1
|
von Bernhardi R, Eugenín J. Ageing-related changes in the regulation of microglia and their interaction with neurons. Neuropharmacology 2025; 265:110241. [PMID: 39617175 DOI: 10.1016/j.neuropharm.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Ageing is one of the most important risk factors for chronic health conditions, including neurodegenerative diseases. Inflammation is a feature of ageing, as well as a key pathophysiological mechanism for degenerative diseases. Microglia play multiple roles in the central nervous system; their states entail a complex assemblage of responses reflecting the multiplicity of functions they fulfil both under homeostatic basal conditions and in response to stimuli. Whereas glial cells can promote neuronal homeostasis and limit neurodegeneration, age-related inflammation (i.e. inflammaging) leads to the functional impairment of microglia and astrocytes, exacerbating their response to stimuli. Thus, microglia are key mediators for age-dependent changes of the nervous system, participating in the generation of a less supportive or even hostile environment for neurons. Whereas multiple changes of ageing microglia have been described, here we will focus on the neuron-microglia regulatory crosstalk through fractalkine (CX3CL1) and CD200, and the regulatory cytokine Transforming Growth Factor β1 (TGFβ1), which is involved in immunomodulation and neuroprotection. Ageing results in a dysregulated activation of microglia, affecting neuronal survival, and function. The apparent unresponsiveness of aged microglia to regulatory signals could reflect a restriction in the mechanisms underlying their homeostatic and reactive states. The spectrum of functions, required to respond to life-long needs for brain maintenance and in response to disease, would progressively narrow, preventing microglia from maintaining their protective functions. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Universidad San Sebastian, Faculty for Odontology and Rehabilitation Sciences. Lota 2465, Providencia, Santiago, PO. 7510602, Chile.
| | - Jaime Eugenín
- Universidad de Santiago de Chile, Faculty of Chemistry and Biology, Av. Libertador Bernardo O'Higgins 3363, Santiago, PO. 7510602, Chile.
| |
Collapse
|
2
|
Beydoun MA, Beydoun HA, Noren Hooten N, Li Z, Hu Y, Georgescu MF, Hossain S, Tanaka T, Bouhrara M, Maino Vieytes CA, Fanelli‐Kuczmarski MT, Launer LJ, Evans MK, Zonderman AB. Plasma proteomic biomarkers as mediators or moderators for the association between poor cardiovascular health and white matter microstructural integrity: The UK Biobank study. Alzheimers Dement 2025; 21:e14507. [PMID: 39822062 PMCID: PMC11864230 DOI: 10.1002/alz.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION The plasma proteome's mediating or moderating roles in the association between poor cardiovascular health (CVH) and brain white matter (WM) microstructural integrity are largely unknown. METHODS Data from 3953 UK Biobank participants were used (40-70 years, 2006-2010), with a neuroimaging visit between 2014 and 2021. Poor CVH was determined using Life's Essential 8 (LE8) and reversing standardized z-scores (LE8z _rev). The plasma proteome was examined as a potential mediator or moderator of LE8z _rev's effects on quantitative diffusion-weighted magnetic resonance imaging (dMRI) metrics. RESULTS LE8z_rev was significantly associated with deteriorated WM microstructural integrity, as reflected by lower tract-averaged fractional anisotropy (dMRI-FAmean), (β ± standared error (SE): -0.00152 ± 0.0003, p < 0.001) and higher tract-averaged orientation dispersion (dMRI-ODmean), (β ± SE:+0.00081 ± 0.00017, p < 0.001). Ten strongly mediating plasma proteins of 1463 were identified, with leptin as the principal driver. DISCUSSION Poor CVH is linked to poor WM microstructural integrity measures (lower FAmean and higher ODmean), mostly mediated through leptin. HIGHLIGHTS Up to 3953 UK Biobank participants were selected for this study. Poor cardiovascular health (CVH) was determined using Life's Essential 8. The plasma proteome was examined as a potential mediator or moderator of poor CVH's effect on dMRI metrics. Ten plasma proteins were identified with strong mediating effects, with leptin being the principal driver.
Collapse
Affiliation(s)
- May A. Beydoun
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Hind A. Beydoun
- VA National Center on Homelessness Among VeteransU.S. Department of Veterans AffairsWashington, DCUSA
- Department of Management, Policy, and Community Health, School of Public HealthUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Zhiguang Li
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Yi‐Han Hu
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Michael F. Georgescu
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Sharmin Hossain
- Department of Human Services (DHS)State of MarylandBaltimoreMarylandUSA
| | - Toshiko Tanaka
- Translational Gerontology BranchNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Mustapha Bouhrara
- Laboratory of Clinical InvestigationNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Christian A. Maino Vieytes
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Marie T. Fanelli‐Kuczmarski
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| |
Collapse
|
3
|
Vuković M, Nosek I, Slotboom J, Medić Stojanoska M, Kozić D. Neurometabolic Profile in Obese Patients: A Cerebral Multi-Voxel Magnetic Resonance Spectroscopy Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1880. [PMID: 39597065 PMCID: PMC11596650 DOI: 10.3390/medicina60111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Obesity-related chronic inflammation may lead to neuroinflammation and neurodegeneration. This study aimed to evaluate the neurometabolic profile of obese patients using cerebral multivoxel magnetic resonance spectroscopy (mvMRS) and assess correlations between brain metabolites and obesity markers, including body mass index (BMI), waist circumference, waist-hip ratio, body fat percentage, and indicators of metabolic syndrome (e.g., triglycerides, HDL cholesterol, fasting blood glucose, insulin, and insulin resistance index (HOMA-IR)). Materials and Methods: This prospective study involved 100 participants, stratified into two groups: 50 obese individuals (BMI ≥ 30 kg/m2) and 50 controls (18.5 ≤ BMI < 25 kg/m2). Anthropometric measurements, body fat percentage, and biochemical markers were evaluated. All subjects underwent long- and short-echo mvMRS analysis of the frontal and parietal supracallosal subcortical and deep white matter, as well as the cingulate gyrus, analyzing NAA/Cr, Cho/Cr, and mI/Cr ratios, along with absolute concentrations of NAA and Cho. Results: Obese participants exhibited significantly decreased NAA/Cr and Cho/Cr ratios in the deep white matter of the right cerebral hemisphere (p < 0.001), while absolute concentrations of NAA and Cho did not differ significantly between groups (p > 0.05). NAA levels showed negative correlations with more reliable obesity parameters (waist circumference and waist-to-hip ratio) but not with BMI, particularly in the deep frontal white matter and dorsal anterior cingulate gyrus of the left cerebral hemisphere. Notably, insulin demonstrated a significant negative impact on NAA (ρ = -0.409 and ρ = -0.410; p < 0.01) and Cho levels (ρ = -0.403 and ρ = -0.392; p < 0.01) at these locations in obese individuals. Conclusions: Central obesity and hyperinsulinemia negatively affect specific brain regions associated with cognitive and emotional processing, while BMI is not a reliable parameter for assessing brain metabolism.
Collapse
Affiliation(s)
- Miloš Vuković
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (I.N.); (M.M.S.); (D.K.)
| | - Igor Nosek
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (I.N.); (M.M.S.); (D.K.)
| | - Johannes Slotboom
- Institute for Diagnostic and Interventional Neuroradiology, University Hospital Bern and Inselspital, 3010 Bern, Switzerland;
| | - Milica Medić Stojanoska
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (I.N.); (M.M.S.); (D.K.)
| | - Duško Kozić
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (I.N.); (M.M.S.); (D.K.)
| |
Collapse
|
4
|
Liu Y, Ren H, Zhang Y, Deng W, Ma X, Zhao L, Li X, Sham P, Wang Q, Li T. Temporal changes in brain morphology related to inflammation and schizophrenia: an omnigenic Mendelian randomization study. Psychol Med 2024; 54:2054-2062. [PMID: 38445386 DOI: 10.1017/s003329172400014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
BACKGROUND Over the past several decades, more research focuses have been made on the inflammation/immune hypothesis of schizophrenia. Building upon synaptic plasticity hypothesis, inflammation may contribute the underlying pathophysiology of schizophrenia. Yet, pinpointing the specific inflammatory agents responsible for schizophrenia remains a complex challenge, mainly due to medication and metabolic status. Multiple lines of evidence point to a wide-spread genetic association across genome underlying the phenotypic variations of schizophrenia. METHOD We collected the latest genome-wide association analysis (GWAS) summary data of schizophrenia, cytokines, and longitudinal change of brain. We utilized the omnigenic model which takes into account all genomic SNPs included in the GWAS of trait, instead of traditional Mendelian randomization (MR) methods. We conducted two round MR to investigate the inflammatory triggers of schizophrenia and the resulting longitudinal changes in the brain. RESULTS We identified seven inflammation markers linked to schizophrenia onset, which all passed the Bonferroni correction for multiple comparisons (bNGF, GROA(CXCL1), IL-8, M-CSF, MCP-3 (CCL7), TNF-β, CRP). Moreover, CRP were found to significantly influence the linear rate of brain morphology changes, predominantly in the white matter of the cerebrum and cerebellum. CONCLUSION With an omnigenic approach, our study sheds light on the immune pathology of schizophrenia. Although these findings need confirmation from future studies employing different methodologies, our work provides substantial evidence that pervasive, low-level neuroinflammation may play a pivotal role in schizophrenia, potentially leading to notable longitudinal changes in brain morphology.
Collapse
Affiliation(s)
- Yunjia Liu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Hongyan Ren
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Yamin Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai 200031, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai 200031, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai 200031, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Pak Sham
- State Key Laboratory of Brain and Cognitive Sciences, Centre for Genomic Sciences, and Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai 200031, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Wu C, Tu T, Xie M, Wang Y, Yan B, Gong Y, Zhang J, Zhou X, Xie Z. Spatially resolved transcriptome of the aging mouse brain. Aging Cell 2024; 23:e14109. [PMID: 38372175 PMCID: PMC11113349 DOI: 10.1111/acel.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Brain aging is associated with cognitive decline, memory loss and many neurodegenerative disorders. The mammalian brain has distinct structural regions that perform specific functions. However, our understanding in gene expression and cell types within the context of the spatial organization of the mammalian aging brain is limited. Here we generated spatial transcriptomic maps of young and old mouse brains. We identified 27 distinguished brain spatial domains, including layer-specific subregions that are difficult to dissect individually. We comprehensively characterized spatial-specific changes in gene expression in the aging brain, particularly for isocortex, the hippocampal formation, brainstem and fiber tracts, and validated some gene expression differences by qPCR and immunohistochemistry. We identified aging-related genes and pathways that vary in a coordinated manner across spatial regions and parsed the spatial features of aging-related signals, providing important clues to understand genes with specific functions in different brain regions during aging. Combined with single-cell transcriptomics data, we characterized the spatial distribution of brain cell types. The proportion of immature neurons decreased in the DG region with aging, indicating that the formation of new neurons is blocked. Finally, we detected changes in information interactions between regions and found specific pathways were deregulated with aging, including classic signaling WNT and layer-specific signaling COLLAGEN. In summary, we established a spatial molecular atlas of the aging mouse brain (http://sysbio.gzzoc.com/Mouse-Brain-Aging/), which provides important resources and novel insights into the molecular mechanism of brain aging.
Collapse
Affiliation(s)
- Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Tianxiang Tu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Mingzhe Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yiting Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Xiaolai Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
6
|
Jin Y, Li X, Yuan Q, Huang X, Zhang D. Visualization analysis of exercise intervention on Alzheimer disease based on bibliometrics: Trends, hotspots and topics. Medicine (Baltimore) 2023; 102:e36347. [PMID: 38065914 PMCID: PMC10713167 DOI: 10.1097/md.0000000000036347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND As the challenges of an aging society continue to escalate, Alzheimer disease (AD) has emerged as a significant health, social, and public concern, garnering substantial attention. Exercise, as a safe, effective, and cost-efficient approach with the potential to mitigate brain aging, has garnered considerable interest. Nevertheless, there has been a limited research investigating the current trends, hotspots, and topics of exercise on AD. METHODS The literature spanning from 2013 to 2022 was obtained from the Web of Science database, and CiteSpace VI was employed to conduct an analysis encompassing fundamental data, keywords, and co-citation analysis. RESULTS A total of 9372 publications were included in the analysis. The annual number of publications has exhibited a gradual increase. The United States and China made significant contributions, with England showing higher citation rates and greater academic influence. The Journal of Alzheimers Disease, Neurosciences Neurology, Liu-Ambrose, Teresa represents the most published journal, discipline, and author, respectively. The research trends can be summarized as exploring functional changes and potential mechanisms related to exercise impact on AD. The hotspots in the research include the intersection of AD and diabetes mellitus, as well as the underlying effects induced by exercise. The topics of interest revolve around the application of emerging technologies in the context of exercise and AD. CONCLUSION This bibliometric analysis has identified relevant trends, hotspots, and topics within the exercise intervention on AD. It offers a comprehensive overview that can equip researchers with valuable insights for future exploration and assist scholars in charting research trajectories in related domains.
