1
|
Pilepić L, Roje Bedeković M. Right brain hemisphere lesions affecting language functioning in the acute phase of stroke recovery: A Croatian survey. APPLIED NEUROPSYCHOLOGY. ADULT 2025:1-9. [PMID: 39825610 DOI: 10.1080/23279095.2025.2454346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Greater empirical and scientific attention is still put on patients with left brain hemisphere (LBH) damage where language impairments are common and expected. In patients with RBH damage, language assessment is therefore rarely done in the acute phase of stroke recovery. PURPOSE To investigate language impairments in the acute phase of stroke using a Croatian standardized language battery for the first time and compare patients with RBH stroke, LBH stroke and healthy individuals. METHODS This study compares language functioning in three groups of conveniently sampled participants: RBH stroke patients, LBH stroke patients and healthy individuals. Kruskal Wallis H test was used to evaluate a combined group comparison, after which a post-hoc Dunn test was performed. RESULTS Patients with RBH stroke scored significantly lower than healthy individuals on the CAT:HR in verbal fluency, comprehension of written sentences, naming, and total production. In addition, comprehension of written and spoken sentences did not differ between patients with RBH and LBH stroke patients which suggests the existence of language impairment (p>.05). CONCLUSION RBH stroke can significantly impair language comprehension and production in the acute phase of stroke recovery emphasizing the importance of early detection.
Collapse
Affiliation(s)
- Lara Pilepić
- University Department of Neurology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Marina Roje Bedeković
- University Department of Neurology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Zhang JJY, Ang J, Saffari SE, Tor PC, Lo YL, Wan KR. Repetitive Transcranial Magnetic Stimulation for Motor Recovery After Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials With Low Risk of Bias. Neuromodulation 2025; 28:16-42. [PMID: 39320286 DOI: 10.1016/j.neurom.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in enhancing motor recovery after stroke, but nuances regarding its use, such as the impact of the type and site of stimulation, are not yet established. We aimed to perform a systematic review and meta-analysis of randomized controlled trials (RCTs) with low risk of bias to investigate the effect of rTMS on motor recovery after both ischemic and hemorrhagic stroke. MATERIALS AND METHODS Three databases were searched systematically for all RCTs reporting comparisons between rTMS (including theta-burst stimulation) and either no stimulation or sham stimulation up to August 19, 2022. The primary outcome measure was the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Secondary outcome measures comprised the Action Research Arm Test, Box and Block Test, Modified Ashworth Scale for the wrist, and modified Rankin Scale (mRS). RESULTS A total of 37 articles reporting 48 unique comparisons were included. Pooled mean FMA-UE scores were significantly higher in the experimental group than the control group after intervention (MD = 5.4 [MD = 10.7 after correction of potential publication bias], p < 0.001) and at the last follow-up (MD = 5.2, p = 0.031). On subgroup analysis, the improvements in FMA-UE scores, both after intervention and at the last follow-up, were significant in the acute/subacute stage of stroke (within six months) and for patients with more severe baseline motor impairment. Both contralesional and ipsilesional stimulation yielded significant improvements in FMA-UE at the first assessment after rTMS but not at the last follow-up, while the improvements from bilateral rTMS only achieved statistical significance at the last follow-up. Among the secondary outcome measures, only mRS was significantly improved in the rTMS group after intervention (MD = -0.5, p = 0.013) and at the last follow-up (MD = -0.9, p = 0.001). CONCLUSIONS Current literature supports the use of rTMS for motor recovery after stroke, especially when done within six months and for patients with more severe stroke at baseline. Future studies with larger sample sizes may be helpful in clarifying the potential of rTMS in poststroke rehabilitation.
Collapse
Affiliation(s)
- John J Y Zhang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore.
| | - Jensen Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Seyed Ehsan Saffari
- Centre for Quantitative Medicine, Duke-National University of Singapore Medical School, Singapore; Program in Health Services and Systems Research, Duke-National University of Singapore Medical School, Singapore
| | - Phern-Chern Tor
- Department of Mood and Anxiety, Institute of Mental Health, Singapore
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-National University of Singapore Medical School, Singapore
| | - Kai Rui Wan
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| |
Collapse
|
3
|
Schmitt O, Eipert P, Wang Y, Kanoke A, Rabiller G, Liu J. Connectome-based prediction of functional impairment in experimental stroke models. PLoS One 2024; 19:e0310743. [PMID: 39700116 DOI: 10.1371/journal.pone.0310743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/05/2024] [Indexed: 12/21/2024] Open
Abstract
Experimental rat models of stroke and hemorrhage are important tools to investigate cerebrovascular disease pathophysiology mechanisms, yet how significant patterns of functional impairment induced in various models of stroke are related to changes in connectivity at the level of neuronal populations and mesoscopic parcellations of rat brains remain unresolved. To address this gap in knowledge, we employed two middle cerebral artery occlusion models and one intracerebral hemorrhage model with variant extent and location of neuronal dysfunction. Motor and spatial memory function was assessed and the level of hippocampal activation via Fos immunohistochemistry. Contribution of connectivity change to functional impairment was analyzed for connection similarities, graph distances and spatial distances as well as the importance of regions in terms of network architecture based on the neuroVIISAS rat connectome. We found that functional impairment correlated with not only the extent but also the locations of the injury among the models. In addition, via coactivation analysis in dynamic rat brain models, we found that lesioned regions led to stronger coactivations with motor function and spatial learning regions than with other unaffected regions of the connectome. Dynamic modeling with the weighted bilateral connectome detected changes in signal propagation in the remote hippocampus in all 3 stroke types, predicting the extent of hippocampal hypoactivation and impairment in spatial learning and memory function. Our study provides a comprehensive analytical framework in predictive identification of remote regions not directly altered by stroke events and their functional implication.
