1
|
Rodrigues B, Leitão RA, Santos M, Trofimov A, Silva M, Inácio ÂS, Abreu M, Nobre RJ, Costa J, Cardoso AL, Milosevic I, Peça J, Oliveiros B, Pereira de Almeida L, Pinheiro PS, Carvalho AL. MiR-186-5p inhibition restores synaptic transmission and neuronal network activity in a model of chronic stress. Mol Psychiatry 2025; 30:1034-1046. [PMID: 39237722 PMCID: PMC11835755 DOI: 10.1038/s41380-024-02715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Chronic stress exerts profound negative effects on cognitive and emotional behaviours and is a major risk factor for the development of neuropsychiatric disorders. However, the molecular links between chronic stress and its deleterious effects on neuronal and synaptic function remain elusive. Here, using a combination of in vitro and in vivo approaches, we demonstrate that the upregulation of miR-186-5p triggered by chronic stress may be a key mediator of such changes, leading to synaptic dysfunction. Our results show that the expression levels of miR-186-5p are increased both in the prefrontal cortex (PFC) of mice exposed to chronic stress and in cortical neurons chronically exposed to dexamethasone. Additionally, viral overexpression of miR-186-5p in the PFC of naïve mice induces anxiety- and depressive-like behaviours. The upregulation of miR-186-5p through prolonged glucocorticoid receptor activation in vitro, or in a mouse model of chronic stress, differentially affects glutamatergic and GABAergic synaptic transmission, causing an imbalance in excitation/inhibition that leads to altered neuronal network activity. At glutamatergic synapses, we observed both a reduction in synaptic AMPARs and synaptic transmission, whereas GABAergic synaptic transmission was strengthened. These changes could be rescued in vitro by a miR-186-5p inhibitor. Overall, our results establish a novel molecular link between chronic glucocorticoid receptor activation, the upregulation of miR-186-5p and the synaptic changes induced by chronic stress, that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz Rodrigues
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ricardo A Leitão
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Santos
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Alexander Trofimov
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Integrative Brain Function Neurobiology Lab, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 197022, St. Petersburg, Russia
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 010000, Astana, Kazakhstan
| | - Mariline Silva
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Department of Applied Physics and Science for Life Laboratory (SciLifeLab), KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Ângela S Inácio
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Abreu
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui J Nobre
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Jéssica Costa
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ana Luísa Cardoso
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ira Milosevic
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - João Peça
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Bárbara Oliveiros
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- iCRB-Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Paulo S Pinheiro
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
2
|
Mao Y, Zhang M, Peng X, Liu Y, Liu Y, Xia Q, Luo B, Chen L, Zhang Z, Wang Y, Wang H. Cross-modal cortical circuit for sound sensitivity in neuropathic pain. Curr Biol 2025; 35:831-842.e5. [PMID: 39889698 DOI: 10.1016/j.cub.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025]
Abstract
Hyperacusis, exaggerated sensitivity to sound, frequently accompanies chronic pain in humans, suggesting interactions between different sensory systems in the brain. However, the neural mechanisms underlying this comorbidity remain largely unexplored. In this study, behavioral tests measuring sound-evoked pupil dilation and reaction times to lick water following auditory stimuli showed hyperacusis-like behaviors in neuropathic pain model mice. Through viral tracing, fiber photometry, and multi-electrode recordings, we identified glutamatergic projections from primary somatosensory cortex (S1HLGlu) to the auditory cortex (ACx) that participate in amplifying sound-evoked neuronal activity following spared nerve injury in the hindlimb. Chemo- or optogenetic manipulation and electrophysiology recordings confirmed that the S1HLGlu → ACx pathway is essential for this heightened response to sound. Specifically, activating this pathway intensified glutamatergic neuronal activity in the ACx and induced hyperacusis-like behaviors, while chemogenetic suppression reversed these effects in neuropathic pain model mice. These findings illustrate the mechanism by which central gain increases in the ACx of neuropathic pain mice, improving our understanding of cross-modal sensory system interactions and suggesting circuit pathway targets for developing interventions to treat pain-associated hyperacusis in clinic.
Collapse
Affiliation(s)
- Yunfeng Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mingjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqi Peng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230022, China; School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Yi Liu
- China High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Hefei 230031, China
| | - Yehao Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Qianhui Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Bin Luo
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lin Chen
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China; Center for Advance Interdisciplinary Science and Biomedicine of IHM, Hefei 230026, China.
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230022, China.
| | - Haitao Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230022, China.
| |
Collapse
|
3
|
Choquet D, Opazo P, Zhang H. AMPA receptor diffusional trapping machinery as an early therapeutic target in neurodegenerative and neuropsychiatric disorders. Transl Neurodegener 2025; 14:8. [PMID: 39934896 DOI: 10.1186/s40035-025-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Over the past two decades, there has been a growing recognition of the physiological importance and pathological implications surrounding the surface diffusion of AMPA receptors (AMPARs) and their diffusional trapping at synapses. AMPAR surface diffusion entails the thermally powered random Brownian lateral movement of these receptors within the plasma membrane, facilitating dynamic exchanges between synaptic and extrasynaptic compartments. This process also enables the activity-dependent diffusional trapping and accumulation of AMPARs at synapses through transient binding to synaptic anchoring slots. Recent research highlights the critical role of synaptic recruitment of AMPARs via diffusional trapping in fundamental neural processes such as the development of the early phases of long-term potentiation (LTP), contextual fear memory, memory consolidation, and sensory input-induced cortical remapping. Furthermore, studies underscore that regulation of AMPAR diffusional trapping is altered across various neurological disease models, including Huntington's disease (HD), Alzheimer's disease (AD), and stress-related disorders like depression. Notably, pharmacological interventions aimed at correcting deficits in AMPAR diffusional trapping have demonstrated efficacy in restoring synapse numbers, LTP, and memory functions in these diverse disease models, despite their distinct pathogenic mechanisms. This review provides current insights into the molecular mechanisms underlying the dysregulation of AMPAR diffusional trapping, emphasizing its role as a converging point for multiple pathological signaling pathways. We propose that targeting AMPAR diffusional trapping represents a promising early therapeutic strategy to mitigate synaptic plasticity and memory deficits in a spectrum of brain disorders, encompassing but not limited to HD, AD, and stress-related conditions. This approach underscores an integrated therapeutic target amidst the complexity of these neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000, Bordeaux, France
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Hongyu Zhang
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
- Mohn Research Center for the Brain, University of Bergen, 5009, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
4
|
Liao C, Dua AN, Wojtasiewicz C, Liston C, Kwan AC. Structural neural plasticity evoked by rapid-acting antidepressant interventions. Nat Rev Neurosci 2025; 26:101-114. [PMID: 39558048 DOI: 10.1038/s41583-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
A feature in the pathophysiology of major depressive disorder (MDD), a mood disorder, is the impairment of excitatory synapses in the prefrontal cortex. Intriguingly, different types of treatment with fairly rapid antidepressant effects (within days or a few weeks), such as ketamine, electroconvulsive therapy and non-invasive neurostimulation, seem to converge on enhancement of neural plasticity. However, the forms and mechanisms of plasticity that link antidepressant interventions to the restoration of excitatory synaptic function are still unknown. In this Review, we highlight preclinical research from the past 15 years showing that ketamine and psychedelic drugs can trigger the growth of dendritic spines in cortical pyramidal neurons. We compare the longitudinal effects of various psychoactive drugs on neuronal rewiring, and we highlight rapid onset and sustained time course as notable characteristics for putative rapid-acting antidepressant drugs. Furthermore, we consider gaps in the current understanding of drug-evoked in vivo structural plasticity. We also discuss the prospects of using synaptic remodelling to understand other antidepressant interventions, such as repetitive transcranial magnetic stimulation. Finally, we conclude that structural neural plasticity can provide unique insights into the neurobiological actions of psychoactive drugs and antidepressant interventions.
Collapse
Affiliation(s)
- Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Alisha N Dua
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Edlund E, Domarecka E, Olze H, Szczepek A. A Scoping Review of Corticosterone-Induced Changes in Ionotropic Glutamate Receptor Levels and Localization in the Rodent Brain: Implications for the Auditory System. Brain Sci 2025; 15:110. [PMID: 40002443 DOI: 10.3390/brainsci15020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The ionotropic glutamate receptor AMPA (AMPAR) mediates fast excitatory synaptic transmission and regulates synaptic strength in various parts of the CNS. Emotional challenges can affect these processes by influencing AMPAR levels and localization via stress hormones, resulting, e.g., in behavioral changes. AMPARs are essential for auditory processing, but their response to stress hormones in the central or peripheral auditory system remains poorly understood. Therefore, this scoping review examines the effects of corticosterone (CORT), a primary stress hormone in rodents, on AMPA receptor levels and localization in the rodent nervous system and considers potential implications for the auditory system. METHODS We systematically searched PubMed, Web of Science, and OVID EMBASE using MeSH terms related to AMPA receptors and corticosterone. Studies were screened based on predefined inclusion criteria, including original research published in English that focused on AMPA receptor subunits (e.g., GluR1-4, GluA1-4, Gria1-4). Of 288 articles screened, 17 met the criteria for final analysis. RESULTS No reports were found regarding CORT action in the auditory system. Three main experimental models used in the included research were identified: neuronal cultures, isolated tissue cultures, and animal models. Generally, short-term CORT exposure increases AMPAR surface localization and mobility in neuronal cultures, especially in the hippocampus and prefrontal cortex. However, results from animal models were inconsistent due to variations in experimental design and other factors. The isolated tissue study did not provide sufficient data for clear conclusions. CONCLUSIONS Variability in experimental models limits our ability to draw definitive conclusions about the effects of CORT on AMPARs across different regions of the nervous system. The differences in live animal studies highlight the need for standardized methods and reporting. Since AMPARs play a crucial role in auditory processing, CORT-induced changes in neuronal cultures may occur in the auditory system. Further research is needed to explore the specific responses of AMPAR subunits and how stress hormones may influence auditory disorders, which could help identify potential treatment strategies.
Collapse
Affiliation(s)
- Elsa Edlund
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Agnieszka Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
6
|
Zelek-Molik A, Gądek-Michalska A, Wilczkowski M, Bielawski A, Maziarz K, Kreiner G, Nalepa I. Restraint stress effects on glutamate signaling protein levels in the rats' frontal cortex: Does β1 adrenoceptor activity matter? Front Pharmacol 2025; 15:1451895. [PMID: 39834820 PMCID: PMC11743458 DOI: 10.3389/fphar.2024.1451895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Stress-evoked dysfunctions of the frontal cortex (FC) are correlated with changes in the functioning of the glutamatergic system, and evidence demonstrates that noradrenergic transmission is an important regulator of this process. In the current study, we adopted a restraint stress (RS) model in male Wistar rats to investigate whether the blockade of β1 adrenergic receptors (β1AR) with betaxolol (BET) in stressed animals influences the body's stress response and the expression of selected signaling proteins in the medial prefrontal cortex (mPFC). Methods The study was divided into two parts. In the first part, rats were exposed to RS for 3, 7, or 14 days, and the expression of glutamate signaling proteins (p(S845)/t GluA1, p(Y1472)/t GluN2B, VGLUT1, and VGLUT2) in the FC was analyzed to determine the optimal RS duration for studying the mechanisms of hypofrontality. In the second part, rats were exposed to RS for 14 days, and BET (5 mg/kg, p. o.) was administered during the last 8 days immediately after RS. The body's stress reaction was assessed by analyzing body weight and blood levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT). Behavioral responses were evaluated using the novel object recognition (NOR) and elevated plus maze (EPM) tests. The impact of RS and BET on the expression of p(Y530)/t Fyn and p (S133)/t CREB in the mPFC was measured via Western blotting. Results and Discussion The first part of the study demonstrated a decreased level of glutamate receptors in rats exposed to 14 days of RS, following an initial increase observed after 7 days of RS. Results from the second part revealed that chronic RS reduced body weight, impaired recognition memory in the NOR test, augmented blood levels of ACTH, and increased the expression of p(Y530) Fyn in the mPFC. However, β1AR blockade did not alter the effects of RS on weight gain, cognitive function, or the expression of p(Y530) Fyn. β1AR blockade normalized only the blood concentration of ACTH. These results suggest that decreased Fyn kinase activity, indicated by phosphorylation at Y530, underlies the stress-evoked downregulation of GluN2B in the FC in a manner independent of β1AR activity.