Collapse
Affiliation(s)
- Yu Jin
- School of Sport medicine and health, Chengdu Sport University, Chengdu, P.R. China
| | - Xue Li
- School of Sport medicine and health, Chengdu Sport University, Chengdu, P.R. China
| | - Qiongjia Yuan
- School of Sport medicine and health, Chengdu Sport University, Chengdu, P.R. China
- School of Sport and Health, Jili University, Chengdu, Chengdu, P.R. China
| | - Xiaohan Huang
- School of Sport medicine and health, Chengdu Sport University, Chengdu, P.R. China
| | - Deman Zhang
- School of Sport medicine and health, Chengdu Sport University, Chengdu, P.R. China
| |
Collapse
|
7
|
Mayer AR, Meier TB, Ling JM, Dodd AB, Brett BL, Robertson-Benta CR, Huber DL, Van der Horn HJ, Broglio SP, McCrea MA, McAllister T. Increased brain age and relationships with blood-based biomarkers following concussion in younger populations. J Neurol 2023; 270:5835-5848. [PMID: 37594499 PMCID: PMC10632216 DOI: 10.1007/s00415-023-11931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Brain age is increasingly being applied to the spectrum of brain injury to define neuropathological changes in conjunction with blood-based biomarkers. However, data from the acute/sub-acute stages of concussion are lacking, especially among younger cohorts. METHODS Predicted brain age differences were independently calculated in large, prospectively recruited cohorts of pediatric concussion and matched healthy controls (total N = 446), as well as collegiate athletes with sport-related concussion and matched non-contact sport controls (total N = 184). Effects of repetitive head injury (i.e., exposure) were examined in a separate cohort of contact sport athletes (N = 82), as well as by quantifying concussion history through semi-structured interviews and years of contact sport participation. RESULTS Findings of increased brain age during acute and sub-acute concussion were independently replicated across both cohorts, with stronger evidence of recovery for pediatric (4 months) relative to concussed athletes (6 months). Mixed evidence existed for effects of repetitive head injury, as brain age was increased in contact sport athletes, but was not associated with concussion history or years of contact sport exposure. There was no difference in brain age between concussed and contact sport athletes. Total tau decreased immediately (~ 1.5 days) post-concussion relative to the non-contact group, whereas pro-inflammatory markers were increased in both concussed and contact sport athletes. Anti-inflammatory markers were inversely related to brain age, whereas markers of axonal injury (neurofilament light) exhibited a trend positive association. CONCLUSION Current and previous findings collectively suggest that the chronicity of brain age differences may be mediated by age at injury (adults > children), with preliminary findings suggesting that exposure to contact sports may also increase brain age.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cidney R Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Daniel L Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Harm J Van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Bloomington, IN, USA
| |
Collapse
|
8
|
Augusto-Oliveira M, Arrifano GP, Leal-Nazaré CG, Santos-Sacramento L, Lopes-Araújo A, Royes LFF, Crespo-Lopez ME. Exercise Reshapes the Brain: Molecular, Cellular, and Structural Changes Associated with Cognitive Improvements. Mol Neurobiol 2023; 60:6950-6974. [PMID: 37518829 DOI: 10.1007/s12035-023-03492-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Physical exercise is well known as a non-pharmacological and holistic therapy believed to prevent and mitigate numerous neurological conditions and alleviate ageing-related cognitive decline. To do so, exercise affects the central nervous system (CNS) at different levels. It changes brain physiology and structure, promoting cognitive improvements, which ultimately improves quality of life. Most of these effects are mediated by neurotrophins release, enhanced adult hippocampal neurogenesis, attenuation of neuroinflammation, modulation of cerebral blood flow, and structural reorganisation, besides to promote social interaction with beneficial cognitive outcomes. In this review, we discuss, based on experimental and human research, how exercise impacts the brain structure and function and how these changes contribute to cognitive improvements. Understanding the mechanisms by which exercise affects the brain is essential to understand the brain plasticity following exercise, guiding therapeutic approaches to improve the quality of life, especially in obesity, ageing, neurodegenerative disorders, and following traumatic brain injury.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil.
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Caio G Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Letícia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Luiz Fernando Freire Royes
- Laboratório de Bioquímica Do Exercício, Centro de Educacão Física E Desportos, Universidade Federal de Santa Maria, Santa Maria, RGS, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil.
| |
Collapse
|
9
|
Lu Z, Zhang M, Lee J, Sziraki A, Anderson S, Zhang Z, Xu Z, Jiang W, Ge S, Nelson PT, Zhou W, Cao J. Tracking cell-type-specific temporal dynamics in human and mouse brains. Cell 2023; 186:4345-4364.e24. [PMID: 37774676 PMCID: PMC10545416 DOI: 10.1016/j.cell.2023.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Progenitor cells are critical in preserving organismal homeostasis, yet their diversity and dynamics in the aged brain remain underexplored. We introduced TrackerSci, a single-cell genomic method that combines newborn cell labeling and combinatorial indexing to characterize the transcriptome and chromatin landscape of proliferating progenitor cells in vivo. Using TrackerSci, we investigated the dynamics of newborn cells in mouse brains across various ages and in a mouse model of Alzheimer's disease. Our dataset revealed diverse progenitor cell types in the brain and their epigenetic signatures. We further quantified aging-associated shifts in cell-type-specific proliferation and differentiation and deciphered the associated molecular programs. Extending our study to the progenitor cells in the aged human brain, we identified conserved genetic signatures across species and pinpointed region-specific cellular dynamics, such as the reduced oligodendrogenesis in the cerebellum. We anticipate that TrackerSci will be broadly applicable to unveil cell-type-specific temporal dynamics in diverse systems.
Collapse
Affiliation(s)
- Ziyu Lu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Melissa Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Sonya Anderson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Zehao Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Zihan Xu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Weirong Jiang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Harrison JR, Foley SF, Baker E, Bracher-Smith M, Holmans P, Stergiakouli E, Linden DEJ, Caseras X, Jones DK, Escott-Price V. Pathway-specific polygenic scores for Alzheimer's disease are associated with changes in brain structure in younger and older adults. Brain Commun 2023; 5:fcad229. [PMID: 37744023 PMCID: PMC10517196 DOI: 10.1093/braincomms/fcad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Genome-wide association studies have identified multiple Alzheimer's disease risk loci with small effect sizes. Polygenic risk scores, which aggregate these variants, are associated with grey matter structural changes. However, genome-wide scores do not allow mechanistic interpretations. The present study explored associations between disease pathway-specific scores and grey matter structure in younger and older adults. Data from two separate population cohorts were used as follows: the Avon Longitudinal Study of Parents and Children, mean age 19.8, and UK Biobank, mean age 64.4 (combined n = 18 689). Alzheimer's polygenic risk scores were computed using the largest genome-wide association study of clinically assessed Alzheimer's to date. Relationships between subcortical volumes and cortical thickness, pathway-specific scores and genome-wide scores were examined. Increased pathway-specific scores were associated with reduced cortical thickness in both the younger and older cohorts. For example, the reverse cholesterol transport pathway score showed evidence of association with lower left middle temporal cortex thickness in the younger Avon participants (P = 0.034; beta = -0.013, CI -0.025, -0.001) and in the older UK Biobank participants (P = 0.019; beta = -0.003, CI -0.005, -4.56 × 10-4). Pathway scores were associated with smaller subcortical volumes, such as smaller hippocampal volume, in UK Biobank older adults. There was also evidence of positive association between subcortical volumes in Avon younger adults. For example, the tau protein-binding pathway score was negatively associated with left hippocampal volume in UK Biobank (P = 8.35 × 10-05; beta = -11.392, CI -17.066, -5.718) and positively associated with hippocampal volume in the Avon study (P = 0.040; beta = 51.952, CI 2.445, 101.460). The immune response score had a distinct pattern of association, being only associated with reduced thickness in the right posterior cingulate in older and younger adults (P = 0.011; beta = -0.003, CI -0.005, -0.001 in UK Biobank; P = 0.034; beta = -0.016, CI -0.031, -0.001 in the Avon study). The immune response score was associated with smaller subcortical volumes in the older adults, but not younger adults. The disease pathway scores showed greater evidence of association with imaging phenotypes than the genome-wide score. This suggests that pathway-specific polygenic methods may allow progress towards a mechanistic understanding of structural changes linked to polygenic risk in pre-clinical Alzheimer's disease. Pathway-specific profiling could further define pathophysiology in individuals, moving towards precision medicine in Alzheimer's disease.
Collapse
Affiliation(s)
- Judith R Harrison
- Institute of Neuroscience, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, CF24 4HQ, UK
| | - Sonya F Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, CF24 4HQ, UK
| | - Emily Baker
- Dementia Research Institute & MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Matthew Bracher-Smith
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Evie Stergiakouli
- Bristol Population Health Science Institute, Bristol University, Oakfield House, Bristol, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, CF24 4HQ, UK
- Mary MacKillop Institute for Health Research, Australian Catholic University, 5/215 Spring St, Melbourne, VIC 3000, Australia
| | - Valentina Escott-Price
- Dementia Research Institute & MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
11
|
Zhang Y, Tatewaki Y, Nakase T, Liu Y, Tomita N, Thyreau B, Zheng H, Muranaka M, Takano Y, Nagasaka T, Taki Y. Impact of hs-CRP concentration on brain structure alterations and cognitive trajectory in Alzheimer's disease. Front Aging Neurosci 2023; 15:1227325. [PMID: 37593375 PMCID: PMC10427872 DOI: 10.3389/fnagi.2023.1227325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Present study was to investigate hs-CRP concentration, brain structural alterations, and cognitive function in the context of AD [Subjective cognitive decline (SCD), mild cognitive impairment (MCI), and AD]. Methods We retrospectively included 313 patients (Mean age = 76.40 years, 59 SCD, 101 MCI, 153 AD) in a cross-sectional analysis and 91 patients (Mean age = 75.83 years, 12 SCD, 43 MCI, 36 AD) in a longitudinal analysis. Multivariable linear regression was conducted to investigate the relationship between hs-CRP concentration and brain structural alterations, and cognitive function, respectively. Results Hs-CRP was positively associated with gray matter volume in the left fusiform (β = 0.16, pFDR = 0.023) and the left parahippocampal gyrus (β = 0.16, pFDR = 0.029). Post hoc analysis revealed that these associations were mainly driven by patients with MCI and AD. The interaction of diagnosis and CRP was significantly associated with annual cognitive changes (β = 0.43, p = 0.008). Among these patients with AD, lower baseline CRP was correlated with greater future cognitive decline (r = -0.41, p = 0.013). Conclusion Our study suggests that increased hs-CRP level may exert protective effect on brain structure alterations and future cognitive changes among patients already with cognitive impairment.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuko Tatewaki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Taizen Nakase
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Yingxu Liu
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Naoki Tomita
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | | | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Michiho Muranaka
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Yumi Takano
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Tatsuo Nagasaka
- Division of Radiology, Tohoku University Hospital, Sendai, Japan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Adingupu DD, Soroush A, Hansen A, Twomey R, Dunn JF. Brain hypoxia, neurocognitive impairment, and quality of life in people post-COVID-19. J Neurol 2023; 270:3303-3314. [PMID: 37210689 PMCID: PMC10200033 DOI: 10.1007/s00415-023-11767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE Systemic hypoxia occurs in COVID-19 infection; however, it is unknown if cerebral hypoxia occurs in convalescent individuals. We have evidence from other conditions associated with central nervous system inflammation that hypoxia may occur in the brain. If so, hypoxia could reduce the quality of life and brain function. This study was undertaken to assess if brain hypoxia occurs in individuals after recovery from acute COVID-19 infection and if this hypoxia is associated with neurocognitive impairment and reduced quality of life. METHODS Using frequency-domain near-infrared spectroscopy (fdNIRS), we measured cerebral tissue oxygen saturation (StO2) (a measure of hypoxia) in participants who had contracted COVID-19 at least 8 weeks prior to the study visit and healthy controls. We also conducted neuropsychological assessments and health-related quality of life assessments, fatigue, and depression. RESULTS Fifty-six percent of the post-COVID-19 participants self-reported having persistent symptoms (from a list of 18), with the most reported symptom being fatigue and brain fog. There was a gradation in the decrease of oxyhemoglobin between controls, and normoxic and hypoxic post-COVID-19 groups (31.7 ± 8.3 μM, 27.8 ± 7.0 μM and 21.1 ± 7.2 μM, respectively, p = 0.028, p = 0.005, and p = 0.081). We detected that 24% of convalescent individuals' post-COVID-19 infection had reduced StO2 in the brain and that this relates to reduced neurological function and quality of life. INTERPRETATION We believe that the hypoxia reported here will have health consequences for these individuals, and this is reflected in the correlation of hypoxia with greater symptomology. With the fdNIRS technology, combined with neuropsychological assessment, we may be able to identify individuals at risk of hypoxia-related symptomology and target individuals that are likely to respond to treatments aimed at improving cerebral oxygenation.