Collapse
Affiliation(s)
- Oliver Schmitt
- Institute for Systems Medicine, Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg, Germany
- Department of Anatomy, University of Rostock, Rostock, Germany
| | - Peter Eipert
- Institute for Systems Medicine, Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg, Germany
| | - Yonggang Wang
- Department of Neurological Surgery, UCSF, San Francisco, CA, United States of America
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, United States of America
- Department of Neurological Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Atsushi Kanoke
- Department of Neurological Surgery, UCSF, San Francisco, CA, United States of America
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, United States of America
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF, San Francisco, CA, United States of America
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, United States of America
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA, United States of America
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, United States of America
| |
Collapse
|
4
|
Xing XX, Wu JJ, Qu J, Ma J, Xu R, Zhu Y, Zheng MX, Hua XY, Xu JG. Rewiring the disordered connectome with circuit-based paired stimulation after stroke-a randomized, double-blind and controlled Phase II trial. Brain Commun 2024; 6:fcae437. [PMID: 39697832 PMCID: PMC11653076 DOI: 10.1093/braincomms/fcae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/15/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
The cortico-cortical paired associative stimulation, a combined stimulation based on two brain regions, may be an effective strategy for stroke rehabilitation. Our aim was to confirm that the cortico-cortical paired associative stimulation strengthens the connection between brain regions in the motor circuit and promotes improvements in motor function. This was a randomized double-blind, controlled Phase II trial. 44 Stroke patients were treated in a rehabilitation hospital from October 2020 to January 2021 and were randomly assigned to the sham stimulation group and the cortico-cortical paired associative stimulation group. Patients in both groups received 12 days of rehabilitation therapy. Cortico-cortical paired associative stimulation group received one treatment of cortico-cortical paired associative stimulation invention. Both groups received behavioural assessments such as the Fugl-Meyer upper-extremity scale and resting-state functional MRI scans prior to the intervention and on Day 14. 40 patients completed the intervention session. The results of Fugl-Meyer upper-extremity scale showed a more significant improvement in motor function in the cortico-cortical paired associative stimulation group (6.33 ± 1.29) than in the sham stimulation group (3.16 ± 1.38) (P < 0.001). The functional connectivity showed that cortico-cortical paired associative stimulation strengthens connections between brain regions. Correlation analysis confirmed that the enhancement of functional connectivity was positively correlated with the recovery of Fugl-Meyer upper-extremity scale (r2 = 0.146, P = 0.034; r2 = 0.211, P = 0.0093). The results of functional connectivity suggest that cortico-cortical paired associative stimulation strengthens connections between brain regions. It is expected that this study will provide a positive viewpoint for the neurorehabilitation of stroke patients based on the circuit-level plasticity. (Chinese Clinical Trial Registry: ChiCTR2000036685).
Collapse
Affiliation(s)
- Xiang-Xin Xing
- Rehabilitation Center, Qilu Hospital of Shandong University, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiao Qu
- Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Xu
- YangZhi Rehabilitation Hospital, TongJi University, Shanghai 201600, China
| | - Yu Zhu
- Department of Physical Medicine and Rehabilitation, State University of New York Upstate Medical University, Syracuse 13290, USA
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopedics, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopedics, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Guang Xu
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
5
|
Sun X, Dai C, Wu X, Han T, Li Q, Lu Y, Liu X, Yuan H. Current implications of EEG and fNIRS as functional neuroimaging techniques for motor recovery after stroke. MEDICAL REVIEW (2021) 2024; 4:492-509. [PMID: 39664080 PMCID: PMC11629311 DOI: 10.1515/mr-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 12/13/2024]
Abstract
Persistent motor deficits are highly prevalent among post-stroke survivors, contributing significantly to disability. Despite the prevalence of these deficits, the precise mechanisms underlying motor recovery after stroke remain largely elusive. The exploration of motor system reorganization using functional neuroimaging techniques represents a compelling yet challenging avenue of research. Quantitative electroencephalography (qEEG) parameters, including the power ratio index, brain symmetry index, and phase synchrony index, have emerged as potential prognostic markers for overall motor recovery post-stroke. Current evidence suggests a correlation between qEEG parameters and functional motor outcomes in stroke recovery. However, accurately identifying the source activity poses a challenge, prompting the integration of EEG with other neuroimaging modalities, such as functional near-infrared spectroscopy (fNIRS). fNIRS is nowadays widely employed to investigate brain function, revealing disruptions in the functional motor network induced by stroke. Combining these two methods, referred to as integrated fNIRS-EEG, neural activity and hemodynamics signals can be pooled out and offer new types of neurovascular coupling-related features, which may be more accurate than the individual modality alone. By harnessing integrated fNIRS-EEG source localization, brain connectivity analysis could be applied to characterize cortical reorganization associated with stroke, providing valuable insights into the assessment and treatment of post-stroke motor recovery.
Collapse
Affiliation(s)
- Xiaolong Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Chunqiu Dai
- Department of Rehabilitation Medicine, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Xiangbo Wu
- Department of Rehabilitation Medicine, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Tao Han
- Department of Rehabilitation Medicine, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Qiaozhen Li
- Department of Rehabilitation Medicine, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yixing Lu
- Department of Rehabilitation Medicine, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Xinyu Liu
- Department of Rehabilitation Medicine, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Weigel K, Klingner CM, Brodoehl S, Wagner F, Schwab M, Güllmar D, Mayer TE, Güttler FV, Teichgräber U, Gaser C. Normative connectome-based analysis of sensorimotor deficits in acute subcortical stroke. Front Neurosci 2024; 18:1400944. [PMID: 39184327 PMCID: PMC11344269 DOI: 10.3389/fnins.2024.1400944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The interrelation between acute ischemic stroke, persistent disability, and uncertain prognosis underscores the need for improved methods to predict clinical outcomes. Traditional approaches have largely focused on analysis of clinical metrics, lesion characteristics, and network connectivity, using techniques such as resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI). However, these methods are not routinely used in acute stroke diagnostics. This study introduces an innovative approach that not only considers the lesion size in relation to the National Institutes of Health Stroke Scale (NIHSS score), but also evaluates the impact of disrupted fibers and their connections to cortical regions by introducing a disconnection value. By identifying fibers traversing the lesion and estimating their number within predefined regions of interest (ROIs) using a normative connectome atlas, our method bypasses the need for individual DTI scans. In our analysis of MRI data (T1 and T2) from 51 patients with acute or subacute subcortical stroke presenting with motor or sensory deficits, we used simple linear regression to assess the explanatory power of lesion size and disconnection value on NIHSS score. Subsequent hierarchical multiple linear regression analysis determined the incremental value of disconnection metrics over lesion size alone in relation to NIHSS score. Our results showed that models incorporating the disconnection value accounted for more variance than those based solely on lesion size (lesion size explained 44% variance, disconnection value 60%). Furthermore, hierarchical regression revealed a significant improvement (p < 0.001) in model fit when adding the disconnection value, confirming its critical role in stroke assessment. Our approach, which integrates a normative connectome to quantify disconnections to cortical regions, provides a significant improvement in assessing the current state of stroke impact compared to traditional measures that focus on lesion size. This is achieved by taking into account the lesion's location and the connectivity of the affected white matter tracts, providing a more comprehensive assessment of stroke severity as reflected in the NIHSS score. Future research should extend the validation of this approach to larger and more diverse populations, with a focus on refining its applicability to clinical assessment and long-term outcome prediction.