Collapse
Affiliation(s)
- Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Gądek-Michalska
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Michał Wilczkowski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Bielawski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Maziarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
7
|
Karst H, Riera Llobet A, Joëls M, van der Veen R. Complex housing in adulthood state-dependently affects the excitation-inhibition balance in the infralimbic prefrontal cortex of male C57Bl/6 mice. Behav Brain Res 2025; 476:115233. [PMID: 39233145 DOI: 10.1016/j.bbr.2024.115233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
The prefrontal cortex (PFC) plays an important role in social behavior and is sensitive to stressful circumstances. Challenging life conditions might change PFC function and put individuals at risk for maladaptive social behavior. The excitation-inhibition (EI) balance of prefrontal neurons appears to play a crucial role in this process. Here, we examined how a challenging life condition in C57BL/6JolaHsd mice, i.e. group-housing 6 mice in a complex environment for 10 days in adulthood, changes the EI-balance of infralimbic prefrontal neurons in layer 2/3, compared to standard pair-housing. Slices were prepared from "undisturbed" mice, i.e. the first mouse taken from the cage, or mice taken ∼15 min later, who were mildly aroused after removal of the first mouse. We observed a housing-condition by arousal-state interaction, with in the complex housing group an elevated EI-balance in undisturbed and reduced EI-balance in mildly aroused animals, while no differences were observed in standard housed animals. The change was explained by a shift in mIPSC and mEPSC frequency, while amplitudes remained unaffected. Female mice showed no housing-by-state interaction, but a main effect of housing was found for mIPSCs, with a higher frequency in complex- versus standard-housed females. No effects were observed in males who were complex-housed from a young age onwards. Explorative investigations support a potential mediating role of corticosterone in housing effects on the EI-balance of males. We argue that taking the arousal state of individuals into account is necessary to better understand the consequences of exposure to challenging life conditions for prefrontal function.
Collapse
Affiliation(s)
- Henk Karst
- University of Amsterdam, Swammerdam Institute of Life Science, Amsterdam, the Netherlands; Utrecht University, University Medical Center Utrecht, Translational Neuroscience, Utrecht, the Netherlands
| | - Arianna Riera Llobet
- University of Amsterdam, Swammerdam Institute of Life Science, Amsterdam, the Netherlands
| | - Marian Joëls
- Utrecht University, University Medical Center Utrecht, Translational Neuroscience, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rixt van der Veen
- University of Amsterdam, Swammerdam Institute of Life Science, Amsterdam, the Netherlands; Centre for Urban Mental Health (UMH), University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Qi K, Li H, Tao J, Liu M, Zhang W, Liu Y, Liu Y, Gong H, Wei J, Wang A, Xu J, Li X. Glutamate chemical exchange saturation transfer (GluCEST) MRI to evaluate the relationship between demyelination and glutamate content in depressed mice. Behav Brain Res 2025; 476:115247. [PMID: 39277141 DOI: 10.1016/j.bbr.2024.115247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Glutamatergic alteration is one of the potential mechanisms of depression. However, there is no consensus on whether glutamate metabolism changes affect the myelin structure of depression in mouse models. Glutamate chemical exchange saturation transfer (GluCEST) is a novel and powerful molecular imaging technique that can visualize glutamate distribution. In this study, we used the GluCEST imaging technique to look at glutamate levels in mice under chronic unpredictable mild stress (CUMS) and how they relate to demyelination. The CUMS mice were exposed to different stress factors for 6 weeks. Evaluated of depression in CUMS mice by behavioral tests. MRI scans were then performed, including T2-mapping, GluCEST, and diffusion tensor imaging (DTI) sequences. Brain tissues were collected for Luxol Fast Blue staining and immunofluorescence staining to analyze the changes in the myelin sheath. Artificially sketched regions of interest (ROI) (corpus callosum, hippocampus, and thalamus) were used to calculate the GluCEST value, fractional anisotropy (FA), and T2 value. Compared with the control group, the GluCEST value in the ROIs of CUMS mice significantly decreased. Similarly, the FA value in ROIs was lower in the CUMS group than in the CTRL group, but the T2 value did not differ significantly between the two groups. The histological results showed that ROIs in the CUMS group had demyelination compared with the CTRL group, indicating that DTI was more sensitive than T2 mapping in detecting myelin abnormalities. Furthermore, the GluCEST value in the ROIs correlates positively with the FA value. These findings suggest that altered glutamate metabolism may be one of the important factors leading to demyelination in depression, and GluCEST is expected to serve as an imaging biological marker for the diagnosis of demyelination in depression.
Collapse
Affiliation(s)
- Kai Qi
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Miaomiao Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Wei Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Yuwei Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Junhui Wei
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China.
| | - Junhai Xu
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China.
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
9
|
Xu H, Wang Y, Geng D, Chen F, Chen Y, Niwenahisemo LC, Shi L, Du N, He Z, Xu X, Kuang L. Lycopene Alleviates Depression-Like Behavior in Chronic Social Defeat Stress-Induced Mice by Promoting Synaptic Plasticity via the BDNF-TrkB Pathway. Food Sci Nutr 2025; 13:e70003. [PMID: 39844795 PMCID: PMC11751711 DOI: 10.1002/fsn3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
Lycopene is a natural plant extract widely studied for its powerful antioxidant and neuroprotective effects. Emerging evidence suggests that it also possesses potential antidepressant properties. Compared to commonly used clinical antidepressants, lycopene offers higher safety; however, its underlying mechanisms remain unclear. Therefore, this study aims to explore the mechanisms through which lycopene exerts its antidepressant effects. We employed the chronic social defeat stress (CSDS) model to induce depressive-like behaviors in mice, followed by lycopene treatment (20 mg/kg). Based on previous research, we focused on synaptic plasticity by examining the expression of synaptic proteins in the hippocampus to uncover potential mechanisms. The results showed that CSDS induced synaptic plasticity impairments in the hippocampus but lycopene treatment significantly improved these synaptic deficits and reversed the depressive-like behaviors induced by CSDS. Moreover, lycopene treatment upregulated the expression of brain-derived neurotrophic factor (BDNF) and reduced the activity of BDNF-TrkB/pTrkB pathway in the hippocampus. These molecular changes were consistent with changes in synaptic-related proteins, suggesting that lycopene may enhance synaptic plasticity via the BDNF-TrkB/pTrkB signaling pathway. This study explored the mechanisms underlying depressive-like behaviors induced by CSDS in mice and provided preclinical evidence that lycopene may serve as a potential antidepressant. It offers an effective avenue for the development of novel antidepressant therapies.
Collapse
Affiliation(s)
- Heyan Xu
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of PsychiatryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Medical Sciences Research CenterUniversity‐Town Hospital of Chongqing Medical UniversityChongqingChina
| | - Yuna Wang
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Dandan Geng
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Fengming Chen
- Hubei University of Traditional Chinese Medicine Affiliated Shiyan HospitalShiyanChina
| | - Yujia Chen
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | | | - Lei Shi
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ning Du
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ziqiang He
- School of Communications and Information EngineeringChongqing University of Posts and TelecommunicationsChongqingChina
| | - Xiaoming Xu
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Li Kuang
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
10
|
Hu Z, Zhu X, Liang Y, Zhang Y, Zheng P, Zhang X. Levo-Stepholidine as a Potential Cognitive Enhancer: Insights into Executive Function and Memory Improvements. Biomedicines 2024; 12:2680. [PMID: 39767588 PMCID: PMC11727210 DOI: 10.3390/biomedicines12122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Levo-Stepholidine (l-SPD), a compound extracted from Chinese herbs, has the potential to treat psychotic disorders where cognitive deficits are a critical challenge. L-SPD displays a D1R agonism/D2R antagonism pharmacological profile, and its effect on cognitive function is still vague and lacks comprehensive study. Here, we investigated the impact of l-SPD on two core indexes of executive function, working memory and response inhibition, and learning and memory. METHODS Using a delayed alternation T-maze task (DAT), we investigated the impact of l-SPD on working memory, evaluated its effect on response inhibition using the stop-signal task (SST), and assessed the impact on learning and memory using trace fear conditioning in Sprague-Dawley rats. We further evaluated its effects on prefrontal glutamate receptor expression using western blot. RESULTS Rats receiving l-SPD made fewer errors in the T-maze, exhibited faster stop action in response to the stop signal, and showed longer-lasting memory retention. Molecular mechanism investigations reveal that l-SPD upregulates the expression of prefrontal glutamate receptors. These results demonstrate that l-SPD improves executive function and memory. CONCLUSIONS Here, we show the enhancement effect of l-SPD on cognitive function, which provides essential implicants for the treatment of cognitive deficits, which is a critical unmet need in psychiatric care.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuehan Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Jiang T, Feng M, Hutsell A, Lüscher B. Sex-specific GABAergic microcircuits that switch vulnerability into resilience to stress and reverse the effects of chronic stress exposure. Mol Psychiatry 2024:10.1038/s41380-024-02835-8. [PMID: 39550416 DOI: 10.1038/s41380-024-02835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Clinical and preclinical studies have identified somatostatin (SST)-positive interneurons as critical elements that regulate the vulnerability to stress-related psychiatric disorders. Conversely, disinhibition of SST neurons in mice results in resilience to the behavioral effects of chronic stress. Here, we established a low-dose chronic chemogenetic protocol to map these changes in positively and negatively motivated behaviors to specific brain regions. AAV-hM3Dq-mediated chronic activation of SST neurons in the prelimbic cortex (PLC) had antidepressant drug-like effects on anxiety- and anhedonia-like motivated behaviors in male but not female mice. Analogous manipulation of the ventral hippocampus (vHPC) had such effects in female but not male mice. Moreover, the activation of SST neurons in the PLC of male mice and the vHPC of female mice resulted in stress resilience. Activation of SST neurons in the PLC reversed prior chronic stress-induced defects in motivated behavior in males but was ineffective in females. Conversely, activation of SST neurons in the vHPC reversed chronic stress-induced behavioral alterations in females but not males. Quantitation of c-Fos+ and FosB+ neurons in chronic stress-exposed mice revealed that chronic activation of SST neurons leads to a paradoxical increase in pyramidal cell activity. Collectively, these data demonstrate that GABAergic microcircuits driven by dendrite targeting interneurons enable sex- and brain-region-specific neural plasticity that promotes stress resilience and reverses stress-induced anxiety- and anhedonia-like motivated behavior. The data provide a rationale for the lack of antidepressant efficacy of benzodiazepines and superior efficacy of dendrite-targeting, low-potency GABAA receptor agonists, independent of sex and despite striking sex differences in the relevant brain substrates.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Mengyang Feng
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Hutsell
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Bernhard Lüscher
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
12
|
