys 2022; 84:76-88. [PMID: 34935121 DOI: 10.3758/s13414-021-02366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Threatening stimuli as a kind of salient information often guide attentional orienting. Besides physically threatening stimuli, social threats can also strongly bias attention, even in the absence of conscious awareness. However, the available evidence mainly came from studies on an emotional face. It is unclear whether social relation threats, such as a boss face without emotional expressions, can also direct attentional orienting unconsciously. This study aimed to reveal the extent to which the attentional system has developed to process threatening stimuli by exploring whether invisible social relation threats unconsciously biased attention. We asked graduate and undergraduate students to perform a modified Posner's cue-target task, in which the probe was preceded by a pair of competitive face cues (an advisor's face and another faculty member's face), rendered invisible through continuous flash suppression. Experiment 1a's results showed that the advisor's face reflexively oriented graduate students' spatial attention, which was significantly correlated with subjective social threat evaluation. However, Experiment 1b showed that an invisible advisor's face did not induce the same effect in undergraduate students, as they reported significantly fewer threats from their advisors than graduates. To ensure the robustness of this new effect, we preregistered a replicate study and successfully replicated the above results in Experiments 2a and 2b. Our findings provide evidence for the existence of an attentional orienting bias toward invisible social relation threats. These results suggest that the attentional system evolved to promote the exploration of our visual environment for threatening social relation signals.
Collapse
Affiliation(s)
- Yanliang Sun
- School of Psychology, Shandong Normal University, No.1 University Road, Jinan, China
| | - Luzi Xu
- Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, China
| | - Xinyu Luo
- School of Psychology, Shandong Normal University, No.1 University Road, Jinan, China
| | - Yanju Ren
- School of Psychology, Shandong Normal University, No.1 University Road, Jinan, China.
| | - Xiaowei Ding
- Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, China.
| |
Collapse
|