Collapse
Affiliation(s)
- Karolin Weigel
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Carsten M. Klingner
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Stefan Brodoehl
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Franziska Wagner
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Thomas E. Mayer
- Section Neuroradiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Felix V. Güttler
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
7
|
Xu G, Chen T, Yin J, Shao G, Fan Y, Li Z. Lateralization of cortical activity, networks, and hemodynamic lag after stroke: A resting-state fNIRS study. JOURNAL OF BIOPHOTONICS 2024; 17:e202400012. [PMID: 38659122 DOI: 10.1002/jbio.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/26/2024]
Abstract
Focal damage due to stroke causes widespread abnormal changes in brain function and hemispheric asymmetry. In this study, functional near-infrared spectroscopy (fNIRS) was used to collect resting-state hemoglobin data from 85 patients with subacute stroke and 26 healthy controls, to comparatively analyze the characteristics of lateralization after stroke in terms of cortical activity, functional networks, and hemodynamic lags. Higher intensity of motor cortical activity, lower hemispheric autonomy, and more abnormal hemodynamic leads or lags were found in the affected hemisphere. Lateralization metrics of the three aspects were all associated with the Fugl-Meyer score. The results of this study prove that three lateralization metrics may provide clinical reference for stroke rehabilitation. Meanwhile, the present study piloted the use of resting-state fNIRS for analyzing hemodynamic lag, demonstrating the potential of fNIRS to assess hemodynamic abnormalities in addition to the study of cortical neurological function after stroke.
Collapse
Affiliation(s)
- Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Tiandi Chen
- Nanchang Key Laboratory of Medical and Technology Research, Nanchang University, Nanchang, Jiangxi, China
| | - Jiahui Yin
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Guangjian Shao
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
8
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Merino‐Serrais P, Plaza‐Alonso S, Hellal F, Valero‐Freitag S, Kastanauskaite A, Plesnila N, DeFelipe J. Structural changes of CA1 pyramidal neurons after stroke in the contralesional hippocampus. Brain Pathol 2024; 34:e13222. [PMID: 38012061 PMCID: PMC11007010 DOI: 10.1111/bpa.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Significant progress has been made with regard to understanding how the adult brain responds after a stroke. However, a large number of patients continue to suffer lifelong disabilities without adequate treatment. In the present study, we have analyzed possible microanatomical alterations in the contralesional hippocampus from the ischemic stroke mouse model tMCAo 12-14 weeks after transient middle cerebral artery occlusion. After individually injecting Lucifer yellow into pyramidal neurons from the CA1 field of the hippocampus, we performed a detailed three-dimensional analysis of the neuronal complexity, dendritic spine density, and morphology. We found that, in both apical (stratum radiatum) and basal (stratum oriens) arbors, CA1 pyramidal neurons in the contralesional hippocampus of tMCAo mice have a significantly higher neuronal complexity, as well as reduced spine density and alterations in spine volume and spine length. Our results show that when the ipsilateral hippocampus is dramatically damaged, the contralesional hippocampus exhibits several statistically significant selective alterations. However, these alterations are not as significant as expected, which may help to explain the recovery of hippocampal function after stroke. Further anatomical and physiological studies are necessary to better understand the modifications in the "intact" contralesional lesioned brain regions, which are probably fundamental to recover functions after stroke.
Collapse
Affiliation(s)
- Paula Merino‐Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
| | - Sergio Plaza‐Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
| | - Farida Hellal
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig‐Maximilians‐University Munich (LMU)MunichGermany
- iTERM, Helmholtz CenterMunichGermany
- Munich Cluster of Systems Neurology (Synergy)MunichGermany
| | - Susana Valero‐Freitag
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig‐Maximilians‐University Munich (LMU)MunichGermany
| | - Asta Kastanauskaite
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig‐Maximilians‐University Munich (LMU)MunichGermany
- Munich Cluster of Systems Neurology (Synergy)MunichGermany
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
10
|
Hermosillo RJM, Moore LA, Feczko E, Miranda-Domínguez Ó, Pines A, Dworetsky A, Conan G, Mooney MA, Randolph A, Graham A, Adeyemo B, Earl E, Perrone A, Carrasco CM, Uriarte-Lopez J, Snider K, Doyle O, Cordova M, Koirala S, Grimsrud GJ, Byington N, Nelson SM, Gratton C, Petersen S, Feldstein Ewing SW, Nagel BJ, Dosenbach NUF, Satterthwaite TD, Fair DA. A precision functional atlas of personalized network topography and probabilities. Nat Neurosci 2024; 27:1000-1013. [PMID: 38532024 PMCID: PMC11089006 DOI: 10.1038/s41593-024-01596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/08/2024] [Indexed: 03/28/2024]
Abstract
Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.
Collapse
Affiliation(s)
- Robert J M Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Óscar Miranda-Domínguez
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Adam Pines
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Michael A Mooney
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health and Science University, Portland, OR, USA
| | - Anita Randolph
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Alice Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Earl
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Cristian Morales Carrasco
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Kathy Snider
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Olivia Doyle
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Michaela Cordova
- Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, University of California San Diego, San Diego, CA, USA
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Gracie J Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Bandet MV, Winship IR. Aberrant cortical activity, functional connectivity, and neural assembly architecture after photothrombotic stroke in mice. eLife 2024; 12:RP90080. [PMID: 38687189 PMCID: PMC11060715 DOI: 10.7554/elife.90080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within 'remapped' forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.