Tillmon H, Soteros BM, Shen L, Cong Q, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Complement and microglia activation mediate stress-induced synapse loss in layer 2/3 of the medial prefrontal cortex in male mice. Nat Commun 2024; 15:9803. [PMID: 39532876 PMCID: PMC11557709 DOI: 10.1038/s41467-024-54007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the medial prefrontal cortex (mPFC) in male mice. Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (Apoehigh) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the Apoehigh microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
Affiliation(s)
- Haven Tillmon
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Breeanne M Soteros
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Liang Shen
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qifei Cong
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Clinical Research Center of Neurological Disease, Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mackenna Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Julianne General
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Hanna Chin
- University of Rochester, Rochester, NY, 14627, USA
| | - John Beichen Lee
- Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Flavia R Carreno
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veteran's Health Care System, San Antonio, TX, 78229, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gek Ming Sia
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
13
|
Alcaide J, Gramuntell Y, Klimczak P, Bueno-Fernandez C, Garcia-Verellen E, Guicciardini C, Sandi C, Castillo-Gómez E, Crespo C, Perez-Rando M, Nacher J. Long term effects of peripubertal stress on the thalamic reticular nucleus of female and male mice. Neurobiol Dis 2024; 200:106642. [PMID: 39173845 DOI: 10.1016/j.nbd.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Clara Bueno-Fernandez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Erica Garcia-Verellen
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Chiara Guicciardini
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
14
|
Doyle MA, Salimando GJ, Altemus ME, Badt JK, Bedenbaugh MN, Vardy AS, Adank DN, Park AS, Winder DG. BNST GluN2D-containing NMDARs contribute to ethanol intake but not negative affective behaviors in female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1876-1891. [PMID: 39179522 PMCID: PMC11464179 DOI: 10.1111/acer.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a chronic, relapsing disease, highly comorbid with anxiety and depression. The bed nucleus of the stria terminalis (BNST) and Crh+ neurons in this region play a key role in chronic ethanol-induced increases in volitional intake, hypothesized to be driven by emergent negative affective behaviors. Excitatory N-methyl-d-aspartate receptors (NMDARs) are a major target of ethanol, and chronic ethanol exposure has been shown to regulate NMDAR function and expression. Specifically, GluN2D subunit-containing NMDARs have emerged as a target of interest due to their limited distribution and potential roles in affective behavior. METHODS Male and female mice underwent a home cage chronic drinking forced abstinence model (CDFA) to assess the impact of 1 day or 2 weeks of ethanol abstinence on BNST synaptic transmission and BNST Grin gene expression. Constitutive and conditional BNST GluN2D knockout mice were used to assess the impact of GluN2D deletion on continuous access ethanol intake as well as negative affect behaviors, using the open field, elevated zero maze, and forced swim tasks. RESULTS We report here that excitatory transmission undergoes time-dependent upregulation in BNST Crh+ cells. Further, knockdown of dorsal BNST (dBNST) GluN2D expression significantly decreases ethanol intake in female, but not male, mice. While BNST Grin2b expression was significantly increased in protracted abstinence following CDFA, no differences in Grin2d expression were observed in the dBNST or dBNST Crh+ neurons. Finally, we find that deletion of GluN2D fails to alter negative affect in ethanol-naïve female mice. CONCLUSIONS These data suggest a role for BNST GluN2D-containing NMDARs in ethanol drinking but not ethanol abstinence, highlighting sex differences and behavioral specificity. Overall, these data further suggest roles for BNST synaptic signaling in volitional ethanol intake that are partially independent of actions on affective behavior.
Collapse
Affiliation(s)
- Marie A. Doyle
- Department of Neurobiology, UMass Chan Medical School
- Department of Molecular Physiology and Biophysics, Vanderbilt University
- Vanderbilt Center for Addiction Research, Vanderbilt University
| | - Gregory J. Salimando
- Department of Molecular Physiology and Biophysics, Vanderbilt University
- Vanderbilt Center for Addiction Research, Vanderbilt University
| | | | - Justin K. Badt
- Vanderbilt Center for Addiction Research, Vanderbilt University
| | - Michelle N. Bedenbaugh
- Department of Molecular Physiology and Biophysics, Vanderbilt University
- Vanderbilt Center for Addiction Research, Vanderbilt University
| | | | | | - Anika S. Park
- Vanderbilt Center for Addiction Research, Vanderbilt University
| | - Danny G. Winder
- Department of Neurobiology, UMass Chan Medical School
- Department of Molecular Physiology and Biophysics, Vanderbilt University
- Vanderbilt Center for Addiction Research, Vanderbilt University
| |
Collapse
|
15
|
Sánchez-Rubio M, Abarzúa-Catalán L, Del Valle A, Méndez-Ruette M, Salazar N, Sigala J, Sandoval S, Godoy MI, Luarte A, Monteiro LJ, Romero R, Choolani MA, Wyneken Ú, Illanes SE, Bátiz LF. Maternal stress during pregnancy alters circulating small extracellular vesicles and enhances their targeting to the placenta and fetus. Biol Res 2024; 57:70. [PMID: 39342314 PMCID: PMC11438166 DOI: 10.1186/s40659-024-00548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Maternal psychological distress during pregnancy can negatively impact fetal development, resulting in long-lasting consequences for the offspring. These effects show a sex bias. The mechanisms whereby prenatal stress induces functional and/or structural changes in the placental-fetal unit remain poorly understood. Maternal circulating small extracellular vesicles (sEVs) are good candidates to act as "stress signals" in mother-to-fetus communication. Using a repetitive restraint-based rat model of prenatal stress, we examined circulating maternal sEVs under stress conditions and tested whether they could target placental-fetal tissues. RESULTS Our mild chronic maternal stress during pregnancy paradigm induced anhedonic-like behavior in pregnant dams and led to intrauterine growth restriction (IUGR), particularly in male fetuses and placentas. The concentration and cargo of maternal circulating sEVs changed under stress conditions. Specifically, there was a significant reduction in neuron-enriched proteins and a significant increase in astrocyte-enriched proteins in blood-borne sEVs from stressed dams. To study the effect of repetitive restraint stress on the biodistribution of maternal circulating sEVs in the fetoplacental unit, sEVs from pregnant dams exposed to stress or control protocol were labeled with DiR fluorescent die and injected into pregnant females previously exposed to control or stress protocol. Remarkably, maternal circulating sEVs target placental/fetal tissues and, under stress conditions, fetal tissues are more receptive to sEVs. CONCLUSION Our results suggest that maternal circulating sEVs can act as novel mediators/modulators of mother-to-fetus stress communication. Further studies are needed to identify placental/fetal cellular targets of maternal sEVs and characterize their contribution to stress-induced sex-specific placental and fetal changes.
Collapse
Affiliation(s)
- Mario Sánchez-Rubio
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Lorena Abarzúa-Catalán
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Ana Del Valle
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Maxs Méndez-Ruette
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- PhD Program in Biomedicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Natalia Salazar
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Jacinta Sigala
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Soledad Sandoval
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Inés Godoy
- Department of Educational Assessment, Measurement, and Registry, Universidad de Chile, Santiago, Chile
| | - Alejandro Luarte
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Lara J Monteiro
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Research Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Detroit, and Maryland, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Mahesh A Choolani
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Úrsula Wyneken
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Sebastián E Illanes
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Research Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile.
- Department of Obstetrics and Gynecology, School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Facultad de Medicina, Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
| | - Luis Federico Bátiz
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Facultad de Medicina, Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
| |
Collapse
|
16
|
Liu RX, Song DK, Zhang YY, Gong HX, Jin YC, Wang XS, Jiang YL, Yan YX, Lu BN, Wu YM, Wang M, Li XB, Zhang K, Liu SB. L-Cysteine: A promising nutritional supplement for alleviating anxiety disorders. Neuroscience 2024; 555:213-221. [PMID: 39089569 DOI: 10.1016/j.neuroscience.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Anxiety disorders are prevalent chronic psychological disease with complex pathogenic mechanisms. Current anxiolytics have limited efficacy and numerous side effects in many anxiety patients, highlighting the urgent need for new therapies. Recent research has been focusing on nutritional supplements, particularly amino acids, as potential therapies for anxiety disorders. Among these, L-Cysteine plays a crucial role in various biological processes. L-Cysteine exhibits antioxidant properties that can enhance the antioxidant functions of the central nervous system (CNS). Furthermore, metabolites of L-cysteine, such as glutathione and hydrogen sulfide have been shown to alleviate anxiety through distinct molecular mechanisms. Long-term administration of L-Cysteine has anxiolytic, antidepressant, and memory-improving effects. L-Cysteine depletion can lead to increased oxidative stress in the brain. This review delves into the potential mechanisms of L-Cysteine and its main products, glutathione (GSH) and hydrogen sulfide (H2S) in the management of anxiety and related diseases.
Collapse
Affiliation(s)
- Rui-Xia Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ying-Ying Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Heng-Xin Gong
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Chen Jin
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Shaanxi, Xi'an 710038, China
| | - Yu-Xuan Yan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bei-Ning Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
17
|
Stone TW, Williams RO. Tryptophan metabolism as a 'reflex' feature of neuroimmune communication: Sensor and effector functions for the indoleamine-2, 3-dioxygenase kynurenine pathway. J Neurochem 2024; 168:3333-3357. [PMID: 38102897 DOI: 10.1111/jnc.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Gerami SS, Ebrahimi-Ghiri M, Khakpai F, Zarrindast MR. Antidepressive synergism between crocin and D-AP5 in acute restraint-stressed mice. Behav Pharmacol 2024; 35:327-337. [PMID: 39051912 DOI: 10.1097/fbp.0000000000000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Emerging evidence suggests that crocin rescues stress-induced depressive symptoms in mice via stimulation of hippocampal neurogenesis. Glutamate modulators mainly involving N-methyl- d -aspartate (NMDA) receptors (NMDARs) have highlighted a role in neural development, synaptic plasticity, and depression. The research presented here was designed to appraise the interaction between NMDAR agents and crocin on depressive-related behaviors in the NMRI male mice exposed to acute restraint stress (ARS) for a period of 4 h. The mice were submitted to the splash test, forced swimming test, and tail suspension test to evaluate depressive-like behavior. The ARS decreased the grooming duration in the splash test and increased immobility time in the forced swimming test and tail suspension test, suggesting a depressive-like phenotype. NMDA (0.25 and 0.5 μg/mouse, intracerebroventricular) did not alter depression-related profiles in both non-acute restraint stress (NARS) and ARS mice, while the same doses of NMDAR antagonist D-AP5 potentiated the antidepressive-like activities in the ARS mice compared with the NARS mice. Moreover, a low dose of NMDA did not change depression-related parameters in the crocin-treated NARS or ARS mice, while D-AP5 enhanced the crocin response in the NARS and ARS mice. Isobologram analysis noted a synergism between crocin and D-AP5 on antidepressive-like behavior in the NARS and ARS mice. Collectively, the combination of crocin and D-AP5 was shown to mitigate depression symptoms and can be potentially used for the treatment of depression disorders.
