1
|
Abellaneda-Pérez K, Potash RM, Pascual-Leone A, Sacchet MD. Neuromodulation and meditation: A review and synthesis toward promoting well-being and understanding consciousness and brain. Neurosci Biobehav Rev 2024; 166:105862. [PMID: 39186992 DOI: 10.1016/j.neubiorev.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
The neuroscience of meditation is providing insight into meditation's beneficial effects on well-being and informing understanding of consciousness. However, further research is needed to explicate mechanisms linking brain activity and meditation. Non-invasive brain stimulation (NIBS) presents a promising approach for causally investigating neural mechanisms of meditation. Prior NIBS-meditation research has predominantly targeted frontal and parietal cortices suggesting that it might be possible to boost the behavioral and neural effects of meditation with NIBS. Moreover, NIBS has revealed distinct neural signatures in long-term meditators. Nonetheless, methodological variations in NIBS-meditation research contributes to challenges for definitive interpretation of previous results. Future NIBS studies should further investigate core substrates of meditation, including specific brain networks and oscillations, and causal neural mechanisms of advanced meditation. Overall, NIBS-meditation research holds promise for enhancing meditation-based interventions in support of well-being and resilience in both non-clinical and clinical populations, and for uncovering the brain-mind mechanisms of meditation and consciousness.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain.
| | - Ruby M Potash
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
2
|
Brisson V, Tremblay P. Assessing the Impact of Transcranial Magnetic Stimulation on Speech Perception in Noise. J Cogn Neurosci 2024; 36:2184-2207. [PMID: 39023366 DOI: 10.1162/jocn_a_02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Healthy aging is associated with reduced speech perception in noise (SPiN) abilities. The etiology of these difficulties remains elusive, which prevents the development of new strategies to optimize the speech processing network and reduce these difficulties. The objective of this study was to determine if sublexical SPiN performance can be enhanced by applying TMS to three regions involved in processing speech: the left posterior temporal sulcus, the left superior temporal gyrus, and the left ventral premotor cortex. The second objective was to assess the impact of several factors (age, baseline performance, target, brain structure, and activity) on post-TMS SPiN improvement. The results revealed that participants with lower baseline performance were more likely to improve. Moreover, in older adults, cortical thickness within the target areas was negatively associated with performance improvement, whereas this association was null in younger individuals. No differences between the targets were found. This study suggests that TMS can modulate sublexical SPiN performance, but that the strength and direction of the effects depend on a complex combination of contextual and individual factors.
Collapse
Affiliation(s)
- Valérie Brisson
- Université Laval, School of Rehabilitation Sciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Université Laval, School of Rehabilitation Sciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| |
Collapse
|
3
|
Madeo G, Bonci A. Driving innovation in addiction treatment: role of transcranial magnetic stimulation. J Neural Transm (Vienna) 2024; 131:505-508. [PMID: 38233662 DOI: 10.1007/s00702-023-02734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Addictions comprises heterogenous psychiatric conditions caused by the complex interaction of genetic, neurobiological, psychological, and environmental factors with a chronic relapsing-remitting pattern. Despite the long-standing efforts of preclinical and clinical research studies, addiction field has seen relatively slow progress when it comes to the development of new therapeutic interventions, most of which failed to demonstrate a significant efficacy. This is likely due to the very complex interplay of many factors that contribute to both the development and expression of addictions. The imbalance between the salience and the reward brain network circuitry has been proposed as the neurobiological mechanisms explaining the pathognomonic symptoms of addictions.Non-invasive neuromodulation techniques have been proposed as a promising therapeutic intervention to restore these brain circuits dysfunctions. Here, we propose a multi-level strategy to innovate the diagnosis and the treatment of addictive disorders.
Collapse
Affiliation(s)
| | - Antonello Bonci
- Brain & Care Group, Rimini, Italy
- GIA Healthcare, 1501 Biscayne Blvd, Miami, 33137, USA
| |
Collapse
|
4
|
Rakesh G, Adams TG, Morey RA, Alcorn JL, Khanal R, Su AE, Himelhoch SS, Rush CR. Intermittent theta burst stimulation and functional connectivity in people living with HIV/AIDS who smoke tobacco cigarettes: a preliminary pilot study. Front Psychiatry 2024; 15:1315854. [PMID: 38501083 PMCID: PMC10945607 DOI: 10.3389/fpsyt.2024.1315854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024] Open
Abstract
Background People living with HIV (PLWHA) smoke at three times the rate of the general population and respond poorly to cessation strategies. Previous studies examined repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (L. dlPFC) to reduce craving, but no studies have explored rTMS among PLWHA who smoke. The current pilot study compared the effects of active and sham intermittent theta-burst stimulation (iTBS) on resting state functional connectivity (rsFC), cigarette cue attentional bias, and cigarette craving in PLWHA who smoke. Methods Eight PLWHA were recruited (single-blind, within-subject design) to receive one session of iTBS (n=8) over the L. dlPFC using neuronavigation and, four weeks later, sham iTBS (n=5). Cigarette craving and attentional bias assessments were completed before and after both iTBS and sham iTBS. rsFC was assessed before iTBS (baseline) and after iTBS and sham iTBS. Results Compared to sham iTBS, iTBS enhanced rsFC between the L. dlPFC and bilateral medial prefrontal cortex and pons. iTBS also enhanced rsFC between the right insula and right occipital cortex compared to sham iTBS. iTBS also decreased cigarette craving and cigarette cue attentional bias. Conclusion iTBS could potentially offer a therapeutic option for smoking cessation in PLWHA.
Collapse
Affiliation(s)
- Gopalkumar Rakesh
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Thomas G. Adams
- Department of Psychology, College of Arts & Sciences, University of Kentucky, Lexington, KY, United States
| | - Rajendra A. Morey
- Brain Imaging and Analyses Center (BIAC), Duke University Medical Center, Durham, NC, United States
| | - Joseph L. Alcorn
- Department of Behavioral Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Rebika Khanal
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Amanda E. Su
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Seth S. Himelhoch
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Craig R. Rush
- Department of Behavioral Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
5
|
Wang X, Huang CC, Tsai SJ, Lin CP, Cai Q. The aging trajectories of brain functional hierarchy and its impact on cognition across the adult lifespan. Front Aging Neurosci 2024; 16:1331574. [PMID: 38313436 PMCID: PMC10837851 DOI: 10.3389/fnagi.2024.1331574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction The hierarchical network architecture of the human brain, pivotal to cognition and behavior, can be explored via gradient analysis using restingstate functional MRI data. Although it has been employed to understand brain development and disorders, the impact of aging on this hierarchical architecture and its link to cognitive decline remains elusive. Methods This study utilized resting-state functional MRI data from 350 healthy adults (aged 20-85) to investigate the functional hierarchical network using connectome gradient analysis with a cross-age sliding window approach. Gradient-related metrics were estimated and correlated with age to evaluate trajectory of gradient changes across lifespan. Results The principal gradient (unimodal-to-transmodal) demonstrated a significant non-linear relationship with age, whereas the secondary gradient (visual-to-somatomotor) showed a simple linear decreasing pattern. Among the principal gradient, significant age-related changes were observed in the somatomotor, dorsal attention, limbic and default mode networks. The changes in the gradient scores of both the somatomotor and frontal-parietal networks were associated with greater working memory and visuospatial ability. Gender differences were found in global gradient metrics and gradient scores of somatomotor and default mode networks in the principal gradient, with no interaction with age effect. Discussion Our study delves into the aging trajectories of functional connectome gradient and its cognitive impact across the adult lifespan, providing insights for future research into the biological underpinnings of brain function and pathological models of atypical aging processes.
Collapse
Affiliation(s)
- Xiao Wang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| | - Shih-Jen Tsai
- Brain Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ching-Po Lin
- Brain Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Institute of Neuroscience, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Qing Cai
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| |
Collapse
|
6
|
Kurkin S, Gordleeva S, Savosenkov A, Grigorev N, Smirnov N, Grubov VV, Udoratina A, Maksimenko V, Kazantsev V, Hramov AE. Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex Increases Posterior Theta Rhythm and Reduces Latency of Motor Imagery. SENSORS (BASEL, SWITZERLAND) 2023; 23:4661. [PMID: 37430576 DOI: 10.3390/s23104661] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 07/12/2023]
Abstract
Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study. Participants were randomly assigned to receive sham (15 subjects) or real high-frequency rTMS (15 subjects). We performed EEG sensor-level, source-level, and connectivity analyses to evaluate the rTMS effects. We revealed that excitatory stimulation of the left DLPFC increases theta-band power in the right precuneus (PrecuneusR) via the functional connectivity between them. The precuneus theta-band power negatively correlates with the latency of the MI response, so the rTMS speeds up the responses in 50% of participants. We suppose that posterior theta-band power reflects attention modulation of sensory processing; therefore, high power may indicate attentive processing and cause faster responses.