Collapse
Affiliation(s)
- Damilola D Adingupu
- Department of Radiology, University of Calgary, Calgary, Canada.
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Canada.
| | - Ateyeh Soroush
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Canada
- Department Of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Ayden Hansen
- Department of Radiology, University of Calgary, Calgary, Canada
- Department Of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Rosie Twomey
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Jeff F Dunn
- Department of Radiology, University of Calgary, Calgary, Canada.
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Canada.
- Department Of Clinical Neurosciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
13
|
Wahl D, Smith ME, McEntee CM, Cavalier AN, Osburn SC, Burke SD, Grant RA, Nerguizian D, Lark DS, Link CD, LaRocca TJ. The reverse transcriptase inhibitor 3TC protects against age-related cognitive dysfunction. Aging Cell 2023; 22:e13798. [PMID: 36949552 PMCID: PMC10186603 DOI: 10.1111/acel.13798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 03/24/2023] Open
Abstract
Aging is the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease. Major hallmarks of brain aging include neuroinflammation/immune activation and reduced neuronal health/function. These processes contribute to cognitive dysfunction (a key risk factor for Alzheimer's disease), but their upstream causes are incompletely understood. Age-related increases in transposable element (TE) transcripts might contribute to reduced cognitive function with brain aging, as the reverse transcriptase inhibitor 3TC reduces inflammation in peripheral tissues and TE transcripts have been linked with tau pathology in Alzheimer's disease. However, the effects of 3TC on cognitive function with aging have not been investigated. Here, in support of a role for TE transcripts in brain aging/cognitive decline, we show that 3TC: (a) improves cognitive function and reduces neuroinflammation in old wild-type mice; (b) preserves neuronal health with aging in mice and Caenorhabditis elegans; and (c) enhances cognitive function in a mouse model of tauopathy. We also provide insight on potential underlying mechanisms, as well as evidence of translational relevance for these observations by showing that TE transcripts accumulate with brain aging in humans, and that these age-related increases intersect with those observed in Alzheimer's disease. Collectively, our results suggest that TE transcript accumulation during aging may contribute to cognitive decline and neurodegeneration, and that targeting these events with reverse transcriptase inhibitors like 3TC could be a viable therapeutic strategy.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Meghan E. Smith
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Cali M. McEntee
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Alyssa N. Cavalier
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Shelby C. Osburn
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Samuel D. Burke
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Randy A. Grant
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - David Nerguizian
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Daniel S. Lark
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Christopher D. Link
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Thomas J. LaRocca
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
14
|
Hauser KF, Ohene-Nyako M, Knapp PE. Accelerated brain aging with opioid misuse and HIV: New insights on the role of glially derived pro-inflammation mediators and neuronal chloride homeostasis. Curr Opin Neurobiol 2023; 78:102653. [PMID: 36584655 PMCID: PMC9933139 DOI: 10.1016/j.conb.2022.102653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) has become a national crisis and contributes to the spread of human immunodeficiency virus (HIV) infection. Emerging evidence and advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal that opioids per se can directly exacerbate the pathophysiology of neuroHIV. Despite substantial inroads, the impact of OUD on the severity, development, and prognosis of neuroHIV and HIV-associated neurocognitive disorders is not fully understood. In this review, we explore current evidence that OUD and neuroHIV interact to accelerate cognitive deficits and enhance the neurodegenerative changes typically seen with aging, through their effects on neuroinflammation. We suggest new thoughts on the processes that may underlie accelerated brain aging, including dysregulation of neuronal inhibition, and highlight findings suggesting that opioids, through actions at the μ-opioid receptor, interact with HIV in the central nervous system to promote unique structural and functional comorbid deficits not seen in either OUD or neuroHIV alone.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, Virginia 23298-0059, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, Virginia 23298-0059, USA.
| |
Collapse
|
15
|
Kim J, Lee J, Nam K, Lee S. Investigation of genetic variants and causal biomarkers associated with brain aging. Sci Rep 2023; 13:1526. [PMID: 36707530 PMCID: PMC9883521 DOI: 10.1038/s41598-023-27903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
Delta age is a biomarker of brain aging that captures differences between the chronological age and the predicted biological brain age. Using multimodal data of brain MRI, genomics, and blood-based biomarkers and metabolomics in UK Biobank, this study investigates an explainable and causal basis of high delta age. A visual saliency map of brain regions showed that lower volumes in the fornix and the lower part of the thalamus are key predictors of high delta age. Genome-wide association analysis of the delta age using the SNP array data identified associated variants in gene regions such as KLF3-AS1 and STX1. GWAS was also performed on the volumes in the fornix and the lower part of the thalamus, showing a high genetic correlation with delta age, indicating that they share a genetic basis. Mendelian randomization (MR) for all metabolomic biomarkers and blood-related phenotypes showed that immune-related phenotypes have a causal impact on increasing delta age. Our analysis revealed regions in the brain that are susceptible to the aging process and provided evidence of the causal and genetic connections between immune responses and brain aging.
Collapse
Affiliation(s)
- Jangho Kim
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Junhyeong Lee
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Kisung Nam
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Lespinasse J, Chêne G, Mangin J, Dubois B, Blanc F, Paquet C, Hanon O, Planche V, Gabelle A, Ceccaldi M, Annweiler C, Krolak‐Salmon P, Godefroy O, Wallon D, Sauvée M, Bergeret S, Chupin M, Proust‐Lima C, Dufouil C. Associations among hypertension, dementia biomarkers, and cognition: The MEMENTO cohort. Alzheimers Dement 2022. [PMID: 36464896 DOI: 10.1002/alz.12866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Approximately 40% of dementia cases could be delayed or prevented acting on modifiable risk factors including hypertension. However, the mechanisms underlying the hypertension-dementia association are still poorly understood. METHODS We conducted a cross-sectional analysis in 2048 patients from the MEMENTO cohort, a French multicenter clinic-based study of outpatients with either isolated cognitive complaints or mild cognitive impairment. Exposure to hypertension was defined as a combination of high blood pressure (BP) status and antihypertensive treatment intake. Pathway associations were examined through structural equation modeling integrating extensive collection of neuroimaging biomarkers and clinical data. RESULTS Participants treated with high BP had significantly lower cognition compared to the others. This association was mediated by higher neurodegeneration and higher white matter hyperintensities load but not by Alzheimer's disease (AD) biomarkers. DISCUSSION These results highlight the importance of controlling hypertension for prevention of cognitive decline and offer new insights on mechanisms underlying the hypertension-dementia association. HIGHLIGHTS Paths of hypertension-cognition association were assessed by structural equation models. The hypertension-cognition association is not mediated by Alzheimer's disease biomarkers. The hypertension-cognition association is mediated by neurodegeneration and leukoaraiosis. Lower cognition was limited to participants treated with uncontrolled blood pressure. Blood pressure control could contribute to promote healthier brain aging.
Collapse
Affiliation(s)
- Jérémie Lespinasse
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
- Pôle de santé publique Centre Hospitalier Universitaire (CHU) de Bordeaux Bordeaux France
| | - Geneviève Chêne
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
- Pôle de santé publique Centre Hospitalier Universitaire (CHU) de Bordeaux Bordeaux France
| | - Jean‐Francois Mangin
- CATI, US52‐UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP Paris France
- Université Paris‐Saclay, CEA, CNRS, Neurospin, UMR9027 Baobab Gif‐sur‐Yvette France
| | - Bruno Dubois
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale Paris France
- Sorbonne‐Université, Service des maladies cognitives et comportementales et Institut de la mémoire et de la maladie d'Alzheimer (IM2A) Hôpital de la Salpêtrière Paris AP‐PH France
| | - Frederic Blanc
- Univ. Strasbourg, CNRS, ICube laboratory, UMR 7357, Fédération de Médecine Translationnelle de Strasbourg, Centre Mémoire de Ressources et de Recherches Departement de Gériatrie Strasbourg France
| | - Claire Paquet
- Univ. Paris, Inserm U1144, GHU APHP Nord Lariboisière Fernand‐Widal Paris France
| | - Olivier Hanon
- Univ. de Paris, EA 4468, Service de Gériatrie, AP‐HP Hôpital Broca Paris France
| | - Vincent Planche
- Univ. Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches Pôle de Neurosciences Cliniques, CHU de Bordeaux Bordeaux France
| | - Audrey Gabelle
- Univ. Montpellier, i‐site MUSE, Inserm U1061, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Département de Neurologie, CHU de Montpellier Montpellier France
| | - Mathieu Ceccaldi
- Univ. Aix Marseille, Inserm UMR 1106, Institut de Neurosciences des Systèmes, Centre Mémoire de Ressources et de Recherches Département de Neurologie et de Neuropsychologie, AP‐HM Marseille France
| | - Cedric Annweiler
- Univ. Angers, UPRES EA 4638, Centre Mémoire de Ressources et de Recherches, Département de Gériatrie, CHU d'Angers Angers France
| | - Pierre Krolak‐Salmon
- Univ. Lyon, Inserm U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Centre Mémoire Ressource et Recherche de Lyon (CMRR), Hôpital des Charpennes Hospices Civils de Lyon Lyon France
| | - Olivier Godefroy
- Neurology Departement and Functional Neurosciences Lab. (UR UPJV 4559) Amiens University Hospital Amiens France
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNR‐MAJ, Normandy Center for Genomic and Personalized Medicine CIC‐CRB1404 Rouen France
| | - Mathilde Sauvée
- CMRR Grenoble Arc Alpin CHU Grenoble Grenoble France
- Laboratoire de Psychologie et NeuroCognition: LPNC CNRS 5105 Université Grenoble Alpes Grenoble France
| | - Sébastien Bergeret
- Département de Médecine NucléaireAP‐HP, Hôpital Pitié‐Salpêtrière ParisFrance
| | - Marie Chupin
- CATI, US52‐UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP Paris France
| | - Cécile Proust‐Lima
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
| | - Carole Dufouil
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
- Pôle de santé publique Centre Hospitalier Universitaire (CHU) de Bordeaux Bordeaux France
| | | |
Collapse
|
17
|
Zhou Z, Hui ES, Kranz GS, Chang JR, de Luca K, Pinto SM, Chan WW, Yau SY, Chau BK, Samartzis D, Jensen MP, Wong AYL. Potential mechanisms underlying the accelerated cognitive decline in people with chronic low back pain: A scoping review. Ageing Res Rev 2022; 82:101767. [PMID: 36280211 DOI: 10.1016/j.arr.2022.101767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
A growing body of evidence has shown that people with chronic low back pain (CLBP) demonstrate significantly greater declines in multiple cognitive domains than people who do not have CLBP. Given the high prevalence of CLBP in the ever-growing aging population that may be more vulnerable to cognitive decline, it is important to understand the mechanisms underlying the accelerated cognitive decline observed in this population, so that proper preventive or treatment approaches can be developed and implemented. The current scoping review summarizes what is known regarding the potential mechanisms underlying suboptimal cognitive performance and cognitive decline in people with CLBP and discusses future research directions. Five potential mechanisms were identified based on the findings from 34 included studies: (1) altered activity in the cortex and neural networks; (2) grey matter atrophy; (3) microglial activation and neuroinflammation; (4) comorbidities associated with CLBP; and (5) gut microbiota dysbiosis. Future studies should deepen the understanding of mechanisms underlying this association so that proper prevention and treatment strategies can be developed.