Collapse
Affiliation(s)
- Mischa Vance Bandet
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| | - Ian Robert Winship
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| |
Collapse
|
12
|
Valero-Cuevas FJ, Finley J, Orsborn A, Fung N, Hicks JL, Huang HH, Reinkensmeyer D, Schweighofer N, Weber D, Steele KM. NSF DARE-Transforming modeling in neurorehabilitation: Four threads for catalyzing progress. J Neuroeng Rehabil 2024; 21:46. [PMID: 38570842 PMCID: PMC10988973 DOI: 10.1186/s12984-024-01324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/09/2024] [Indexed: 04/05/2024] Open
Abstract
We present an overview of the Conference on Transformative Opportunities for Modeling in Neurorehabilitation held in March 2023. It was supported by the Disability and Rehabilitation Engineering (DARE) program from the National Science Foundation's Engineering Biology and Health Cluster. The conference brought together experts and trainees from around the world to discuss critical questions, challenges, and opportunities at the intersection of computational modeling and neurorehabilitation to understand, optimize, and improve clinical translation of neurorehabilitation. We organized the conference around four key, relevant, and promising Focus Areas for modeling: Adaptation & Plasticity, Personalization, Human-Device Interactions, and Modeling 'In-the-Wild'. We identified four common threads across the Focus Areas that, if addressed, can catalyze progress in the short, medium, and long terms. These were: (i) the need to capture and curate appropriate and useful data necessary to develop, validate, and deploy useful computational models (ii) the need to create multi-scale models that span the personalization spectrum from individuals to populations, and from cellular to behavioral levels (iii) the need for algorithms that extract as much information from available data, while requiring as little data as possible from each client (iv) the insistence on leveraging readily available sensors and data systems to push model-driven treatments from the lab, and into the clinic, home, workplace, and community. The conference archive can be found at (dare2023.usc.edu). These topics are also extended by three perspective papers prepared by trainees and junior faculty, clinician researchers, and federal funding agency representatives who attended the conference.
Collapse
Affiliation(s)
- Francisco J Valero-Cuevas
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St 155, Los Angeles, 90033, CA, USA.
- Thomas Lord Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, 90089, CA, USA.
| | - James Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St 155, Los Angeles, 90033, CA, USA
| | - Amy Orsborn
- Department of Electrical and Computer Engineering, University of Washington, 185 W Stevens Way NE, Box 352500, Seattle, 98195, WA, USA
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Box 355061, Seattle, 98195, WA, USA
- Washington National Primate Research Center, University of Washington, 3018 Western Ave, Seattle, 98121, WA, USA
| | - Natalie Fung
- Thomas Lord Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, 90089, CA, USA
| | - Jennifer L Hicks
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, 94305, CA, USA
| | - He Helen Huang
- Joint Department of Biomedical Engineering, North Carolina State University, 1840 Entrepreneur Dr Suite 4130, Raleigh, 27606, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, 333 S Columbia St, Chapel Hill, 27514, NC, USA
| | - David Reinkensmeyer
- Department of Mechanical and Aerospace Engineering, UCI Samueli School of Engineering, 3225 Engineering Gateway, Irvine, 92697, CA, USA
| | - Nicolas Schweighofer
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St 155, Los Angeles, 90033, CA, USA
| | - Douglas Weber
- Department of Mechanical Engineering and the Neuroscience Institute, Carnegie Mellon University, 5000 Forbes Avenue, B12 Scaife Hall, Pittsburgh, 15213, PA, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Box 352600, Seattle, 98195, WA, USA
| |
Collapse
|
13
|
Hakon J, Quattromani MJ, Sjölund C, Talhada D, Kim B, Moyanova S, Mastroiacovo F, Di Menna L, Olsson R, Englund E, Nicoletti F, Ruscher K, Bauer AQ, Wieloch T. Inhibiting metabotropic glutamate receptor 5 after stroke restores brain function and connectivity. Brain 2024; 147:186-200. [PMID: 37656990 PMCID: PMC10766240 DOI: 10.1093/brain/awad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/12/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023] Open
Abstract
Stroke results in local neural disconnection and brain-wide neuronal network dysfunction leading to neurological deficits. Beyond the hyper-acute phase of ischaemic stroke, there is no clinically-approved pharmacological treatment that alleviates sensorimotor impairments. Functional recovery after stroke involves the formation of new or alternative neuronal circuits including existing neural connections. The type-5 metabotropic glutamate receptor (mGluR5) has been shown to modulate brain plasticity and function and is a therapeutic target in neurological diseases outside of stroke. We investigated whether mGluR5 influences functional recovery and network reorganization rodent models of focal ischaemia. Using multiple behavioural tests, we observed that treatment with negative allosteric modulators (NAMs) of mGluR5 (MTEP, fenobam and AFQ056) for 12 days, starting 2 or 10 days after stroke, restored lost sensorimotor functions, without diminishing infarct size. Recovery was evident within hours after initiation of treatment and progressed over the subsequent 12 days. Recovery was prevented by activation of mGluR5 with the positive allosteric modulator VU0360172 and accelerated in mGluR5 knock-out mice compared with wild-type mice. After stroke, multisensory stimulation by enriched environments enhanced recovery, a result prevented by VU0360172, implying a role of mGluR5 in enriched environment-mediated recovery. Additionally, MTEP treatment in conjunction with enriched environment housing provided an additive recovery enhancement compared to either MTEP or enriched environment alone. Using optical intrinsic signal imaging, we observed brain-wide disruptions in resting-state functional connectivity after stroke that were prevented by mGluR5 inhibition in distinct areas of contralesional sensorimotor and bilateral visual cortices. The levels of mGluR5 protein in mice and in tissue samples of stroke patients were unchanged after stroke. We conclude that neuronal circuitry subserving sensorimotor function after stroke is depressed by a mGluR5-dependent maladaptive plasticity mechanism that can be restored by mGluR5 inhibition. Post-acute stroke treatment with mGluR5 NAMs combined with rehabilitative training may represent a novel post-acute stroke therapy.