Collapse
Affiliation(s)
- Semen Kurkin
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Susanna Gordleeva
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Andrey Savosenkov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Nikita Grigorev
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Nikita Smirnov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Vadim V Grubov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Anna Udoratina
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Vladimir Maksimenko
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Victor Kazantsev
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Alexander E Hramov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| |
Collapse
|
7
|
Kirkovski M, Donaldson PH, Do M, Speranza BE, Albein-Urios N, Oberman LM, Enticott PG. A systematic review of the neurobiological effects of theta-burst stimulation (TBS) as measured using functional magnetic resonance imaging (fMRI). Brain Struct Funct 2023; 228:717-749. [PMID: 37072625 PMCID: PMC10113132 DOI: 10.1007/s00429-023-02634-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/20/2023] [Indexed: 04/20/2023]
Abstract
Theta burst stimulation (TBS) is associated with the modulation of a range of clinical, cognitive, and behavioural outcomes, but specific neurobiological effects remain somewhat unclear. This systematic literature review investigated resting-state and task-based functional magnetic resonance imaging (fMRI) outcomes post-TBS in healthy human adults. Fifty studies that applied either continuous-or intermittent-(c/i) TBS, and adopted a pretest-posttest or sham-controlled design, were included. For resting-state outcomes following stimulation applied to motor, temporal, parietal, occipital, or cerebellar regions, functional connectivity generally decreased in response to cTBS and increased in response to iTBS, though there were some exceptions to this pattern of response. These findings are mostly consistent with the assumed long-term depression (LTD)/long-term potentiation (LTP)-like plasticity effects of cTBS and iTBS, respectively. Task-related outcomes following TBS were more variable. TBS applied to the prefrontal cortex, irrespective of task or state, also produced more variable responses, with no consistent patterns emerging. Individual participant and methodological factors are likely to contribute to the variability in responses to TBS. Future studies assessing the effects of TBS via fMRI must account for factors known to affect the TBS outcomes, both at the level of individual participants and of research methodology.
Collapse
Affiliation(s)
- Melissa Kirkovski
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Bridgette E Speranza
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Lindsay M Oberman
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
8
|
Lv T, You S, Qin R, Hu Z, Ke Z, Yao W, Zhao H, Xu Y, Bai F. Distinct reserve capacity impacts on default-mode network in response to left angular gyrus-navigated repetitive transcranial magnetic stimulation in the prodromal Alzheimer disease. Behav Brain Res 2023; 439:114226. [PMID: 36436729 DOI: 10.1016/j.bbr.2022.114226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Default-mode network (DMN) may be the earliest affected network and is associated with cognitive decline in Alzheimer's disease (AD). Repetitive transcranial magnetic stimulation (rTMS) may help to modulate DMN plasticity. Still, stimulation effects substantially vary across studies and individuals. Global left frontal cortex (gLFC) connectivity, a substitute for reserve capacity, may contribute to the heterogeneous physiological effects of neuro-navigated rTMS. This study investigated the effects of left angular gyrus-navigated rTMS on DMN connectivity in different reserve capacity participants. gLFC connectivity, was computed through resting-state fMRI correlations. Thirty-one prodromal AD patients were divided into low connection group (LCG) and high connection group (HCG) by the median of gLFC connectivity. Distinct reserve capacity impacts on DMN in response to rTMS were identified in these two groups. Then, brain-behavior relationships were examined. gLFC connectivity within a certain range is directly proportional to cognitive reserve ability (i.e., LCG), and the effectiveness of functional connectivity beyond this range decreases (i.e, HCG). Moreover, LCG exhibited increased DMN connectivity and significantly positive memory improvements, while HCG showed a contrary connectivity decline and maintained or slightly improved their cognitive function after neuro-navigated rTMS treatment. The prodromal AD patients with the distinct reserve capacity may benefit differently from left angular gyrus-navigated rTMS, which may lead to increasing attention in defining personalized medicine approach of AD.
Collapse
Affiliation(s)
- Tingyu Lv
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Shengqi You
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China.
| |
Collapse
|
9
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
10
|
Perellón-Alfonso R, Redondo-Camós M, Abellaneda-Pérez K, Cattaneo G, Delgado-Gallén S, España-Irla G, Solana Sánchez J, Tormos JM, Pascual-Leone A, Bartrés-Faz D. Prefrontal reactivity to TMS perturbation as a toy model of mental health outcomes during the COVID-19 pandemic. Heliyon 2022; 8:e10208. [PMID: 35991299 PMCID: PMC9383955 DOI: 10.1016/j.heliyon.2022.e10208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental health consequences, however, others show no negative effects. We hypothesized that the electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual's capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74 participants who underwent mental health monitoring and concurrent electroencephalography with transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL). Within the following 19 months, mental health was reassessed at three timepoints during lock-down confinement and different phases of de-escalation in Spain. Compared with participants who remained stable, those who experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal education, was significantly predictive of mental health status during the pandemic. These findings reveal that the effect of TMS perturbation offers a predictive toy model of psychosocial stress response, as exemplified by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ruben Perellón-Alfonso
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Redondo-Camós
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Goretti España-Irla
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Javier Solana Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - José M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA
- Department of Neurology, Harvard Medical School; Boston, MA, USA
| | - David Bartrés-Faz
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| |
Collapse
|
11
|
Walhovd KB, Fjell AM, Wang Y, Amlien IK, Mowinckel AM, Lindenberger U, Düzel S, Bartrés-Faz D, Ebmeier KP, Drevon CA, Baaré WFC, Ghisletta P, Johansen LB, Kievit RA, Henson RN, Madsen KS, Nyberg L, R Harris J, Solé-Padullés C, Pudas S, Sørensen Ø, Westerhausen R, Zsoldos E, Nawijn L, Lyngstad TH, Suri S, Penninx B, Rogeberg OJ, Brandmaier AM. Education and Income Show Heterogeneous Relationships to Lifespan Brain and Cognitive Differences Across European and US Cohorts. Cereb Cortex 2022; 32:839-854. [PMID: 34467389 PMCID: PMC8841563 DOI: 10.1093/cercor/bhab248] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Higher socio-economic status (SES) has been proposed to have facilitating and protective effects on brain and cognition. We ask whether relationships between SES, brain volumes and cognitive ability differ across cohorts, by age and national origin. European and US cohorts covering the lifespan were studied (4-97 years, N = 500 000; 54 000 w/brain imaging). There was substantial heterogeneity across cohorts for all associations. Education was positively related to intracranial (ICV) and total gray matter (GM) volume. Income was related to ICV, but not GM. We did not observe reliable differences in associations as a function of age. SES was more strongly related to brain and cognition in US than European cohorts. Sample representativity varies, and this study cannot identify mechanisms underlying differences in associations across cohorts. Differences in neuroanatomical volumes partially explained SES-cognition relationships. SES was more strongly related to ICV than to GM, implying that SES-cognition relations in adulthood are less likely grounded in neuroprotective effects on GM volume in aging. The relatively stronger SES-ICV associations rather are compatible with SES-brain volume relationships being established early in life, as ICV stabilizes in childhood. The findings underscore that SES has no uniform association with, or impact on, brain and cognition.
