1
|
Okamoto M, Kuratani A, Okuzaki D, Kamiyama N, Kobayashi T, Sasai M, Yamamoto M. IFN-γ-induced Th1-Treg polarization in inflamed brains limits exacerbation of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2024; 121:e2401692121. [PMID: 39560646 PMCID: PMC11621829 DOI: 10.1073/pnas.2401692121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most widely used rodent model for multiple sclerosis. Interferon-γ (IFN-γ) and regulatory T cells (Tregs) are individually well known to play beneficial roles in amelioration of EAE. However, little is known about the relationship between IFN-γ and Tregs during the disease. Here, we show that IFN-γ polarizes Tregs into T helper 1 (Th1)-type Tregs (Th1-Tregs) to recover from EAE. Single-cell RNA sequencing analysis revealed that brain Tregs showed signs of IFN-γ stimulation during EAE. Loss of IFN-γ signaling in Tregs and of T cell-derived IFN-γ impaired the Th1-Treg polarization and worsened the disease. Moreover, selective ablation of Th1-Tregs using an intersectional genetic method promoted proinflammatory features of macrophages in the inflamed brains and exacerbated the EAE. Taken together, our study highlights a critical role of T cell-derived IFN-γ for Th1-Treg polarization in inflamed brain to ameliorate EAE.
Collapse
Affiliation(s)
- Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Ayumi Kuratani
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita879-5593, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita879-5593, Japan
- Division of Pathophysiology, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Oita879-5593, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
2
|
Stekic A, Stevic D, Dokmanovic T, Anastasov M, Popovic D, Stanojevic J, Jovanovic MZ, Stevanovic I, Nedeljkovic N, Dragic M. Intrinsic ecto-5'-Nucleotidase/A 1R Coupling may Confer Neuroprotection to the Cerebellum in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2024; 61:9284-9301. [PMID: 38619745 DOI: 10.1007/s12035-024-04174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is widely used animal model of multiple sclerosis (MS). The disease is characterized by demyelination and neurodegeneration triggered by infiltrated autoimmune cells and their interaction with astrocytes and microglia. While neuroinflammation is most common in the spinal cord and brainstem, it is less prevalent in the cerebellum, where it predisposes to rapid disease progression. Because the induction and progression of EAE are tightly regulated by adenosinergic signaling, in the present study we compared the adenosine-producing and -degrading enzymes, ecto-5'-nucleotidase (eN/CD73) and adenosine deaminase (ADA), as well as the expression levels of adenosine receptors A1R and A2AR subtypes in nearby areas around the fourth cerebral ventricle-the pontine tegmentum, the choroid plexus (CP), and the cerebellum. Significant differences in histopathological findings were observed between pontine tegmentum and cerebellum on the same horizontal section level. Reactive astrogliosis and massive infiltration of CD4 + cells and macrophages in CP and pontine tegmentum resulted in local demyelination. In cerebellum, there was no evidence of infiltrates, microgliosis and neuroinflammation at the same sectional level. In addition, Bergman glia showed no signs of reactive gliosis. As for adenosinergic signaling, significant upregulation of eN/CD73 was observed in all areas studied, but in association with different adenosine receptor subtypes. In CP and pons, overexpression of eN/CD73 was coupled with induction of A2AR, whereas in cerebellum, a modest increase in eN/CD73 in resident Bergman glia was accompanied by a strong induction of A1R in the same type of astrocytes. Thus, the presence of specialized astroglia and intrinsic differences in adenosinergic signaling may play a critical role in the differential regional susceptibility to EAE inflammation.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dejan Stevic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tamara Dokmanovic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Anastasov
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danica Popovic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defense, 11 000, Belgrade, Serbia
| | | | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defense, 11 000, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | - Milorad Dragic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
3
|
Friesen E, Sheft M, Hari K, Palmer V, Zhu S, Herrera S, Buist R, Jiang D, Li XM, Del Bigio MR, Thiessen JD, Martin M. Quantitative Analysis of Early White Matter Damage in Cuprizone Mouse Model of Demyelination Using 7.0 T MRI Multiparametric Approach. ASN Neuro 2024; 16:2404366. [PMID: 39400556 DOI: 10.1080/17590914.2024.2404366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Magnetic Resonance Imaging (MRI) is commonly used to follow the progression of neurodegenerative conditions, including multiple sclerosis (MS). MRI is limited by a lack of correlation between imaging results and clinical presentations, referred to as the clinico-radiological paradox. Animal models are commonly used to mimic the progression of human neurodegeneration and as a tool to help resolve the paradox. Most studies focus on later stages of white matter (WM) damage whereas few focus on early stages when oligodendrocyte apoptosis has just begun. The current project focused on these time points, namely weeks 2 and 3 of cuprizone (CPZ) administration, a toxin which induces pathophysiology similar to MS. In vivo T2-weighted (T2W) and Magnetization Transfer Ratio (MTR) maps and ex vivo Diffusion Tensor Imaging (DTI), Magnetization Transfer Imaging (MTI), and relaxometry (T1 and T2) values were obtained at 7 T. Significant changes in T2W signal intensity and non-significant changes in MTR were observed to correspond to early WM damage, whereas significant changes in both corresponded with full demyelination. Some DTI metrics decrease with simultaneous increase in others, indicating acute demyelination. MTI metrics T2A, T2B, f and R were observed to have contradictory changes across CPZ administration. T1 relaxation times were observed to have stronger correlations to disease states during later stages of CPZ treatment, whereas T2 had weak correlations to early WM damage. These results all suggest the need for multiple metrics and further studies at early and late time points of demyelination. Further research is required to continue investigating the interplay between various MR metrics during all weeks of CPZ administration.
Collapse
Affiliation(s)
- Emma Friesen
- Department of Chemistry, University of Winnipeg, Winnipeg, Canada
| | - Maxina Sheft
- Department of Physics, University of Winnipeg, Winnipeg, Canada
- Massachusetts Institute of Technology, Cambridge, USA
| | - Kamya Hari
- Department of Physics, University of Winnipeg, Winnipeg, Canada
- Electronics and Communication Engineering, SSN College of Engineering, Chennai, India
| | - Vanessa Palmer
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
- Cubresa Inc, Winnipeg, Canada
| | - Shenghua Zhu
- Department of Neuroradiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sheryl Herrera
- Department of Physics, University of Winnipeg, Winnipeg, Canada
- Cubresa Inc, Winnipeg, Canada
| | - Richard Buist
- Department of Radiology, University of Manitoba, Winnipeg, Canada
| | - Depeng Jiang
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | - Jonathan D Thiessen
- Imaging Program, Lawson Health Research Institute, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Melanie Martin
- Department of Physics, University of Winnipeg, Winnipeg, Canada
| |
Collapse
|
4
|
Kim Y, Hrncir H, Meyer CE, Tabbaa M, Moats RA, Levitt P, Harris NG, MacKenzie-Graham A, Shattuck DW. Mouse Brain Extractor: Brain segmentation of mouse MRI using global positional encoding and SwinUNETR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611106. [PMID: 39282435 PMCID: PMC11398355 DOI: 10.1101/2024.09.03.611106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In spite of the great progress that has been made towards automating brain extraction in human magnetic resonance imaging (MRI), challenges remain in the automation of this task for mouse models of brain disorders. Researchers often resort to editing brain segmentation results manually when automated methods fail to produce accurate delineations. However, manual corrections can be labor-intensive and introduce interrater variability. This motivated our development of a new deep-learning-based method for brain segmentation of mouse MRI, which we call Mouse Brain Extractor. We adapted the existing SwinUNETR architecture (Hatamizadeh et al., 2021) with the goal of making it more robust to scale variance. Our approach is to supply the network model with supplementary spatial information in the form of absolute positional encoding. We use a new scheme for positional encoding, which we call Global Positional Encoding (GPE). GPE is based on a shared coordinate frame that is relative to the entire input image. This differs from the positional encoding used in SwinUNETR, which solely employs relative pairwise image patch positions. GPE also differs from the conventional absolute positional encoding approach, which encodes position relative to a subimage rather than the entire image. We trained and tested our method on a heterogeneous dataset of N=223 mouse MRI, for which we generated a corresponding set of manually-edited brain masks. These data were acquired previously in other studies using several different scanners and imaging protocols and included in vivo and ex vivo images of mice with heterogeneous brain structure due to different genotypes, strains, diseases, ages, and sexes. We evaluated our method's results against those of seven existing rodent brain extraction methods and two state-of-the art deep-learning approaches, nnU-Net (Isensee et al., 2018) and SwinUNETR. Overall, our proposed method achieved average Dice scores on the order of 0.98 and average HD95 measures on the order of 100 μm when compared to the manually-labeled brain masks. In statistical analyses, our method significantly outperformed the conventional approaches and performed as well as or significantly better than the nnU-Net and SwinUNETR methods. These results suggest that Global Positional Encoding provides additional contextual information that enables our Mouse Brain Extractor to perform competitively on datasets containing multiple resolutions.
Collapse
Affiliation(s)
- Yeun Kim
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Haley Hrncir
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Cassandra E. Meyer
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Manal Tabbaa
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California 90027, USA
- Dept. of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089 USA
| | - Rex A. Moats
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California 90027, USA
- Dept. of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089 USA
| | - Pat Levitt
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California 90027, USA
- Dept. of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089 USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Allan MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - David W. Shattuck
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Yuan X, Ma Y, Gao R, Cui S, Wang Y, Fa B, Ma S, Wei T, Ma S, Yu Z. HEARTSVG: a fast and accurate method for identifying spatially variable genes in large-scale spatial transcriptomics. Nat Commun 2024; 15:5700. [PMID: 38972896 PMCID: PMC11228050 DOI: 10.1038/s41467-024-49846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Identifying spatially variable genes (SVGs) is crucial for understanding the spatiotemporal characteristics of diseases and tissue structures, posing a distinctive challenge in spatial transcriptomics research. We propose HEARTSVG, a distribution-free, test-based method for fast and accurately identifying spatially variable genes in large-scale spatial transcriptomic data. Extensive simulations demonstrate that HEARTSVG outperforms state-of-the-art methods with higherF 1 scores (averageF 1 Score=0.948), improved computational efficiency, scalability, and reduced false positives (FPs). Through analysis of twelve real datasets from various spatial transcriptomic technologies, HEARTSVG identifies a greater number of biologically significant SVGs (average AUC = 0.792) than other comparative methods without prespecifying spatial patterns. Furthermore, by clustering SVGs, we uncover two distinct tumor spatial domains characterized by unique spatial expression patterns, spatial-temporal locations, and biological functions in human colorectal cancer data, unraveling the complexity of tumors.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- SJTU-Yale Joint Center for Biostatistics and Data Science Organization, Shanghai Jiao Tong University, Shanghai, China
| | - Yanran Ma
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruitian Gao
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuya Cui
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- SJTU-Yale Joint Center for Biostatistics and Data Science Organization, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Wang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Botao Fa
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Shiyang Ma
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangge Ma
- SJTU-Yale Joint Center for Biostatistics and Data Science Organization, Shanghai Jiao Tong University, Shanghai, China.