Collapse
Affiliation(s)
- Zhixing Zhou
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Edward S Hui
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; The State Key Laboratory of Brain and Cognitive Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Jeremy R Chang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Katie de Luca
- School of Health, Medical and Applied Sciences, CQ University, Brisbane, Australia
| | - Sabina M Pinto
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Winnie Wy Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Bolton Kh Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Centre, Chicago, IL, USA
| | - Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China.
| |
Collapse
|
18
|
Mirza-Davies A, Foley S, Caseras X, Baker E, Holmans P, Escott-Price V, Jones DK, Harrison JR, Messaritaki E. The impact of genetic risk for Alzheimer's disease on the structural brain networks of young adults. Front Neurosci 2022; 16:987677. [PMID: 36532292 PMCID: PMC9748570 DOI: 10.3389/fnins.2022.987677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction We investigated the structural brain networks of 562 young adults in relation to polygenic risk for Alzheimer's disease, using magnetic resonance imaging (MRI) and genotype data from the Avon Longitudinal Study of Parents and Children. Methods Diffusion MRI data were used to perform whole-brain tractography and generate structural brain networks for the whole-brain connectome, and for the default mode, limbic and visual subnetworks. The mean clustering coefficient, mean betweenness centrality, characteristic path length, global efficiency and mean nodal strength were calculated for these networks, for each participant. The connectivity of the rich-club, feeder and local connections was also calculated. Polygenic risk scores (PRS), estimating each participant's genetic risk, were calculated at genome-wide level and for nine specific disease pathways. Correlations were calculated between the PRS and (a) the graph theoretical metrics of the structural networks and (b) the rich-club, feeder and local connectivity of the whole-brain networks. Results In the visual subnetwork, the mean nodal strength was negatively correlated with the genome-wide PRS (r = -0.19, p = 1.4 × 10-3), the mean betweenness centrality was positively correlated with the plasma lipoprotein particle assembly PRS (r = 0.16, p = 5.5 × 10-3), and the mean clustering coefficient was negatively correlated with the tau-protein binding PRS (r = -0.16, p = 0.016). In the default mode network, the mean nodal strength was negatively correlated with the genome-wide PRS (r = -0.14, p = 0.044). The rich-club and feeder connectivities were negatively correlated with the genome-wide PRS (r = -0.16, p = 0.035; r = -0.15, p = 0.036). Discussion We identified small reductions in brain connectivity in young adults at risk of developing Alzheimer's disease in later life.
Collapse
Affiliation(s)
- Anastasia Mirza-Davies
- School of Medicine, University Hospital Wales, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Xavier Caseras
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Emily Baker
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Peter Holmans
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Judith R. Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Institute for Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eirini Messaritaki
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- BRAIN Biomedical Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
19
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Plá V, Bork P, Harnpramukkul A, Olveda G, Ladrón-de-Guevara A, Giannetto MJ, Hussain R, Wang W, Kelley DH, Hablitz LM, Nedergaard M. A real-time in vivo clearance assay for quantification of glymphatic efflux. Cell Rep 2022; 40:111320. [PMID: 36103828 DOI: 10.1016/j.celrep.2022.111320] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/05/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022] Open
Abstract
Glymphatic fluid transport eliminates metabolic waste from the brain including amyloid-β, yet the methodology for studying efflux remains rudimentary. Here, we develop a method to evaluate glymphatic real-time clearance. Efflux of Direct Blue 53 (DB53, also T-1824 or Evans Blue) injected into the striatum is quantified by imaging the DB53 signal in the vascular compartment, where it is retained due to its high affinity to albumin. The DB53 signal is detectable as early as 15 min after injection and the efflux kinetics are sharply reduced in mice lacking the water channel aquaporin 4 (AQP4). Pharmacokinetic modeling reveal that DB53 efflux is consistent with the existence of two efflux paths, one with fast kinetics (T1/2 = 50 min) and another with slow kinetics (T1/2 = 240 min), in wild-type mice. This in vivo methodology will aid in defining the physiological variables that drive efflux, as well as the impact of brain states or disorders on clearance kinetics.
Collapse
Affiliation(s)
- Virginia Plá
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter Bork
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Aurakoch Harnpramukkul
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Genaro Olveda
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael J Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wei Wang
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
21
|
Wahl D, Moreno JA, Santangelo KS, Zhang Q, Afzali MF, Walsh MA, Musci RV, Cavalier AN, Hamilton KL, LaRocca TJ. Nontransgenic Guinea Pig Strains Exhibit Hallmarks of Human Brain Aging and Alzheimer's Disease. J Gerontol A Biol Sci Med Sci 2022; 77:1766-1774. [PMID: 35323931 PMCID: PMC9434446 DOI: 10.1093/gerona/glac073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Older age is the primary risk factor for most chronic diseases, including Alzheimer's disease (AD). Current preclinical models to study brain aging and AD are mainly transgenic and harbor mutations intended to mirror brain pathologies associated with human brain aging/AD (eg, by increasing production of the amyloid precursor protein, amyloid beta [Aβ], and/or phosphorylated tau, all of which are key pathological mediators of AD). Although these models may provide insight on pathophysiological processes in AD, none completely recapitulate the disease and its strong age-dependence, and there has been limited success in translating preclinical results and treatments to humans. Here, we describe 2 nontransgenic guinea pig (GP) models, a standard PigmEnTed (PET) strain, and lesser-studied Dunkin-Hartley (DH) strain, that may naturally mimic key features of brain aging and AD in humans. We show that brain aging in PET GP is transcriptomically similar to human brain aging, whereas older DH brains are transcriptomically more similar to human AD. Both strains/models also exhibit increased neurofilament light chain (NFL, a marker of neuronal damage) with aging, and DH animals display greater S100 calcium-binding protein B (S100β), ionized calcium-binding adapter molecule 1 (Iba1), and Aβ and phosphorylated tau-which are all important markers of neuroinflammation-associated AD. Collectively, our results suggest that both the PET and DH GP may be useful, nontransgenic models to study brain aging and AD, respectively.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, USA
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kelly S Santangelo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Maryam F Afzali
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Maureen A Walsh
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Alyssa N Cavalier
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, USA
| | - Thomas J LaRocca
- Address correspondence to: Thomas J. LaRocca, PhD, Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University, 1582 Campus Delivery, Fort Collins, CO 80523-1582, USA. E-mail:
| |
Collapse
|
22
|
Felisatti F, Gonneaud J, Palix C, Garnier-Crussard A, Mézenge F, Landeau B, Chocat A, Quillard A, Ferrand-Devouge E, de La Sayette V, Vivien D, Chételat G, Poisnel G. Role of Cardiovascular Risk Factors on the Association Between Physical Activity and Brain Integrity Markers in Older Adults. Neurology 2022; 98:e2023-e2035. [PMID: 35418459 PMCID: PMC9162049 DOI: 10.1212/wnl.0000000000200270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Physical activity has been associated with a decreased risk for dementia, but the mechanisms underlying this association remain to be determined. Our objective was to assess whether cardiovascular risk factors mediate the association between physical activity and brain integrity markers in older adults. METHODS At baseline, participants from the Age-Well study completed a physical activity questionnaire and underwent cardiovascular risk factors collection (systolic blood pressure, body mass index [BMI], current smoker status, and high-density lipoprotein cholesterol, total cholesterol, and insulin levels) and multimodal neuroimaging (structural MRI, diffusion MRI, FDG-PET, and florbetapir PET). Multiple regressions were conducted to assess the association among physical activity, cardiovascular risk factors, and neuroimaging. Mediation analyses were performed to test whether cardiovascular risk factors mediated the associations between physical activity and neuroimaging. RESULTS A total of 134 cognitively unimpaired older adults (≥65 years) were included. Higher physical activity was associated with higher gray matter (GM) volume (β = 0.174, p = 0.030) and cerebral glucose metabolism (β = 0.247, p = 0.019) but not with amyloid deposition or white matter integrity. Higher physical activity was associated with lower insulin level and BMI but not with the other cardiovascular risk factors. Lower insulin level and BMI were related to higher GM volume but not to cerebral glucose metabolism. When controlling for insulin level and BMI, the association between physical activity and cerebral glucose metabolism remained unchanged, while the association with GM volume was lost. When insulin level and BMI were entered in the same model, only BMI remained a significant predictor of GM volume. Mediation analyses confirmed that insulin level and BMI mediated the association between physical activity and GM volume. Analyses were replicated within Alzheimer disease-sensitive regions and results remained overall similar. DISCUSSION The association between physical activity and GM volume is mediated by changes in insulin level and BMI. In contrast, the association with cerebral glucose metabolism seems to be independent from cardiovascular risk factors. Older adults engaging in physical activity experience cardiovascular benefits through the maintenance of a lower BMI and insulin level, resulting in greater structural brain integrity. This study has implications for understanding how physical activity affects brain health and may help in developing strategies to prevent or delay age-related decline. TRIAL REGISTRATION INFORMATION EudraCT: 2016-002,441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.
Collapse
Affiliation(s)
- Francesca Felisatti
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Julie Gonneaud
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Cassandre Palix
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Antoine Garnier-Crussard
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Florence Mézenge
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Brigitte Landeau
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Anne Chocat
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Anne Quillard
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Eglantine Ferrand-Devouge
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Vincent de La Sayette
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Denis Vivien
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Gaël Chételat
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Géraldine Poisnel
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| |
Collapse
|
23
|
McIntosh RC, Lobo J, Paparozzi J, Goodman Z, Kornfeld S, Nomi J. Neutrophil to lymphocyte ratio is a transdiagnostic biomarker of depression and structural and functional brain alterations in older adults. J Neuroimmunol 2022; 365:577831. [PMID: 35217366 PMCID: PMC11092564 DOI: 10.1016/j.jneuroim.2022.577831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
The neutrophil to lymphocyte ratio (N:L) is an emergent transdiagnostic biomarker shown to predict peripheral inflammation as well as neuropsychiatric impairment. The afferent signaling of inflammation to the central nervous system has been implicated in the pathophysiology of sickness behavior and depression. Here, the N:L was compared to structural and functional limbic alterations found concomitant with depression within a geriatric cohort. Venous blood was collected for a complete blood count, and magnetic resonance imaging as well as phenotypic data were collected from the 66 community-dwelling older adults (aged 65-86 years). The N:L was regressed on gray matter volume and resting-state functional connectivity (rsFC) of the subgenual anterior cingulate (sgACC). Thresholded parameter estimates were extracted from structural and functional brain scans and bivariate associations tested with scores on the geriatric depression scale. Greater N:L predicted lower volume of hypothalamus and rsFC of sgACC with ventromedial prefrontal cortex. Both parameters were correlated (p < 0.05) with greater symptomology in those reporting moderate to severe levels of depression. These findings support the N:L as a transdiagnostic biomarker of limbic alteration underpinning mood disturbance in non-treated older adults.
Collapse
Affiliation(s)
- Roger C McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America.
| | - Judith Lobo
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Jeremy Paparozzi
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Zach Goodman
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Salome Kornfeld
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Jason Nomi
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| |
Collapse
|
24
|
Yan T, Zhang X, Mao Q, Wu B, He B, Jia Y, Shang L. Alpinae Oxyphyllae Fructus alleviated LPS-induced cognitive impairments via PI3K/AKT/NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:489-503. [PMID: 34874107 DOI: 10.1002/tox.23415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Herein, we aim to investigate the effect of Alpinae Oxyphyllae Fructus (AOF) on cognitive impairments and neuroinflammation in a lipopolysaccharide (LPS)-induced models of AD. Mice were injected intracerebroventricularly with LPS, and then administrated AOF using a gavage for 6 weeks. Spatial working memory was assessed using the Y-maze and Morris water maze test, whereas the levels of PI3K, AKT, p-AKT, p-GSK3β, GSK3β, NF-κB, IL-1β, IL-6, and TNF-α were evaluated using western blot and ELISA assay. Our data showed that AOF was able to significantly alleviate the memory decline in LPS-induced AD mice. Moreover, AOF was able to protect neurons through the PI3K/AKT signaling pathway and significantly decrease NF-κB, IL-6, IL-1β, and TNF-α levels in the hippocampal and cortex tissues, which were reversed through the use of LY294002. Additionally, we discovered that AOF could significantly decrease the high expression of cytokines as well as the expression and translocation of NF-κB induced by LPS in PC12 cells. These results demonstrate the anti-neuroinflammatory effect of AOF in both cell and animal models of AD, thereby slowing down the process and development of the disease.