Collapse
Affiliation(s)
- Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo 0424, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo 0424, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin D-14195, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Christian A Drevon
- Vitas AS, Oslo 0349, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0317, Norway
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- UniDistance Suisse, Brig, Brig 3900, Switzerland
- Swiss National Centre of Competence in Research LIVES, University of Geneva, Geneva 1212, Switzerland
| | - Louise Baruël Johansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Glostrup 2600, Denmark
| | - Rogier A Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen 6500 GL, The Netherlands
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Radiography, Department of Technology, University College Copenhagen, Copenhagen 1799, Denmark
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå 901 87, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden
- Department of Radiation Sciences, Radiology, Umeå University, 901 87 Umeå, Sweden
| | - Jennifer R Harris
- Division for Health Data and Digitalisation, The Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå 901 87, Sweden
- Department of Radiation Sciences, Radiology, Umeå University, 901 87 Umeå, Sweden
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam 1081 HJ, The Netherlands
| | - Torkild Hovde Lyngstad
- Department of Sociology and Human Geography, Faculty of Social Sciences, University of Oslo, Oslo 0317, Norway
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
| | - Brenda Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam 1081 HJ, The Netherlands
| | | | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin D-14195, Germany
| |
Collapse
|
12
|
Saboo KV, Hu C, Varatharajah Y, Przybelski SA, Reid RI, Schwarz CG, Graff-Radford J, Knopman DS, Machulda MM, Mielke MM, Petersen RC, Arnold PM, Worrell GA, Jones DT, Jack Jr CR, Iyer RK, Vemuri P. Deep learning identifies brain structures that predict cognition and explain heterogeneity in cognitive aging. Neuroimage 2022; 251:119020. [PMID: 35196565 PMCID: PMC9045384 DOI: 10.1016/j.neuroimage.2022.119020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Specific brain structures (gray matter regions and white matter tracts) play a dominant role in determining cognitive decline and explain the heterogeneity in cognitive aging. Identification of these structures is crucial for screening of older adults at risk of cognitive decline. Using deep learning models augmented with a model-interpretation technique on data from 1432 Mayo Clinic Study of Aging participants, we identified a subset of brain structures that were most predictive of individualized cognitive trajectories and indicative of cognitively resilient vs. vulnerable individuals. Specifically, these structures explained why some participants were resilient to the deleterious effects of elevated brain amyloid and poor vascular health. Of these, medial temporal lobe and fornix, reflective of age and pathology-related degeneration, and corpus callosum, reflective of inter-hemispheric disconnection, accounted for 60% of the heterogeneity explained by the most predictive structures. Our results are valuable for identifying cognitively vulnerable individuals and for developing interventions for cognitive decline.
Collapse
|
13
|
BDNF Val66Met gene polymorphism modulates brain activity following rTMS-induced memory impairment. Sci Rep 2022; 12:176. [PMID: 34997117 PMCID: PMC8741781 DOI: 10.1038/s41598-021-04175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
The BDNF Val66Met gene polymorphism is a relevant factor explaining inter-individual differences to TMS responses in studies of the motor system. However, whether this variant also contributes to TMS-induced memory effects, as well as their underlying brain mechanisms, remains unexplored. In this investigation, we applied rTMS during encoding of a visual memory task either over the left frontal cortex (LFC; experimental condition) or the cranial vertex (control condition). Subsequently, individuals underwent a recognition memory phase during a functional MRI acquisition. We included 43 young volunteers and classified them as 19 Met allele carriers and 24 as Val/Val individuals. The results revealed that rTMS delivered over LFC compared to vertex stimulation resulted in reduced memory performance only amongst Val/Val allele carriers. This genetic group also exhibited greater fMRI brain activity during memory recognition, mainly over frontal regions, which was positively associated with cognitive performance. We concluded that BDNF Val66Met gene polymorphism, known to exert a significant effect on neuroplasticity, modulates the impact of rTMS both at the cognitive as well as at the associated brain networks expression levels. This data provides new insights on the brain mechanisms explaining cognitive inter-individual differences to TMS, and may inform future, more individually-tailored rTMS interventions.
Collapse
|
14
|
Abellaneda-Pérez K, Vaqué-Alcázar L, Perellón-Alfonso R, Solé-Padullés C, Bargalló N, Salvador R, Ruffini G, Nitsche MA, Pascual-Leone A, Bartrés-Faz D. Multifocal Transcranial Direct Current Stimulation Modulates Resting-State Functional Connectivity in Older Adults Depending on the Induced Current Density. Front Aging Neurosci 2021; 13:725013. [PMID: 34899266 PMCID: PMC8662695 DOI: 10.3389/fnagi.2021.725013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/02/2021] [Indexed: 02/02/2023] Open
Abstract
Combining non-invasive brain stimulation (NIBS) with resting-state functional magnetic resonance imaging (rs-fMRI) is a promising approach to characterize and potentially optimize the brain networks subtending cognition that changes as a function of age. However, whether multifocal NIBS approaches are able to modulate rs-fMRI brain dynamics in aged populations, and if these NIBS-induced changes are consistent with the simulated electric current distribution on the brain remains largely unknown. In the present investigation, thirty-one cognitively healthy older adults underwent two different multifocal real transcranial direct current stimulation (tDCS) conditions (C1 and C2) and a sham condition in a crossover design during a rs-fMRI acquisition. The real tDCS conditions were designed to electrically induce two distinct complex neural patterns, either targeting generalized frontoparietal cortical overactivity (C1) or a detachment between the frontal areas and the posteromedial cortex (C2). Data revealed that the two tDCS conditions modulated rs-fMRI differently. C1 increased the coactivation of multiple functional couplings as compared to sham, while a smaller number of connections increased in C1 as compared to C2. At the group level, C1-induced changes were topographically consistent with the calculated electric current density distribution. At the individual level, the extent of tDCS-induced rs-fMRI modulation in C1 was related with the magnitude of the simulated electric current density estimates. These results highlight that multifocal tDCS procedures can effectively change rs-fMRI neural functioning in advancing age, being the induced modulation consistent with the spatial distribution of the simulated electric current on the brain. Moreover, our data supports that individually tailoring NIBS-based interventions grounded on subject-specific structural data might be crucial to increase tDCS potential in future studies amongst older adults.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Section of Neuroradiology, Department of Radiology, Diagnostic Image Center, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Ricardo Salvador
- Neuroelectrics, Cambridge, MA, United States.,Neuroelectrics, Barcelona, Spain
| | - Giulio Ruffini
- Neuroelectrics, Cambridge, MA, United States.,Neuroelectrics, Barcelona, Spain
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States.,Guttmann Brain Health Institute, Guttmann University Institute of Neurorehabilitation, Autonomous University of Barcelona, Badalona, Spain
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Guttmann Brain Health Institute, Guttmann University Institute of Neurorehabilitation, Autonomous University of Barcelona, Badalona, Spain
| |
Collapse
|
15
|
Perellón-Alfonso R, Redondo-Camós M, Abellaneda-Pérez K, Cattaneo G, Delgado-Gallén S, España-Irla G, Sánchez JS, Tormos JM, Pascual-Leone A, Bartrés-Faz D. TMS-Evoked Prefrontal Perturbation as a Toy Model of Brain Resilience to Stress During the COVID-19 Pandemic. RESEARCH SQUARE 2021:rs.3.rs-1139350. [PMID: 34931185 PMCID: PMC8687479 DOI: 10.21203/rs.3.rs-1139350/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental health consequences, however, others show no negative effects. We hypothesized that the electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual's capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74 participants who underwent mental health monitoring and concurrent electroencephalography with transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL). Within the following 19 months, mental health was reassessed at three time points during lock-down confinement and different phases of de-escalation in Spain. Compared with participants who remained stable, those who experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal education, was significantly predictive of mental health status during the pandemic. These findings reveal that the effect of TMS perturbation offers a predictive toy model of psychosocial stress resilience, as exemplified by the COVID-19 pandemic, and point to the L-DLPFC as a promising target for resilience promotion.