- Department of Biostatistics, Yale University, New Haven, USA.
| | - Zhangsheng Yu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- SJTU-Yale Joint Center for Biostatistics and Data Science Organization, Shanghai Jiao Tong University, Shanghai, China.
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Center for Biomedical Data Science, Translational Science Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Carver JJ, Lau KM, Puckett AE, Didonna A. Autoimmune demyelination alters hypothalamic transcriptome and endocrine function. J Neuroinflammation 2024; 21:12. [PMID: 38178091 PMCID: PMC10768476 DOI: 10.1186/s12974-023-03006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The hypothalamus is a brain structure that is deputed to maintain organism homeostasis by regulating autonomic function and hormonal production as part of the neuroendocrine system. Dysfunction in hypothalamic activity results in behavioral alterations, depression, metabolic syndromes, fatigue, and infertility. Remarkably, many of these symptoms are associated with multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS) characterized by focal demyelination, immune cell infiltration into the brain parenchyma, and neurodegeneration. Furthermore, altered hormonal levels have been documented in MS patients, suggesting the putative involvement of hypothalamic deficits in MS clinical manifestations. Yet, a systematic analysis of hypothalamic function in response to neuroinflammatory stress is still lacking. To fill this gap, here we performed a longitudinal profiling of the hypothalamic transcriptome upon experimental autoimmune encephalomyelitis (EAE)-a murine disease model recapitulating key MS phenotypes at both histopathological and molecular levels. We show that changes in gene expression connected with an anti-inflammatory response start already at pre-onset and persist along EAE progression. Altered levels of hypothalamic neuropeptides were also detected, which possibly underlie homeostatic responses to stress and aberrant feeding behaviors. Last, a thorough investigation of the principal endocrine glands highlighted defects in the main steroidogenic pathways upon disease. Collectively, our findings corroborate the central role of hypothalamic dysfunction in CNS autoimmunity.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA
| | - Kristy M Lau
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA
| | - Alexandra E Puckett
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA.
| |
Collapse
|
7
|
Maxwell DL, Orian JM. Cerebellar pathology in multiple sclerosis and experimental autoimmune encephalomyelitis: current status and future directions. J Cent Nerv Syst Dis 2023; 15:11795735231211508. [PMID: 37942276 PMCID: PMC10629308 DOI: 10.1177/11795735231211508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Recent decades have witnessed significant progress in understanding mechanisms driving neurodegeneration and disease progression in multiple sclerosis (MS), but with a focus on the cerebrum. In contrast, there have been limited studies of cerebellar disease, despite the common occurrence of cerebellar symptoms in this disorder. These rare studies, however, highlight the early cerebellar involvement in disease development and an association between the early occurrence of cerebellar lesions and risk of worse prognosis. In parallel developments, it has become evident that far from being a region specialized in movement control, the cerebellum plays a crucial role in cognitive function, via circuitry connecting the cerebellum to association areas of the cerebrum. This complexity, coupled with challenges in imaging of the cerebellum have been major obstacles in the appreciation of the spatio-temporal evolution of cerebellar damage in MS and correlation with disability and progression. MS studies based on animal models have relied on an induced neuroinflammatory disease known as experimental autoimmune encephalomyelitis (EAE), in rodents and non-human primates (NHP). EAE has played a critical role in elucidating mechanisms underpinning tissue damage and been validated for the generation of proof-of-concept for cerebellar pathological processes relevant to MS. Additionally, rodent and NHP studies have formed the cornerstone of current knowledge of functional anatomy and cognitive processes. Here, we propose that improved insight into consequences of cerebellar damage in MS at the functional, cellular and molecular levels would be gained by more extensive characterization of EAE cerebellar pathology combined with the power of experimental paradigms in the field of cognition. Such combinatorial approaches would lead to improved potential for the development of MS sensitive markers and evaluation of candidate therapeutics.
Collapse
Affiliation(s)
- Dain L. Maxwell
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
8
|
Itoh N, Itoh Y, Stiles L, Voskuhl R. Sex differences in the neuronal transcriptome and synaptic mitochondrial function in the cerebral cortex of a multiple sclerosis model. Front Neurol 2023; 14:1268411. [PMID: 38020654 PMCID: PMC10654219 DOI: 10.3389/fneur.2023.1268411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Multiple sclerosis (MS) affects the cerebral cortex, inducing cortical atrophy and neuronal and synaptic pathology. Despite the fact that women are more susceptible to getting MS, men with MS have worse disability progression. Here, sex differences in neurodegenerative mechanisms are determined in the cerebral cortex using the MS model, chronic experimental autoimmune encephalomyelitis (EAE). Methods Neurons from cerebral cortex tissues of chronic EAE, as well as age-matched healthy control, male and female mice underwent RNA sequencing and gene expression analyses using RiboTag technology. The morphology of mitochondria in neurons of cerebral cortex was assessed using Thy1-CFP-MitoS mice. Oxygen consumption rates were determined using mitochondrial respirometry assays from intact as well as permeabilized synaptosomes. Results RNA sequencing of neurons in cerebral cortex during chronic EAE in C57BL/6 mice showed robust differential gene expression in male EAE compared to male healthy controls. In contrast, there were few differences in female EAE compared to female healthy controls. The most enriched differential gene expression pathways in male mice during EAE were mitochondrial dysfunction and oxidative phosphorylation. Mitochondrial morphology in neurons showed significant abnormalities in the cerebral cortex of EAE males, but not EAE females. Regarding function, synaptosomes isolated from cerebral cortex of male, but not female, EAE mice demonstrated significantly decreased oxygen consumption rates during respirometry assays. Discussion Cortical neuronal transcriptomics, mitochondrial morphology, and functional respirometry assays in synaptosomes revealed worse neurodegeneration in male EAE mice. This is consistent with worse neurodegeneration in MS men and reveals a model and a target to develop treatments to prevent cortical neurodegeneration and mitigate disability progression in MS men.
Collapse
Affiliation(s)
- Noriko Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linsey Stiles
- Department of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Ago Y, Van C, Condro MC, Hrncir H, Diep AL, Rajbhandari AK, Fanselow MS, Hashimoto H, MacKenzie-Graham AJ, Waschek JA. Overexpression of VIPR2 in mice results in microencephaly with paradoxical increased white matter volume. Exp Neurol 2023; 362:114339. [PMID: 36717013 DOI: 10.1016/j.expneurol.2023.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Large scale studies in populations of European and Han Chinese ancestry found a series of rare gain-of-function microduplications in VIPR2, encoding VPAC2, a receptor that binds vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide with high affinity, that were associated with an up to 13-fold increased risk for schizophrenia. To address how VPAC2 receptor overactivity might affect brain development, we used a well-characterized Nestin-Cre mouse strain and a knock-in approach to overexpress human VPAC2 in the central nervous system. Mice that overexpressed VPAC2 were found to exhibit a significant reduction in brain weight. Magnetic resonance imaging analysis confirmed a decrease in brain size, a specific reduction in the hippocampus grey matter volume and a paradoxical increase in whole-brain white matter volume. Sex-specific changes in behavior such as impaired prepulse inhibition and contextual fear memory were observed in VPAC2 overexpressing mice. The data indicate that the VPAC2 receptor may play a critical role in brain morphogenesis and suggest that overactive VPAC2 signaling during development plays a mechanistic role in some forms of schizophrenia.
Collapse
Affiliation(s)
- Yukio Ago
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan.
| | - Christina Van
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental Doctoral Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael C Condro
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Haley Hrncir
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anna L Diep
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Abha K Rajbhandari
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Staglin Center for Brain and Behavioral Health, University of California Los Angeles, Los Angeles, CA 90095, USA; Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael S Fanselow
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Staglin Center for Brain and Behavioral Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan; Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Allan J MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
11
|
Teh LD, Culp LH, Venable A. Nodular Sclerosing Hodgkin Lymphoma With Paraneoplastic Cerebellar Degeneration. Fed Pract 2022; 39:S18-S19. [PMID: 36426105 PMCID: PMC9662306 DOI: 10.12788/fp.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND There are a variety of paraneoplastic syndromes associated with Hodgkin lymphoma including paraneoplastic cerebellar degeneration (PCD), which is associated with unique autoantibodies, such as anti-Tr antibody. Most of these autoimmune phenomena involve older adult patients with abrupt, acute presentations. CASE PRESENTATION We report an atypical case of a young adult female patient with slow progressive onset of PCD symptoms with subsequent detection and treatment of Hodgkin lymphoma. CONCLUSIONS Early detection of PCD is critical, as treatment of the underlying malignancy decreases overall morbidity and disability.
Collapse
Affiliation(s)
| | - Lt Hunter Culp
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | |
Collapse
|
12
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
13
|
Li X, Liu N, Yang C, Zhang W, Lui S. Cerebellar gray matter volume changes in patients with schizophrenia: A voxel-based meta-analysis. Front Psychiatry 2022; 13:1083480. [PMID: 36620665 PMCID: PMC9814486 DOI: 10.3389/fpsyt.2022.1083480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In schizophrenia, the structural changes in the cerebellum are associated with patients' cognition and motor deficits. However, the findings are inconsistent owing to the heterogeneity in sample size, magnetic resonance imaging (MRI) scanners, and other factors among them. In this study, we conducted a meta-analysis to characterize the anatomical changes in cerebellar subfields in patients with schizophrenia. METHODS Systematic research was conducted to identify studies that compare the gray matter volume (GMV) differences in the cerebellum between patients with schizophrenia and healthy controls with a voxel-based morphometry (VBM) method. A coordinate-based meta-analysis was adopted based on seed-based d mapping (SDM) software. An exploratory meta-regression analysis was conducted to associate clinical and demographic features with cerebellar changes. RESULTS Of note, 25 studies comprising 996 patients with schizophrenia and 1,109 healthy controls were included in the present meta-analysis. In patients with schizophrenia, decreased GMVs were demonstrated in the left Crus II, right lobule VI, and right lobule VIII, while no increased GMV was identified. In the meta-regression analysis, the mean age and illness duration were negatively associated with the GMV in the left Crus II in patients with schizophrenia. CONCLUSION The most significant structural changes in the cerebellum are mainly located in the posterior cerebellar hemisphere in patients with schizophrenia. The decreased GMVs of these regions might partly explain the cognitive deficits and motor symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Xing Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Naici Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Reynoso-Moreno I, Tietz S, Vallini E, Engelhardt B, Gertsch J, Chicca A. Selective Endocannabinoid Reuptake Inhibitor WOBE437 Reduces Disease Progression in a Mouse Model of Multiple Sclerosis. ACS Pharmacol Transl Sci 2021; 4:765-779. [PMID: 33860200 PMCID: PMC8033750 DOI: 10.1021/acsptsci.0c00214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 02/06/2023]
Abstract
![]()
The modulation of
the endocannabinoid system (ECS) has shown positive
results in animal models of multiple sclerosis (MS) and immune and
inflammatory disorders. However, chronic administration of CB1 receptor
agonists and degrading enzyme inhibitors can lead to CB1 receptor
desensitization and sedation. WOBE437 is the prototype of a new class
of ECS modulators named selective endocannabinoid reuptake inhibitors
(SERIs), which mildly and selectively increase central endocannabinoid
levels with a self-limiting mode of action. In previous studies, WOBE437
demonstrated analgesic, anxiolytic, and anti-inflammatory effects.