Collapse
Affiliation(s)
- Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaozhuo Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qianqian Mao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Lei Shang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| |
Collapse
|
25
|
Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, Van Praag H, Ziaei M, Sando SB, Wisløff U, Tari AR. Can exercise training teach us how to treat Alzheimer's disease? Ageing Res Rev 2022; 75:101559. [PMID: 34999248 DOI: 10.1016/j.arr.2022.101559] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.
Collapse
Affiliation(s)
- Aleksi M Huuha
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cecilie S Norevik
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - José Bianco N Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan Scrimgeour
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miia Kivipelto
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Stockholm, Sweden; Karolinska University Hospital, Theme Aging and Inflammation, Stockholm, Sweden
| | - Henriette Van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Maryam Ziaei
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Atefe R Tari
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
26
|
Yang Y, Cuffee YL, Aumiller BB, Schmitz K, Almeida DM, Chinchilli VM. Serial Mediation Roles of Perceived Stress and Depressive Symptoms in the Association Between Sleep Quality and Life Satisfaction Among Middle-Aged American Adults. Front Psychol 2022; 13:822564. [PMID: 35265017 PMCID: PMC8899090 DOI: 10.3389/fpsyg.2022.822564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we used data from the second wave of Midlife in the United States (MIDUS) Study, MIDUS Biomarkers and MIDUS 3. We applied the serial mediation model to explore the serial mediating effects of perceived stress and depressive symptoms on the relationship between sleep quality and life satisfaction. A total of 945 participants were included in our study. The total indirect effect of sleep quality on life satisfaction through perceived stress, depressive symptoms and the combination of perceived stress and depressive symptoms accounted for within the overall model was 45.5%. At the intervention level, programs designed to improve the level of life satisfaction among adults should focus on perceived stress and depressive symptoms. The prevention of perceived stress and depression contributes to improving life satisfaction and wellbeing. The serial mediation results should be confirmed by further longitudinal study.
Collapse
Affiliation(s)
- Yanxu Yang
- Department of Public Health Sciences, Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, United States,*Correspondence: Yanxu Yang
| | - Yendelela L. Cuffee
- College of Health Sciences, University of Delaware, Newark, DE, United States
| | - Betsy B. Aumiller
- Department of Public Health Sciences, Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Kathryn Schmitz
- Department of Public Health Sciences, Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, United States
| | - David M. Almeida
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, PA, United States
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
27
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
28
|
Sun D, Gao G, Zhong B, Zhang H, Ding S, Sun Z, Zhang Y, Li W. NLRP1 inflammasome involves in learning and memory impairments and neuronal damages during aging process in mice. Behav Brain Funct 2021; 17:11. [PMID: 34920732 PMCID: PMC8680336 DOI: 10.1186/s12993-021-00185-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
Background Brain aging is an important risk factor in many human diseases, such as Alzheimer’s disease (AD). The production of excess reactive oxygen species (ROS) mediated by nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) and the maturation of inflammatory cytokines caused by activation of the NOD-like receptor protein 1 (NLRP1) inflammasome play central roles in promoting brain aging. However, it is still unclear when and how the neuroinflammation appears in the brain during aging process. Methods In this study, we observed the alterations of learning and memory impairments, neuronal damage, NLRP1 inflammasome activation, ROS production and NOX2 expression in the young 6-month-old (6 M) mice, presenile 16 M mice, and older 20 M and 24 M mice. Results The results indicated that, compared to 6 M mice, the locomotor activity, learning and memory abilities were slightly decreased in 16 M mice, and were significantly decreased in 20 M and 24 M mice, especially in the 24 M mice. The pathological results also showed that there were no significant neuronal damages in 6 M and 16 M mice, while there were obvious neuronal damages in 20 M and 24 M mice, especially in the 24 M group. Consistent with the behavioral and histological changes in the older mice, the activity of β-galactosidase (β-gal), the levels of ROS and IL-1β, and the expressions of NLRP1, ASC, caspase-1, NOX2, p47phox and p22phox were significantly increased in the cortex and hippocampus in the older 20 M and 24 M mice. Conclusion Our study suggested that NLRP1 inflammasome activation may be closely involved in aging-related neuronal damage and may be an important target for preventing brain aging. Supplementary Information The online version contains supplementary material available at 10.1186/s12993-021-00185-x.
Collapse
Affiliation(s)
- Dan Sun
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Guofang Gao
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Bihua Zhong
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Han Zhang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shixin Ding
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhenghao Sun
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yaodong Zhang
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China. .,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
29
|
Conole ELS, Stevenson AJ, Muñoz Maniega S, Harris SE, Green C, Valdés Hernández MDC, Harris MA, Bastin ME, Wardlaw JM, Deary IJ, Miron VE, Whalley HC, Marioni RE, Cox SR. DNA Methylation and Protein Markers of Chronic Inflammation and Their Associations With Brain and Cognitive Aging. Neurology 2021; 97:e2340-e2352. [PMID: 34789543 PMCID: PMC8665430 DOI: 10.1212/wnl.0000000000012997] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To investigate chronic inflammation in relation to cognitive aging by comparison of an epigenetic and serum biomarker of C-reactive protein and their associations with neuroimaging and cognitive outcomes. METHODS At baseline, participants (n = 521) were cognitively normal, around 73 years of age (mean 72.4, SD 0.716), and had inflammation, vascular risk (cardiovascular disease history, hypertension, diabetes, smoking, alcohol consumption, body mass index), and neuroimaging (structural and diffusion MRI) data available. Baseline inflammatory status was quantified by a traditional measure of peripheral inflammation-serum C-reactive protein (CRP)-and an epigenetic measure (DNA methylation [DNAm] signature of CRP). Linear models were used to examine the inflammation-brain health associations; mediation analyses were performed to interrogate the relationship between chronic inflammation, brain structure, and cognitive functioning. RESULTS We demonstrate that DNAm CRP shows significantly (on average 6.4-fold) stronger associations with brain health outcomes than serum CRP. DNAm CRP is associated with total brain volume (β = -0.197, 95% confidence interval [CI] -0.28 to -0.12, p FDR = 8.42 × 10-6), gray matter volume (β = -0.200, 95% CI -0.28 to -0.12, p FDR = 1.66 × 10-5), and white matter volume (β = -0.150, 95% CI -0.23 to -0.07, p FDR = 0.001) and regional brain atrophy. We also find that DNAm CRP has an inverse association with global and domain-specific (speed, visuospatial, and memory) cognitive functioning and that brain structure partially mediates this CRP-cognitive association (up to 29.7%), dependent on lifestyle and health factors. DISCUSSION These results support the hypothesis that chronic inflammation may contribute to neurodegenerative brain changes that underlie differences in cognitive ability in later life and highlight the potential of DNAm proxies for indexing chronic inflammatory status. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that a DNAm signature of CRP levels is more strongly associated with brain health outcomes than serum CRP levels.
Collapse
Affiliation(s)
- Eleanor L S Conole
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK.
| | - Anna J Stevenson
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Susana Muñoz Maniega
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Sarah E Harris
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Claire Green
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Maria Del C Valdés Hernández
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Mathew A Harris
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Mark E Bastin
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Joanna M Wardlaw
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Ian J Deary
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Veronique E Miron
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Heather C Whalley
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Riccardo E Marioni
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| | - Simon R Cox
- From the Lothian Birth Cohorts Group, Department of Psychology (E.L.S.C., S.M.M., S.E.H., M.d.C.V.H., M.A.H., J.M.W., I.J.D., R.E.M., S.R.C.), Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (E.L.S.C., A.J.S., R.E.M.), Centre for Clinical Brain Sciences (E.L.S.C., S.M.M., M.d.C.V.H., M.E.B., J.M.W., H.C.W.), UK Dementia Research Institute, Edinburgh Medical School (A.J.S., V.E.M.), Division of Psychiatry, Royal Edinburgh Hospital (C.G., M.A.H., H.C.W.), and The Queen's Medical Research Institute, Edinburgh BioQuarter (V.E.M.), University of Edinburgh, UK
| |
Collapse
|
30
|
Ding L, Liu Z, Mane R, Wang S, Jing J, Fu H, Wu Z, Li H, Jiang Y, Meng X, Zhao X, Liu T, Wang Y, Li Z. Predicting functional outcome in patients with acute brainstem infarction using deep neuroimaging features. Eur J Neurol 2021; 29:744-752. [PMID: 34773321 DOI: 10.1111/ene.15181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Acute brainstem infarctions can lead to serious functional impairments. We aimed to predict functional outcomes in patients with acute brainstem infarction using deep neuroimaging features extracted by convolutional neural networks (CNNs). METHODS This nationwide multicenter stroke registry study included 1482 patients with acute brainstem infarction. We applied CNNs to automatically extract deep neuroimaging features from diffusion-weighted imaging. Deep learning models based on clinical features, laboratory features, conventional imaging features (infarct volume, number of infarctions), and deep neuroimaging features were trained to predict functional outcomes at 3 months poststroke. Unfavorable outcome was defined as modified Rankin Scale score of 3 or higher at 3 months. The models were evaluated by comparing the area under the receiver operating characteristic curve (AUC). RESULTS A model based solely on 14 deep neuroimaging features from CNNs achieved an extremely high AUC of 0.975 (95% confidence interval [CI] = 0.934-0.997) and significantly outperformed the model combining clinical, laboratory, and conventional imaging features (0.772, 95% CI = 0.691-0.847, p < 0.001) in prediction of functional outcomes. The deep neuroimaging model also demonstrated significant improvement over traditional prognostic scores. In an interpretability analysis, the deep neuroimaging features displayed a significant correlation with age, National Institutes of Health Stroke Scale score, infarct volume, and inflammation factors. CONCLUSIONS Deep learning models can successfully extract objective neuroimaging features from the routine radiological data in an automatic manner and aid in predicting the functional outcomes in patients with brainstem infarction at 3 months with very high accuracy.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.,China National Clinical Research Center-Hanalytics Artificial Intelligence Research Centre for Neurological Disorders, Beijing, China
| | - Ziyang Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ravikiran Mane
- China National Clinical Research Center-Hanalytics Artificial Intelligence Research Centre for Neurological Disorders, Beijing, China
| | - Shuai Wang
- China National Clinical Research Center-Hanalytics Artificial Intelligence Research Centre for Neurological Disorders, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - He Fu
- China National Clinical Research Center-Hanalytics Artificial Intelligence Research Centre for Neurological Disorders, Beijing, China
| | - Zhenzhou Wu
- China National Clinical Research Center-Hanalytics Artificial Intelligence Research Centre for Neurological Disorders, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Liu
- China National Clinical Research Center-Hanalytics Artificial Intelligence Research Centre for Neurological Disorders, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
31
|
Carbone MG, Pagni G, Tagliarini C, Imbimbo BP, Pomara N. Can platelet activation result in increased plasma Aβ levels and contribute to the pathogenesis of Alzheimer's disease? Ageing Res Rev 2021; 71:101420. [PMID: 34371202 DOI: 10.1016/j.arr.2021.101420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
One of the central lesions in the brain of subjects with Alzheimer's disease (AD) is represented by aggregates of β-amyloid (Aβ), a peptide of 40-42 amino acids derived from the amyloid precursor protein (APP). The reasons why Aβ accumulates in the brain of individuals with sporadic forms of AD are unknown. Platelets are the primary source of circulating APP and, upon activation, can secrete significant amounts of Aβ into the blood which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. Increased platelet activity can stimulate platelet adhesion to endothelial cells, trigger the recruitment of leukocytes into the vascular wall and cause perivascular inflammation, which can spread inflammation in the brain. Neuroinflammation is fueled by activated microglial cells and reactive astrocytes that release neurotoxic cytokines and chemokines. Platelet activation is also associated with the progression of carotid artery disease resulting in an increased risk of cerebral hypoperfusion which may also contribute to the AD neurodegenerative process. Platelet activation may thus be a pathophysiological mechanism of AD and for the strong link between AD and cerebrovascular diseases. Interfering with platelet activation may represent a promising potential adjunct therapeutic approach for AD.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Luigi Borri 57, 21100, Varese, Italy; Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Giovanni Pagni
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Claudia Tagliarini
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | | | - Nunzio Pomara
- Geriatric Psychiatry Department, Nathan Kline Institute, and Departments of Psychiatry and Pathology, NYU Grossman School of Medicine, 140 Old Orangeburg Road Orangeburg, New York, 10962, United States.