Collapse
|
16
|
Grydeland H, Sederevičius D, Wang Y, Bartrés-Faz D, Bertram L, Dobricic V, Düzel S, Ebmeier KP, Lindenberger U, Nyberg L, Pudas S, Sexton CE, Solé-Padullés C, Sørensen Ø, Walhovd KB, Fjell AM. Self-reported sleep relates to microstructural hippocampal decline in ß-amyloid positive Adults beyond genetic risk. Sleep 2021; 44:zsab110. [PMID: 33912975 PMCID: PMC8598196 DOI: 10.1093/sleep/zsab110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/16/2021] [Indexed: 12/01/2022] Open
Abstract
STUDY OBJECTIVES A critical role linking sleep with memory decay and β-amyloid (Aβ) accumulation, two markers of Alzheimer's disease (AD) pathology, may be played by hippocampal integrity. We tested the hypotheses that worse self-reported sleep relates to decline in memory and intra-hippocampal microstructure, including in the presence of Aβ. METHODS Two-hundred and forty-three cognitively healthy participants, aged 19-81 years, completed the Pittsburgh Sleep Quality Index once, and two diffusion tensor imaging sessions, on average 3 years apart, allowing measures of decline in intra-hippocampal microstructure as indexed by increased mean diffusivity. We measured memory decay at each imaging session using verbal delayed recall. One session of positron emission tomography, in 108 participants above 44 years of age, yielded 23 Aβ positive. Genotyping enabled control for APOE ε4 status, and polygenic scores for sleep and AD, respectively. RESULTS Worse global sleep quality and sleep efficiency related to more rapid reduction of hippocampal microstructure over time. Focusing on efficiency (the percentage of time in bed at night spent asleep), the relation was stronger in presence of Aβ accumulation, and hippocampal integrity decline mediated the relation with memory decay. The results were not explained by genetic risk for sleep efficiency or AD. CONCLUSIONS Worse sleep efficiency related to decline in hippocampal microstructure, especially in the presence of Aβ accumulation, and Aβ might link poor sleep and memory decay. As genetic risk did not account for the associations, poor sleep efficiency might constitute a risk marker for AD, although the driving causal mechanisms remain unknown.
Collapse
Affiliation(s)
- Håkon Grydeland
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Donatas Sederevičius
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Lars Bertram
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Lars Nyberg
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | | | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Øystein Sørensen
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, University of Oslo, Oslo, Norway
| | - Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Tang AD, Bennett W, Bindoff AD, Bolland S, Collins J, Langley RC, Garry MI, Summers JJ, Hinder MR, Rodger J, Canty AJ. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Brain Stimul 2021; 14:1498-1507. [PMID: 34653682 DOI: 10.1016/j.brs.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool commonly used to drive neural plasticity in the young adult and aged brain. Recent data from mouse models have shown that even at subthreshold intensities (0.12 T), rTMS can drive neuronal and glial plasticity in the motor cortex. However, the physiological mechanisms underlying subthreshold rTMS induced plasticity and whether these are altered with normal ageing are unclear. OBJECTIVE To assess the effect of subthreshold rTMS, using the intermittent theta burst stimulation (iTBS) protocol on structural synaptic plasticity in the mouse motor cortex of young and aged mice. METHODS Longitudinal in vivo 2-photon microscopy was used to measure changes to the structural plasticity of pyramidal neuron dendritic spines in the motor cortex following a single train of subthreshold rTMS (in young adult and aged animals) or the same rTMS train administered on 4 consecutive days (in young adult animals only). Data were analysed with Bayesian hierarchical generalized linear regression models and interpreted with the aid of Bayes Factors (BF). RESULTS We found strong evidence (BF > 10) that subthreshold rTMS altered the rate of dendritic spine losses and gains, dependent on the number of stimulation sessions and that a single session of subthreshold rTMS was effective in driving structural synaptic plasticity in both young adult and aged mice. CONCLUSION These findings provide further evidence that rTMS drives synaptic plasticity in the brain and uncovers structural synaptic plasticity as a key mechanism of subthreshold rTMS induced plasticity.
Collapse
Affiliation(s)
- Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia.
| | - William Bennett
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Samuel Bolland
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Jessica Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Ross C Langley
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Michael I Garry
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jeffery J Summers
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, L3 3AF, Liverpool, United Kingdom
| | - Mark R Hinder
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Alison J Canty
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| |
Collapse
|
18
|
Vaqué-Alcázar L, Mulet-Pons L, Abellaneda-Pérez K, Solé-Padullés C, Cabello-Toscano M, Macià D, Sala-Llonch R, Bargalló N, Solana J, Cattaneo G, Tormos JM, Pascual-Leone A, Bartrés-Faz D. tDCS-Induced Memory Reconsolidation Effects and Its Associations With Structural and Functional MRI Substrates in Subjective Cognitive Decline. Front Aging Neurosci 2021; 13:695232. [PMID: 34381353 PMCID: PMC8350070 DOI: 10.3389/fnagi.2021.695232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Previous evidence suggests that transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (l-DLPFC) can enhance episodic memory in subjects with subjective cognitive decline (SCD), known to be at risk of dementia. Our main goal was to replicate such findings in an independent sample and elucidate if baseline magnetic resonance imaging (MRI) characteristics predicted putative memory improvement. Thirty-eight participants with SCD (aged: 60-65 years) were randomly assigned to receive active (N = 19) or sham (N = 19) tDCS in a double-blind design. They underwent a verbal learning task with 15 words (DAY-1), and 24 h later (DAY-2) stimulation was applied for 15 min at 1.5 mA targeting the l-DLPFC after offering a contextual reminder. Delayed recall and recognition were measured 1 day after the stimulation session (DAY-3), and at 1-month follow-up (DAY-30). Before the experimental session, structural and functional MRI were acquired. We identified a group∗time interaction in recognition memory, being the active tDCS group able to maintain stable memory performance between DAY-3 and DAY-30. MRI results revealed that individuals with superior tDCS-induced effects on memory reconsolidation exhibited higher left temporal lobe thickness and greater intrinsic FC within the default-mode network. Present findings confirm that tDCS, through the modulation of memory reconsolidation, is capable of enhancing performance in people with self-perceived cognitive complaints. Results suggest that SCD subjects with more preserved structural and functional integrity might benefit from these interventions, promoting maintenance of cognitive function in a population at risk to develop dementia.
Collapse
Affiliation(s)
- Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Mulet-Pons
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - María Cabello-Toscano
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Guttmann Institute, Badalona, Spain
| | - Dídac Macià
- Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Roser Sala-Llonch
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Nuria Bargalló
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Gabriele Cattaneo
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Guttmann Institute, Badalona, Spain
| | | | - Alvaro Pascual-Leone
- Guttmann Institute, Badalona, Spain
- Harvard Medical School, Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Guttmann Institute, Badalona, Spain
| |
Collapse
|
19
|
Pascual-Leone A, Bartres-Faz D. Human Brain Resilience: A Call to Action. Ann Neurol 2021; 90:336-349. [PMID: 34219268 DOI: 10.1002/ana.26157] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 01/01/2023]
Abstract
At present, resilience refers to a highly heterogeneous concept with ill-defined determinants, mechanisms, and outcomes. This call for action argues for the need to define resilience as a person-centered multidimensional metric, informed by a dynamic lifespan perspective and combining observational and interventional experimental studies to identify specific neural markers and correlated behavioral measures. The coronavirus disease 2019 (COVID-19) pandemic highlights the urgent need of such an effort with the ultimate goal of defining a new vital sign, an individual index of resilience, as a life-long metric with the capacity to predict an individual's risk for disability in the face of a stressor, insult, injury, or disease. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, USA.,Institut Guttmann de Neurorehabilitació, Guttmann Brain Health Institute, Barcelona, Spain
| | - David Bartres-Faz
- Institut Guttmann de Neurorehabilitació, Guttmann Brain Health Institute, Barcelona, Spain.,Department de Medicina, Facultat de Medicina i Ciències de la Salut - Campus Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Fjell AM, Grydeland H, Wang Y, Amlien IK, Bartres-Faz D, Brandmaier AM, Düzel S, Elman J, Franz CE, Håberg AK, Kietzmann TC, Kievit RA, Kremen WS, Krogsrud SK, Kühn S, Lindenberger U, Macía D, Mowinckel AM, Nyberg L, Panizzon MS, Solé-Padullés C, Sørensen Ø, Westerhausen R, Walhovd KB. The genetic organization of longitudinal subcortical volumetric change is stable throughout the lifespan. eLife 2021; 10:66466. [PMID: 34180395 PMCID: PMC8260220 DOI: 10.7554/elife.66466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/26/2021] [Indexed: 11/13/2022] Open
Abstract
Development and aging of the cerebral cortex show similar topographic organization and are governed by the same genes. It is unclear whether the same is true for subcortical regions, which follow fundamentally different ontogenetic and phylogenetic principles. We tested the hypothesis that genetically governed neurodevelopmental processes can be traced throughout life by assessing to which degree brain regions that develop together continue to change together through life. Analyzing over 6000 longitudinal MRIs of the brain, we used graph theory to identify five clusters of coordinated development, indexed as patterns of correlated volumetric change in brain structures. The clusters tended to follow placement along the cranial axis in embryonic brain development, suggesting continuity from prenatal stages, and correlated with cognition. Across independent longitudinal datasets, we demonstrated that developmental clusters were conserved through life. Twin-based genetic correlations revealed distinct sets of genes governing change in each cluster. Single-nucleotide polymorphisms-based analyses of 38,127 cross-sectional MRIs showed a similar pattern of genetic volume–volume correlations. In conclusion, coordination of subcortical change adheres to fundamental principles of lifespan continuity and genetic organization.