Here, we tested the therapeutic potential of WOBE437 in a clinically
relevant mouse model of MS (experimental autoimmune encephalomyelitis).
C57BL/6 mice were administered WOBE437 (10 mg/kg, 20 days) or vehicle
using two therapeutic options: (1) starting the treatment at the disease
onset or (2) before reaching the peak of the disease. In both strategies,
WOBE437 significantly reduced disease severity and accelerated recovery
through CB1 and CB2 receptor-dependent mechanisms. At the peak of
the disease, WOBE437 increased endocannabinoid levels in the cerebellum,
concurring with a reduction of central nervous system (CNS)-infiltrating
immune cells and lower microglial proliferation. At the end of treatment,
endocannabinoid levels were mildly increased in brain, cerebellum,
and plasma of WOBE437-treated mice, without desensitization of CB1
receptor in the brain and cerebellum. In a mouse model of spasticity
(Straub test), WOBE437 (10 mg/kg) induced significant muscle relaxation
without eliciting the typical sedative effects associated with muscle
relaxants or CB1 receptor agonists. Collectively, our results show
that WOBE437 (and SERIs) may represent a novel therapeutic strategy
for slowing MS progression and control major symptoms.
Collapse
Affiliation(s)
- Ines Reynoso-Moreno
- Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Silvia Tietz
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Erika Vallini
- Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
15
|
Lizarbe B, Campillo B, Guadilla I, López-Larrubia P, Cerdán S. Magnetic resonance assessment of the cerebral alterations associated with obesity development. J Cereb Blood Flow Metab 2020; 40:2135-2151. [PMID: 32703110 PMCID: PMC7585928 DOI: 10.1177/0271678x20941263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a current threat to health care systems, affecting approximately 13% of the world's adult population, and over 18% children and adolescents. The rise of obesity is fuelled by inadequate life style habits, as consumption of diets rich in fats and sugars which promote, additionally, the development of associated comorbidities. Obesity results from a neuroendocrine imbalance in the cerebral mechanisms controlling food intake and energy expenditure, including the hypothalamus and the reward and motivational centres. Specifically, high-fat diets are known to trigger an early inflammatory response in the hypothalamus that precedes weight gain, is time-dependent, and eventually extends to the remaining appetite regulating regions in the brain. Multiple magnetic resonance imaging (MRI) and spectroscopy (MRS) methods are currently available to characterize different features of cerebral obesity, including diffusion weighted, T2 and volumetric imaging and 1H and 13C spectroscopic evaluations. In particular, consistent evidences have revealed increased water diffusivity and T2 values, decreased grey matter volumes, and altered metabolic profiles and fluxes, in the brain of animal models and in obese humans. This review provides an integrative interpretation of the physio-pathological processes associated with obesity development in the brain, and the MRI and MRS methods implemented to characterize them.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Basilio Campillo
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Irene Guadilla
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | | | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| |
Collapse
|
16
|
Galbusera R, Parmar K, Boillat Y, Fartaria MJ, Todea AR, Brien KO, Smolinski A, Kappos L, van der Zwaag W, Granziera C. Laminar analysis of the cerebellar cortex shows widespread damage in early MS patients: A pilot study at 7T MRI. Mult Scler J Exp Transl Clin 2020; 6:2055217320961409. [PMID: 33149930 PMCID: PMC7586276 DOI: 10.1177/2055217320961409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
Background To date, little is known about the presence and extent of cerebellar cortical pathology in early stages of MS. Objective The aims of this study were to (i) investigate microstructural changes in the normal-appearing cerebellar cortex of early MS patients by using 7 T MRI and (ii) evaluate the influence of those changes on clinical performance. Methods Eighteen RRMS patients and nine healthy controls underwent quantitative T1 and T2* measurement at 7 T MRI using high-resolution MP2RAGE and multi-echo gradient-echo imaging. After subtracting lesion masks, average T1 and T2* maps were computed for three layers in the cerebellar cortex and compared between groups using mixed effects models. Results The volume of the cerebellar cortex and its layers did not differ between patients and controls. In MS patients, significantly longer T1 values were observed in all vermis cortical layers and in the middle and external cortical layer of the cerebellar hemispheres. No between-group differences in T2* values were found. T1 values correlated with EDSS, SDMT and PASAT. Conclusions We found MRI evidence of damage in the normal-appearing cerebellar cortex at early MS stages and before volumetric changes. This microstructural alteration appears to be related to EDSS and cognitive performance.
Collapse
Affiliation(s)
- Riccardo Galbusera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Joao Fartaria
- Advanced Clinical Imaging Technology, Siemens Healthcare AG (HC CMEA SUI DI BM PI), Lausanne, Switzerland
| | - Alexandra-Ramona Todea
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Kieran O' Brien
- Siemens Healthcare Pty Ltd., Bowen Hills, Australia; Centre for Advanced Imaging, University of Queensland, Australia
| | - Anna Smolinski
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog Neurobiol 2019; 182:101663. [PMID: 31374243 DOI: 10.1016/j.pneurobio.2019.101663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/17/2019] [Accepted: 07/17/2019] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging (MRI) is the most important tool for diagnosing multiple sclerosis (MS). However, MRI is still unable to precisely quantify the specific pathophysiological processes that underlie imaging findings in MS. Because autopsy and biopsy samples of MS patients are rare and biased towards a chronic burnt-out end or fulminant acute early stage, the only available methods to identify human disease pathology are to apply MRI techniques in combination with subsequent histopathological examination to small animal models of MS and to transfer these insights to MS patients. This review summarizes the existing combined imaging and histopathological studies performed in MS mouse models and humans with MS (in vivo and ex vivo), to promote a better understanding of the pathophysiology that underlies conventional MRI, diffusion tensor and magnetization transfer imaging findings in MS patients. Moreover, it provides a critical view on imaging capabilities and results in MS patients and mouse models and for future studies recommends how to combine those particular MR sequences and parameters whose underlying pathophysiological basis could be partly clarified. Further combined longitudinal in vivo imaging and histopathological studies on rationally selected, appropriate mouse models are required.
Collapse
|
18
|
Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis. Sci Rep 2019; 9:8488. [PMID: 31186441 PMCID: PMC6560061 DOI: 10.1038/s41598-019-44682-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022] Open
Abstract
Atrophy has become a clinically relevant marker of progressive neurodegeneration in multiple sclerosis (MS). To better understand atrophy, mouse models that feature atrophy along with other aspects of MS are needed. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS was used to determine the extent of atrophy in a model of inflammation-associated central nervous system pathology. High-resolution magnetic resonance imaging (MRI) and atlas-based volumetric analysis were performed to measure brain regional volumes in EAE mice. EAE brains were larger at peak clinical disease (days 14–16) compared to controls, with affected regions including the cerebellum, hippocampus, and corpus callosum. Following peak clinical disease, EAE mice exhibited significant loss of volume at chronic long-term disease duration (day 66+). Atrophy was identified in both white and grey matter regions including the cerebral cortex, cerebellum, hippocampus, corpus callosum, basal forebrain, midbrain, optic tract, and colliculus. Histological analysis of the atrophied cortex, cerebellum, and hippocampus showed demyelination, and axonal/neuronal loss. We hypothesize this atrophy could be a result of inflammatory associated neurodegenerative processes, which may also be involved in MS. Using MRI and atlas-based volumetrics, EAE has the potential to be a test bed for treatments aimed at reducing progressive neurological deterioration in MS.
Collapse
|
19
|
Meyer CE, Gao JL, Cheng JYJ, Oberoi MR, Johnsonbaugh H, Lepore S, Kurth F, Thurston MJ, Itoh N, Patel KR, Voskuhl RR, MacKenzie-Graham A. Axonal damage in spinal cord is associated with gray matter atrophy in sensorimotor cortex in experimental autoimmune encephalomyelitis. Mult Scler 2019; 26:294-303. [PMID: 30843756 DOI: 10.1177/1352458519830614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Gray matter (GM) atrophy in brain is one of the best predictors of long-term disability in multiple sclerosis (MS), and recent findings have revealed that localized GM atrophy is associated with clinical disabilities. GM atrophy associated with each disability mapped to a distinct brain region, revealing a disability-specific atlas (DSA) of GM loss. OBJECTIVE To uncover the mechanisms underlying the development of localized GM atrophy. METHODS We used voxel-based morphometry (VBM) to evaluate localized GM atrophy and Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY) to evaluate specific pathologies in mice with experimental autoimmune encephalomyelitis (EAE). RESULTS We observed extensive GM atrophy throughout the cerebral cortex, with additional foci in the thalamus and caudoputamen, in mice with EAE compared to normal controls. Next, we generated pathology-specific atlases (PSAs), voxelwise mappings of the correlation between specific pathologies and localized GM atrophy. Interestingly, axonal damage (end-bulbs and ovoids) in the spinal cord strongly correlated with GM atrophy in the sensorimotor cortex of the brain. CONCLUSION The combination of VBM with CLARITY in EAE can localize GM atrophy in brain that is associated with a specific pathology in spinal cord, revealing a PSA of GM loss.