Collapse
Affiliation(s)
- Jakob Hakon
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Miriana J Quattromani
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Carin Sjölund
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Daniela Talhada
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Byungchan Kim
- Department of Radiology, Washington University, Saint Louis, MO 63110, USA
| | - Slavianka Moyanova
- Department of Molecular Pathology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | | | - Luisa Di Menna
- Department of Molecular Pathology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Roger Olsson
- Department of Experimental Medical Sciences, Chemical Biology & Therapeutics, Lund University, Lund 221 84, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund 221 84, Sweden
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome La Sapienza, 00185 Rome, Italy
| | - Karsten Ruscher
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Adam Q Bauer
- Department of Radiology, Washington University, Saint Louis, MO 63110, USA
| | - Tadeusz Wieloch
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| |
Collapse
|
14
|
Alborghetti M, Bianchini E, De Carolis L, Galli S, Pontieri FE, Rinaldi D. Type-B monoamine oxidase inhibitors in neurological diseases: clinical applications based on preclinical findings. Neural Regen Res 2024; 19:16-21. [PMID: 37488838 PMCID: PMC10479837 DOI: 10.4103/1673-5374.375299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 07/26/2023] Open
Abstract
Type-B monoamine oxidase inhibitors, encompassing selegiline, rasagiline, and safinamide, are available to treat Parkinson's disease. These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease. There is also evidence supporting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease, such as mood deflection, cognitive impairment, sleep disturbances, and fatigue. Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors, particularly glial cell line-derived neurotrophic factor, which support dopaminergic neurons. Besides, safinamide may interfere with neurodegenerative mechanisms, counteracting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity. Due to the dual mechanism of action, the new generation of type-B monoamine oxidase inhibitors, including safinamide, is gaining interest in other neurological pathologies, and many supporting preclinical studies are now available. The potential fields of application concern epilepsy, Duchenne muscular dystrophy, multiple sclerosis, and above all, ischemic brain injury. The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline, rasagiline, and safinamide in Parkinson's disease and beyond, focusing on possible future therapeutic applications.
Collapse
Affiliation(s)
- Marika Alborghetti
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Edoardo Bianchini
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| | - Lanfranco De Carolis
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Silvia Galli
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Francesco E. Pontieri
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| | - Domiziana Rinaldi
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
15
|
Campos B, Choi H, DeMarco AT, Seydell-Greenwald A, Hussain SJ, Joy MT, Turkeltaub PE, Zeiger W. Rethinking Remapping: Circuit Mechanisms of Recovery after Stroke. J Neurosci 2023; 43:7489-7500. [PMID: 37940595 PMCID: PMC10634578 DOI: 10.1523/jneurosci.1425-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 11/10/2023] Open
Abstract
Stroke is one of the most common causes of disability, and there are few treatments that can improve recovery after stroke. Therapeutic development has been hindered because of a lack of understanding of precisely how neural circuits are affected by stroke, and how these circuits change to mediate recovery. Indeed, some of the hypotheses for how the CNS changes to mediate recovery, including remapping, redundancy, and diaschisis, date to more than a century ago. Recent technological advances have enabled the interrogation of neural circuits with ever greater temporal and spatial resolution. These techniques are increasingly being applied across animal models of stroke and to human stroke survivors, and are shedding light on the molecular, structural, and functional changes that neural circuits undergo after stroke. Here we review these studies and highlight important mechanisms that underlie impairment and recovery after stroke. We begin by summarizing knowledge about changes in neural activity that occur in the peri-infarct cortex, specifically considering evidence for the functional remapping hypothesis of recovery. Next, we describe the importance of neural population dynamics, disruptions in these dynamics after stroke, and how allocation of neurons into spared circuits can restore functionality. On a more global scale, we then discuss how effects on long-range pathways, including interhemispheric interactions and corticospinal tract transmission, contribute to post-stroke impairments. Finally, we look forward and consider how a deeper understanding of neural circuit mechanisms of recovery may lead to novel treatments to reduce disability and improve recovery after stroke.
Collapse
Affiliation(s)
- Baruc Campos
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Hoseok Choi
- Department of Neurology, Weill Institute for Neuroscience, University of California-San Francisco, San Francisco, California 94158
| | - Andrew T DeMarco
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- Department of Rehabilitation Medicine, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- MedStar National Rehabilitation Hospital, Washington, DC 20010
| | - Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas 78712
| | - Mary T Joy
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- MedStar National Rehabilitation Hospital, Washington, DC 20010
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| |
Collapse
|
16
|
Goldenkoff ER, Deluisi JA, Destiny DP, Lee TG, Michon KJ, Brissenden JA, Taylor SF, Polk TA, Vesia M. The behavioral and neural effects of parietal theta burst stimulation on the grasp network are stronger during a grasping task than at rest. Front Neurosci 2023; 17:1198222. [PMID: 37954875 PMCID: PMC10637360 DOI: 10.3389/fnins.2023.1198222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (TMS) is widely used in neuroscience and clinical settings to modulate human cortical activity. The effects of TMS on neural activity depend on the excitability of specific neural populations at the time of stimulation. Accordingly, the brain state at the time of stimulation may influence the persistent effects of repetitive TMS on distal brain activity and associated behaviors. We applied intermittent theta burst stimulation (iTBS) to a region in the posterior parietal cortex (PPC) associated with grasp control to evaluate the interaction between stimulation and brain state. Across two experiments, we demonstrate the immediate responses of motor cortex activity and motor performance to state-dependent parietal stimulation. We randomly assigned 72 healthy adult participants to one of three TMS intervention groups, followed by electrophysiological measures with TMS and behavioral measures. Participants in the first group received iTBS to PPC while performing a grasping task concurrently. Participants in the second group received iTBS to PPC while in a task-free, resting state. A third group of participants received iTBS to a parietal region outside the cortical grasping network while performing a grasping task concurrently. We compared changes in motor cortical excitability and motor performance in the three stimulation groups within an hour of each intervention. We found that parietal stimulation during a behavioral manipulation that activates the cortical grasping network increased downstream motor cortical excitability and improved motor performance relative to stimulation during rest. We conclude that constraining the brain state with a behavioral task during brain stimulation has the potential to optimize plasticity induction in cortical circuit mechanisms that mediate movement processes.
Collapse
Affiliation(s)
| | - Joseph A. Deluisi
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Danielle P. Destiny
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Taraz G. Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Katherine J. Michon
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - James A. Brissenden
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Stephan F. Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Thad A. Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Nakamura A, Sakai S, Taketomi Y, Tsuyama J, Miki Y, Hara Y, Arai N, Sugiura Y, Kawaji H, Murakami M, Shichita T. PLA2G2E-mediated lipid metabolism triggers brain-autonomous neural repair after ischemic stroke. Neuron 2023; 111:2995-3010.e9. [PMID: 37490917 DOI: 10.1016/j.neuron.2023.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
The brain is generally resistant to regeneration after damage. The cerebral endogenous mechanisms triggering brain self-recovery have remained unclarified to date. We here discovered that the secreted phospholipase PLA2G2E from peri-infarct neurons generated dihomo-γ-linolenic acid (DGLA) as necessary for triggering brain-autonomous neural repair after ischemic brain injury. Pla2g2e deficiency diminished the expression of peptidyl arginine deiminase 4 (Padi4), a global transcriptional regulator in peri-infarct neurons. Single-cell RNA sequencing (scRNA-seq) and epigenetic analysis demonstrated that neuronal PADI4 had the potential for the transcriptional activation of genes associated with recovery processes after ischemic stroke through histone citrullination. Among various DGLA metabolites, we identified 15-hydroxy-eicosatrienoic acid (15-HETrE) as the cerebral metabolite that induced PADI4 in peri-infarct-surviving neurons. Administration of 15-HETrE enhanced functional recovery after ischemic stroke. Thus, our research clarifies the promising potential of brain-autonomous neural repair triggered by the specialized lipids that initiate self-recovery processes after brain injury.