Collapse
Affiliation(s)
- Sana-Sadat Gerami
- Department of Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran
| | | | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences
- Iranian National Center for Addiction Studies
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
19
|
Carboni E, Ibba M, Carboni E, Carta AR. Adolescent stress differentially modifies dopamine and norepinephrine release in the medial prefrontal cortex of adult rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111055. [PMID: 38879069 DOI: 10.1016/j.pnpbp.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Adolescent stress (AS) has been associated with higher vulnerability to psychiatric disorders such as schizophrenia, depression, or drug dependence. Moreover, the alteration of brain catecholamine (CAT) transmission in the medial prefrontal cortex (mPFC) has been found to play a major role in the etiology of psychiatric disturbances. We investigated the effect of adolescent stress on CAT transmission in the mPFC of freely moving adult rats because of the importance of this area in the etiology of psychiatric disorders, and because CAT transmission is the target of a relevant group of drugs used in the therapy of depression and psychosis. We assessed basal dopamine (DA) and norepinephrine (NE) extracellular concentrations (output) by brain microdialysis in in the mPFC of adult rats that were exposed to chronic mild stress in adolescence. To ascertain the role of an altered release or reuptake, we stimulated DA and NE output by administering either different doses of amphetamine (0.5 and 1.0 mg / kg s.c.), which by a complex mechanism determines a dose dependent increase in the CAT output, or reboxetine (10 mg/kg i.p.), a selective NE reuptake inhibitor. The results showed the following: (i) basal DA output in AS rats was lower than in controls, while no difference in basal NE output was observed; (ii) amphetamine, dose dependently, stimulated DA and NE output to a greater extent in AS rats than in controls; (iii) reboxetine stimulated NE output to a greater extent in AS rats than in controls, while no difference in stimulated DA output was observed between the two groups. These results show that AS determines enduring effects on DA and NE transmission in the mPFC and might lead to the occurrence of psychiatric disorders or increase the vulnerability to drug addiction.
Collapse
Affiliation(s)
- Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Italy.
| | - Marcello Ibba
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Elena Carboni
- Unit of Paediatrics, ASST Cremona Maggiore Hospital, Cremona, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| |
Collapse
|
20
|
Shang G, Zhou T, Yu X, Yan X, He K, Liu B, Feng Z, Xu J, Zhang Y, Yu X. Chronic hypercortisolism disrupts the principal functional gradient in Cushing's disease: A multi-scale connectomics and transcriptomics study. Neuroimage Clin 2024; 43:103652. [PMID: 39146836 PMCID: PMC11367515 DOI: 10.1016/j.nicl.2024.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Cushing's disease (CD) represents a state of cortisol excess, serving as a model to investigate the effects of prolonged hypercortisolism on functional brain. Potential alterations in the functional connectome of the brain may explain frequently reported cognitive deficits and affective disorders in CD patients. This study aims to elucidate the effects of chronic hypercortisolism on the principal functional gradient, which represents a hierarchical architecture with gradual transitions across cognitive processes, by integrating connectomics and transcriptomics approaches. Utilizing resting-state functional magnetic resonance imaging data from 140 participants (86 CD patients, 54 healthy controls) recruited at a single center, we explored the alterations in the principal gradient in CD patients. Further, we thoroughly explored the underlying associative mechanisms of the observed characteristic alterations with cognitive function domains, biological attributes, and neuropsychiatric representations, as well as gene expression profiles. Compared to healthy controls, CD patients demonstrated changes in connectome patterns in both primary and higher-order networks, exhibiting an overall converged trend along the principal gradient axis. The gradient values in CD patients' right prefrontal cortex and bilateral sensorimotor cortices exhibited a significant correlation with cortisol levels. Moreover, the cortical regions showing gradient alterations were principally associated with sensory information processing and higher-cognitive functions, as well as correlated with the gene expression patterns which involved synaptic components and function. The findings suggest that converged alterations in the principal gradient in CD patients may mediate the relationship between hypercortisolism and cognitive impairments, potentially involving genes regulating synaptic components and function.
Collapse
Affiliation(s)
- Guosong Shang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Xiaoteng Yu
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Xinyuan Yan
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kunyu He
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Bin Liu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Zhebin Feng
- Department of Neurosurgery, PLA 942 Hospital, Yinchuan, Ningxia, China
| | - Junpeng Xu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
21
|
Rodrigues D, Santa C, Manadas B, Monteiro P. Chronic Stress Alters Synaptic Inhibition/Excitation Balance of Pyramidal Neurons But Not PV Interneurons in the Infralimbic and Prelimbic Cortices of C57BL/6J Mice. eNeuro 2024; 11:ENEURO.0053-24.2024. [PMID: 39147579 DOI: 10.1523/eneuro.0053-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
The medial prefrontal cortex (mPFC) plays a pivotal role in regulating working memory, executive function, and self-regulatory behaviors. Dysfunction in the mPFC circuits is a characteristic feature of several neuropsychiatric disorders including schizophrenia, depression, and post-traumatic stress disorder. Chronic stress (CS) is widely recognized as a major triggering factor for the onset of these disorders. Although evidence suggests synaptic dysfunction in mPFC circuits following CS exposure, it remains unclear how different neuronal populations in the infralimbic (IL) and prelimbic (PL) cortices are affected in terms of synaptic inhibition/excitation balance (I/E ratio). Here, using neuroproteomic analysis and whole-cell patch-clamp recordings in pyramidal neurons (PNs) and parvalbumin (PV) interneurons within the PL and IL cortices, we examined the synaptic changes after 21 d of chronic unpredictable stress, in male mice. Our results reveal distinct impacts of CS on PL and IL PNs, resulting in an increased I/E ratio in both subregions but through different mechanisms: CS increases inhibitory synaptic drive in the PL while decreasing excitatory synaptic drive in the IL. Notably, the I/E ratio and excitatory and inhibitory synaptic drive of PV interneurons remained unaffected in both PL and IL circuits following CS exposure. These findings offer novel mechanistic insights into the influence of CS on mPFC circuits and support the hypothesis of stress-induced mPFC hypofunction.
Collapse
Affiliation(s)
- Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Braga 4710-057, Portugal
- Biomedizinisches Centrum München (BMC), Ludwig-Maximilians-Universität München, Munich 82152, Bayern, Germany
| | - Cátia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-517, Portugal
| | - Patrícia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Braga 4710-057, Portugal
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
- RISE-Health, Health Research Network, Porto 4200-319, Portugal
| |
Collapse
|
22
|
Park SB, Lur G. Repeated exposure to multiple concurrent stressors alters visual processing in the adult posterior parietal cortex. Neurobiol Stress 2024; 31:100660. [PMID: 39100726 PMCID: PMC11296072 DOI: 10.1016/j.ynstr.2024.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/06/2024] Open
Abstract
Chronic stress is well known to erode cognitive functions. Yet, our understanding of how repeated stress exposure impacts one of the fundamental bases of cognition: sensory processing, remains limited. The posterior parietal cortex (PPC) is a high order visual region, known for its role in visually guided decision making, multimodal integration, attention, and working memory. Here, we used functional measures to determine how repeated exposure to multiple concurrent stressors (RMS) affects sensory processing in the PPC in adult male mice. A longitudinal experimental design, repeatedly surveying the same population of neurons using in vivo two-photon imaging, revealed that RMS disrupts the balanced turnover of visually responsive cells in layer 2/3 of the PPC. Across the population, RMS-induced changes in visual responsiveness followed a bimodal distribution suggesting idiosyncratic stress effects. In cells that maintained their responsiveness across recording sessions, we found that stress reduced visual response magnitudes and feature selectivity. While we did not observe stress-induced elimination of excitatory synapses, noise correlation statistics indicated that RMS altered visual input to the neuronal population. The impact of RMS was restricted to visually evoked responses and was not evident in neuronal activity associated with locomotion onset. Together, our results indicate that despite no apparent synaptic reorganization, stress exposure in adulthood can disrupt sensory processing in the PPC, with the effects showing remarkable individual variation.
Collapse
Affiliation(s)
- Soo Bin Park
- Department of Neurobiology and Behavior, University of California, Irvine, CA USA, 92697
| | - Gyorgy Lur
- Department of Neurobiology and Behavior, University of California, Irvine, CA USA, 92697
| |
Collapse
|
23
|
Wang J, Yu H, Li X, Li F, Chen H, Zhang X, Wang Y, Xu R, Gao F, Wang J, Liu P, Shi Y, Qin D, Li Y, Liu S, Ding S, Gao XY, Wang ZH. A TrkB cleavage fragment in hippocampus promotes Depressive-Like behavior in mice. Brain Behav Immun 2024; 119:56-83. [PMID: 38555992 DOI: 10.1016/j.bbi.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Decreased hippocampal tropomyosin receptor kinase B (TrkB) level is implicated in the pathophysiology of stress-induced mood disorder and cognitive decline. However, how TrkB is modified and mediates behavioral responses to chronic stress remains largely unknown. Here the effects and mechanisms of TrkB cleavage by asparagine endopeptidase (AEP) were examined on a preclinical murine model of chronic restraint stress (CRS)-induced depression. CRS activated IL-1β-C/EBPβ-AEP pathway in mice hippocampus, accompanied by elevated TrkB 1-486 fragment generated by AEP. Specifi.c overexpression or suppression of AEP-TrkB axis in hippocampal CaMKIIα-positive cells aggravated or relieved depressive-like behaviors, respectively. Mechanistically, in addition to facilitating AMPARs internalization, TrkB 1-486 interacted with peroxisome proliferator-activated receptor-δ (PPAR-δ) and sequestered it in cytoplasm, repressing PPAR-δ-mediated transactivation and mitochondrial function. Moreover, co-administration of 7,8-dihydroxyflavone and a peptide disrupting the binding of TrkB 1-486 with PPAR-δ attenuated depression-like symptoms not only in CRS animals, but also in Alzheimer's disease and aged mice. These findings reveal a novel role for TrkB cleavage in promoting depressive-like phenotype.
Collapse
Affiliation(s)
- Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruifeng Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yuke Shi
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuai Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin-Ya Gao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China; Laboratory of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
24
|
Del Campo-Rota IM, Delgado-Casillas OM, Ibarra A. Cognitive Impairment Induced by Gestational Diabetes: The Role of Oxidative Stress. Arch Med Res 2024; 55:103016. [PMID: 38870549 DOI: 10.1016/j.arcmed.2024.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Cognitive impairment is defined as a neurological condition that alters multiple cerebral functions such as reasoning, memory, concentration, and association, among others. It has found to be widely correlated with several factors such as oxidative stress. The latter could be induced by numerous pathological conditions characterized by increased levels of free radicals and decreased levels of antioxidants. Pregnancy is a period when women undergo a physiological state of oxidative stress due to hormonal changes and increased oxygen requirements to maintain pregnancy. However, when oxidative stress exceeds antioxidant capacity, this leads to cellular damage that promotes a diabetogenic state. Recent studies suggest a possible association between gestational diabetes and cognitive impairment, but the underlying mechanisms remain unclear. AIMS We aim to explore the pathophysiological relationship between cognitive impairment and oxidative stress, focusing on the possible involvement of oxidative stress as the inducing mechanism. METHODS We performed a comprehensive literature review through PubMed and Google Scholar. Our keywords were "neuroinflammation", "cognitive impairment", "gestational diabetes", "oxidative stress", "antioxidants", and "free radicals". RESULTS From the initial 400 records identified, a total of 78 studies were analyzed and included in our study. CONCLUSION Oxidative stress plays a fundamental role in the development of cognitive impairment. Understanding this correlation is essential to the development of targeted medical interventions and, ultimately, promote research and prevention that will benefit the mother-child binomial in the short and long term.