Collapse
Affiliation(s)
- Cassandra E Meyer
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA/ UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Josephine L Gao
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA/ UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - James Ying-Jie Cheng
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA/ UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Mandavi R Oberoi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA/ UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Hadley Johnsonbaugh
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA/ UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Stefano Lepore
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA/ UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Florian Kurth
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA/ UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Mackenzie J Thurston
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA/ UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Noriko Itoh
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kevin R Patel
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Rhonda R Voskuhl
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Allan MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA/ UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
20
|
Khimchenko A, Bikis C, Pacureanu A, Hieber SE, Thalmann P, Deyhle H, Schweighauser G, Hench J, Frank S, Müller‐Gerbl M, Schulz G, Cloetens P, Müller B. Hard X-Ray Nanoholotomography: Large-Scale, Label-Free, 3D Neuroimaging beyond Optical Limit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700694. [PMID: 29938163 PMCID: PMC6010902 DOI: 10.1002/advs.201700694] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/17/2018] [Indexed: 05/22/2023]
Abstract
There have been great efforts on the nanoscale 3D probing of brain tissues to image subcellular morphologies. However, limitations in terms of tissue coverage, anisotropic resolution, stain dependence, and complex sample preparation all hinder achieving a better understanding of the human brain functioning in the subcellular context. Herein, X-ray nanoholotomography is introduced as an emerging synchrotron radiation-based technology for large-scale, label-free, direct imaging with isotropic voxel sizes down to 25 nm, exhibiting a spatial resolution down to 88 nm. The procedure is nondestructive as it does not require physical slicing. Hence, it allows subsequent imaging by complementary techniques, including histology. The feasibility of this 3D imaging approach is demonstrated on human cerebellum and neocortex specimens derived from paraffin-embedded tissue blocks. The obtained results are compared to hematoxylin and eosin stained histological sections and showcase the ability for rapid hierarchical neuroimaging and automatic rebuilding of the neuronal architecture at the level of a single cell nucleolus. The findings indicate that nanoholotomography can complement microscopy not only by large isotropic volumetric data but also by morphological details on the sub-100 nm level, addressing many of the present challenges in brain tissue characterization and probably becoming an important tool in nanoanatomy.
Collapse
Affiliation(s)
- Anna Khimchenko
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Christos Bikis
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Alexandra Pacureanu
- ID16A‐NI Nano‐Imaging BeamlineEuropean Synchrotron Radiation Facility (ESRF)38043GrenobleFrance
| | - Simone E. Hieber
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Peter Thalmann
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Hans Deyhle
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Gabriel Schweighauser
- Institute of PathologyDepartment of NeuropathologyBasel University Hospital4056BaselSwitzerland
| | - Jürgen Hench
- Institute of PathologyDepartment of NeuropathologyBasel University Hospital4056BaselSwitzerland
| | - Stephan Frank
- Institute of PathologyDepartment of NeuropathologyBasel University Hospital4056BaselSwitzerland
| | - Magdalena Müller‐Gerbl
- Musculoskeletal Research GroupDepartment of BiomedicineUniversity of Basel4056BaselSwitzerland
| | - Georg Schulz
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Peter Cloetens
- ID16A‐NI Nano‐Imaging BeamlineEuropean Synchrotron Radiation Facility (ESRF)38043GrenobleFrance
| | - Bert Müller
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| |
Collapse
|
21
|
Cell-specific and region-specific transcriptomics in the multiple sclerosis model: Focus on astrocytes. Proc Natl Acad Sci U S A 2018; 115:E302-E309. [PMID: 29279367 PMCID: PMC5777065 DOI: 10.1073/pnas.1716032115] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Changes in gene expression that occur across the central nervous system (CNS) during neurological diseases do not address the heterogeneity of cell types from one CNS region to another and are complicated by alterations in cellular composition during disease. Multiple sclerosis (MS) is multifocal by definition. Here, a cell-specific and region-specific transcriptomics approach was used to determine gene expression changes in astrocytes in the most widely used MS model, experimental autoimmune encephalomyelitis (EAE). Astrocyte-specific RNAs from various neuroanatomic regions were attained using RiboTag technology. Sequencing and bioinformatics analyses showed that EAE-induced gene expression changes differed between neuroanatomic regions when comparing astrocytes from spinal cord, cerebellum, cerebral cortex, and hippocampus. The top gene pathways that were changed in astrocytes from spinal cord during chronic EAE involved decreases in expression of cholesterol synthesis genes while immune pathway gene expression in astrocytes was increased. Optic nerve from EAE and optic chiasm from MS also showed decreased cholesterol synthesis gene expression. The potential role of cholesterol synthesized by astrocytes during EAE and MS is discussed. Together, this provides proof-of-concept that a cell-specific and region-specific gene expression approach can provide potential treatment targets in distinct neuroanatomic regions during multifocal neurological diseases.
Collapse
|
22
|
Voskuhl RR, Sawalha AH, Itoh Y. Sex chromosome contributions to sex differences in multiple sclerosis susceptibility and progression. Mult Scler 2018; 24:22-31. [PMID: 29307297 PMCID: PMC5823689 DOI: 10.1177/1352458517737394] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Why are women more susceptible to multiple sclerosis, but men have worse disability progression? Sex differences in disease may be due to sex hormones, sex chromosomes, or both. OBJECTIVE Determine whether differences in sex chromosomes can contribute to sex differences in multiple sclerosis using experimental autoimmune encephalomyelitis. METHODS Sex chromosome transgenic mice, which permit the study of sex chromosomes not confounded by differences in sex hormones, were used to examine an effect of sex chromosomes on autoimmunity and neurodegeneration, focusing on X chromosome genes. RESULTS T-lymphocyte DNA methylation studies of the X chromosome gene Foxp3 suggested that maternal versus paternal imprinting of X chromosome genes may underlie sex differences in autoimmunity. Bone marrow chimeras with the same immune system but different sex chromosomes in the central nervous system suggested that differential expression of the X chromosome gene Toll-like receptor 7 in neurons may contribute to sex differences in neurodegeneration. CONCLUSION Mapping the transcriptome and methylome in T lymphocytes and neurons in females versus males could reveal mechanisms underlying sex differences in autoimmunity and neurodegeneration.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- Department of Neurology, 635 Charles E. Young Drive South, University of California, Los Angeles, Multiple Sclerosis Program, Los Angeles, California 90095
| | - Amr H. Sawalha
- Departments of Internal Medicine & Center for Computational Medicine and Bioinformatics, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan, 48109-5680
| | - Yuichiro Itoh
- Department of Neurology, 635 Charles E. Young Drive South, University of California, Los Angeles, Multiple Sclerosis Program, Los Angeles, California 90095
| |
Collapse
|
23
|
Meyer CE, Kurth F, Lepore S, Gao JL, Johnsonbaugh H, Oberoi MR, Sawiak SJ, MacKenzie-Graham A. In vivo magnetic resonance images reveal neuroanatomical sex differences through the application of voxel-based morphometry in C57BL/6 mice. Neuroimage 2017; 163:197-205. [PMID: 28923275 PMCID: PMC5716897 DOI: 10.1016/j.neuroimage.2017.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Behaviorally relevant sex differences are often associated with structural differences in the brain and many diseases are sexually dimorphic in prevalence and progression. Characterizing sex differences is imperative to gaining a complete understanding of behavior and disease which will, in turn, allow for a balanced approach to scientific research and the development of therapies. In this study, we generated novel tissue probability maps (TPMs) based on 30 male and 30 female in vivo C57BL/6 mouse brain magnetic resonance images and used voxel-based morphometry (VBM) to analyze sex differences. Females displayed larger anterior hippocampus, basolateral amygdala, and lateral cerebellar cortex volumes, while males exhibited larger cerebral cortex, medial amygdala, and medial cerebellar cortex volumes. Atlas-based morphometry (ABM) revealed a statistically significant sex difference in cortical volume and no difference in whole cerebellar volume. This validated our VBM findings that showed a larger cerebral cortex in male mice and a pattern of dimorphism in the cerebellum where the lateral portion was larger in females and the medial portion was larger in males. These results are consonant with previous ex vivo studies examining sex differences, but also suggest further regions of interest.
Collapse
Affiliation(s)
- Cassandra E Meyer
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Florian Kurth
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Stefano Lepore
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Josephine L Gao
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Hadley Johnsonbaugh
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Mandavi R Oberoi
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Stephen J Sawiak
- Wolfson Brain Imaging Centre, University of Cambridge, Box 65 Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Golden LC, Voskuhl R. The importance of studying sex differences in disease: The example of multiple sclerosis. J Neurosci Res 2017; 95:633-643. [PMID: 27870415 DOI: 10.1002/jnr.23955] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
To date, scientific research has often focused on one sex, with assumptions that study of the other sex would yield similar results. However, many diseases affect males and females differently. The sex of a patient can affect the risk for both disease susceptibility and progression. Such differences can be brought to the laboratory bench to be investigated, potentially bringing new treatments back to the clinic. This method of research, known as a "bedside to bench to bedside" approach, has been applied to studying sex differences in multiple sclerosis (MS). Females have greater susceptibly to MS, while males have worse disease progression. These two characteristics of the disease are influenced by the immune system and the nervous system, respectively. Thus, sex differences in each system must be studied. Personalized medicine has been at the forefront of research recently, and studying sex differences in disease fits with this initiative. This review will discuss the known sex differences in MS and highlight how investigating them can lead to new insights and potential treatments for both men and women. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa C Golden
- Department of Neurology, University of California Los Angeles, Los Angeles, California.,Molecular Biology IDP, University of California Los Angeles, Los Angeles, California
| | - Rhonda Voskuhl
- Department of Neurology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
25
|
Doussau F, Dupont JL, Neel D, Schneider A, Poulain B, Bossu JL. Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert Opin Drug Discov 2017; 12:1011-1022. [PMID: 28712329 DOI: 10.1080/17460441.2017.1356285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Demyelinating disorders, characterized by a chronic or episodic destruction of the myelin sheath, are a leading cause of neurological disability in young adults in western countries. Studying the complex mechanisms involved in axon myelination, demyelination and remyelination requires an experimental model preserving the neuronal networks and neuro-glial interactions. Organotypic cerebellar slice cultures appear to be the best alternative to in vivo experiments and the most commonly used model for investigating etiology or novel therapeutic strategies in multiple sclerosis. Areas covered: This review gives an overview of slice culture techniques and focuses on the use of organotypic cerebellar slice cultures on semi-permeable membranes for studying many aspects of axon myelination and cerebellar functions. Expert opinion: Cerebellar slice cultures are probably the easiest way to faithfully reproduce all stages of axon myelination/demyelination/remyelination in a three-dimensional neuronal network. However, in the cerebellum, neurological disability in multiple sclerosis also results from channelopathies which induce changes in Purkinje cell excitability. Cerebellar cultures offer easy access to electrophysiological approaches which are largely untapped and we believe that these cultures might be of great interest when studying changes in neuronal excitability, axonal conduction or synaptic properties that likely occur during multiple sclerosis.