Collapse
Affiliation(s)
- Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Seiichiro Sakai
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Jun Tsuyama
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Nobutaka Arai
- Laboratory for Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| |
Collapse
|
18
|
Hofmeijer J, Ham F, Kwakkel G. Evidence of rTMS for Motor or Cognitive Stroke Recovery: Hype or Hope? Stroke 2023; 54:2500-2511. [PMID: 37747964 DOI: 10.1161/strokeaha.123.043159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Evidence of efficacy of repetitive transcranial magnetic stimulation (rTMS) for stroke recovery is hampered by an unexplained variability of reported effect sizes and an insufficient understanding of mechanisms of action. We aimed to (1) briefly summarize evidence of efficacy, (2) identify critical factors to explain the reported variation in effects, and (3) provide mechanism-based recommendations for future trials. METHODS We performed a systematic review of the literature according to Cochrane and PRISMA Protocols. We included trials with ≥10 patients per treatment group. We classified outcome measures according to the International Classification of Functioning, Disability, and Health. Meta-analysis was done when at least 3 trials were reported on the same construct. In case of significant summary effect sizes with significant heterogeneity, we used sensitivity analyses to test for correlations and differences between found individual effect sizes and possible effect modifiers such as patient-, repetitive transcranial magnetic stimulation-, and trial characteristics. RESULTS We included 57 articles (N=2595). Funnel plots showed no publication bias. We found significant effect sizes at the level of body function (upper limb synergies, muscle strength, language functioning, global cognitive functioning, visual/spatial inattention) with repetitive transcranial magnetic stimulation within or beyond 3 months after stroke. We also found significant effect sizes at the level of activities. We found no subgroup differences or significant correlations between individual summary effect sizes and any tested possible effect modifier. CONCLUSIONS Repetitive transcranial magnetic stimulation holds the potential to benefit a range of motor and cognitive outcomes after stroke, but the evidence of efficacy is challenged by unexplained heterogeneity across many small sampled trials. We propose large trials with the collection of individual patient data on baseline severity and brain network integrity with sufficiently powered subgroup analyses, as well as protocolized time-locked training of the target behavior. Additional neurophysiological and biomechanical data may help in understanding mechanisms and identifying biomarkers of treatment efficacy. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: CRD42022300330.
Collapse
Affiliation(s)
- Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands (J.H.)
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands (J.H.)
| | - Florien Ham
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands (J.H.)
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, the Netherlands (G.K.)
- Department of Acquired Brain Injuries, Neurorehabilitation, Amsterdam Rehabilitation Research Centre, Reade, the Netherlands (G.K.)
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL (G.K.)
| |
Collapse
|
19
|
Chen R, Dadario NB, Cook B, Sun L, Wang X, Li Y, Hu X, Zhang X, Sughrue ME. Connectomic insight into unique stroke patient recovery after rTMS treatment. Front Neurol 2023; 14:1063408. [PMID: 37483442 PMCID: PMC10359072 DOI: 10.3389/fneur.2023.1063408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
An improved understanding of the neuroplastic potential of the brain has allowed advancements in neuromodulatory treatments for acute stroke patients. However, there remains a poor understanding of individual differences in treatment-induced recovery. Individualized information on connectivity disturbances may help predict differences in treatment response and recovery phenotypes. We studied the medical data of 22 ischemic stroke patients who received MRI scans and started repetitive transcranial magnetic stimulation (rTMS) treatment on the same day. The functional and motor outcomes were assessed at admission day, 1 day after treatment, 30 days after treatment, and 90 days after treatment using four validated standardized stroke outcome scales. Each patient underwent detailed baseline connectivity analyses to identify structural and functional connectivity disturbances. An unsupervised machine learning (ML) agglomerative hierarchical clustering method was utilized to group patients according to outcomes at four-time points to identify individual phenotypes in recovery trajectory. Differences in connectivity features were examined between individual clusters. Patients were a median age of 64, 50% female, and had a median hospital length of stay of 9.5 days. A significant improvement between all time points was demonstrated post treatment in three of four validated stroke scales utilized. ML-based analyses identified distinct clusters representing unique patient trajectories for each scale. Quantitative differences were found to exist in structural and functional connectivity analyses of the motor network and subcortical structures between individual clusters which could explain these unique trajectories on the Barthel Index (BI) scale but not on other stroke scales. This study demonstrates for the first time the feasibility of using individualized connectivity analyses in differentiating unique phenotypes in rTMS treatment responses and recovery. This personalized connectomic approach may be utilized in the future to better understand patient recovery trajectories with neuromodulatory treatment.