| |
Collapse
|
32
|
Increased peripheral inflammation in schizophrenia is associated with worse cognitive performance and related cortical thickness reductions. Eur Arch Psychiatry Clin Neurosci 2021; 271:595-607. [PMID: 33760971 DOI: 10.1007/s00406-021-01237-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
While the biological substrates of brain and behavioural changes in persons with schizophrenia remain unclear, increasing evidence implicates that inflammation is involved. In schizophrenia, including first-episode psychosis and anti-psychotic naïve patients, there are numerous reports of increased peripheral inflammation, cognitive deficits and neuropathologies such as cortical thinning. Research defining the relationship between inflammation and schizophrenia symptomatology and neuropathology is needed. Therefore, we analysed the level of C-reactive protein (CRP), a peripheral inflammation marker, and its relationship with cognitive functioning in a cohort of 644 controls and 499 schizophrenia patients. In a subset of individuals who underwent MRI scanning (99 controls and 194 schizophrenia cases), we tested if serum CRP was associated with cortical thickness. CRP was significantly increased in schizophrenia patients compared to controls, co-varying for age, sex, overweight/obesity and diabetes (p < 0.006E-10). In schizophrenia, increased CRP was mildly associated with worse performance in attention, controlling for age, sex and education (R =- 0.15, p = 0.001). Further, increased CRP was associated with reduced cortical thickness in three regions related to attention: the caudal middle frontal, the pars opercularis and the posterior cingulate cortices, which remained significant after controlling for multiple comparisons (all p < 0.05). Together, these findings indicate that increased peripheral inflammation is associated with deficits in cognitive function and brain structure in schizophrenia, especially reduced attention and reduced cortical thickness in associated brain regions. Using CRP as a biomarker of peripheral inflammation in persons with schizophrenia may help to identify vulnerable patients and those that may benefit from adjunctive anti-inflammatory treatments.
Collapse
|
33
|
Gasmi A, Chirumbolo S, Peana M, Mujawdiya PK, Dadar M, Menzel A, Bjørklund G. Biomarkers of Senescence during Aging as Possible Warnings to Use Preventive Measures. Curr Med Chem 2021; 28:1471-1488. [PMID: 32942969 DOI: 10.2174/0929867327999200917150652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Human life expectancy is increasing significantly over time thanks to the improved possibility for people to take care of themselves and the higher availability of food, drugs, hygiene, services, and assistance. The increase in the average age of the population worldwide is, however, becoming a real concern, since aging is associated with the rapid increase in chronic inflammatory pathologies and degenerative diseases, very frequently dependent on senescent phenomena that occur alongside with senescence. Therefore, the search for reliable biomarkers that can diagnose the possible onset or predict the risk of developing a disease associated with aging is a crucial target of current medicine. In this review, we construct a synopsis of the main addressable biomarkers to study the development of aging and the associated ailments.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Alain Menzel
- Laboratoires Réunis, Junglinster, Luxembourg, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
34
|
Di Cataldo V, Debatisse J, Piraquive J, Géloën A, Grandin C, Verset M, Taborik F, Labaronne E, Loizon E, Millon A, Mury P, Pialoux V, Serusclat A, Lamberton F, Ibarrola D, Lavenne F, Le Bars D, Troalen T, Confais J, Crola Da Silva C, Mechtouff L, Contamin H, Fayad ZA, Canet-Soulas E. Cortical inflammation and brain signs of high-risk atherosclerosis in a non-human primate model. Brain Commun 2021; 3:fcab064. [PMID: 33937770 PMCID: PMC8063585 DOI: 10.1093/braincomms/fcab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
Atherosclerosis is a chronic systemic inflammatory disease, inducing cardiovascular and cerebrovascular acute events. A role of neuroinflammation is suspected, but not yet investigated in the gyrencephalic brain and the related activity at blood−brain interfaces is unknown. A non-human primate model of advanced atherosclerosis was first established using longitudinal blood samples, multimodal imaging and gene analysis in aged animals. Non-human primate carotid lesions were compared with human carotid endarterectomy samples. During the whole-body imaging session, imaging of neuroinflammation and choroid plexus function was performed. Advanced plaques were present in multiple sites, premature deaths occurred and downstream lesions (myocardial fibrosis, lacunar stroke) were present in this model. Vascular lesions were similar to in humans: high plaque activity on PET and MRI imaging and systemic inflammation (high plasma C-reactive protein levels: 42 ± 14 µg/ml). We also found the same gene association (metabolic, inflammatory and anti-inflammatory markers) as in patients with similar histological features. Metabolic imaging localized abnormal brain glucose metabolism in the frontal cortex. It corresponded to cortical neuro-inflammation (PET imaging) that correlated with C-reactive protein level. Multimodal imaging also revealed pronounced choroid plexus function impairment in aging atherosclerotic non-human primates. In conclusion, multimodal whole-body inflammation exploration at the vascular level and blood−brain interfaces identified high-risk aging atherosclerosis. These results open the way for systemic and central inflammation targeting in atherosclerosis in the new era of immunotherapy.
Collapse
Affiliation(s)
- Vanessa Di Cataldo
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Justine Debatisse
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France.,Siemens-Healthcare SAS, Saint-Denis, France
| | | | - Alain Géloën
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Emmanuel Labaronne
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Emmanuelle Loizon
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Antoine Millon
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Mury
- LIBM Laboratory, Univ Lyon, Université Lyon 1, Lyon, France
| | | | - André Serusclat
- Radiology Department, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | | | | | - Claire Crola Da Silva
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Laura Mechtouff
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France.,Stroke Department, Hospices Civils de Lyon, Lyon, France
| | | | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
35
|
Hasnieza Mohd Rosli N, Mastura Yahya H, Shahar S, Wahida Ibrahim F, Fadilah Rajab N. Alzheimer's Disease and Functional Foods: An Insight on Neuroprotective Effect of its Combination. Pak J Biol Sci 2021; 23:575-589. [PMID: 32363814 DOI: 10.3923/pjbs.2020.575.589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which impairs memory and cognitive function. Currently, AD has no cure and treatments are focused on relieving its symptoms. Several functional plants and foods, such as pomegranate, date fruits, honey, black seeds and figs, possess nutritious properties which alleviate AD. In vitro and in vivo studies reported that these functional foods exert neuroprotective effects through their antioxidant and anti-inflammatory properties. This review are going to discusses the bioactive components and neuroprotective activities of the functional foods such as pomegranate, dates, honey, black seeds and figs and the potential of functional foods combinations to alleviate AD. Functional food combinations have potential to be consumed for health benefit for the prevention and treatment of AD. This review summarises the functional foods which can be useful for the prevention, treatment and management of AD via oxidative and inflammatory mechanisms. Besides, it provides a new insight on the potential of functional food combinations for the prevention and treatment of AD.
Collapse
|
36
|
Yamamoto S, Kayama T, Noguchi-Shinohara M, Hamaguchi T, Yamada M, Abe K, Kobayashi S. Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway. NPJ Sci Food 2021; 5:1. [PMID: 33514742 PMCID: PMC7846760 DOI: 10.1038/s41538-021-00084-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022] Open
Abstract
Rosmarinic acid (RA), a polyphenol found in Lamiaceae herbs, is a candidate of preventive ingredients against Alzheimer's disease (AD) as it potently suppresses the aggregation of amyloid β (Aβ); however, the effect of RA on tau phosphorylation and cognitive dysfunction remains unclear. The present study revealed that RA intake inhibited the pathological hallmarks of AD, including Aβ and phosphorylated tau accumulation, and improved cognitive function in the 3 × Tg-AD mouse model. Additionally, RA intake suppressed hippocampal inflammation and led to the downregulation of the JNK signaling pathway that induces tau phosphorylation. Feeding with RA exerted an anti-inflammatory effect not only in the central nervous system but also in the periphery. Downregulation of the JNK signaling pathway in hippocampus may be a potential mechanism underlying the inhibition of progression of pathology and cognitive deficit by RA feeding.
Collapse
Affiliation(s)
- So Yamamoto
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Kayama
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.,Group of Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science Environment Research Center, Tonomachi, Kawasaki, Kanagawa, Japan
| | - Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
37
|
Exercise as Potential Therapeutic Target to Modulate Alzheimer's Disease Pathology in APOE ε4 Carriers: A Systematic Review. Cardiol Ther 2021; 10:67-88. [PMID: 33403644 PMCID: PMC8126521 DOI: 10.1007/s40119-020-00209-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease for which no effective treatment exists at present. Previous research has found that exercise reduces the risk of AD. Since the apolipoprotein E (APOE) ε4 allele increases the risk of AD and is associated with faster disease progression than the other isoforms, we aimed to highlight the impact of exercise on AD pathology in APOE ε4 carriers. This review focuses on the effect of exercise on cognitive function, dementia risk, amyloid-β (Aβ) metabolism, lipid metabolism, neuroinflammation, neurotrophic factors and vascularization in APOE ε4 carriers. We searched the literature in the PubMed electronic database using the following search terms: physical activity, exercise, aerobic fitness, training, sport, APOE4, Alzheimer's disease, AD and dementia. By cross-referencing, additional publications were identified. Selected studies required older adults to take part in an exercise intervention or to make use of self-reported physical activity questionnaires. All included studies were written and published in English between 2000 and 2020. From these studies, we conclude that exercise is a non-pharmacological treatment option for high-risk APOE ε4 carriers to ameliorate the AD pathological processes including reducing Aβ load, protecting against hippocampal atrophy, improving cognitive function, stabilizing cholesterol levels and lowering pro-inflammatory signals. Variation in study design related to age, cognitive outcomes and the type of intervention explained the differences in study outcomes. However, exercise seems to be effective in delaying the onset of AD and may improve the quality of life of AD patients.
Collapse
|
38
|
Hannon E, Shireby GL, Brookes K, Attems J, Sims R, Cairns NJ, Love S, Thomas AJ, Morgan K, Francis PT, Mill J. Genetic risk for Alzheimer's disease influences neuropathology via multiple biological pathways. Brain Commun 2020; 2:fcaa167. [PMID: 33376986 PMCID: PMC7750986 DOI: 10.1093/braincomms/fcaa167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease is a highly heritable, common neurodegenerative disease characterized neuropathologically by the accumulation of β-amyloid plaques and tau-containing neurofibrillary tangles. In addition to the well-established risk associated with the APOE locus, there has been considerable success in identifying additional genetic variants associated with Alzheimer’s disease. Major challenges in understanding how genetic risk influences the development of Alzheimer’s disease are clinical and neuropathological heterogeneity, and the high level of accompanying comorbidities. We report a multimodal analysis integrating longitudinal clinical and cognitive assessment with neuropathological data collected as part of the Brains for Dementia Research study to understand how genetic risk factors for Alzheimer’s disease influence the development of neuropathology and clinical performance. Six hundred and ninety-three donors in the Brains for Dementia Research cohort with genetic data, semi-quantitative neuropathology measurements, cognitive assessments and established diagnostic criteria were included in this study. We tested the association of APOE genotype and Alzheimer’s disease polygenic risk score—a quantitative measure of genetic burden—with survival, four common neuropathological features in Alzheimer’s disease brains (neurofibrillary tangles, β-amyloid plaques, Lewy bodies and transactive response DNA-binding protein 43 proteinopathy), clinical status (clinical dementia rating) and cognitive performance (Mini-Mental State Exam, Montreal Cognitive Assessment). The APOE ε4 allele was significantly associated with younger age of death in the Brains for Dementia Research cohort. Our analyses of neuropathology highlighted two independent pathways from APOE ε4, one where β-amyloid accumulation co-occurs with the development of tauopathy, and a second characterized by direct effects on tauopathy independent of β-amyloidosis. Although we also detected association between APOE ε4 and dementia status and cognitive performance, these were all mediated by tauopathy, highlighting that they are a consequence of the neuropathological changes. Analyses of polygenic risk score identified associations with tauopathy and β-amyloidosis, which appeared to have both shared and unique contributions, suggesting that different genetic variants associated with Alzheimer’s disease affect different features of neuropathology to different degrees. Taken together, our results provide insight into how genetic risk for Alzheimer’s disease influences both the clinical and pathological features of dementia, increasing our understanding about the interplay between APOE genotype and other genetic risk factors.