Collapse
Affiliation(s)
- Frédéric Doussau
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean-Luc Dupont
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Dorine Neel
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Aline Schneider
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Bernard Poulain
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean Louis Bossu
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
26
|
Abstract
Multiple sclerosis (MS) commonly affects the cerebellum causing acute and chronic symptoms. Cerebellar signs contribute significantly to clinical disability, and symptoms such as tremor, ataxia, and dysarthria are particularly difficult to treat. Increasing knowledge concerning the pathophysiology of cerebellar disease in MS from human postmortem studies, experimental models, and clinical trials has raised the hope that cerebellar symptoms will be better treated in the future.
Collapse
Affiliation(s)
- Alastair Wilkins
- MS and Stem Cell Group, University of Bristol, Learning and Research, Southmead Hospital, Bristol, United Kingdom
| |
Collapse
|
27
|
Hasselmann JPC, Karim H, Khalaj AJ, Ghosh S, Tiwari-Woodruff SK. Consistent induction of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice for the longitudinal study of pathology and repair. J Neurosci Methods 2017; 284:71-84. [PMID: 28396177 DOI: 10.1016/j.jneumeth.2017.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/15/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND While many groups use experimental autoimmune encephalomyelitis (EAE) as a model to uncover therapeutic targets and understand the pathology underlying multiple sclerosis (MS), EAE protocol variability introduces discrepancies in central nervous system (CNS) pathogenesis and clinical disease, limiting the comparability between studies and slowing much-needed translational research. OPTIMIZED METHOD Here we describe a detailed, reliable protocol for chronic EAE induction in C57BL/6 mice utilizing two injections of myelin oligodendrocyte glycoprotein (35-55) peptide mixed with complete Freund's adjuvant and paired with pertussis toxin. RESULTS The active MOG35-55-EAE protocol presented here induces ascending paralysis in 80-100% of immunized mice. We observe: (1) consistent T cell immune activation, (2) robust CNS infiltration by peripheral immune cells, and (3) perivascular demyelinating lesions concurrent with axon damage in the spinal cord and various brain regions, including the optic nerve, cortex, hippocampus, internal capsule, and cerebellum. COMPARISON WITH EXISTING METHOD(S) Lack of detailed protocols, combined with variability between laboratories, make EAE results difficult to compare and hinder the use of this model for therapeutic development. We provide the most detailed active MOG35-55-EAE protocol to date. With this protocol, we observe high disease incidence and a consistent, reliable disease course. The resulting pathology is MS-like and includes optic neuritis, perivascular mononuclear infiltration, CNS axon demyelination, and axon damage in both infiltrating lesions and otherwise normal-appearing white matter. CONCLUSIONS By providing a detailed active MOG35-55-EAE protocol that yields consistent and robust pathology, we aim to foster comparability between pre-clinical studies and facilitate the discovery of MS therapeutics.
Collapse
Affiliation(s)
| | - Hawra Karim
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, CA 92521, USA
| | - Anna J Khalaj
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, CA 92521, USA
| | - Subir Ghosh
- Department of Statistics, UCR-CNAS, Riverside, CA 92521, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, CA 92521, USA; Department of Neuroscience, UCR School of Medicine, Riverside, CA 92521, USA; Center for Glial-Neuronal Interactions, UCR School of Medicine, CA 92506, USA.
| |
Collapse
|
28
|
Gray Matter Hypoxia in the Brain of the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. PLoS One 2016; 11:e0167196. [PMID: 27907119 PMCID: PMC5131950 DOI: 10.1371/journal.pone.0167196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
Background Multiple sclerosis (MS) has a significant inflammatory component and may have significant gray matter (GM) pathophysiology. Brain oxygenation is a sensitive measurement of the balance between metabolic need and oxygen delivery. There is evidence that inflammation and hypoxia are interdependent. In this paper, we applied novel, implanted PO2 sensors to measure hypoxia in cortical and cerebellar GM, in an inflammation-induced mouse model of MS. Objective Quantify oxygenation in cortical and cerebellar GM in the awake, unrestrained experimental autoimmune encephalomyelitis (EAE) mouse model and to relate the results to symptom level and disease time-course. Methods C57BL/6 mice were implanted with a fiber-optic sensor in the cerebellum (n = 13) and cortex (n = 24). Animals were induced with stimulation of the immune response and sensitization to myelin oligodendrocyte glycoprotein (MOG). Controls did not have MOG. We measured PO2 in awake, unrestrained animals from pre-induction (baseline) up to 36 days post-induction for EAE and controls. Results There were more days with hypoxia than hyperoxia (cerebellum: 34/67 vs. 18/67 days; cortex: 85/112 vs. 22/112) compared to time-matched controls. The average decline in PO2 on days that were significantly lower than time-matched controls was -8.8±6.0 mmHg (mean ± SD) for the cerebellum and -8.0±4.6 for the cortex. Conversely, the average increase in PO2 on days that were significantly hyperoxic was +3.2±2.8 mmHg (mean ± SD) for the cerebellum and +0.8±2.1 for the cortex. Cortical hypoxia related to increased behavioral deficits. Evidence for hypoxia occurred before measurable behavioral deficits. Conclusions A highly inflammatory condition primed to a white matter (WM) autoimmune response correlates with significant hypoxia and increased variation in oxygenation in GM of both cerebellum and cortex in the mouse EAE model of MS.
Collapse
|
29
|
Itoh N, Kim R, Peng M, DiFilippo E, Johnsonbaugh H, MacKenzie-Graham A, Voskuhl RR. Bedside to bench to bedside research: Estrogen receptor beta ligand as a candidate neuroprotective treatment for multiple sclerosis. J Neuroimmunol 2016; 304:63-71. [PMID: 27771018 DOI: 10.1016/j.jneuroim.2016.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022]
Abstract
Protective effects of pregnancy during MS have led to clinical trials of estriol, the pregnancy estrogen, in MS. Since estriol binds to estrogen receptor (ER) beta, ER beta ligand could represent a "next generation estriol" treatment. Here, ER beta ligand treatment was protective in EAE in both sexes and across genetic backgrounds. Neuroprotection was shown in spinal cord, sparing myelin and axons, and in brain, sparing neurons and synapses. Longitudinal in vivo MRIs showed decreased brain atrophy in cerebral cortex gray matter and cerebellum during EAE. Investigation of ER beta ligand as a neuroprotective treatment for MS is warranted.
Collapse
Affiliation(s)
- Noriko Itoh
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Roy Kim
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Mavis Peng
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Emma DiFilippo
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Hadley Johnsonbaugh
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Allan MacKenzie-Graham
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Rhonda R Voskuhl
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA.
| |
Collapse
|
30
|
Stanojlovic M, Pang X, Lin Y, Stone S, Cvetanovic M, Lin W. Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis. PLoS One 2016; 11:e0160158. [PMID: 27466819 PMCID: PMC4965096 DOI: 10.1371/journal.pone.0160158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/14/2016] [Indexed: 11/23/2022] Open
Abstract
Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating and neurodegenerative diseases in the central nervous system (CNS). It is believed that MS and EAE are initiated by autoreactive T lymphocytes that recognize myelin antigens; however, the mechanisms responsible for neurodegeneration in these diseases remain elusive. Data indicate that vascular endothelial growth factor A (VEGF-A) plays a role in the development of MS and EAE. Interestingly, VEGF-A is regarded as a neurotrophic factor in the CNS that promotes neuron survival and neurogenesis in various neurodegenerative diseases by activating VEGF receptor 2 (VEGFR2). In this study, we sought to explore the role of the VEGF-A/VEGFR2 signaling in neurodegeneration in MS and EAE. We showed that the expression of VEGF-A was decreased in the spinal cord during EAE and that VEGFR2 was activated in lower motor neurons in the spinal cord of EAE mice. Interestingly, we found that treatment with SU5416, a selective VEGFR2 inhibitor, starting after the onset of EAE clinical symptoms exacerbated lower motor neuron loss and axon loss in the lumbar spinal cord of mice undergoing EAE, but did not alter Purkinje neuron loss in the cerebellum or upper motor neuron loss in the cerebral cortex. Moreover, SU5416 treatment had a minimal effect on EAE clinical symptoms as well as inflammation, demyelination, and oligodendrocyte loss in the lumbar spinal cord. These results imply the protective effects of the VEGF-A/VEGFR2 signaling on lower motor neurons and axons in the spinal cord in MS and EAE.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xiaosha Pang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yifeng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sarrabeth Stone
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
31
|
Deletion of mitochondrial anchoring protects dysmyelinating shiverer: implications for progressive MS. J Neurosci 2015; 35:5293-306. [PMID: 25834054 DOI: 10.1523/jneurosci.3859-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The demyelinating disease multiple sclerosis (MS) has an early inflammatory phase followed by an incurable progressive phase with subdued inflammation and poorly understood neurodegenerative mechanism. In this study, we identified various parallelisms between progressive MS and the dysmyelinating mouse model Shiverer and then genetically deleted a major neuron-specific mitochondrial anchoring protein Syntaphilin (SNPH) from the mouse. Prevailing evidence suggests that deletion of SNPH is harmful in demyelination. Surprisingly, SNPH deletion produces striking benefits in the Shiverer by prolonging survival, reducing cerebellar damage, suppressing oxidative stress, and improving mitochondrial health. In contrast, SNPH deletion does not benefit clinical symptoms in experimental autoimmune encephalomyelitis (EAE), a model for early-phase MS. We propose that deleting mitochondrial anchoring is a novel, specific treatment for progressive MS.
Collapse
|
32
|
Noor NA, Fahmy HM, Mohammed FF, Elsayed AA, Radwan NM. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6269-6286. [PMID: 26261504 PMCID: PMC4525838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats ("EAE" group). 2- "N. sativa + EAE" group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- "EAE + N. sativa" group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE.