Collapse
Affiliation(s)
- Isabel Martin Del Campo-Rota
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo. de México, Mexico
| | - Oscar Mario Delgado-Casillas
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo. de México, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo. de México, Mexico; Secretaría de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de México, Mexico.
| |
Collapse
|
25
|
Abdelkawy YS, Elharoun M, Sheta E, Abdel-Raheem IT, Nematalla HA. Liraglutide and Naringenin relieve depressive symptoms in mice by enhancing Neurogenesis and reducing inflammation. Eur J Pharmacol 2024; 971:176525. [PMID: 38561101 DOI: 10.1016/j.ejphar.2024.176525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Depression is a debilitating mental disease that negatively impacts individuals' lives and society. Novel hypotheses have been recently proposed to improve our understanding of depression pathogenesis. Impaired neuroplasticity and upregulated neuro-inflammation add-on to the disturbance in monoamine neurotransmitters and therefore require novel anti-depressants to target them simultaneously. Recent reports demonstrate the antidepressant effect of the anti-diabetic drug liraglutide. Similarly, the natural flavonoid naringenin has shown both anti-diabetic and anti-depressant effects. However, the neuro-pharmacological mechanisms underlying their actions remain understudied. The study aims to evaluate the antidepressant effects and neuroprotective mechanisms of liraglutide, naringenin or a combination of both. Depression was induced in mice by administering dexamethasone (32 mcg/kg) for seven consecutive days. Liraglutide (200 mcg/kg), naringenin (50 mg/kg) and a combination of both were administered either simultaneously or after induction of depression for twenty-eight days. Behavioral and molecular assays were used to assess the progression of depressive symptoms and biomarkers. Liraglutide and naringenin alone or in combination alleviated the depressive behavior in mice, manifested by decrease in anxiety, anhedonia, and despair. Mechanistically, liraglutide and naringenin improved neurogenesis, decreased neuroinflammation and comparably restored the monoamines levels to that of the reference drug escitalopram. The drugs protected mice from developing depression when given simultaneously with dexamethasone. Collectively, the results highlight the usability of liraglutide and naringenin in the treatment of depression in mice and emphasize the different pathways that contribute to the pathogenesis of depression.
Collapse
Affiliation(s)
- Yara S Abdelkawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Mona Elharoun
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ihab Talat Abdel-Raheem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Hisham A Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt.
| |
Collapse
|
26
|
Bollinger JL, Johnsamuel S, Vollmer LL, Kuhn AM, Wohleb ES. Stress-induced dysfunction of neurovascular astrocytes contributes to sex-specific behavioral deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594147. [PMID: 38798398 PMCID: PMC11118421 DOI: 10.1101/2024.05.14.594147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Astrocytes form an integral component of the neurovascular unit, ensheathing brain blood vessels with projections high in aquaporin-4 (AQP4) expression. These AQP4-rich projections facilitate interaction between the vascular endothelium, astrocytes, and neurons, and help stabilize vascular morphology. Studies using preclinical models of psychological stress and post-mortem tissue from patients with major depressive disorder (MDD) have reported reductions in AQP4, loss of astrocytic structures, and vascular impairment in the prefrontal cortex (PFC). Though compelling, the role of AQP4 in mediating stress-induced alterations in blood vessel function and behavior remains unclear. Here, we address this, alongside potential sex differences in chronic unpredictable stress (CUS) effects on astrocyte phenotype, blood-brain barrier integrity, and behavior. CUS led to pronounced shifts in stress-coping behavior and working memory deficits in male -but not female- mice. Following behavioral testing, astrocytes from the frontal cortex were isolated for gene expression analyses. We found that CUS increased various transcripts associated with blood vessel maintenance in astrocytes from males, but either had no effect on- or decreased- these genes in females. Furthermore, CUS caused a reduction in vascular-localized AQP4 and elevated extravasation of a small molecule fluorescent reporter (Dextran) in the PFC in males but not females. Studies showed that knockdown of AQP4 in the PFC in males is sufficient to disrupt astrocyte phenotype and increase behavioral susceptibility to a sub-chronic stressor. Collectively, these findings provide initial evidence that sex-specific alterations in astrocyte phenotype and neurovascular integrity in the PFC contribute to behavioral and cognitive consequences following chronic stress.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Shobha Johnsamuel
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lauren L Vollmer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Alexander M Kuhn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
27
|
Doyle MA, Salimando GJ, Altemus ME, Badt JK, Bedenbaugh MN, Vardy AS, Adank DN, Park AS, Winder DG. BNST GluN2D-containing NMDARs contribute to ethanol intake but not negative affective behaviors in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590258. [PMID: 38659775 PMCID: PMC11042366 DOI: 10.1101/2024.04.19.590258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disease, highly comorbid with anxiety and depression. The bed nucleus of the stria terminalis (BNST), and Crh + neurons in this region are thought to play a key role in chronic ethanol-induced increases in volitional ethanol intake. This role has been hypothesized to be driven by emergent BNST-dependent negative affective behaviors. Indeed, we report here that in female mice undergoing a home cage chronic drinking forced abstinence model (CDFA), excitatory transmission undergoes time-dependent upregulation in BNST Crh + cells. Excitatory NMDA receptors (NMDARs) are a major target of ethanol, and chronic ethanol exposure has been shown to regulate NMDAR function and expression. GluN2D subunit-containing NMDARs have emerged as a target of interest due to their limited distribution and potential roles in affective behavior. We find that knockdown of dorsal BNST (dBNST) GluN2D expression significantly decreases ethanol intake in female, but not male, mice. While BNST Grin2b expression was significantly increased in protracted abstinence following CDFA, no differences in Grin2d expression were observed in dBNST or specifically in dBNST Crh + neurons. Finally, to determine the impact of GluN2D expression on negative affective behaviors, open field, elevated zero maze, and forced swim tasks were used to measure anxiety- and depressive-like behaviors in constitutive and conditional BNST GluN2D knockout mice. Surprisingly, we find that deletion of GluN2D fails to alter negative affect in ethanol-naïve female mice. Together, these data suggest a role for BNST GluN2D-containing NMDARs in ethanol drinking behaviors but not abstinence from ethanol, highlighting potential sex differences and behavioral specificity in the context of AUD behaviors. Overall, these data further suggest roles for BNST synaptic signaling in volitional ethanol intake that are partially independent of actions on affective behavior.
Collapse
|
28
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
29
|
Nist AN, Walsh SJ, Shahan TA. Ketamine produces no detectable long-term positive or negative effects on cognitive flexibility or reinforcement learning of male rats. Psychopharmacology (Berl) 2024; 241:849-863. [PMID: 38062167 DOI: 10.1007/s00213-023-06514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/25/2023] [Indexed: 03/13/2024]
Abstract
RATIONALE Patients with major depressive disorder (MDD) often experience abnormalities in behavioral adaptation following environmental changes (i.e., cognitive flexibility) and tend to undervalue positive outcomes but overvalue negative outcomes. The probabilistic reversal learning task (PRL) is used to study these deficits across species and to explore drugs that may have therapeutic value. Selective serotonin-reuptake inhibitors (SSRIs) have limited effectiveness in treating MDD and produce inconsistent effects in non-human versions of the PRL. As such, ketamine, a novel and potentially rapid-acting therapeutic, has begun to be examined using the PRL. Two previous studies examining the effects of ketamine in the PRL have shown conflicting results and only examined short-term effects of ketamine. OBJECTIVE This experiment examined PRL performance across a 2-week period following a single exposure to a ketamine dose that varied across groups. METHODS After five sessions of PRL training, groups of rats received an injection of either 0, 10, 20 or 30 mg/kg ketamine. One-hour post-injection, rats engaged in the PRL, and subsequently sessions continued daily for 2 weeks. Traditional behavioral and computational reinforcement learning-derived measures were examined. RESULTS Results showed that ketamine had acute effects 1-h post-injection, including a significant decrease in the value of the punishment learning rate. Beyond 1 h, ketamine produced no detectable improvements nor decrements in performance across 2 weeks. CONCLUSION Overall, the present results suggest that the range of ketamine doses examined do not have long-term positive or negative effects on cognitive flexibility or reward processing in healthy rats as measured by the PRL.
Collapse
Affiliation(s)
- Anthony N Nist
- Department of Psychology, Utah State University, Logan, USA.
| | - Stephen J Walsh
- Department of Mathematics and Statistics, Utah State University, Logan, USA
| | | |
Collapse
|
30
|
Li XY, Yin X, Lu JJ, Li QR, Xing WQ, Han Q, Ji H, Li SZ, Yang HM, Guo JR, Wang ZQ, Xu B. Ubiquitinome Analysis Uncovers Alterations in Synaptic Proteins and Glucose Metabolism Enzymes in the Hippocampi of Adolescent Mice Following Cold Exposure. Cells 2024; 13:570. [PMID: 38607009 PMCID: PMC11011669 DOI: 10.3390/cells13070570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Cold exposure exerts negative effects on hippocampal nerve development in adolescent mice, but the underlying mechanisms are not fully understood. Given that ubiquitination is essential for neurodevelopmental processes, we attempted to investigate the effects of cold exposure on the hippocampus from the perspective of ubiquitination. By conducting a ubiquitinome analysis, we found that cold exposure caused changes in the ubiquitination levels of a variety of synaptic-associated proteins. We validated changes in postsynaptic density-95 (PSD-95) ubiquitination levels by immunoprecipitation, revealing reductions in both the K48 and K63 polyubiquitination levels of PSD-95. Golgi staining further demonstrated that cold exposure decreased the dendritic-spine density in the CA1 and CA3 regions of the hippocampus. Additionally, bioinformatics analysis revealed that differentially ubiquitinated proteins were enriched in the glycolytic, hypoxia-inducible factor-1 (HIF-1), and 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathways. Protein expression analysis confirmed that cold exposure activated the mammalian target of rapamycin (mTOR)/HIF-1α pathway. We also observed suppression of pyruvate kinase M2 (PKM2) protein levels and the pyruvate kinase (PK) activity induced by cold exposure. Regarding oxidative phosphorylation, a dramatic decrease in mitochondrial respiratory-complex I activity was observed, along with reduced gene expression of the key subunits NADH: ubiquinone oxidoreductase core subunit V1 (Ndufv1) and Ndufv2. In summary, cold exposure negatively affects hippocampal neurodevelopment and causes abnormalities in energy homeostasis within the hippocampus.