Collapse
Affiliation(s)
- Eilis Hannon
- College of Medicine and Health, University of Exeter, Exeter, Devon, EX2 5DW, UK
| | - Gemma L Shireby
- College of Medicine and Health, University of Exeter, Exeter, Devon, EX2 5DW, UK
| | - Keeley Brookes
- School of Science & Technology, Nottingham Trent University, Nottingham, NG11 8NF, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Nigel J Cairns
- College of Medicine and Health, University of Exeter, Exeter, Devon, EX2 5DW, UK
| | - Seth Love
- Bristol Medical School (THS), University of Bristol, Bristol, BS2 8DZ, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kevin Morgan
- Human Genetics Group, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Paul T Francis
- College of Medicine and Health, University of Exeter, Exeter, Devon, EX2 5DW, UK
| | - Jonathan Mill
- College of Medicine and Health, University of Exeter, Exeter, Devon, EX2 5DW, UK
| |
Collapse
|
39
|
Domingos C, Pêgo JM, Santos NC. Effects of physical activity on brain function and structure in older adults: A systematic review. Behav Brain Res 2020; 402:113061. [PMID: 33359570 DOI: 10.1016/j.bbr.2020.113061] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023]
Abstract
Despite increasing evidence that physical activity (PA) contributes to brain health in older individuals, both at the level of brain structure and function, this relationship is not yet well established. To explore this potential association, a systematic literature search was performed using PubMed, Scopus, and Web of Science, adhering to PRISMA guidelines. A total of 32 studies met the eligibility criteria: 24 cross-sectional and 8 longitudinal. Results from structural Magnetic Resonance Imaging (MRI) showed that PA associated with larger brain volumes (less brain atrophy) specifically in brain regions vulnerable to dementia, comprising the hippocampus, temporal, and frontal regions. Furthermore, functional MRI (fMRI) showed greater task-relevant activity in brain areas recruited in executive function and memory tasks. However, the dose-response relationship is unclear due to the high variability in PA measures. Further research using objective measures is needed to better understand which PA type, intensity, frequency, and duration, has the greatest protective effect on brain health. Findings highlight the importance of PA in both cognitive decline and dementia prevention.
Collapse
Affiliation(s)
- C Domingos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal; iCognitus4ALL - IT Solutions, Braga, Portugal; Clinical Academic Center-Braga (2CA-B), Braga, Portugal
| | - J M Pêgo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal; iCognitus4ALL - IT Solutions, Braga, Portugal; Clinical Academic Center-Braga (2CA-B), Braga, Portugal
| | - N C Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center-Braga (2CA-B), Braga, Portugal; Associação Centro de Medicina Digital P5 (ACMP5), Braga, Portugal.
| |
Collapse
|
40
|
Rosli NHM, Yahya HM, Ibrahim FW, Shahar S, Ismail IS, Azam AA, Rajab NF. Serum Metabolomics Profiling of Commercially Mixed Functional Foods—Effects in Beta-Amyloid Induced Rats Measured Using 1H NMR Spectroscopy. Nutrients 2020; 12:nu12123812. [PMID: 33322743 PMCID: PMC7764480 DOI: 10.3390/nu12123812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Functional foods such as pomegranate, dates and honey were shown by various previous studies to individually have a neuroprotective effect, especially in neurodegenerative disease such as Alzheimer’s disease (AD). In this novel and original study, an 1H NMR spectroscopy tool was used to identify the metabolic neuroprotective mechanism of commercially mixed functional foods (MFF) consisting of pomegranate, dates and honey, in rats injected with amyloid-beta 1-42 (Aβ-42). Forty-five male albino Wistar rats were randomly divided into five groups: NC (0.9% normal saline treatment + phosphate buffer solution (PBS) solution injection), Abeta (0.9% normal saline treatment + 0.2 µg/µL Aβ-42 injection), MFF (4 mL/kg MFF treatment + PBS solution injection), Abeta–MFF (4 mL/kg MFF treatment + 0.2 µg/µL Aβ-42 injection) and Abeta–NAC (150 mg/kg N-acetylcysteine + 0.2 µg/µL Aβ-42 injection). Based on the results, the MFF and NAC treatment improved the spatial memory and learning using Y-maze. In the metabolic analysis, a total of 12 metabolites were identified, for which levels changed significantly among the treatment groups. Systematic metabolic pathway analysis found that the MFF and NAC treatments provided a neuroprotective effect in Aβ-42 injected rats by improving the acid amino and energy metabolisms. Overall, this finding showed that MFF might serve as a potential neuroprotective functional food for the prevention of AD.
Collapse
Affiliation(s)
- Nur Hasnieza Mohd Rosli
- Biomedical Science Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Hanis Mastura Yahya
- Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.M.Y.); (S.S.)
| | - Farah Wahida Ibrahim
- Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Suzana Shahar
- Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.M.Y.); (S.S.)
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (I.S.I.); (A.A.A.)
| | - Amalina Ahmad Azam
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (I.S.I.); (A.A.A.)
| | - Nor Fadilah Rajab
- Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.M.Y.); (S.S.)
- Correspondence: ; Tel.: +60-3-9289-7002
| |
Collapse
|
41
|
Cortical atrophy mediates the accumulating effects of vascular risk factors on cognitive decline in the Alzheimer's disease spectrum. Aging (Albany NY) 2020; 12:15058-15076. [PMID: 32726298 PMCID: PMC7425455 DOI: 10.18632/aging.103573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022]
Abstract
There are increasing concerns regarding the association of vascular risk factors (VRFs) and cognitive decline in the Alzheimer's disease (AD) spectrum. Currently, we investigated whether the accumulating effects of VRFs influenced gray matter volumes and subsequently led to cognitive decline in the AD spectrum. Mediation analysis was used to explore the association among VRFs, cortical atrophy, and cognition in the AD spectrum. 123 AD spectrum were recruited and VRF scores were constructed. Multivariate linear regression analysis revealed that higher VRF scores were correlated with lower Mini-Mental State Examination scores and higher Alzheimer's Disease Assessment Scale-Cognitive Subscale scores, indicating higher VRF scores lead to severer cognitive decline in the AD spectrum. In addition, subjects with higher VRF scores suffered severe cortical atrophy, especially in medial prefrontal cortex and medial temporal lobe. More importantly, common circuits of VRFs- and cognitive decline associated with gray matter atrophy were identified. Further, using mediation analysis, we demonstrated that cortical atrophy regions significantly mediated the relationship between VRF scores and cognitive decline in the AD spectrum. These findings highlight the importance of accumulating risk in the vascular contribution to AD spectrum, and targeting VRFs may provide new strategies for the therapeutic and prevention of AD.
Collapse
|
42
|
Sex-Specific Energy Intakes and Physical Activity Levels According to the Presence of Metabolic Syndrome in Korean Elderly People: Korean National Health and Nutrition Examination Survey 2016-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155416. [PMID: 32731363 PMCID: PMC7432031 DOI: 10.3390/ijerph17155416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to analyze the differences in energy intake and physical activity (PA) levels according to sex and the presence of metabolic syndrome (MetS) among elderly people in Korea. Data of 3720 elderly people (aged >65 years) were obtained from the Korean National Health and Nutrition Examination Survey (2016–2018). We analyzed PA levels (occupational and recreational PA) and energy intakes (carbohydrate, protein, and fat). The MetS group showed lower levels of moderate intensity recreational PA and place movement than the non-MetS group (p < 0.05); in the MetS group, PA levels were significantly lower in women than in men (p < 0.05). The intakes of total energy, carbohydrate, fat, and protein were lower in the MetS group than in the non-MetS group (p < 0.001). Both the non-MetS and MetS groups showed lower energy intakes in women than men (p < 0.001). Our study shows that elderly people, especially women, with MetS have significantly lower total PA levels and total energy intakes. We confirmed the importance of increased PA and proper nutritional intake in elderly people. Therefore, it is believed that practical measures such as nutrition education and nutrition guidance and PA education are urgently needed to reduce the incidence of MetS among the elderly.
Collapse
|
43
|
Imbimbo BP, Ippati S, Watling M. Should drug discovery scientists still embrace the amyloid hypothesis for Alzheimer's disease or should they be looking elsewhere? Expert Opin Drug Discov 2020; 15:1241-1251. [PMID: 32686970 DOI: 10.1080/17460441.2020.1793755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Alzheimer's Disease (AD) represents a large and growing challenge to patients, carers and healthcare systems, yet extensive efforts to develop therapeutics to modify its course have been met with repeated failure in recent decades. Although the evident presence of accumulated β-amyloid (Aβ) in AD brains has singled it out as an obvious therapeutic target, the effective reduction of plaque load or soluble Aβ by numerous drug candidates has not produced commensurate clinical benefits - calling into question the Aβ cascade hypothesis of AD. A similar path is now unfolding in the pursuit of therapeutics targeting hyperphosphorylated tau-comprised neurofibrillary tangles. AREAS COVERED This perspective reviews the basis of the Aβ cascade hypothesis of AD and how clinical trials of anti-Aβ drugs have failed to support it, and reflects upon the early findings suggesting that a similar path is being followed with therapeutics targeting tau. Other potential approaches to identifying therapeutics for AD are explored herein. EXPERT OPINION The relevance of the Aβ cascade hypothesis to the development of therapeutics for AD appears disproven. Drugs targeting tau appear to be suffering the same fate but may yet produce better results. Alternative approaches are being pursued, some of them with initial small-scale, but promising, results.
Collapse
Affiliation(s)
| | - Stefania Ippati
- Experimental Imaging Center, San Raffaele Scientific Institute , Milano, Italy
| | - Mark Watling
- CNS & Pain Department, Transcrip Partners LLP Reading , Berkshire, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
44
|
The association of peripheral immune markers with brain cortical thickness and surface area in South African people living with HIV. J Neurovirol 2020; 26:908-919. [PMID: 32661895 DOI: 10.1007/s13365-020-00873-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
A spectrum of cognitive impairments known as HIV-associated neurocognitive disorders (HAND) are consequences of the effects of HIV-1 within the central nervous system. Regardless of treatment status, an aberrant chronic neuro-immune regulation is a crucial contributor to the development of HAND. However, the extent to which inflammation affects brain structures critical for cognitive status remains unclear. The present study aimed to determine associations of peripheral immune markers with cortical thickness and surface area. Participants included 65 treatment-naïve HIV-positive individuals and 26 HIV-negative controls. Thickness and surface area of all cortical regions were derived using automated parcellation of T1-weighted images acquired at 3 T. Peripheral immune markers included C-C motif ligand 2 (CCL2), matrix metalloproteinase 9 (MMP9), neutrophil gelatinase-associated lipocalin (NGAL), thymidine phosphorylase (TYMP), transforming growth factor (TGF)-β1, and vascular endothelial growth factor (VEGF), which were measured using enzyme-linked immunosorbent assays. Associations of these markers with thickness and surface area of cortical regions were evaluated. A mediation analysis examined whether associations of inflammatory markers with cognitive functioning were mediated by brain cortical thickness and surface area. After controlling for multiple comparisons, higher NGAL was associated with reduced thickness of the bilateral orbitofrontal cortex in HIV-positive participants. The association of NGAL with worse motor function was mediated by cortical thickness of the bilateral orbitofrontal region. Taken together, this study suggests that NGAL plays a potential role in the neuropathophysiology of neurocognitive impairments of HIV.