Collapse
Affiliation(s)
- Neveen A Noor
- Department of Zoology, Faculty of Science, Cairo UniversityGiza, Egypt
| | - Heba M Fahmy
- Department of Biophysics, Faculty of Science, Cairo UniversityGiza, Egypt
| | - Faten F Mohammed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityGiza, Egypt
| | - Anwar A Elsayed
- Department of Biophysics, Faculty of Science, Cairo UniversityGiza, Egypt
| | - Nasr M Radwan
- Department of Zoology, Faculty of Science, Cairo UniversityGiza, Egypt
| |
Collapse
|
33
|
Moore S, Khalaj AJ, Patel R, Yoon J, Ichwan D, Hayardeny L, Tiwari-Woodruff SK. Restoration of axon conduction and motor deficits by therapeutic treatment with glatiramer acetate. J Neurosci Res 2014; 92:1621-36. [PMID: 24989965 PMCID: PMC4305217 DOI: 10.1002/jnr.23440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 12/20/2022]
Abstract
Glatiramer acetate (GA; Copaxone) is an approved drug for the treatment of multiple sclerosis (MS). The underlying multifactorial anti-inflammatory, neuroprotective effect of GA is in the induction of reactive T cells that release immunomodulatory cytokines and neurotrophic factors at the injury site. These GA-induced cytokines and growth factors may have a direct effect on axon function. Building on previous findings that suggest a neuroprotective effect of GA, we assessed the therapeutic effects of GA on brain and spinal cord pathology and functional correlates using the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Therapeutic regimens were utilized based on promising prophylactic efficacy. More specifically, C57BL/6 mice were treated with 2 mg/mouse/day GA for 8 days beginning at various time points after EAE post-induction day 15, yielding a thorough, clinically relevant assessment of GA efficacy within the context of severe progressive disease. Therapeutic treatment with GA significantly decreased clinical scores and improved rotorod motor performance in EAE mice. These functional improvements were supported by an increase in myelinated axons and fewer amyloid precursor protein-positive axons in the spinal cords of GA-treated EAE mice. Furthermore, therapeutic GA decreased microglia/macrophage and T cell infiltrates and increased oligodendrocyte numbers in both the spinal cord and corpus callosum of EAE mice. Finally, GA improved callosal axon conduction and nodal protein organization in EAE. Our results demonstrate that therapeutic GA treatment has significant beneficial effects in a chronic mouse model of MS, in which its positive effects on both myelinated and non-myelinated axons results in improved axon function.
Collapse
Affiliation(s)
- Spencer Moore
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Anna J Khalaj
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Rhusheet Patel
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - JaeHee Yoon
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Daniel Ichwan
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Liat Hayardeny
- Pharmacology Unit, Global Innovative Research and Development, Teva Pharmaceutical IndustriesNetanya, Israel
| | - Seema K Tiwari-Woodruff
- Department of Neurology, UCLA School of MedicineLos Angeles, California
- Brain Research Institute, UCLA School of MedicineLos Angeles, California
| |
Collapse
|
34
|
Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms. Neuroimage 2014; 103:334-348. [PMID: 25264227 DOI: 10.1016/j.neuroimage.2014.09.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/29/2014] [Accepted: 09/17/2014] [Indexed: 02/04/2023] Open
Abstract
We examined regional changes in brain volume in healthy adults (N=167, age 19-79years at baseline; N=90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the Hc, CbH, In, OF, and PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants modified shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1β C-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFR C677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC, thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan.
Collapse
|
35
|
Berkseth KE, Guyenet SJ, Melhorn SJ, Lee D, Thaler JP, Schur EA, Schwartz MW. Hypothalamic gliosis associated with high-fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study. Endocrinology 2014; 155:2858-67. [PMID: 24914942 PMCID: PMC4098007 DOI: 10.1210/en.2014-1121] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gliosis, the activation of astrocyte and microglial cell populations, is a hallmark of central nervous system injury and is detectable using either immunohistochemistry or in vivo magnetic resonance imaging (MRI). Obesity in rodents and humans is associated with gliosis of the arcuate nucleus, a key hypothalamic region for the regulation of energy homeostasis and adiposity, but whether this response is permanent or reversible is unknown. Here we combine terminal immunohistochemistry analysis with serial, noninvasive MRI to characterize the progression and reversibility of hypothalamic gliosis in high-fat diet (HFD)-fed mice. The effects of HFD feeding for 16 weeks to increase body weight and adiposity relative to chow were nearly normalized after the return to chow feeding for an additional 4 weeks in the diet-reversal group. Mice maintained on the HFD for the full 20-week study period experienced continued weight gain associated with the expected increases of astrocyte and microglial activation in the arcuate nucleus, but these changes were not observed in the diet-reversal group. The proopiomelanocortin neuron number did not differ between groups. Although MRI demonstrated a positive correlation between body weight, adiposity, and the gliosis-associated T2 signal in the mediobasal hypothalamus, it did not detect the reversal of gliosis among the HFD-fed mice after the return to chow diet. We conclude that hypothalamic gliosis associated with 16-week HFD feeding is largely reversible in rodents, consistent with the reversal of the HFD-induced obesity phenotype, and extend published evidence regarding the utility of MRI as a tool for studying obesity-associated hypothalamic gliosis in vivo.
Collapse
Affiliation(s)
- Kathryn E Berkseth
- Diabetes and Obesity Center of Excellence (K.E.B., S.J.G., J.P.T., M.W.S.) and Departments of Medicine (E.A.S., S.J.M.) and Radiology (D.L.), University of Washington, Seattle, Washington 98109
| | | | | | | | | | | | | |
Collapse
|
36
|
Chanaday NL, Vilcaes AA, de Paul AL, Torres AI, Degano AL, Roth GA. Glutamate Release Machinery Is Altered in the Frontal Cortex of Rats with Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2014; 51:1353-67. [DOI: 10.1007/s12035-014-8814-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/11/2014] [Indexed: 01/30/2023]
|
37
|
Spence RD, Kurth F, Itoh N, Mongerson CRL, Wailes SH, Peng MS, MacKenzie-Graham AJ. Bringing CLARITY to gray matter atrophy. Neuroimage 2014; 101:625-32. [PMID: 25038439 DOI: 10.1016/j.neuroimage.2014.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/03/2023] Open
Abstract
Gray matter atrophy has been shown to be a strong correlate to clinical disability in multiple sclerosis (MS) and its most commonly used animal model, experimental autoimmune encephalomyelitis (EAE). However, the relationship between gray mater atrophy and the spinal cord pathology often observed in EAE has never been established. Here EAE was induced in Thy1.1-YFP mice and their brains imaged using in vivo magnetic resonance imaging (MRI). The brains and spinal cords were subsequently optically cleared using Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY). Axons were followed 5mm longitudinally in three dimensions in intact spinal cords revealing that 61% of the axons exhibited a mean of 22 axonal ovoids and 8% of the axons terminating in axonal end bulbs. In the cerebral cortex, we observed a decrease in the mean number of layer V pyramidal neurons and a decrease in the mean length of the apical dendrites of the remaining neurons, compared to healthy controls. MRI analysis demonstrated decreased cortical volumes in EAE. Cross-modality correlations revealed a direct relationship between cortical volume loss and axonal end bulb number in the spinal cord, but not ovoid number. This is the first report of the use of CLARITY in an animal model of disease and the first report of the use of both CLARITY and MRI.
Collapse
Affiliation(s)
- Rory D Spence
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Florian Kurth
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noriko Itoh
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chandler R L Mongerson
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shannon H Wailes
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mavis S Peng
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Allan J MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Alomair OI, Smith MT, Brereton IM, Galloway GJ, Kurniawan ND. Current developments in MRI for assessing rodent models of multiple sclerosis. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: MRI is a key radiological imaging technique that plays an important role in the diagnosis and characterization of heterogeneous multiple sclerosis (MS) lesions. Various MRI methodologies such as conventional T 1/T 2 contrast, contrast agent enhancement, diffusion-weighted imaging, magnetization transfer imaging and susceptibility weighted imaging have been developed to determine the severity of MS pathology, including demyelination/remyelination and brain connectivity impairment from axonal loss. The broad spectrum of MS pathology manifests in diverse patient MRI presentations and affects the accuracy of patient diagnosis. To study specific pathological aspects of the disease, rodent models such as experimental autoimmune encephalomyelitis, virus-induced and toxin-induced demyelination have been developed. This review aims to present key developments in MRI methodology for better characterization of rodent models of MS.
Collapse
Affiliation(s)
- Othman I Alomair
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
- College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Maree T Smith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian M Brereton
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Graham J Galloway
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Kim RY, Hoffman AS, Itoh N, Ao Y, Spence R, Sofroniew MV, Voskuhl RR. Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 274:53-61. [PMID: 25005117 DOI: 10.1016/j.jneuroim.2014.06.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/09/2014] [Accepted: 06/17/2014] [Indexed: 02/09/2023]
Abstract
Chemokine (C-C motif) ligand 2 (CCL2), initially identified as monocyte chemoattractant protein-1 (MCP-1), recruits immune cells to the central nervous system (CNS) during autoimmune inflammation. CCL2 can be expressed by multiple cell types, but which cells are responsible for CCL2 function during acute and chronic phases of autoimmune disease is not known. We determined the role of CCL2 in astrocytes in vivo during experimental autoimmune encephalomyelitis (EAE) by using Cre-loxP gene deletion. Mice with a conditional gene deletion of CCL2 from astrocytes had less severe EAE late in disease while having a similar incidence and severity of disease at onset as compared to wild type (WT) control littermates. EAE mice devoid of CCL2 in astrocytes had less macrophage and T cell inflammation in the white matter of the spinal cord and less diffuse activation of astrocytes and microglia in both white and gray matter as well as less axonal loss and demyelination, compared to WT littermates. These findings demonstrate that CCL2 in astrocytes plays an important role in the continued recruitment of immune cells and activation of glial cells in the CNS during chronic EAE, thereby suggesting a novel cell specific target for neuroprotective treatments of chronic neuroinflammatory diseases.