Collapse
Affiliation(s)
- Xin-Yue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Xin Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Jing-Jing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Qian-Ru Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Wan-Qun Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Qi Han
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Zhi-Quan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| |
Collapse
|
31
|
Đorović Đ, Lazarevic V, Aranđelović J, Stevanović V, Paslawski W, Zhang X, Velimirović M, Petronijević N, Puškaš L, Savić MM, Svenningsson P. Maternal deprivation causes CaMKII downregulation and modulates glutamate, norepinephrine and serotonin in limbic brain areas in a rat model of single prolonged stress. J Affect Disord 2024; 349:286-296. [PMID: 38199412 DOI: 10.1016/j.jad.2024.01.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Early life stress is a major risk factor for later development of psychiatric disorders, including post-traumatic stress disorder (PTSD). An intricate relationship exists between various neurotransmitters (such as glutamate, norepinephrine or serotonin), calcium/calmodulin-dependent protein kinase II (CaMKII), as an important regulator of glutamatergic synaptic function, and PTSD. Here, we developed a double-hit model to investigate the interaction of maternal deprivation (MD) as an early life stress model and single prolonged stress (SPS) as a PTSD model at the behavioral and molecular levels. METHODS Male Wistar rats exposed to these stress paradigms were subjected to a comprehensive behavioral analysis. In hippocampal synaptosomes we investigated neurotransmitter release and glutamate concentration. The expression of CaMKII and the content of monoamines were determined in selected brain regions. Brain-derived neurotrophic factor (BDNF) mRNA was quantified by radioactive in situ hybridization. RESULTS We report a distinct behavioral phenotype in the double-hit group. Double-hit and SPS groups had decreased hippocampal presynaptic glutamatergic function. In hippocampus, double-hit stress caused a decrease in autophosphorylation of CaMKII. In prefrontal cortex, both SPS and double-hit stress had a similar effect on CaMKII autophosphorylation. Double-hit stress, rather than SPS, affected the norepinephrine and serotonin levels in prefrontal cortex, and suppressed BDNF gene expression in prefrontal cortex and hippocampus. LIMITATIONS The study was conducted in male rats only. The affected brain regions cannot be restricted to hippocampus, prefrontal cortex and amygdala. CONCLUSION Double-hit stress caused more pronounced and distinct behavioral, molecular and functional changes, compared to MD or SPS alone.
Collapse
Affiliation(s)
- Đorđe Đorović
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Vesna Lazarevic
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Jovana Aranđelović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe St, 11000 Belgrade, Serbia
| | - Vladimir Stevanović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe St, 11000 Belgrade, Serbia
| | - Wojciech Paslawski
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Xiaoqun Zhang
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Milica Velimirović
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Petronijević
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Laslo Puškaš
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe St, 11000 Belgrade, Serbia
| | - Per Svenningsson
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
32
|
Francis-Oliveira J, Higa GSV, Viana FJC, Cruvinel E, Carlos-Lima E, da Silva Borges F, Zampieri TT, Rebello FP, Ulrich H, De Pasquale R. TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex. Exp Neurol 2024; 373:114652. [PMID: 38103709 DOI: 10.1016/j.expneurol.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development.
Collapse
Affiliation(s)
- José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil; Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP 09210-580, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Thais Tessari Zampieri
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernanda Pereira Rebello
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil.
| |
Collapse
|
33
|
Wang J, Doan LV, Axelrod D, Rotrosen J, Wang B, Park HG, Edwards RR, Curatolo M, Jackman C, Perez R. Optimizing the use of ketamine to reduce chronic postsurgical pain in women undergoing mastectomy for oncologic indication: study protocol for the KALPAS multicenter randomized controlled trial. Trials 2024; 25:67. [PMID: 38243266 PMCID: PMC10797799 DOI: 10.1186/s13063-023-07884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Mastectomies are commonly performed and strongly associated with chronic postsurgical pain (CPSP), more specifically termed postmastectomy pain syndrome (PMPS), with 25-60% of patients reporting pain 3 months after surgery. PMPS interferes with function, recovery, and compliance with adjuvant therapy. Importantly, it is associated with chronic opioid use, as a recent study showed that 1 in 10 patients continue to use opioids at least 3 months after curative surgery. The majority of PMPS patients are women, and, over the past 10 years, women have outpaced men in the rate of growth in opioid dependence. Standard perioperative multimodal analgesia is only modestly effective in prevention of CPSP. Thus, interventions to reduce CPSP and PMPS are urgently needed. Ketamine is well known to improve pain and reduce opioid use in the acute postoperative period. Additionally, ketamine has been shown to control mood in studies of anxiety and depression. By targeting acute pain and improving mood in the perioperative period, ketamine may be able to prevent the development of CPSP. METHODS Ketamine analgesia for long-lasting pain relief after surgery (KALPAS) is a phase 3, multicenter, randomized, placebo-controlled, double-blind trial to study the effectiveness of ketamine in reducing PMPS. The study compares continuous perioperative ketamine infusion vs single-dose ketamine in the postanesthesia care unit vs placebo for reducing PMPS. Participants are followed for 1 year after surgery. The primary outcome is pain at the surgical site at 3 months after the index surgery as assessed with the Brief Pain Inventory-short form pain severity subscale. DISCUSSION This project is part of the NIH Helping to End Addiction Long-term (HEAL) Initiative, a nationwide effort to address the opioid public health crisis. This study can substantially impact perioperative pain management and can contribute significantly to combatting the opioid epidemic. TRIAL REGISTRATION ClinicalTrials.gov NCT05037123. Registered on September 8, 2021.
Collapse
Affiliation(s)
- Jing Wang
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Lisa V Doan
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA.
| | - Deborah Axelrod
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - John Rotrosen
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Binhuan Wang
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Hyung G Park
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert R Edwards
- Department of Anesthesia, Brigham and Women's Hospital, Boston, MA, USA
| | - Michele Curatolo
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Carina Jackman
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Raven Perez
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Bollinger JL, Horchar MJ, Wohleb ES. Repeated Activation of Pyramidal Neurons in the Prefrontal Cortex Alters Microglial Phenotype in Male Mice. J Pharmacol Exp Ther 2024; 388:715-723. [PMID: 38129124 PMCID: PMC10801771 DOI: 10.1124/jpet.123.001759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Aberrant neuronal activity in the cortex alters microglia phenotype and function in several contexts, including chronic psychologic stress and neurodegenerative disease. Recent findings even suggest that heightened levels of neuronal activity spur microglia to phagocytose synapses, with potential impacts on cognition and behavior. Thus, the present studies were designed to determine if activation of neurons alone-independent of disease or dysfunction-is sufficient to alter microglial phenotype in the medial prefrontal cortex (mPFC), a brain region critical in emotion regulation and cognition. In these studies, we used both an adeno-associated virus-mediated and Cre-dependent chemogenetic [designer receptors exclusively activated by designer drugs (DREADD)] approach to repeatedly activate excitatory pyramidal neurons (CaMKIIa+) neurons in the mPFC. Various molecular, cytometric, and behavioral endpoints were examined. Recurrent DREADD-induced neuronal activation led to pronounced changes in microglial density, clustering, and morphology in the mPFC and increased microglia-specific transcripts implicated in synaptic pruning (e.g., Csf1r, Cd11b). Further analyses revealed that the magnitude of DREADD-induced neuronal activation was significantly correlated with measures of microglial morphology in the mPFC. These alterations in microglial phenotype coincided with an increase in microglial lysosome volume in the mPFC and selective deficits in working memory function. Altogether, these findings indicate that repeated neuronal activation alone is sufficient to drive changes in microglia phenotype and function in the mPFC. Future studies using optogenetic and chemogenetic approaches to manipulate neural circuits need to consider microglial and other nonneuronal contributions to physiologic and behavioral outcomes. SIGNIFICANCE STATEMENT: Microglia are highly attuned to fluctuations in neuronal activity. Here we show that repeated activation of pyramidal neurons in the prefrontal cortex induces broad changes in microglia phenotype; this includes upregulation of pathways associated with microglial proliferation, microglia-neuron interactions, and lysosome induction. Our findings suggest that studies using chemogenetic or optogenetic approaches to manipulate neural circuits should be mindful of indirect effects on nonneuronal cells and their potential contribution to measured outcomes.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Matthew J Horchar
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
35
|
Hiskens MI. Glua1 Ubiquitination in Synaptic Plasticity and Cognitive Functions: Implications for Neurodegeneration. J Neurosci 2024; 44:e2018232024. [PMID: 38233219 PMCID: PMC10860488 DOI: 10.1523/jneurosci.2018-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Affiliation(s)
- Matthew I Hiskens
- Mackay Institute of Research and Innovation, Mackay Base Hospital, Mackay, Queensland 4740, Australia
| |
Collapse
|
36
|
Gandy HM, Hollis F, Hernandez CM, McQuail JA. Aging or chronic stress impairs working memory and modulates GABA and glutamate gene expression in prelimbic cortex. Front Aging Neurosci 2024; 15:1306496. [PMID: 38259638 PMCID: PMC10800675 DOI: 10.3389/fnagi.2023.1306496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The glucocorticoid (GC) hypothesis posits that effects of stress and dysregulated hypothalamic-pituitary-adrenal axis activity accumulate over the lifespan and contribute to impairment of neural function and cognition in advanced aging. The validity of the GC hypothesis is bolstered by a wealth of studies that investigate aging of the hippocampus and decline of associated mnemonic functions. The prefrontal cortex (PFC) mediates working memory which also decreases with age. While the PFC is susceptible to stress and GCs, few studies have formally assessed the application of the GC hypothesis to PFC aging and working memory. Using parallel behavioral and molecular approaches, we compared the effects of normal aging versus chronic variable stress (CVS) on working memory and expression of genes that encode for effectors of glutamate and GABA signaling in male F344 rats. Using an operant delayed match-to-sample test of PFC-dependent working memory, we determined that normal aging and CVS each significantly impaired mnemonic accuracy and reduced the total number of completed trials. We then determined that normal aging increased expression of Slc6a11, which encodes for GAT-3 GABA transporter expressed by astrocytes, in the prelimbic (PrL) subregion of the PFC. CVS increased PrL expression of genes associated with glutamatergic synapses: Grin2b that encodes the GluN2B subunit of NMDA receptor, Grm4 that encodes for metabotropic glutamate receptor 4 (mGluR4), and Plcb1 that encodes for phospholipase C beta 1, an intracellular signaling enzyme that transduces signaling of Group I mGluRs. Beyond the identification of specific genes that were differentially expressed between the PrL in normal aging or CVS, examination of Log2 fold-changes for all expressed glutamate and GABA genes revealed a positive association between molecular phenotypes of aging and CVS in the PrL but no association in the infralimbic subregion. Consistent with predictions of the GC hypothesis, PFC-dependent working memory and PrL glutamate/GABA gene expression demonstrate comparable sensitivity to aging and chronic stress. However, changes in expression of specific genes affiliated with regulation of extracellular GABA in normal aging vs. genes encoding for effectors of glutamatergic signaling during CVS suggest the presence of unique manifestations of imbalanced inhibitory and excitatory signaling in the PFC.