Collapse
Affiliation(s)
- Rong Chen
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Nicholas B. Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Brennan Cook
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Lichun Sun
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaolong Wang
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yujie Li
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaorong Hu
- Xijia Medical Technology Company Limited, Shenzhen, China
| | - Xia Zhang
- Xijia Medical Technology Company Limited, Shenzhen, China
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi'an, Shaanxi, China
| | - Michael E. Sughrue
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi'an, Shaanxi, China
- Omniscient Neurotechnology, Sydney, NSW, Australia
- Cingulum Health, Sydney, NSW, Australia
| |
Collapse
|
20
|
Schmitt O, Eipert P, Wang Y, Kanoke A, Rabiller G, Liu J. Connectome-based prediction of functional impairment in experimental stroke models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539601. [PMID: 37205373 PMCID: PMC10187266 DOI: 10.1101/2023.05.05.539601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Experimental rat models of stroke and hemorrhage are important tools to investigate cerebrovascular disease pathophysiology mechanisms, yet how significant patterns of functional impairment induced in various models of stroke are related to changes in connectivity at the level of neuronal populations and mesoscopic parcellations of rat brains remain unresolved. To address this gap in knowledge, we employed two middle cerebral artery occlusion models and one intracerebral hemorrhage model with variant extent and location of neuronal dysfunction. Motor and spatial memory function was assessed and the level of hippocampal activation via Fos immunohistochemistry. Contribution of connectivity change to functional impairment was analyzed for connection similarities, graph distances and spatial distances as well as the importance of regions in terms of network architecture based on the neuroVIISAS rat connectome. We found that functional impairment correlated with not only the extent but also the locations of the injury among the models. In addition, via coactivation analysis in dynamic rat brain models, we found that lesioned regions led to stronger coactivations with motor function and spatial learning regions than with other unaffected regions of the connectome. Dynamic modeling with the weighted bilateral connectome detected changes in signal propagation in the remote hippocampus in all 3 stroke types, predicting the extent of hippocampal hypoactivation and impairment in spatial learning and memory function. Our study provides a comprehensive analytical framework in predictive identification of remote regions not directly altered by stroke events and their functional implication.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences, Department of Anatomy; University of Rostock, Institute of Anatomy
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Peter Eipert
- Medical School Hamburg - University of Applied Sciences, Department of Anatomy; University of Rostock, Institute of Anatomy
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Yonggang Wang
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
- Department of Neurological Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China, 100050
| | - Atsushi Kanoke
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Jialing Liu
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| |
Collapse
|
21
|
Shichita T, Ooboshi H, Yoshimura A. Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nat Rev Neurosci 2023; 24:299-312. [PMID: 36973481 DOI: 10.1038/s41583-023-00690-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The nervous and immune systems control whole-body homeostasis and respond to various types of tissue injury, including stroke, in a coordinated manner. Cerebral ischaemia and subsequent neuronal cell death activate resident or infiltrating immune cells, which trigger neuroinflammation that affects functional prognosis after stroke. Inflammatory immune cells exacerbate ischaemic neuronal injury after the onset of brain ischaemia; however, some of the immune cells thereafter change their function to neural repair. The recovery processes after ischaemic brain injury require additional and close interactions between the nervous and immune systems through various mechanisms. Thus, the brain controls its own inflammation and repair processes after injury via the immune system, which provides a promising therapeutic opportunity for stroke recovery.
Collapse
Affiliation(s)
- Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Hiroaki Ooboshi
- Section of Internal Medicine, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
22
|
Pichiorri F, Toppi J, de Seta V, Colamarino E, Masciullo M, Tamburella F, Lorusso M, Cincotti F, Mattia D. Exploring high-density corticomuscular networks after stroke to enable a hybrid Brain-Computer Interface for hand motor rehabilitation. J Neuroeng Rehabil 2023; 20:5. [PMID: 36639665 PMCID: PMC9840279 DOI: 10.1186/s12984-023-01127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Brain-Computer Interfaces (BCI) promote upper limb recovery in stroke patients reinforcing motor related brain activity (from electroencephalogaphy, EEG). Hybrid BCIs which include peripheral signals (electromyography, EMG) as control features could be employed to monitor post-stroke motor abnormalities. To ground the use of corticomuscular coherence (CMC) as a hybrid feature for a rehabilitative BCI, we analyzed high-density CMC networks (derived from multiple EEG and EMG channels) and their relation with upper limb motor deficit by comparing data from stroke patients with healthy participants during simple hand tasks. METHODS EEG (61 sensors) and EMG (8 muscles per arm) were simultaneously recorded from 12 stroke (EXP) and 12 healthy participants (CTRL) during simple hand movements performed with right/left (CTRL) and unaffected/affected hand (EXP, UH/AH). CMC networks were estimated for each movement and their properties were analyzed by means of indices derived ad-hoc from graph theory and compared among groups. RESULTS Between-group analysis showed that CMC weight of the whole brain network was significantly reduced in patients during AH movements. The network density was increased especially for those connections entailing bilateral non-target muscles. Such reduced muscle-specificity observed in patients was confirmed by muscle degree index (connections per muscle) which indicated a connections' distribution among non-target and contralateral muscles and revealed a higher involvement of proximal muscles in patients. CMC network properties correlated with upper-limb motor impairment as assessed by Fugl-Meyer Assessment and Manual Muscle Test in patients. CONCLUSIONS High-density CMC networks can capture motor abnormalities in stroke patients during simple hand movements. Correlations with upper limb motor impairment support their use in a BCI-based rehabilitative approach.
Collapse
Affiliation(s)
- Floriana Pichiorri
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy.
| | - Jlenia Toppi
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
- Dept. of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Valeria de Seta
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
- Dept. of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Emma Colamarino
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
- Dept. of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Marcella Masciullo
- Neurology and Neurovascular Treatment Unit, Belcolle Hospital, Viterbo, Italy
| | - Federica Tamburella
- Laboratory of Robotic Neurorehabilitation (NeuroRobot Lab), Neurorehabilitation 1 Department, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Lorusso
- Laboratory of Robotic Neurorehabilitation (NeuroRobot Lab), Neurorehabilitation 1 Department, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Febo Cincotti
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
- Dept. of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Donatella Mattia
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
| |
Collapse
|
23
|
Zhu L, Wang M, Fu P, Liu Y, Zhang H, Roe AW, Xi W. Precision 1070 nm Ultrafast Laser-Induced Photothrombosis of Depth-Targeted Vessels In Vivo. SMALL METHODS 2023; 7:e2200917. [PMID: 36286988 DOI: 10.1002/smtd.202200917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The cerebrovasculature plays an essential role in neurovascular and homeostatic functions in health and disease conditions. Many efforts have been made for developing vascular thrombosis methods to study vascular dysfunction in vivo, while technical challenges remain, such as accuracy and depth-selectivity to target a single vessel in the cerebral cortex. Herein, this paper first demonstrates the evaluation and quantification of the feasibility and effects of Rose Bengal (RB)-induced photothrombosis with 720-1070 nm ultrafast lasers in a raster scan. A flexible and reproducible approach is then proposed to employ a 1070 nm ultrafast laser with a spiral scan for producing RB-induced occlusion, which is described as precision ultrafast laser-induced photothrombosis (PLP). Combine with two-photon microscopy imaging, this PLP displays highly precise and fast occlusion induction of various vessel types, sizes, and depths, which enhances the precision and power of the photothrombosis protocol. Overall, the PLP method provides a real-time, practical, precise, and depth-selected single-vessel photothrombosis technology in the cerebral cortex with commercially available optical equipment, which is crucial for exploring brain vascular function with high spatial-temporal resolution in the brain.