Collapse
|
45
|
Treble-Barna A, Pilipenko V, Wade SL, Jegga AG, Yeates KO, Taylor HG, Martin LJ, Kurowski BG. Cumulative Influence of Inflammatory Response Genetic Variation on Long-Term Neurobehavioral Outcomes after Pediatric Traumatic Brain Injury Relative to Orthopedic Injury: An Exploratory Polygenic Risk Score. J Neurotrauma 2020; 37:1491-1503. [PMID: 32024452 PMCID: PMC7307697 DOI: 10.1089/neu.2019.6866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The addition of genetic factors to prognostic models of neurobehavioral recovery following pediatric traumatic brain injury (TBI) may account for unexplained heterogeneity in outcomes. The present study examined the cumulative influence of candidate genes involved in the inflammatory response on long-term neurobehavioral recovery in children with early childhood TBI relative to children with orthopedic injuries (OI). Participants were drawn from a prospective, longitudinal study evaluating outcomes of children who sustained TBI (n = 67) or OI (n = 68) between the ages of 3 and 7 years. Parents completed ratings of child executive function and behavior at an average of 6.8 years after injury. Exploratory unweighted and weighted polygenic risk scores (PRS) were constructed from single nucleotide polymorphisms (SNPs) across candidate inflammatory response genes (i.e., angiotensin converting enzyme [ACE], brain-derived neurotrophic factor [BDNF], interleukin-1 receptor antagonist [IL1RN], and 5'-ectonucleotidase [NT5E]) that showed nominal (p ≤ 0.20) associations with outcomes in the TBI group. Linear regression models tested the PRS × injury group (TBI vs. OI) interaction term and post-hoc analyses examined the effect of PRS within each injury group. Higher inflammatory response PRS were associated with more executive dysfunction and behavior problems in children with TBI but not in children with OI. The cumulative influence of inflammatory response genes as measured by PRS explained additional variance in long-term neurobehavioral outcomes, over and above well-established predictors and single candidate SNPs tested individually. The results suggest that some of the unexplained heterogeneity in long-term neurobehavioral outcomes following pediatric TBI may be attributable to a child's genetic predisposition to a greater or lesser inflammatory response to TBI.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennslvania, USA
| | - Valentina Pilipenko
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shari L. Wade
- Division of Pediatric Rehabilitation Medicine, Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - H. Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Lisa J. Martin
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brad G. Kurowski
- Division of Pediatric Rehabilitation Medicine, Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
46
|
Swanta N, Aryal S, Nejtek V, Shenoy S, Ghorpade A, Borgmann K. Blood-based inflammation biomarkers of neurocognitive impairment in people living with HIV. J Neurovirol 2020; 26:358-370. [PMID: 32193795 DOI: 10.1007/s13365-020-00834-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Inflammation in people living with HIV (PLWH) correlates with severity of HIV-associated neurocognitive disorders. The objective of this study is to identify blood-based markers of neurocognitive function in a demographic balanced cohort of PLWH. Seven neurocognitive domains were evaluated in 121 seropositive Black/African American, Non-Hispanic White, and White Hispanic men and women using computerized assessments. Associations among standardized neurocognitive function and HIV-related parameters, relevant sociodemographic variables, and inflammation-associated cytokines measured in plasma and cellular supernatants were examined using multivariate and univariate regression models. Outlier and covariate analyses were used to identify and normalize for education level, CD4 T cell count, viral load, CNS and drug abuse comorbidities, which could influence biomarker and neurocognitive function associations. Plasma levels of chemokine (C-C motif) ligand (CCL) 8 significantly associated with memory, complex attention, cognitive flexibility, psychomotor speed, executive function, and processing speed. Plasma tissue inhibitor of metalloproteinases 1 associated with the aforementioned domains except memory and processing speed. In addition, plasma interleukin-23 significantly associated with processing speed and executive function. Analysis of peripheral blood cell culture supernatants revealed no significant markers for neurocognitive function. In this cohort, CD4 T cell count and education level also significantly associated with neurocognitive function. All identified inflammatory biomarkers demonstrated a negative correlation to neurocognitive function. These cytokines have known connections to HIV pathophysiology and are potential biomarkers for neurocognitive function in PLWH with promising clinical applications.
Collapse
Affiliation(s)
- Naomi Swanta
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Subhash Aryal
- Department of Biostatistics, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Gynecology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vicki Nejtek
- Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sangeeta Shenoy
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.,Medical Innovation Collaborative of North Texas, Irving, TX, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA. .,Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
47
|
Hada M, Azuma T, Irie K, Yonenaga T, Watanabe K, Deguchi F, Obora A, Kojima T, Tomofuji T. Periodontal Condition Is Correlated with Deep and Subcortical White Matter Hyperintensity Lesions in Japanese Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051694. [PMID: 32150917 PMCID: PMC7084602 DOI: 10.3390/ijerph17051694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022]
Abstract
Deep and subcortical white matter hyperintensity (DSWMH) lesions are a small-vessel disease of the brain. The aim of this cross-sectional study was to investigate the relationship between DSWMH lesions and periodontal status in Japanese adults who participated in a health check. We enrolled 444 consecutive participants (mean age, 54.5 years) who received both brain and oral health evaluation services at the Asahi University Hospital. Magnetic resonance imaging was used to detect DSWMH lesions. Periodontal status was assessed using the community periodontal index. Of the study participants, 215 (48.4%) had DSWMH lesions. Multivariate logistic regression showed that the presence of DSWMH lesions was significantly related to age ≥ 65 years (vs. < 65 years, odds ratio [OR] = 2.984, 95% confidence interval [CI] = 1.696-5.232), systolic blood pressure ≥ 140 mmHg (vs. < 140 mmHg, OR = 2.579, 95% CI = 1.252-5.314), the presence of ≥ 28 teeth (vs. < 28 teeth, OR = 0.635, 95% CI = 0.420-0.961), and probing pocket depth (PPD) ≥ 6 mm (vs. PPD < 6 mm, OR = 1.948, 95% CI = 1.132-3.354) after adjustment for confounding factors. Having PPD ≥ 6 mm may be a risk factor for DSWMH lesions in Japanese adults.
Collapse
Affiliation(s)
- Minako Hada
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (M.H.); (T.A.); (T.Y.)
| | - Tetsuji Azuma
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (M.H.); (T.A.); (T.Y.)
| | - Koichiro Irie
- Department of Oral Health and Preventive Dentistry, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan;
| | - Takatoshi Yonenaga
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (M.H.); (T.A.); (T.Y.)
| | - Kazutoshi Watanabe
- Asahi University Hospital, 3- 23 Hashimoto-cho, Gifu, Gifu 500-8523, Japan; (K.W.); (F.D.); (A.O.); (T.K.)
| | - Fumiko Deguchi
- Asahi University Hospital, 3- 23 Hashimoto-cho, Gifu, Gifu 500-8523, Japan; (K.W.); (F.D.); (A.O.); (T.K.)
| | - Akihiro Obora
- Asahi University Hospital, 3- 23 Hashimoto-cho, Gifu, Gifu 500-8523, Japan; (K.W.); (F.D.); (A.O.); (T.K.)
| | - Takao Kojima
- Asahi University Hospital, 3- 23 Hashimoto-cho, Gifu, Gifu 500-8523, Japan; (K.W.); (F.D.); (A.O.); (T.K.)
| | - Takaaki Tomofuji
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (M.H.); (T.A.); (T.Y.)
- Correspondence: ; Tel.: +81-58-329-1496
| |
Collapse
|
48
|
Bondy SC. Aspects of the immune system that impact brain function. J Neuroimmunol 2020; 340:577167. [PMID: 32000018 DOI: 10.1016/j.jneuroim.2020.577167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
The conditions required for effective immune responses to viral or bacterial organisms and chemicals of exogenous origin and to intrinsic molecules of abnormal configuration, are briefly outlined. This is followed by a discussion of endocrine and environmental factors that can lead to excessive continuation of immune activity and persistent elevation of inflammatory responses. Such disproportionate activity becomes increasingly pronounced with aging and some possible reasons for this are considered. The specific vulnerability of the nervous system to prolonged immune events is involved in several disorders frequently found in the aging brain. In addition of being a target for inflammation associated with neurodegenerative disease, the nervous system is also seriously impacted by systemically widespread immune disturbances since there are several means by which immune information can access the CNS. The activation of glial cells and cells of non-nervous origin that form the basis of immune responses within the brain, can occur in differing modes resulting in widely differing consequences. The events underlying the relatively frequent occurrence of derangement and hyperreactivity of the immune system are considered, and a few potential ways of addressing this common condition are described.
Collapse
Affiliation(s)
- Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, School of Medicine, University of California, Irvine, CA 92617-1830, USA.
| |
Collapse
|
49
|
Harrison JR, Mistry S, Muskett N, Escott-Price V. From Polygenic Scores to Precision Medicine in Alzheimer's Disease: A Systematic Review. J Alzheimers Dis 2020; 74:1271-1283. [PMID: 32250305 PMCID: PMC7242840 DOI: 10.3233/jad-191233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is highly heritable. The effect of many common genetic variants, single nucleotide polymorphisms (SNPs), confer risk. Variants are clustered in areas of biology, notably immunity and inflammation, cholesterol metabolism, endocytosis, and ubiquitination. Polygenic scores (PRS), which weight the sum of an individual's risk alleles, have been used to draw inferences about the pathological processes underpinning AD. OBJECTIVE This paper aims to systematically review how AD PRS are being used to study a range of outcomes and phenotypes related to neurodegeneration. METHODS We searched the literature from July 2008-July 2018 following PRISMA guidelines. RESULTS 57 studies met criteria. The AD PRS can distinguish AD cases from controls. The ability of AD PRS to predict conversion from mild cognitive impairment (MCI) to AD was less clear. There was strong evidence of association between AD PRS and cognitive impairment. AD PRS were correlated with a number of biological phenotypes associated with AD pathology, such as neuroimaging changes and amyloid and tau measures. Pathway-specific polygenic scores were also associated with AD-related biologically relevant phenotypes. CONCLUSION PRS can predict AD effectively and are associated with cognitive impairment. There is also evidence of association between AD PRS and other phenotypes relevant to neurodegeneration. The associations between pathway specific polygenic scores and phenotypic changes may allow us to define the biology of the disease in individuals and indicate who may benefit from specific treatments. Longitudinal cohort studies are required to test the ability of PGS to delineate pathway-specific disease activity.
Collapse
Affiliation(s)
- Judith R. Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| | - Sumit Mistry
- MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| | - Natalie Muskett
- Cardiff University Medical School, University Hospital of Wales, Cardiff, UK
| | - Valentina Escott-Price
- Dementia Research Institute & the MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| |
Collapse
|
50
|
Popiołek AK, Chyrek-Tomaszewska A, Stachowicz-Karpińska A, Bieliński MK, Borkowska A. Biochemical Parameters in Cognitive Functions. Neuropsychiatr Dis Treat 2020; 16:2479-2489. [PMID: 33149589 PMCID: PMC7602911 DOI: 10.2147/ndt.s267673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Cognitive impairment is a common disease. Many studies attempt to explain the mechanisms of these dysfunctions formation, including correlations between cognitive functions and biochemical parameters. Scientists search for substances that would be indicators of cognitive functions and which could be determined in the cerebrospinal fluid or blood of the subjects. To date, they have isolated a few of such substances; however, research on their specificity, validity and the possibility of their use in diagnostics and prognostic assessment is still ongoing. However, there have been only few reports in the literature systematizing the existing knowledge on this subject, and they are mostly related to Alzheimer's disease, not cognition in general, or referring only to a specific group of substances. This article discusses the most important biochemical exponents of cognitive functions.
Collapse
Affiliation(s)
- Alicja Katarzyna Popiołek
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland.,Department of Vascular and Internal Diseases, Jan Biziel University Hospital No. 2 in Bydgoszcz, Bydgoszcz, Poland
| | - Aleksandra Chyrek-Tomaszewska
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland.,Department of Vascular and Internal Diseases, Jan Biziel University Hospital No. 2 in Bydgoszcz, Bydgoszcz, Poland
| | - Agnieszka Stachowicz-Karpińska
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland.,Department of Vascular and Internal Diseases, Jan Biziel University Hospital No. 2 in Bydgoszcz, Bydgoszcz, Poland
| | - Maciej Kazimierz Bieliński
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland.,Department of Vascular and Internal Diseases, Jan Biziel University Hospital No. 2 in Bydgoszcz, Bydgoszcz, Poland
| | - Alina Borkowska
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|