Collapse
Affiliation(s)
- Hannah M. Gandy
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Caesar M. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Joseph A. McQuail
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
37
|
Mamelak M. Depression and the Glutamate/GABA-Glutamine Cycle. Curr Neuropharmacol 2024; 23:75-84. [PMID: 39150032 PMCID: PMC11519819 DOI: 10.2174/1570159x22666240815120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 08/17/2024] Open
Abstract
Many features of major depressive disorder are mirrored in rodent models of psychological stress. These models have been used to examine the relationship between the activation of the hypothalamic- pituitary axis in response to stress, the development of oxidative stress and neuroinflammation, the dominance of cholinergic neurotransmission and the associated increase in REM sleep pressure. Rodent models have also provided valuable insights into the impairment of glycolysis and brain glucose utilization by the brain under stress, the resulting decrease in brain energy production and the reduction in glutamate/GABA-glutamine cycling. The rapidly acting antidepressants, scopolamine, ketamine and ECT, all raise extracellular glutamate and scopolamine and ketamine have specifically been shown to increase glutamate/GABA-glutamine cycling in men and rodents with corresponding short-term relief of depression. The nightly use of gammahydroxybutyrate (GHB) may achieve more permanent results and may even act prophylactically to prevent the development or recurrence of depression. GHB is a GABAB agonist and restores the normal balance between cholinergic and monoaminergic neurotransmission by inhibiting cholinergic neurotransmission. It relieves REM sleep pressure. GHB's metabolism generates NADPH, a key antioxidant cofactor. Its metabolism also generates succinate, the tricarboxylic acid cycle intermediate, to provide energy to the cell and to synthesize glutamate. In both animals and man, GHB increases the level of brain glutamate.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Komlao P, Kraiwattanapirom N, Promyo K, Hein ZM, Chetsawang B. Melatonin enhances the restoration of neurological impairments and cognitive deficits during drug withdrawal in methamphetamine-induced toxicity and endoplasmic reticulum stress in rats. Neurotoxicology 2023; 99:305-312. [PMID: 37979660 DOI: 10.1016/j.neuro.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Methamphetamine (METH) is a psychostimulant with a very high addiction rate. Prolonged use of METH has been observed as one of the root causes of neurotoxicity. Melatonin (Mel) has been found to have a significant role in METH-induced neurotoxicity. This study aimed to investigate the restorative effect of Mel on behavioral flexibility in METH-induced cognitive deficits. Male Sprague-Dawley rats were randomly assigned to be intraperitoneally injected with saline (control) or Meth at 5 mg/kg for 7 consecutive days. Then, METH injection was withdrawn and rats in each group were subcutaneously injected with saline or Mel at 10 mg/kg for 14 consecutive days. The stereotypic behavioral test and attentional set-shifting task (ASST) were used to evaluate neurological functions and cognitive flexibility, respectively. Rats developed abnormal features of stereotyped behaviors and deficits in cognitive flexibility after 7 days of METH administration. However, post-treatment with Mel for 14 days after METH withdrawal dramatically ameliorated the neurological and cognitive deficits in METH-treated rats. Blood biomarkers indicated METH-induced systemic low-grade inflammation. Moreover, METH-induced endoplasmic reticulum (ER) stress in the prefrontal cortex was diminished by melatonin supplementation. These findings might reveal the therapeutic potential of Mel in METH toxicity-induced neurological and cognitive deficits.
Collapse
Affiliation(s)
- Pongphat Komlao
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, Netherlands
| | - Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
| | - Kitipong Promyo
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zaw Myo Hein
- Basic Medical Sciences Department, College of Medicine and Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand.
| |
Collapse
|
39
|
Brosens N, Lesuis SL, Rao-Ruiz P, van den Oever MC, Krugers HJ. Shaping Memories Via Stress: A Synaptic Engram Perspective. Biol Psychiatry 2023:S0006-3223(23)01720-1. [PMID: 37977215 DOI: 10.1016/j.biopsych.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Stress modulates the activity of various memory systems and can thereby guide behavioral interaction with the environment in an adaptive or maladaptive manner. At the cellular level, a large body of evidence indicates that (nor)adrenaline and glucocorticoid release induced by acute stress exposure affects synapse function and synaptic plasticity, which are critical substrates for learning and memory. Recent evidence suggests that memories are supported in the brain by sparsely distributed neurons within networks, termed engram cell ensembles. While the physiological and molecular effects of stress on the synapse are increasingly well characterized, how these synaptic modifications shape the multiscale dynamics of engram cell ensembles is still poorly understood. In this review, we discuss and integrate recent information on how acute stress affects synapse function and how this may alter engram cell ensembles and their synaptic connectivity to shape memory strength and memory precision. We provide a mechanistic framework of a synaptic engram under stress and put forward outstanding questions that address knowledge gaps in our understanding of the mechanisms that underlie stress-induced memory modulation.
Collapse
Affiliation(s)
- Niek Brosens
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sylvie L Lesuis
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Cellular and Cognitive Neuroscience group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Hossein S, Cooper JA, DeVries BAM, Nuutinen MR, Hahn EC, Kragel PA, Treadway MT. Effects of acute stress and depression on functional connectivity between prefrontal cortex and the amygdala. Mol Psychiatry 2023; 28:4602-4612. [PMID: 37076616 DOI: 10.1038/s41380-023-02056-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
Stress is known to be a significant risk factor for the development of Major Depressive Disorder (MDD), yet the neural mechanisms that underlie this risk are poorly understood. Prior work has heavily implicated the corticolimbic system in the pathophysiology of MDD. In particular, the prefrontal cortex (PFC) and amygdala play a central role in regulating the response to stress, with dorsal PFC and ventral PFC exhibiting reciprocal excitatory and inhibitory influences on amygdala subregions. However, it remains unclear how best to disentangle the impact of stress from the impact of current MDD symptoms on this system. Here, we examined stress-induced changes in resting state functional connectivity (rsFC) within an a priori corticolimbic network in MDD patients and healthy controls (total n = 80) before and after an acute stressor or a "no stress" control condition. Using graph theoretic analysis, we found that connectivity between basolateral amygdala and dorsal prefrontal nodes of the corticolimbic network had a negative association with individual differences in chronic perceived stress at baseline. Following the acute stressor, healthy individuals showed a reduction of the amygdala node strength, while MDD patients exhibited little change. Finally, dorsal PFC-particularly dorsomedial PFC- connectivity to the basolateral amygdala was associated with the strength of the basolateral amygdala responses to loss feedback during a reinforcement learning task. These findings highlight attenuated connectivity between basolateral amygdala and prefrontal cortex in patients with MDD. In healthy individuals, acute stress exposure was found to push the corticolimbic network to a "stress-phenotype" that may be chronically present in patients with current depression and high levels of perceived stress. In sum, these results help to identify circuit mechanisms underlying the effects of acute stress and their role in mood disorders.
Collapse
Affiliation(s)
- Shabnam Hossein
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jessica A Cooper
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Emma C Hahn
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Philip A Kragel
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
41
|
Wences Chirino T, Rangel López E, Luna Angulo A, Carrillo Mora P, Landa Solis C, Samudio Cruz MA, Fuentes Bello AC, Paniagua Pérez R, Ríos Martínez J, Sánchez Chapul L. Crosstalk between Exercise-Derived Endocannabinoidome and Kynurenines: Potential Target Therapies for Obesity and Depression Symptoms. Pharmaceuticals (Basel) 2023; 16:1421. [PMID: 37895892 PMCID: PMC10609722 DOI: 10.3390/ph16101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway (KP) and the endocannabinoid system (ECS) are known to be deregulated in depression and obesity; however, it has been recognized that acute physical exercise has an important modulating role inducing changes in the mobilization of their respective metabolites-endocannabinoids (eCBs) and kynurenines (KYNs)-which overlap at some points, acting as important antidepressant, anti-nociceptive, anti-inflammatory, and antioxidant biomarkers. Therefore, the aim of this review is to analyze and discuss some recently performed studies to investigate the potential interactions between both systems, particularly those related to exercise-derived endocannabinoidome and kynurenine mechanisms, and to elucidate how prescription of physical exercise could represent a new approach for the clinical management of these two conditions.
Collapse
Affiliation(s)
- Tiffany Wences Chirino
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Edgar Rangel López
- Cell Reprogramming Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Alexandra Luna Angulo
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Paul Carrillo Mora
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.C.M.); (M.A.S.C.)
| | - Carlos Landa Solis
- Tissue Engineering, Cell Therapy, and Regenerative Medicine Unit, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - María Alejandra Samudio Cruz
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.C.M.); (M.A.S.C.)
| | - Alim C. Fuentes Bello
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Rogelio Paniagua Pérez
- Biochemistry Laboratory, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Juan Ríos Martínez
- Health Sciences Research Institute, Mexican Navy, Mexico City 04470, Mexico;
| | - Laura Sánchez Chapul
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| |
Collapse
|
42
|
Perica MI, Luna B. Impact of stress on excitatory and inhibitory markers of adolescent cognitive critical period plasticity. Neurosci Biobehav Rev 2023; 153:105378. [PMID: 37643681 PMCID: PMC10591935 DOI: 10.1016/j.neubiorev.2023.105378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Adolescence is a time of significant neurocognitive development. Prolonged maturation of prefrontal cortex (PFC) through adolescence has been found to support improvements in executive function. Changes in excitatory and inhibitory mechanisms of critical period plasticity have been found to be present in the PFC through adolescence, suggesting that environment may have a greater effect on development during this time. Stress is one factor known to affect neurodevelopment increasing risk for psychopathology. However, less is known about how stress experienced during adolescence could affect adolescent-specific critical period plasticity mechanisms and cognitive outcomes. In this review, we synthesize findings from human and animal literatures looking at the experience of stress during adolescence on cognition and frontal excitatory and inhibitory neural activity. Studies indicate enhancing effects of acute stress on cognition and excitation within specific contexts, while chronic stress generally dampens excitatory and inhibitory processes and impairs cognition. We propose a model of how stress could affect frontal critical period plasticity, thus potentially altering neurodevelopmental trajectories that could lead to risk for psychopathology.
Collapse
Affiliation(s)
- Maria I Perica
- Department of Psychology, University of Pittsburgh, PA, USA.
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, PA, USA
| |
Collapse
|
43
|
Karst H, Joëls M. Corticosterone rapidly reduces glutamatergic but not GABAergic transmission in the infralimbic prefrontal cortex of male mice. Steroids 2023; 198:109283. [PMID: 37487816 DOI: 10.1016/j.steroids.2023.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Rapid non-genomic effects of corticosteroid hormones, affecting glutamatergic and GABAergic transmission, have been described for many limbic structures in the rodent brain. These rapid effects appear to be region specific. It is not always clear which (or even whether) corticosteroid receptor -the glucocorticoid receptor (GR) or mineralocorticoid receptor (MR)- initiate these rapid effects. In the hippocampus and amygdala membrane-associated MR, but also membrane-associated GR (in amygdala), are involved. Other studies indicate that the rapid modulation may be induced by transactivation of kinases, or other receptors, like the G-protein coupled estrogen receptor (GPER) which was recently found to bind the mineralocorticoid aldosterone. In the current study we explored, in young adult male C57Bl6 mice, possible rapid effects of corticosterone on layer 2/3 infralimbic-prefrontal cortex (IL-PFC) neurons. We show that corticosterone, via non-genomic MR activation, reduces the mEPSC -but does not affect mIPSC- frequency; we observed no effect on mEPSC or mIPSC amplitude. As a result, overall spontaneous activity in the IL-PFC is suppressed. A potential role of GPER cannot be excluded, since G-15, an antagonist of GPER, also prevented the rapid effects of corticosterone.