Collapse
Affiliation(s)
- Anders Martin Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Hakon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - David Bartres-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Jeremy Elman
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States
| | - Carol E Franz
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States
| | - Asta K Håberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tim C Kietzmann
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Rogier Andrew Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - William S Kremen
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States.,Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, United States
| | - Stine K Krogsrud
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Didac Macía
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Athanasia Monika Mowinckel
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiation Sciences, Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Matthew S Panizzon
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States.,Department of Psychiatry, University of California, San Diego, La Jolla, United States
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Rene Westerhausen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine Beate Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Vaqué-Alcázar L, Abellaneda-Pérez K, Solé-Padullés C, Bargalló N, Valls-Pedret C, Ros E, Sala-Llonch R, Bartrés-Faz D. Functional brain changes associated with cognitive trajectories determine specific tDCS-induced effects among older adults. J Neurosci Res 2021; 99:2188-2200. [PMID: 34047384 DOI: 10.1002/jnr.24849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
The combination of transcranial direct current stimulation (tDCS) with functional magnetic resonance imaging (fMRI) can provide original data to investigate age-related brain changes. We examined neural activity modulations induced by two multifocal tDCS procedures based on two distinct montages fitting two N-back task-based fMRI patterns ("compensatory" and "maintenance") related to high working memory (WM) in a previous publication (Fernández-Cabello et al. Neurobiol Aging (2016);48:23-33). We included 24 participants classified as stable or decliners according to their 4-year WM trajectories following a retrospective longitudinal approach. Then, we studied longitudinal fMRI differences between groups (stable and decliners) and across multifocal tDCS montages ("compensatory" and "maintenance") applied using a single-blind sham-controlled cross-over design. Decliners evidenced over-activation of non-related WM areas after 4 years of follow-up. Focusing on tDCS effects, among the decliner group, the "compensatory"-tDCS montage reduced the activity over the posterior regions where these subjects showed longitudinal hyperactivation. These results reinforce the notion that tDCS effects are characterized by an activity reduction and might be more noticeable in compromised systems. Importantly, the data provide novel evidence that cognitive trajectories predict tDCS effects in older adults.
Collapse
Affiliation(s)
- Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Núria Bargalló
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Neuroradiology Section, Radiology Service, Centre de Diagnòstic per la Imatge, Hospital Clínic, Barcelona, Spain
| | - Cinta Valls-Pedret
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Ros
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Roser Sala-Llonch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Consorcio Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
| |
Collapse
|
22
|
Fjell AM, Sørensen Ø, Amlien IK, Bartrés-Faz D, Bros DM, Buchmann N, Demuth I, Drevon CA, Düzel S, Ebmeier KP, Idland AV, Kietzmann TC, Kievit R, Kühn S, Lindenberger U, Mowinckel AM, Nyberg L, Price D, Sexton CE, Solé-Padullés C, Pudas S, Sederevicius D, Suri S, Wagner G, Watne LO, Westerhausen R, Zsoldos E, Walhovd KB. Self-reported sleep relates to hippocampal atrophy across the adult lifespan: results from the Lifebrain consortium. Sleep 2021; 43:5628807. [PMID: 31738420 PMCID: PMC7215271 DOI: 10.1093/sleep/zsz280] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Objectives Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan. Methods Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18–90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants for whom longitudinal MRIs were available, followed up to 11 years with a mean interval of 3.3 years. Cross-sectional analyses were repeated in a sample of 21,390 participants from the UK Biobank. Results No cross-sectional sleep—hippocampal volume relationships were found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing 0.22% greater annual loss than low scorers. The relationship between sleep and hippocampal atrophy did not vary across age. Simulations showed that the observed longitudinal effects were too small to be detected as age-interactions in the cross-sectional analyses. Conclusions Worse self-reported sleep is associated with higher rates of hippocampal volume decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Spain
| | - Didac Maciá Bros
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Spain
| | - Nikolaus Buchmann
- Department of Cardiology, Charité - University Medicine Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Christian A Drevon
- Vitas AS, Research Park, Gaustadalleen 21, 0349, Oslo and 6 University of Oslo, Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, Medicine/University of Oslo, Norway
| | - Sandra Düzel
- Max Planck Institute for Human Development, Germany
| | | | - Ane-Victoria Idland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway.,Oslo Delirium Research Group, Department of Geriatric Medicine, University of Oslo, Norway.,Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Tim C Kietzmann
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Rogier Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Simone Kühn
- Max Planck Institute for Human Development, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Darren Price
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Claire E Sexton
- Department of Psychiatry, University of Oxford, UK.,Global Brain Health Institute, Department of Neurology, University of California San Francisco, CA.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Spain
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | | | - Sana Suri
- Department of Psychiatry, University of Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Gerd Wagner
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, University of Oslo, Norway
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| |
Collapse
|
23
|
Mitochondrial Functioning and the Relations among Health, Cognition, and Aging: Where Cell Biology Meets Cognitive Science. Int J Mol Sci 2021; 22:ijms22073562. [PMID: 33808109 PMCID: PMC8037956 DOI: 10.3390/ijms22073562] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cognitive scientists have determined that there is a set of mechanisms common to all sensory, perceptual, and cognitive abilities and correlated with age- and disease-related declines in cognition. These mechanisms also contribute to the development and functional coherence of the large-scale brain networks that support complex forms of cognition. At the same time, these brain and cognitive patterns are correlated with myriad health outcomes, indicating that at least some of the underlying mechanisms are common to all biological systems. Mitochondrial functions, including cellular energy production and control of oxidative stress, among others, are well situated to explain the relations among the brain, cognition, and health. Here, I provide an overview of the relations among cognitive abilities, associated brain networks, and the importance of mitochondrial energy production for their functioning. These are then linked to the relations between cognition, health, and aging. The discussion closes with implications for better integrating research in cognitive science and cell biology in the context of developing more sensitive measures of age- and disease-related declines in cognition.
Collapse
|
24
|
Ruiz-Eugenio L, Toledo del Cerro A, Gómez-Cuevas S, Villarejo-Carballido B. Qualitative Study on Dialogic Literary Gatherings as Co-creation Intervention and Its Impact on Psychological and Social Well-Being in Women During the COVID-19 Lockdown. Front Public Health 2021; 9:602964. [PMID: 33816414 PMCID: PMC8012801 DOI: 10.3389/fpubh.2021.602964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Dialogic Literary Gatherings (DLG) are evidence-based interventions implemented in very diverse educational and health settings. The main elements that make DLG a co-creation intervention and promote health during the COVID-19 crisis lockdown are presented. This study focuses on the case of a DLG that is being promoted by an adult school in the city of Barcelona. Methods: This qualitative study was conducted using a communicative approach. Seven in-depth interviews with participants in the online DLG have been conducted. Five of them are women without higher education ranging from 56 to 85 years old and two are educators of this school. Results: The main results are 2-fold. First, the factors that make DLG a co-creation intervention, such as egalitarian dialogue and dialogical creation of knowledge in the decision-making process, are found. Second, the results show how DLG is contributing to creating a supportive environment that breaks the social isolation of confinement and improving the participants' psychological and social well-being. Conclusions: The findings from this study contribute to generating knowledge about a co-creation process between adult education participants and educators in education and health promotion during the COVID-19 lockdown, which could be replicated in other contexts.