Collapse
Affiliation(s)
- Roy Y Kim
- Molecular Cellular and Integrative Physiology Interdepartmental Ph.D. Program, University of California, Los Angeles; Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Alexandria S Hoffman
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Noriko Itoh
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Yan Ao
- Department of Neurobiology, University of California, Los Angeles
| | - Rory Spence
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | | | - Rhonda R Voskuhl
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles.
| |
Collapse
|
40
|
Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model. Cell Death Dis 2014; 5:e1217. [PMID: 24810053 PMCID: PMC4047887 DOI: 10.1038/cddis.2014.184] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 11/26/2022]
Abstract
Diabetic neuropathy develops on a background of hyperglycemia and an entangled metabolic imbalance. There is increasing evidence of central nervous system involvement in diabetic neuropathy and no satisfactory treatment except maintenance of good glycemic control, thereby highlighting the importance of identifying novel therapeutic targets. Purkinje cells are a class of metabolically specialized active neurons, and degeneration of Purkinje cells is a common feature of inherited ataxias in humans and mice. However, whether Purkinje cells are implicated in diabetic neuropathy development under metabolic stress remains poorly defined. Here, we revealed a novel leucine-rich repeat kinase 2 (LRRK2)-mediated pathway in Purkinje cells that is involved in the pathogenesis of diabetic neuropathy from a 24-week long study of streptozotocin (STZ)-diabetic rats. We found that hyperglycemia, cerebellum proinflammatory cytokines, and chemokines increased markedly in 24-week STZ-diabetic rats. Furthermore, we demonstrated that degeneration of Purkinje cells is characterized by progressive swellings of axon terminals, no autophagosome formation, the reduction of LC3II/LC3I and Lamp2, and accumulation of p62 puncta in 24-week STZ-diabetic rats. Importantly, a higher expression level of LRRK2-mediated hyperphosphorylation of tau along with increased mitochondrial dynamin-like protein (mito-DLP1) was demonstrated in 24-week STZ-diabetic rats. This effect of LRRK2 overexpression induced mitochondrial fragmentation, and reduced mitochondrial protein degradation rates were confirmed in vitro. As a consequence, 24-week STZ-diabetic rats showed mitochondrial dysfunction in cerebellar Purkinje neurons and coordinated motor deficits evaluated by rotarod test. Our findings are to our knowledge the first to suggest that the LRRK2-mediated pathway induces mitochondrial dysfunction and loss of cerebellar Purkinje neurons and, subsequently, may be associated with motor coordination deficits in STZ-diabetic rats. These data may indicate a novel cellular therapeutic target for diabetic neuropathy.
Collapse
|
41
|
Nathoo N, Yong VW, Dunn JF. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models. NEUROIMAGE-CLINICAL 2014; 4:743-56. [PMID: 24936425 PMCID: PMC4053634 DOI: 10.1016/j.nicl.2014.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/11/2023]
Abstract
There are exciting new advances in multiple sclerosis (MS) resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR) is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS) studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS. MRI studies of pathology in various animal models of MS are reviewed. MRI phenotypes in animal models of MS and MS patients are compared. Animal MRI can increase understanding of links between MR and pathology in patients.
Collapse
Affiliation(s)
- Nabeela Nathoo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada
- Corresponding author at: Department of Radiology, University of Calgary, 3330 Hospital Drive, N.W., Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
42
|
Moore S, Khalaj AJ, Yoon J, Patel R, Hannsun G, Yoo T, Sasidhar M, Martinez-Torres L, Hayardeny L, Tiwari-Woodruff SK. Therapeutic laquinimod treatment decreases inflammation, initiates axon remyelination, and improves motor deficit in a mouse model of multiple sclerosis. Brain Behav 2013; 3:664-82. [PMID: 24363970 PMCID: PMC3868172 DOI: 10.1002/brb3.174] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/28/2013] [Accepted: 08/08/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms are central goals for future treatment of multiple sclerosis (MS), as well as other diseases. Laquinimod (LQ) is an orally administered, central nervous system (CNS)-active immunomodulator with demonstrated efficacy in MS clinical trials and a favorable safety and tolerability profile. AIMS We aimed to explore the pathological, functional, and behavioral consequences of prophylactic and therapeutic (after presentation of peak clinical disease) LQ treatment in the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. MATERIALS AND METHODS Active EAE-induced 8-week-old C57BL/6 mice were treated with 5 or 25 mg/kg/day LQ via oral gavage beginning on EAE post-immunization day 0, 8, or 21. Clinical scores and rotorod motor performance were assessed throughout the disease course. Immune analysis of autoantigen-stimulated splenocytes, electrophysiological conduction of callosal axons, and immunohistochemistry of white matter-rich corpus callosum and spinal cord were performed. RESULTS Prophylactic and therapeutic treatment with LQ significantly decreased mean clinical disease scores, inhibited Th1 cytokine production, and decreased the CNS inflammatory response. LQ-induced improvement in axon myelination and integrity during EAE was functional, as evidenced by significant recovery of callosal axon conduction and axon refractoriness and pronounced improvement in rotorod motor performance. These improvements correlate with LQ-induced attenuation of EAE-induced demyelination and axon damage, and improved myelinated axon numbers. DISCUSSION Even when initiated at peak disease, LQ treatment has beneficial effects within the chronic EAE mouse model. In addition to its immunomodulatory effects, the positive effects of LQ treatment on oligodendrocyte numbers and myelin density are indicative of significant, functional neuroprotective and neurorestorative effects. CONCLUSIONS Our results support a potential neuroprotective, in addition to immunomodulatory, effect of LQ treatment in inhibiting ongoing MS/EAE disease progression.
Collapse
Affiliation(s)
- Spencer Moore
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Anna J Khalaj
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Jaehee Yoon
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Rhusheet Patel
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Gemmy Hannsun
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Timothy Yoo
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Manda Sasidhar
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Leonardo Martinez-Torres
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Liat Hayardeny
- Pharmacology Unit, Global Innovative R&D, Teva Pharmaceutical Industries Netanya, Israel
| | - Seema K Tiwari-Woodruff
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California ; Brain Research Institute, UCLA School of Medicine Los Angeles, California ; Intellectual Development and Disabilities Research Center, UCLA Los Angeles, California
| |
Collapse
|
43
|
Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 2013; 33:12105-21. [PMID: 23864696 DOI: 10.1523/jneurosci.5369-12.2013] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cerebellar deficit contributes significantly to disability in multiple sclerosis (MS). Several clinical and experimental studies have investigated the pathophysiology of cerebellar dysfunction in this neuroinflammatory disorder, but the cellular and molecular mechanisms are still unclear. In experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, proinflammatory cytokines, together with a degeneration of inhibitory neurons, contribute to impair GABAergic transmission at Purkinje cells (PCs). Here, we investigated glutamatergic transmission to gain insight into the pathophysiology of cerebellar dysfunction in EAE. Electrophysiological recordings from PCs showed increased duration of spontaneous excitatory postsynaptic currents (EPSCs) during the symptomatic phase of EAE, suggesting an alteration of glutamate uptake played by Bergmann glia. We indeed observed an impaired functioning of the glutamate-aspartate transporter/excitatory amino acid transporter 1 (GLAST/EAAT1) in EAE cerebellum caused by protein downregulation and in correlation with prominent astroglia activation. We have also demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β), released by a subset of activated microglia/macrophages and infiltrating lymphocytes, was involved directly in such synaptic alteration. In fact, brief incubation of IL-1β in normal cerebellar slices replicated EAE modifications through a rapid GLAST/EAAT1 downregulation, whereas incubation of an IL-1 receptor antagonist (IL-1ra) in EAE slices reduced spontaneous EPSC alterations. Finally, EAE mice treated with intracerebroventricular IL-1ra showed normal glutamatergic and GABAergic transmissions, along with GLAST/EAAT1 normalization, milder inflammation, and reduced motor deficits. These results highlight the crucial role played by the proinflammatory IL-1β in triggering molecular and synaptic events involved in neurodegenerative processes that characterize neuroinflammatory diseases such as MS.
Collapse
|
44
|
Li Q, Lu Q, Lu H, Tian S, Lu Q. Systemic autoimmunity in TAM triple knockout mice causes inflammatory brain damage and cell death. PLoS One 2013; 8:e64812. [PMID: 23840307 PMCID: PMC3688737 DOI: 10.1371/journal.pone.0064812] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
The Tyro3, Axl and Mertk (TAM) triply knockout (TKO) mice exhibit systemic autoimmune diseases, with characteristics of increased proinflammatory cytokine production, autoantibody deposition and autoreactive lymphocyte infiltration into a variety of tissues. Here we show that TKO mice produce high level of serum TNF-α and specific autoantibodies deposited onto brain blood vessels. The brain-blood barrier (BBB) in mutant brains exhibited increased permeability for Evans blue and fluorescent-dextran, suggesting a breakdown of the BBB in the mutant brains. Impaired BBB integrity facilitated autoreactive T cells infiltrating into all regions of the mutant brains. Brain autoimmune disorder caused accumulation of the ubiquitin-reactive aggregates in the mutant hippocampus, and early formation of autofluorescent lipofuscins in the neurons throughout the entire brains. Chronic neuroinflammation caused damage of the hippocampal mossy fibers and neuronal apoptotic death. This study shows that chronic systemic inflammation and autoimmune disorders in the TKO mice cause neuronal damage and death.
Collapse
MESH Headings
- Animals
- Apoptosis
- Autoantibodies/blood
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Blood-Brain Barrier/metabolism
- Brain Damage, Chronic/genetics
- Brain Damage, Chronic/immunology
- Brain Damage, Chronic/pathology
- CA3 Region, Hippocampal/blood supply
- CA3 Region, Hippocampal/immunology
- CA3 Region, Hippocampal/pathology
- Capillary Permeability/immunology
- Cells, Cultured
- Cytokines/metabolism
- Dentate Gyrus/blood supply
- Dentate Gyrus/immunology
- Dentate Gyrus/pathology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Female
- Gene Knockdown Techniques
- Inclusion Bodies/metabolism
- Inflammation Mediators/metabolism
- Lipopolysaccharides/pharmacology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microvessels/immunology
- Microvessels/metabolism
- Neurons/physiology
- Proto-Oncogene Proteins/genetics
- Receptor Protein-Tyrosine Kinases/genetics
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/blood
- Ubiquitinated Proteins/metabolism
- c-Mer Tyrosine Kinase
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- The James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Qingjun Lu
- School of Basic Medicine and Beijing Tong-Ren Hospital, Beijing Ophthalmology and Visual Science Key Laboratory, Capital Medical University, Beijing, China
| | - Huayi Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
| | - Shifu Tian
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
| | - Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
- The James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
45
|
Kumar S, Patel R, Moore S, Crawford DK, Suwanna N, Mangiardi M, Tiwari-Woodruff SK. Estrogen receptor β ligand therapy activates PI3K/Akt/mTOR signaling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. Neurobiol Dis 2013; 56:131-44. [PMID: 23603111 DOI: 10.1016/j.nbd.2013.04.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022] Open
Abstract
The identification of a drug that stimulates endogenous myelination and spares axon degeneration during multiple sclerosis (MS) could potentially reduce the rate of disease progression. Using experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, we have previously shown that prophylactic administration of the estrogen receptor (ER) β ligand 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) decreases clinical disease, is neuroprotective, stimulates endogenous myelination, and improves axon conduction without altering peripheral cytokine production or reducing central nervous system (CNS) inflammation. Here, we assessed the effects of therapeutic DPN treatment during peak EAE disease, which represents a more clinically relevant treatment paradigm. In addition, we investigated the mechanism of action of DPN treatment-induced recovery during EAE. Given that prophylactic and therapeutic treatments with DPN during EAE improved remyelination-induced axon conduction, and that ER (α and β) and membrane (m)ERs are present on oligodendrocyte lineage cells, a direct effect of treatment on oligodendrocytes is likely. DPN treatment of EAE animals resulted in phosphorylated ERβ and activated the phosphatidylinositol 3-kinase (PI3K)/serine-threonine-specific protein kinase (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, a pathway required for oligodendrocyte survival and axon myelination. These results, along with our previous studies of prophylactic DPN treatment, make DPN and similar ERβ ligands immediate and favorable therapeutic candidates for demyelinating disease.