Collapse
Affiliation(s)
- Henk Karst
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands; University of Amsterdam, SILS-CNS, Amsterdam, the Netherlands.
| | - Marian Joëls
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
44
|
Mohamed Saini S, Bousman CA, Mancuso SG, Cropley V, Van Rheenen TE, Lenroot RK, Bruggemann J, Weickert CS, Weickert TW, Sundram S, Everall IP, Pantelis C. Genetic variation in glutamatergic genes moderates the effects of childhood adversity on brain volume and IQ in treatment-resistant schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:59. [PMID: 37709784 PMCID: PMC10502098 DOI: 10.1038/s41537-023-00381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Affiliation(s)
- Suriati Mohamed Saini
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia.
- Department of Psychiatry, Hospital Canselor Tuanku Muhriz, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia.
| | - Chad A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Psychiatry, and Physiology and Pharmacology, The University of Calgary, Calgary, AB, Canada
| | - Serafino G Mancuso
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Melbourne, VIC, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Melbourne, VIC, Australia
| | - Rhoshel K Lenroot
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Department of Psychiatry and Behavioural Science, University of New Mexico, Albuquerque, NM, USA
| | - Jason Bruggemann
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- Schizophrenia Research Institute, Sydney, NSW, Australia
| | - Cynthia S Weickert
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, NY, USA
- Schizophrenia Research Laboratory, Neuroscience Research Australia, NSW, Australia
| | - Thomas W Weickert
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, NY, USA
| | - Suresh Sundram
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Monash Medical Centre, Monash Health, Clayton, VIC, Australia
| | - Ian P Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Western Centre for Health Research & Education, Sunshine Hospital, Western Health, St Albans, VIC, 3021, Australia
| |
Collapse
|
45
|
Soteros BM, Tillmon H, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Heterogeneous complement and microglia activation mediates stress-induced synapse loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546889. [PMID: 37425856 PMCID: PMC10327081 DOI: 10.1101/2023.06.28.546889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the mouse medial prefrontal cortex (mPFC). Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (ApoE high ) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the ApoE high microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
|
46
|
Bailey AM, Barrett A, Havens L, Leyder E, Merchant T, Starnes H, Thompson SM. Changes in social, sexual, and hedonic behaviors in rats in response to stress and restoration by a negative allosteric modulator of α5-subunit containing GABA receptor. Behav Brain Res 2023; 452:114554. [PMID: 37356670 PMCID: PMC10528636 DOI: 10.1016/j.bbr.2023.114554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Major depressive disorder (MDD) is a debilitating and costly human condition. Treatment for MDD relies heavily on the use of antidepressants that are slow to produce mood-related changes and are not effective in all patients, such as selective serotonin reuptake inhibitors (SSRIs). Several novel compounds, including negative allosteric modulators of GABA-A receptors containing the α5-subunit (GABA-NAMs), are under investigation for potential fast acting therapeutic use in MDD. Preclinical evidence that these compounds produce a rapid antidepressant-like response comes primarily from simple tests of escape behavior and preference for rewarding stimuli after chronic stress. To increase the ethological relevance of these compounds, we tested the hypothesis that the GABA-NAM, L-655,708, would produce an antidepressant-like response in more complex stress-sensitive social and sex behaviors, which are of relevance to the symptoms of human depression. In male rats subjected to chronic restraint stress, injection of L-655,708 increased reward in a sexual conditioned place preference task, increased male sexual activity with a receptive female, and re-established male social dominance hierarchies within 24 h. We also report increased sucrose preference in the social defeat stress (SDS) model of depression following GABA-NAM administration, demonstrating that its antidepressant-like actions are independent of the type of chronic stress administered. This work extends the impact of GABA-NAMs beyond traditional tests of anhedonia and further supports the development of alpha5 subunit-selective GABA-NAMs as a potential fast-acting therapeutic approach for treating human MDD.
Collapse
Affiliation(s)
- Aileen M Bailey
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States.
| | - Allison Barrett
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Lane Havens
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Erica Leyder
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Taylor Merchant
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Hannah Starnes
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
47
|
Choi SO, Choi JG, Yun JY. A Study of Brain Function Characteristics of Service Members at High Risk for Accidents in the Military. Brain Sci 2023; 13:1157. [PMID: 37626513 PMCID: PMC10452066 DOI: 10.3390/brainsci13081157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Military accidents are often associated with stress and depressive psychological conditions among soldiers, and they often fail to adapt to military life. Therefore, this study analyzes whether there are differences in EEG and pulse wave indices between general soldiers and three groups of soldiers who have not adapted to military life and are at risk of accidents. Data collection was carried out using a questionnaire and a device that can measure EEG and pulse waves, and data analysis was performed using SPSS. The results showed that the concentration level and brain activity indices were higher in the general soldiers and the soldiers in the first stage of accident risk. The body stress index was higher for each stage of accident risk, and the physical vitality index was higher for general soldiers. Therefore, it can be seen that soldiers who have not adapted to military life and are at risk of accidents have somewhat lower concentration and brain activity than general soldiers, and have symptoms of stress and lethargy. The results of this study will contribute to reducing human accidents through EEG and pulse wave measurements not only in the military but also in occupations with a high risk of accidents such as construction.
Collapse
Affiliation(s)
| | | | - Jong-Yong Yun
- Department of Protection and Safety Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
48
|
Xu L, Liu Y, Long J, He X, Xie F, Yin Q, Chen M, Long D, Chen Y. Loss of spines in the prelimbic cortex is detrimental to working memory in mice with early-life adversity. Mol Psychiatry 2023; 28:3444-3458. [PMID: 37500828 PMCID: PMC10618093 DOI: 10.1038/s41380-023-02197-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Adverse experiences in early life can shape neuronal structures and synaptic function in multiple brain regions, leading to deficits of distinct cognitive functions later in life. Focusing on the pyramidal cells of the prelimbic cortex (PrL), a main subregion of the medial prefrontal cortex, the impact of early-life adversity (ELA) was investigated in a well-established animal model generated by changing the rearing environment during postnatal days 2 to 9 (P2-P9), a sensitive developmental period. ELA has enduring detrimental impacts on the dendritic spines of PrL pyramidal cells, which is most apparent in a spatially circumscribed region. Specifically, ELA affects both thin and mushroom-type spines, and ELA-provoked loss of spines is observed on selective dendritic segments of PrL pyramidal cells in layers II-III and V-VI. Reduced postsynaptic puncta represented by postsynaptic density protein-95 (PSD-95), but not synaptophysin-labelled presynaptic puncta, in ELA mice supports the selective loss of spines in the PrL. Correlation analysis indicates that loss of spines and postsynaptic puncta in the PrL contributes to the poor spatial working memory of ELA mice, and thin spines may play a major role in working memory performance. To further understand whether loss of spines affects glutamatergic transmission, AMPA- and NMDA-receptor-mediated synaptic currents (EPSCs) were recorded in a group of Thy1-expressing PrL pyramidal cells. ELA mice exhibited a depressed glutamatergic transmission, which is accompanied with a decreased expression of GluR1 and NR1 subunits in the PrL. Finally, upregulating the activation of Thy1-expressing PrL pyramidal cells via excitatory DREADDs can efficiently improve the working memory performance of ELA mice in a T-maze-based task, indicating the potential of a chemogenetic approach in restoring ELA-provoked memory deficits.
Collapse
Affiliation(s)
- Liping Xu
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yue Liu
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jingyi Long
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA, Nijmegen, the Netherlands
| | - Xiulan He
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fanbing Xie
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Qiao Yin
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Michael Chen
- University of California, Los Angeles, CA, 90095, USA
| | - Dahong Long
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Yuncai Chen
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
49
|
Bollinger JL, Dadosky DT, Flurer JK, Rainer IL, Woodburn SC, Wohleb ES. Microglial P2Y12 mediates chronic stress-induced synapse loss in the prefrontal cortex and associated behavioral consequences. Neuropsychopharmacology 2023; 48:1347-1357. [PMID: 36517583 PMCID: PMC10354016 DOI: 10.1038/s41386-022-01519-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Chronic unpredictable stress (CUS) drives microglia-mediated neuronal remodeling and synapse loss in the prefrontal cortex (PFC), contributing to deficits in cognition and behavior. However, it remains unclear what mechanisms guide microglia-neuron interactions in stress. Evidence indicates that neuronal activity-dependent purinergic signaling directs microglial processes and synaptic engagement via P2Y12, a purinergic receptor exclusively expressed by microglia in the brain. Stress alters excitatory neurotransmission in the PFC, thus we aimed to determine if P2Y12 signaling promotes functional changes in microglia in chronic stress. Here we used genetic ablation of P2Y12 (P2ry12-/-) or pharmacological blockade (clopidogrel, ticagrelor) to examine the role of purinergic signaling in stress-induced microglia-neuron interaction. Multiple behavioral, physiological, and cytometric endpoints were analyzed. Deletion of P2Y12 led to a number of fundamental alterations in the PFC, including the heightened microglial number and increased dendritic spine density. Flow cytometry revealed that microglia in P2ry12-/- mice had shifts in surface levels of CX3CR1, CSF1R, and CD11b, suggesting changes in synaptic engagement and phagocytosis in the PFC. In line with this, pharmacological blockade of P2Y12 prevented CUS-induced increases in the proportion of microglia with neuronal inclusions, limited dendritic spine loss in the PFC, and attenuated alterations in stress coping behavior and working memory function. Overall, these findings indicate that microglial P2Y12 is a critical mediator of stress-induced synapse loss in the PFC and subsequent behavioral deficits.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David T Dadosky
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James K Flurer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ivanka L Rainer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
50
|
Vlasov I, Filatova E, Slominsky P, Shadrina M. Differential expression of Dusp1 and immediate early response genes in the hippocampus of rats, subjected to forced swim test. Sci Rep 2023; 13:9985. [PMID: 37340011 DOI: 10.1038/s41598-023-36611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The forced swim test (FST) is widely used to screen for potential antidepressant drugs and treatments. Despite this, the nature of stillness during FST and whether it resembles "depressive-like behavior" are widely debated issues. Furthermore, despite being widely used as a behavioral assay, the effects of the FST on the brain transcriptome are rarely investigated. Therefore, in this study we have investigated changes in the transcriptome of the rat hippocampus 20 min and 24 h after FST exposure. RNA-Seq is performed on the hippocampus tissues of rats 20 min and 24 h after an FST. Differentially expressed genes (DEGs) were identified using limma and used to construct gene interaction networks. Fourteen differentially expressed genes (DEGs) were identified only in the 20-m group. No DEGs were identified 24 h after the FST. These genes were used for Gene Ontology term enrichment and gene-network construction. Based on the constructed gene-interaction networks, we identified a group of DEGs (Dusp1, Fos, Klf2, Ccn1, and Zfp36) that appeared significant based on multiple methods of downstream analysis. Dusp1 appears especially important, as its role in the pathogenesis of depression has been demonstrated both in various animal models of depression and in patients with depressive disorders.
Collapse
Affiliation(s)
- Ivan Vlasov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, .
| | - Elena Filatova
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Petr Slominsky
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Maria Shadrina
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| |
Collapse
|