Collapse
Affiliation(s)
- Laura Ruiz-Eugenio
- Department of Theory and History of Education, University of Barcelona, Barcelona, Spain
| | | | | | - Beatriz Villarejo-Carballido
- Department of Sociology, University of Barcelona, Barcelona, Spain
- Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| |
Collapse
|
25
|
Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC. Effects of rTMS on the brain: is there value in variability? Cortex 2021; 139:43-59. [PMID: 33827037 DOI: 10.1016/j.cortex.2021.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
The ability of repetitive transcranial magnetic stimulation (rTMS) to non-invasively induce neuroplasticity in the human cortex has opened exciting possibilities for its application in both basic and clinical research. Changes in the amplitude of motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation has so far provided a convenient model for exploring the neurophysiology of rTMS effects on the brain, influencing the ways in which these stimulation protocols have been applied therapeutically. However, a growing number of studies have reported large inter-individual variability in the mean MEP response to rTMS, raising legitimate questions about the usefulness of this model for guiding therapy. Although the increasing application of different neuroimaging approaches has made it possible to probe rTMS-induced neuroplasticity outside the motor cortex to measure changes in neural activity that impact other aspects of human behaviour, the high variability of rTMS effects on these measurements remains an important issue for the field to address. In this review, we seek to move away from the conventional facilitation/inhibition dichotomy that permeates much of the rTMS literature, presenting a non-standard approach for measuring rTMS-induced neuroplasticity. We consider the evidence that rTMS is able to modulate an individual's moment-to-moment variability of neural activity, and whether this could have implications for guiding the therapeutic application of rTMS.
Collapse
Affiliation(s)
- Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael C Ridding
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| |
Collapse
|
26
|
Songjiang L, Tijiang Z, Heng L, Wenjing Z, Bo T, Ganjun S, Maoqiang T, Su L. Impact of Brain Functional Network Properties on Intelligence in Children and Adolescents with Focal Epilepsy: A Resting-state MRI Study. Acad Radiol 2021; 28:225-232. [PMID: 32037257 DOI: 10.1016/j.acra.2020.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVE Epilepsy is a common pediatric disease that often leads to cognitive and intellectual impairments. Here, we explore the reorganized functional networks in children and adolescents with focal epilepsy (CAFE) and analyze the relationship between network reorganization and intellectual deficits to reveal the underlying link between them. MATERIALS AND METHODS Fifty-four CAFE (6-16 years old; right-handed) and 42 well-matched healthy controls were recruited. Subjects underwent resting-state functional magnetic resonance imaging, and functional networks were analyzed by graph analysis. Intelligence testing (Wechsler Intelligence Scale for Children-Chinese revision) included measures for verbal IQ (VIQ), performance IQ, and full-scale IQ. RESULTS (1) In the CAFE compared with the healthy controls, (a) the local efficiency, clustering coefficient and standardized clustering coefficient were significantly decreased (p < 0.05); (b) the degree centrality and nodal efficiency of the left precentral gyrus (LPG) were significantly increased (p < 0.05, Bonferroni correction), and the nodal shortest path length was significantly decreased (p < 0.05, Bonferroni correction); and (c) functional connectivity of the LPG with the bilateral inferior frontal ventral gyrus, right lateral superior occipital gyrus, left middle occipital gyrus, bilateral superior parietal lobule, right anterior prefrontal cortex, and bilateral cerebellum was enhanced (p < 0.05,GRF correction), while functional connectivity with the bilateral superior temporal gyrus was decreased (p < 0.05, GRF correction). (2) The nodal shortest path length of the LPG in CAFE was associated with full-scale IQ, performance IQ, and VIQ, and local efficiency was associated with VIQ. CONCLUSION Our results showed that the middle LPG in CAFE undergoes network reorganization that positively influences intelligence. Differences in local efficiency of functional networks in children and early adolescents have a significant effect on intelligence.
Collapse
|
27
|
Yuan LQ, Zeng Q, Wang D, Wen XY, Shi Y, Zhu F, Chen SJ, Huang GZ. Neuroimaging mechanisms of high-frequency repetitive transcranial magnetic stimulation for treatment of amnestic mild cognitive impairment: a double-blind randomized sham-controlled trial. Neural Regen Res 2021; 16:707-713. [PMID: 33063732 PMCID: PMC8067941 DOI: 10.4103/1673-5374.295345] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Individuals with amnestic mild cognitive impairment (aMCI) have a high risk of developing Alzheimer’s disease. Although repetitive transcranial magnetic stimulation (rTMS) is considered a potentially effective treatment for cognitive impairment in patients with aMCI, the neuroimaging mechanisms are poorly understood. Therefore, we performed a double-blind randomized sham-controlled trial in which rTMS was applied to the left dorsolateral prefrontal cortex of aMCI patients recruited from a community near the Third Hospital Affiliated to Sun Yat-sen University, China. Twenty-four patients with aMCI were randomly assigned to receive true rTMS (treatment group, n = 12, 6 men and 6 women; age 65.08 ± 4.89 years) or sham stimulation (sham group, n = 12, 5 men and 7 women; age 64.67 ± 4.77 years). rTMS parameters included a stimulation frequency of 10 Hz, stimulation duration of 2 seconds, stimulation interval of 8 seconds, 20 repetitions at 80% of the motor threshold, and 400 pulses per session. rTMS/sham stimulation was performed five times per week over a period of 4 consecutive weeks. Our results showed that compared with baseline, Montreal Cognitive Assessment scores were significantly increased and the value of the amplitude of low-frequency fluctuation (ALFF) was significantly increased at the end of treatment and 1 month after treatment. Compared with the sham group, the ALFF values in the right inferior frontal gyrus, triangular part of the inferior frontal gyrus, right precuneus, left angular gyrus, and right supramarginal gyrus were significantly increased, and the ALFF values in the right superior frontal gyrus were significantly decreased in the treatment group. These findings suggest that high-frequency rTMS can effectively improve cognitive function in aMCI patients and alter spontaneous brain activity in cognitive-related brain areas. This study was approved by the Ethics Committee of Shenzhen Baoan Hospital of Southern Medical University, China (approval No. BYL20190901) on September 3, 2019, and registered in the Chinese Clinical Trials Registry (registration No. ChiCTR1900028180) on December 14, 2019.
Collapse
Affiliation(s)
- Li-Qiong Yuan
- Department of Rehabilitation Medicine and Physiotherapy, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qing Zeng
- Department of Rehabilitation Medicine and Physiotherapy, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dan Wang
- Department of Rehabilitation Medicine and Physiotherapy, Shenzhen Baoan Hospital of Southern Medical University, Shenzhen, Guangdong Province, China
| | - Xiu-Yun Wen
- Department of Rehabilitation Medicine and Physiotherapy, Shenzhen Baoan Hospital of Southern Medical University, Shenzhen, Guangdong Province, China
| | - Yu Shi
- Department of Rehabilitation Medicine and Physiotherapy, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fen Zhu
- Department of Rehabilitation Medicine and Physiotherapy, Shenzhen Baoan Hospital of Southern Medical University, Shenzhen, Guangdong Province, China
| | - Shang-Jie Chen
- Department of Rehabilitation Medicine and Physiotherapy, Shenzhen Baoan Hospital of Southern Medical University, Shenzhen, Guangdong Province, China
| | - Guo-Zhi Huang
- Department of Rehabilitation Medicine and Physiotherapy, Zhujiang Hospital of Southern Medical University; Rehabilitation School of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
28
|
Fjell AM, Sørensen Ø, Amlien IK, Bartrés-Faz D, Brandmaier AM, Buchmann N, Demuth I, Drevon CA, Düzel S, Ebmeier KP, Ghisletta P, Idland AV, Kietzmann TC, Kievit RA, Kühn S, Lindenberger U, Magnussen F, Macià D, Mowinckel AM, Nyberg L, Sexton CE, Solé-Padullés C, Pudas S, Roe JM, Sederevicius D, Suri S, Vidal-Piñeiro D, Wagner G, Watne LO, Westerhausen R, Zsoldos E, Walhovd KB. Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium. Cereb Cortex 2020; 31:1953-1969. [PMID: 33236064 PMCID: PMC7945023 DOI: 10.1093/cercor/bhaa332] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18–92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. “PSQI # 1 Subjective sleep quality” and “PSQI #5 Sleep disturbances” were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with “PSQI #5 Sleep disturbances” emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0188 Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Nikolaus Buchmann
- Department of Cardiology, Charité - University Medicine Berlin Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, 10117 Berlin, Germany
| | - Christian A Drevon
- Vitas AS, Research Park, Gaustadalleen 21, 0349 Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD UK
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, Swiss Distance University Institute, Swiss National Centre of Competence in Research LIVES, University of Geneva, 1205 Geneva, Switzerland
| | - Ane-Victoria Idland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway.,Oslo Delirium Research Group, Department of Geriatric Medicine, University of Oslo, 0315 Oslo, Norway.,Institute of Basic Medical Sciences, University of Oslo, 0315 Oslo, Norway
| | - Tim C Kietzmann
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 1TN, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Rogier A Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 1TN, UK
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Fredrik Magnussen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Didac Macià
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Claire E Sexton
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD UK.,Global Brain Health Institute, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, UK
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Donatas Sederevicius
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, UK
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Gerd Wagner
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, University of Oslo, 0315 Oslo, Norway
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, UK
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0188 Oslo, Norway
| |
Collapse
|
29
|
Abstract
The development of the use of transcranial magnetic stimulation (TMS) in the study of psychological functions has entered a new phase of sophistication. This is largely due to an increasing physiological knowledge of its effects and to its being used in combination with other experimental techniques. This review presents the current state of our understanding of the mechanisms of TMS in the context of designing and interpreting psychological experiments. We discuss the major conceptual advances in behavioral studies using TMS. There are meaningful physiological and technical achievements to review, as well as a wealth of new perceptual and cognitive experiments. In doing so we summarize the different uses and challenges of TMS in mental chronometry, perception, awareness, learning, and memory.