Collapse
Affiliation(s)
- Shalini Kumar
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Mecha M, Carrillo-Salinas FJ, Mestre L, Feliú A, Guaza C. Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler's virus. Prog Neurobiol 2013; 101-102:46-64. [PMID: 23201558 PMCID: PMC7117056 DOI: 10.1016/j.pneurobio.2012.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 11/02/2022]
Abstract
Multiple sclerosis (MS) is a complex inflammatory disease of unknown etiology that affects the central nervous system (CNS) white matter, and for which no effective cure exists. Indeed, whether the primary event in MS pathology affects myelin or axons of the CNS remains unclear. Animal models are necessary to identify the immunopathological mechanisms involved in MS and to develop novel therapeutic and reparative approaches. Specifically, viral models of chronic demyelination and axonal damage have been used to study the contribution of viruses in human MS, and they have led to important breakthroughs in our understanding of MS pathology. The Theiler's murine encephalomyelitis virus (TMEV) model is one of the most commonly used MS models, although other viral models are also used, including neurotropic strains of mouse hepatitis virus (MHV) that induce chronic inflammatory demyelination with similar histological features to those observed in MS. This review will discuss the immunopathological mechanisms involved in TMEV-induced demyelinating disease (TMEV-IDD). The TMEV model reproduces a chronic progressive disease due to the persistence of the virus for the entire lifespan in susceptible mice. The evolution and significance of the axonal damage and neuroinflammation, the importance of epitope spread from viral to myelin epitopes, the presence of abortive remyelination and the existence of a brain pathology in addition to the classical spinal cord demyelination, are some of the findings that will be discussed in the context of this TMEV-IDD model. Despite their limitations, viral models remain an important tool to study the etiology of MS, and to understand the clinical and pathological variability associated with this disease.
Collapse
Key Words
- ab, antibody
- ag, antigen
- apc, antigen presenting cell
- bbb, blood–brain barrier
- cns, central nervous system
- cox-2, cyclooxygenase-2
- ctl, cytotoxic t lymphocytes
- dpi, days post-infection
- da, daniels strain of theiler's virus
- eae, experimental autoimmune encephalomyelitis
- galc, galactocerebroside
- mbp, myelin basic protein
- mnc, mononuclear cells
- mhc, major histocompatibility complex
- mhv, mouse hepatitis virus
- mog, myelin oligodendrocyte glycoprotein
- ms, multiple sclerosis
- naa, n-acetylaspartate
- no, nitric oxide
- pcr, polymerase chain reaction
- plp, myelin proteolipid protein
- pprs, pattern recognition receptors
- sfv, semliki forest virus
- sv, sindbis virus
- tmev, theiler's murine encephalomyelitis virus
- tmev-idd, theiler's murine encephalomyelitis virus-induced demyelinating disease
- tregs, regulatory t cells
- theiler's virus
- multiple sclerosis
- demyelination
- axonal damage
- neuroinflammation
- spinal cord pathology
- brain pathology
Collapse
Affiliation(s)
| | | | | | | | - Carmen Guaza
- Neuroimmunology Group, Functional and System Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda Dr Arce 37, 28002 Madrid, Spain
| |
Collapse
|
47
|
Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. J Neurosci 2012; 32:12312-24. [PMID: 22956822 DOI: 10.1523/jneurosci.2796-12.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Over 50% of multiple sclerosis (MS) patients experience cognitive deficits, and hippocampal-dependent memory impairment has been reported in >30% of these patients. While postmortem pathology studies and in vivo magnetic resonance imaging demonstrate that the hippocampus is targeted in MS, the neuropathology underlying hippocampal dysfunction remains unknown. Furthermore, there are no treatments available to date to effectively prevent neurodegeneration and associated cognitive dysfunction in MS. We have recently demonstrated that the hippocampus is also targeted in experimental autoimmune encephalomyelitis (EAE), the most widely used animal model of MS. The objective of this study was to assess whether a candidate treatment (testosterone) could prevent hippocampal synaptic dysfunction and underlying pathology when administered in either a preventative or a therapeutic (postdisease induction) manner. Electrophysiological studies revealed impairments in basal excitatory synaptic transmission that involved both AMPA receptor-mediated changes in synaptic currents, and faster decay rates of NMDA receptor-mediated currents in mice with EAE. Neuropathology revealed atrophy of the pyramidal and dendritic layers of hippocampal CA1, decreased presynaptic (Synapsin-1) and postsynaptic (postsynaptic density 95; PSD-95) staining, diffuse demyelination, and microglial activation. Testosterone treatment administered either before or after disease induction restores excitatory synaptic transmission as well as presynaptic and postsynaptic protein levels within the hippocampus. Furthermore, cross-modality correlations demonstrate that fluctuations in EPSPs are significantly correlated to changes in postsynaptic protein levels and suggest that PSD-95 is a neuropathological substrate to impaired synaptic transmission in the hippocampus during EAE. This is the first report demonstrating that testosterone is a viable therapeutic treatment option that can restore both hippocampal function and disease-associated pathology that occur during autoimmune disease.
Collapse
|
48
|
Ziehn MO, Avedisian AA, Dervin SM, O’Dell TJ, Voskuhl RR. Estriol preserves synaptic transmission in the hippocampus during autoimmune demyelinating disease. J Transl Med 2012; 92:1234-45. [PMID: 22525427 PMCID: PMC4343001 DOI: 10.1038/labinvest.2012.76] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cognitive deficits occur in over half of multiple sclerosis patients, with hippocampal-dependent learning and memory commonly impaired. Data from in vivo MRI and post-mortem studies in MS indicate that the hippocampus is targeted. However, the relationship between structural pathology and dysfunction of the hippocampus in MS remains unclear. Hippocampal neuropathology also occurs in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. Although estrogen treatment of EAE has been shown to be anti-inflammatory and neuroprotective in the spinal cord, it is unknown if estrogen treatment may prevent hippocampal pathology and dysfunction. In the current study we examined excitatory synaptic transmission during EAE and focused on pathological changes in synaptic protein complexes known to orchestrate functional synaptic transmission in the hippocampus. We then determined if estriol, a candidate hormone treatment, was capable of preventing functional changes in synaptic transmission and corresponding hippocampal synaptic pathology. Electrophysiological studies revealed altered excitatory synaptic transmission and paired-pulse facilitation (PPF) during EAE. Neuropathological experiments demonstrated that there were decreased levels of pre- and post-synaptic proteins in the hippocampus, diffuse loss of myelin staining and atrophy of the pyramidal layers of hippocampal cornu ammonis 1 (CA1). Estriol treatment prevented decreases in excitatory synaptic transmission and lessened the effect of EAE on PPF. In addition, estriol treatment prevented several neuropathological alterations that occurred in the hippocampus during EAE. Cross-modality correlations revealed that deficits in excitatory synaptic transmission were significantly correlated with reductions in trans-synaptic protein binding partners known to modulate excitatory synaptic transmission. To our knowledge, this is the first report describing a functional correlate to hippocampal neuropathology in any MS model. Furthermore, a treatment was identified that prevented both deficits in synaptic function and hippocampal neuropathology.
Collapse
Affiliation(s)
- Marina O. Ziehn
- Interdepartmental Program of Neuroscience, University of California, Los Angeles
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Andrea A. Avedisian
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Shannon M. Dervin
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Thomas J. O’Dell
- Department of Physiology, David Geffen School of Medicine at the University of California, Los Angeles
| | - Rhonda R. Voskuhl
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| |
Collapse
|
49
|
Gadolinium-staining reveals amyloid plaques in the brain of Alzheimer's transgenic mice. Neurobiol Aging 2012; 33:1533-44. [DOI: 10.1016/j.neurobiolaging.2011.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 01/05/2023]
|
50
|
MacKenzie-Graham AJ, Rinek GA, Avedisian A, Morales LB, Umeda E, Boulat B, Jacobs RE, Toga AW, Voskuhl RR. Estrogen treatment prevents gray matter atrophy in experimental autoimmune encephalomyelitis. J Neurosci Res 2012; 90:1310-23. [PMID: 22411609 DOI: 10.1002/jnr.23019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/13/2022]
Abstract
Gray matter atrophy is an important correlate to clinical disability in multiple sclerosis (MS), and many treatment trials include atrophy as an outcome measure. Atrophy has been shown to occur in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The clinical severity of EAE is reduced in estrogen-reated mice, but it remains unknown whether estrogen treatment can reduce gray matter atrophy in EAE. In this study, mice with EAE were treated with either estrogen receptor (ER)-α ligand or ER-β ligand, and diffusion tensor images (DTI) were collected and neuropathology was performed. DTI showed atrophy in the cerebellar gray matter of vehicle-treated EAE mice compared with healthy controls but not in ER-α or ER-β ligand-treated EAE mice. Neuropathology demonstrated that Purkinje cell numbers were decreased in vehicle-treated EAE mice, whereas neither ER ligand-treated EAE groups showed a decrease. This is the first report of a neuroprotective therapy in EAE that unambiguously prevents gray matter atrophy while sparing a major neuronal cell type. Fractional anisotropy (FA) in the cerebellar white matter was decreased in vehicle- and ER-β ligand-treated but not in ER-α ligand-treated EAE mice. Inflammatory cell infiltration was increased in vehicle- and ER-β ligand-treated but not in ER-α ligand-treated EAE mice. Myelin staining was decreased in vehicle-treated EAE mice and was spared in both ER ligand-treated groups. This is consistent with decreased FA as a potential biomarker for inflammation rather than myelination or axonal damage in the cerebellum in EAE.
Collapse
Affiliation(s)
- Allan J MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|