Collapse
Affiliation(s)
- David Pitcher
- Department of Psychology, University of York, York YO10 5DD, United Kingdom;
| | - Beth Parkin
- Department of Psychology, University of Westminster, London W1W 6UW, United Kingdom;
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom;
| |
Collapse
|
30
|
Bellantuono L, Marzano L, La Rocca M, Duncan D, Lombardi A, Maggipinto T, Monaco A, Tangaro S, Amoroso N, Bellotti R. Predicting brain age with complex networks: From adolescence to adulthood. Neuroimage 2020; 225:117458. [PMID: 33099008 DOI: 10.1016/j.neuroimage.2020.117458] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023] Open
Abstract
In recent years, several studies have demonstrated that machine learning and deep learning systems can be very useful to accurately predict brain age. In this work, we propose a novel approach based on complex networks using 1016 T1-weighted MRI brain scans (in the age range 7-64years). We introduce a structural connectivity model of the human brain: MRI scans are divided in rectangular boxes and Pearson's correlation is measured among them in order to obtain a complex network model. Brain connectivity is then characterized through few and easy-to-interpret centrality measures; finally, brain age is predicted by feeding a compact deep neural network. The proposed approach is accurate, robust and computationally efficient, despite the large and heterogeneous dataset used. Age prediction accuracy, in terms of correlation between predicted and actual age r=0.89and Mean Absolute Error MAE =2.19years, compares favorably with results from state-of-the-art approaches. On an independent test set including 262 subjects, whose scans were acquired with different scanners and protocols we found MAE =2.52. The only imaging analysis steps required in the proposed framework are brain extraction and linear registration, hence robust results are obtained with a low computational cost. In addition, the network model provides a novel insight on aging patterns within the brain and specific information about anatomical districts displaying relevant changes with aging.
Collapse
Affiliation(s)
- Loredana Bellantuono
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Luca Marzano
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Marianna La Rocca
- University of Southern California, Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Dominique Duncan
- University of Southern California, Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Angela Lombardi
- Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy
| | - Tommaso Maggipinto
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy.
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy; Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nicola Amoroso
- Dipartimento di Farmacia - Scienze del Farmaco, Universitá degli Studi di Bari Aldo Moro, Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy; Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
31
|
Sørensen Ø, Brandmaier AM, Macià D, Ebmeier K, Ghisletta P, Kievit RA, Mowinckel AM, Walhovd KB, Westerhausen R, Fjell A. Meta-analysis of generalized additive models in neuroimaging studies. Neuroimage 2020; 224:117416. [PMID: 33017652 DOI: 10.1016/j.neuroimage.2020.117416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Analyzing data from multiple neuroimaging studies has great potential in terms of increasing statistical power, enabling detection of effects of smaller magnitude than would be possible when analyzing each study separately and also allowing to systematically investigate between-study differences. Restrictions due to privacy or proprietary data as well as more practical concerns can make it hard to share neuroimaging datasets, such that analyzing all data in a common location might be impractical or impossible. Meta-analytic methods provide a way to overcome this issue, by combining aggregated quantities like model parameters or risk ratios. Most meta-analytic tools focus on parametric statistical models, and methods for meta-analyzing semi-parametric models like generalized additive models have not been well developed. Parametric models are often not appropriate in neuroimaging, where for instance age-brain relationships may take forms that are difficult to accurately describe using such models. In this paper we introduce meta-GAM, a method for meta-analysis of generalized additive models which does not require individual participant data, and hence is suitable for increasing statistical power while upholding privacy and other regulatory concerns. We extend previous works by enabling the analysis of multiple model terms as well as multivariate smooth functions. In addition, we show how meta-analytic p-values can be computed for smooth terms. The proposed methods are shown to perform well in simulation experiments, and are demonstrated in a real data analysis on hippocampal volume and self-reported sleep quality data from the Lifebrain consortium. We argue that application of meta-GAM is especially beneficial in lifespan neuroscience and imaging genetics. The methods are implemented in an accompanying R package metagam, which is also demonstrated.
Collapse
Affiliation(s)
- Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Pb. 1094 Blindern, Oslo 0317, Norway.
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Dídac Macià
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Spain
| | | | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland; Swiss Distance University Institute, Switzerland; Swiss National Centre of Competence in Research LIVES, University of Geneva, Switzerland
| | - Rogier A Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Pb. 1094 Blindern, Oslo 0317, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Pb. 1094 Blindern, Oslo 0317, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Rene Westerhausen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Pb. 1094 Blindern, Oslo 0317, Norway
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Pb. 1094 Blindern, Oslo 0317, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| |
Collapse
|
32
|
Strong J, Fonda JR, Grande L, Milberg W, McGlinchey R, Leritz E. The role of cognitive reserve in the relationship between metabolic syndrome and cognitive functioning. AGING NEUROPSYCHOLOGY AND COGNITION 2020; 28:717-732. [PMID: 32893722 DOI: 10.1080/13825585.2020.1817304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) is a cluster of vascular risk factors that can impact cognition. Cognitive reserve (CR), specifically early operators of reserve (e.g., education), have not been explored in the relationship between MetS and cognition. Adults 45-90 years old (n = 149) underwent neuropsychological testing and evaluation for MetS. Exploratory and confirmatory factor analyses defined neuropsychological domains and created a CR score based on early operators of CR. Regression analyses examined the association among MetS, CR, and neuropsychological performance. CFA revealed two neuropsychological factors: Episodic Memory and Executive Functioning. Controlling for age and physical ability, MetS and CR were significant predictors of the Factors. With CR in the model, MetS became a non-significant predictor of Executive Functioning; CR and physical ability were the most significant predictors. CR and MetS significantly predicted Episodic Memory . The results are discussed in the context of neuroprotective factors and cognitive aging.
Collapse
Affiliation(s)
- Jessica Strong
- VA Boston Healthcare System; Boston, Massachusetts, USA.,New England Geriatric Research Education and Clinical Center; Boston, Massachusetts, USA.,Harvard Medical School, Department of Psychiatry; Boston, Massachusetts, USA
| | - Jennifer R Fonda
- VA Boston Healthcare System; Boston, Massachusetts, USA.,Translational Research Center for Traumatic Brain Injury and Stress Disorders; Boston, Massachusetts, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, USA
| | - Laura Grande
- VA Boston Healthcare System; Boston, Massachusetts, USA.,Harvard Medical School, Department of Psychiatry; Boston, Massachusetts, USA
| | - William Milberg
- VA Boston Healthcare System; Boston, Massachusetts, USA.,Harvard Medical School, Department of Psychiatry; Boston, Massachusetts, USA.,Translational Research Center for Traumatic Brain Injury and Stress Disorders; Boston, Massachusetts, USA
| | - Regina McGlinchey
- VA Boston Healthcare System; Boston, Massachusetts, USA.,Harvard Medical School, Department of Psychiatry; Boston, Massachusetts, USA.,Translational Research Center for Traumatic Brain Injury and Stress Disorders; Boston, Massachusetts, USA
| | - Elizabeth Leritz
- VA Boston Healthcare System; Boston, Massachusetts, USA.,New England Geriatric Research Education and Clinical Center; Boston, Massachusetts, USA.,Harvard Medical School, Department of Psychiatry; Boston, Massachusetts, USA
| |
Collapse
|
33
|
Handwerker DA, Ianni G, Gutierrez B, Roopchansingh V, Gonzalez-Castillo J, Chen G, Bandettini PA, Ungerleider LG, Pitcher D. Theta-burst TMS to the posterior superior temporal sulcus decreases resting-state fMRI connectivity across the face processing network. Netw Neurosci 2020; 4:746-760. [PMID: 32885124 PMCID: PMC7462428 DOI: 10.1162/netn_a_00145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/08/2020] [Indexed: 01/15/2023] Open
Abstract
Humans process faces by using a network of face-selective regions distributed across the brain. Neuropsychological patient studies demonstrate that focal damage to nodes in this network can impair face recognition, but such patients are rare. We approximated the effects of damage to the face network in neurologically normal human participants by using theta burst transcranial magnetic stimulation (TBS). Multi-echo functional magnetic resonance imaging (fMRI) resting-state data were collected pre- and post-TBS delivery over the face-selective right superior temporal sulcus (rpSTS), or a control site in the right motor cortex. Results showed that TBS delivered over the rpSTS reduced resting-state connectivity across the extended face processing network. This connectivity reduction was observed not only between the rpSTS and other face-selective areas, but also between nonstimulated face-selective areas across the ventral, medial, and lateral brain surfaces (e.g., between the right amygdala and bilateral fusiform face areas and occipital face areas). TBS delivered over the motor cortex did not produce significant changes in resting-state connectivity across the face processing network. These results demonstrate that, even without task-induced fMRI signal changes, disrupting a single node in a brain network can decrease the functional connectivity between nodes in that network that have not been directly stimulated. Human behavior is dependent on brain networks that perform different cognitive functions. We combined theta burst transcranial magnetic stimulation (TBS) with resting-state fMRI to study the face processing network. Disruption of the face-selective right posterior superior temporal sulcus (rpSTS) reduced fMRI connectivity across the face network. This impairment in connectivity was observed not only between the rpSTS and other face-selective areas, but also between nonstimulated face-selective areas on the ventral and medial brain surfaces (e.g., between the right amygdala and bilateral fusiform face areas and occipital face areas). Thus, combined TBS/fMRI can be used to approximate and measure the effects of focal brain damage on brain networks, and suggests such an approach may be useful for mapping intrinsic network organization.
Collapse
Affiliation(s)
- Daniel A Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Geena Ianni
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Benjamin Gutierrez
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Vinai Roopchansingh
- Functional MRI Facility, National Institute of Mental Health, Bethesda, MD, USA
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Leslie G Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - David Pitcher
- Department of Psychology, University of York, Heslington, York, UK
| |
Collapse
|
34
|
Novakova L, Gajdos M, Rektorova I. Theta-burst transcranial magnetic stimulation induced cognitive task-related decrease in activity of default mode network: An exploratory study. Brain Stimul 2020; 13:597-599. [PMID: 32289683 DOI: 10.1016/j.brs.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lubomira Novakova
- Applied Neuroscience Research Group, Central European Institute of Technology - Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Martin Gajdos
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology - Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology - Masaryk University (CEITEC MU), Brno, Czech Republic.
| |
Collapse
|
35
|
Abellaneda-Pérez K, Vaqué-Alcázar L, Perellón-Alfonso R, Bargalló N, Kuo MF, Pascual-Leone A, Nitsche MA, Bartrés-Faz D. Differential tDCS and tACS Effects on Working Memory-Related Neural Activity and Resting-State Connectivity. Front Neurosci 2020; 13:1440. [PMID: 32009896 PMCID: PMC6978675 DOI: 10.3389/fnins.2019.01440] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Transcranial direct and alternating current stimulation (tDCS and tACS, respectively) entail capability to modulate human brain dynamics and cognition. However, the comparability of these approaches at the level of large-scale functional networks has not been thoroughly investigated. In this study, 44 subjects were randomly assigned to receive sham (N = 15), tDCS (N = 15), or tACS (N = 14). The first electrode (anode in tDCS) was positioned over the left dorsolateral prefrontal cortex, the target area, and the second electrode (cathode in tDCS) was placed over the right supraorbital region. tDCS was delivered with a constant current of 2 mA. tACS was fixed to 2 mA peak-to-peak with 6 Hz frequency. Stimulation was applied concurrently with functional magnetic resonance imaging (fMRI) acquisitions, both at rest and during the performance of a verbal working memory (WM) task. After stimulation, subjects repeated the fMRI WM task. Our results indicated that at rest, tDCS increased functional connectivity particularly within the default-mode network (DMN), while tACS decreased it. When comparing both fMRI WM tasks, it was observed that tDCS displayed decreased brain activity post-stimulation as compared to online. Conversely, tACS effects were driven by neural increases online as compared to post-stimulation. Interestingly, both effects primarily occurred within DMN-related areas. Regarding the differences in each fMRI WM task, during the online fMRI WM task, tACS engaged distributed neural resources which did not overlap with the WM-dependent activity pattern, but with some posterior DMN regions. In contrast, during the post-stimulation fMRI WM task, tDCS strengthened prefrontal DMN deactivations, being these activity reductions associated with faster responses. Furthermore, it was observed that tDCS neural responses presented certain consistency across distinct fMRI modalities, while tACS did not. In sum, tDCS and tACS modulate fMRI-derived network dynamics differently. However, both effects seem to focus on DMN regions and the WM network-DMN shift, which are highly affected in aging and disease. Thus, albeit exploratory and needing further replication with larger samples, our results might provide a refined understanding of how the DMN functioning can be externally modulated through commonly used non-invasive brain stimulation techniques, which may be of eventual clinical relevance.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | - Núria Bargalló
- Hospital Clínic de Barcelona, Magnetic Resonance Image Core Facility, Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain.,Hospital Clínic de Barcelona, Neuroradiology Section, Radiology Service, Centre de Diagnòstic per la Imatge, Barcelona, Spain
| | - Min-Fang Kuo
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States.,Guttmann Brain Health Institute, Institut Universitari de Neurorehabilitació Guttmann, Autonomous University of Barcelona, Bellaterra, Spain
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain.,Guttmann Brain Health Institute, Institut Universitari de Neurorehabilitació Guttmann, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
36
|
Salat DH, Kennedy KM. Current themes and issues in neuroimaging of aging processes: Editorial overview to the special issue on imaging the nonpathological aging brain. Neuroimage 2019; 201:116046. [PMID: 31376520 DOI: 10.1016/j.neuroimage.2019.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- David H Salat
- Martinous Center for Biomedical Imaging, Massachusets General Hospital, Department of Radiology, Harvard University, USA
| | - Kristen M Kennedy
- School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, USA.
| |
Collapse
|
37
|
Abellaneda-Pérez K, Vaqué-Alcázar L, Solé-Padullés C, Bartrés-Faz D. Combining non-invasive brain stimulation with functional magnetic resonance imaging to investigate the neural substrates of cognitive aging. J Neurosci Res 2019; 100:1159-1170. [PMID: 31418480 DOI: 10.1002/jnr.24514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/21/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
As aging population is increasing, new methodologies to apprehend and enhance the mechanisms related to optimal brain function in advancing age become urgent. This review describes how the combined use of non-invasive brain stimulation (NIBS) with functional magnetic resonance imaging (fMRI) provides novel experimental data on the putative neurophysiological mechanisms underlying inter-individual differences in cognitive status among older adults, also further illuminating our understanding of theoretical models proposed within the cognitive neuroscience of aging literature. In addition, it explores published evidence of how this combined procedure entails the capacity to modify the activity and connectivity of specific brain networks in older adults, potentially leading to improvements in cognitive function and other measures reflecting mental health status. Although additional research is needed, combining NIBS with fMRI might provide innovative understanding of how fundamental brain plasticity mechanisms operate in advancing age, a knowledge that may be eventually used to refine more individually tailored approaches to promote brain health in aged populations.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|