Collapse
Affiliation(s)
- Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Mengqi Wang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Peng Fu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
24
|
Padawer-Curry JA, Bowen RM, Jarang A, Wang X, Lee JM, Bauer AQ. Wide-Field Optical Imaging in Mouse Models of Ischemic Stroke. Methods Mol Biol 2023; 2616:113-151. [PMID: 36715932 DOI: 10.1007/978-1-0716-2926-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional neuroimaging is a powerful tool for evaluating how local and global brain circuits evolve after focal ischemia and how these changes relate to functional recovery. For example, acutely after stroke, changes in functional brain organization relate to initial deficit and are predictive of recovery potential. During recovery, the reemergence and restoration of connections lost due to stroke correlate with recovery of function. Thus, information gleaned from functional neuroimaging can be used as a proxy for behavior and inform on the efficacy of interventional strategies designed to affect plasticity mechanisms after injury. And because these findings are consistently observed across species, bridge measurements can be made in animal models to enrich findings in human stroke populations. In mice, genetic engineering techniques have provided several new opportunities for extending optical neuroimaging methods to more direct measures of neuronal activity. These developments are especially useful in the context of stroke where neurovascular coupling can be altered, potentially limiting imaging measures based on hemodynamic activity alone. This chapter is designed to give an overview of functional wide-field optical imaging (WFOI) for applications in rodent models of stroke, primarily in the mouse. The goal is to provide a protocol for laboratories that want to incorporate an affordable functional neuroimaging assay into their current research thrusts, but perhaps lack the background knowledge or equipment for developing a new arm of research in their lab. Within, we offer a comprehensive guide developing and applying WFOI technology with the hope of facilitating accessibility of neuroimaging technology to other researchers in the stroke field.
Collapse
Affiliation(s)
- Jonah A Padawer-Curry
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Imaging Science PhD Program, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan M Bowen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Anmol Jarang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaodan Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
- Imaging Science PhD Program, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
25
|
Takahashi H, Yamamoto T, Tsuboi A. Molecular mechanisms underlying activity-dependent ischemic tolerance in the brain. Neurosci Res 2023; 186:3-9. [PMID: 36244569 DOI: 10.1016/j.neures.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. The inhibition of cerebral blood flow triggers intertwined pathological events, resulting in cell death and loss of brain function. Interestingly, animals pre-exposed to short-term ischemia can tolerate subsequent severe ischemia. This phenomenon is called ischemic tolerance and is also triggered by other noxious stimuli. However, whether short-term exposure to non-noxious stimuli can induce ischemic tolerance remains unknown. Recently, we found that pre-exposing mice to an enriched environment for 40 min is sufficient to facilitate cell survival after a subsequent stroke. The neuroprotective process depends on the neuronal activity soon before stroke, of which the activity-dependent transcription factor Npas4 is essential. Excessive Ca2+ influx triggers Npas4 expression in ischemic neurons, leading to the activation of neuroprotective programs. Pre-induction of Npas4 in the normal brain effectively supports cell survival after stroke. Furthermore, our study revealed that Npas4 regulates L-type voltage-gated Ca2+ channels through expression of the small Ras-like GTPase Gem in ischemic neurons. Ischemic tolerance is a good model for understanding how to promote neuroprotective mechanisms in the normal and injured brain. Here, we highlight activity-dependent ischemic tolerance and discuss its role in promoting neuroprotection against stroke.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Akio Tsuboi
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
26
|
Li X, Wang Y, Zhou X, Wang H, Xu J. Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-reperfusion Injury by Down-regulating Mir-155-5p. Curr Neurovasc Res 2023; 20:480-492. [PMID: 37642006 DOI: 10.2174/1567202620666230828092916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Increasing evidence shows that electroacupuncture pretreatment (EP) plays a crucial role in cerebral ischemia-reperfusion (I/R) injury, and cerebral I/R injury is the most serious complication of ischemic stroke treatment. The role of miR-155-5p in cerebral I/R injury has been studied, but the regulation of EP on miR-155-5p has not been reported. METHODS The middle cerebral artery occlusion (MCAO) mice were used to investigate the role of EP in cerebral I/R injury. Longa and modified neurological severity scores (mNSS) were used to evaluate neurological impairment. HE staining and TUNEL staining were used to evaluate brain injury. The expressions of miR-155-5p, Yin Yang 1 (YY1) and p53 were detected by qRT-PCR. The expressions of related proteins were detected by western blot. The binding of YY1 to miR- 155-5p was verified by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Mice brain microvascular endothelial cells (BMECs) were isolated and cultured for in vitro experiments. Oxygen-glucose deprivation/reoxygenation (OGD/R) was used to verify the role of YY1, p53 and miR-155-5p in cerebral I/R injury in vitro. RESULTS MCAO modeling induced brain injury, apoptosis, and increased levels of miR-155-5p, YY1, and p53. EP markedly alleviated brain injury and reduced levels of miR-155-5p, p53, and YY1. miR-155 agomir markedly increased the expression of miR-155-5p and p53. miR-155 antagomir decreased the levels of miR-155-5p and p53. Dual-luciferase reporter and ChIP assay verified that YY1 regulated miR-155-5p expression. YY1 shNRA greatly decreased miR-155-5p and p53. Inhibition of p53 decreased miR-155-5p expression. Both miR-155-5p inhibitor and YY1 shRNA promoted proliferation, inhibited apoptosis, and decreased levels of ICAM-1 and Eselectin of OGD/R-treated BMECs. Inhibition of p53 strengthened the effect of miR-155-5p inhibitor and YY1 shNRA on BMECs. CONCLUSION Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury by regulating the YY1/p53/miR-155-5p axis.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Ying Wang
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Xiang Zhou
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Hui Wang
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
27
|
Yan Y, Fan G, Liao X, Zhao X. Research trends and hotspots on connectomes from 2005 to 2021: A bibliometric and latent Dirichlet allocation application study. Front Neurosci 2022; 16:1046562. [PMID: 36620450 PMCID: PMC9814013 DOI: 10.3389/fnins.2022.1046562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to conduct a bibliometric analysis of publications on connectomes and illustrate its trends and hotspots using a machine-learning-based text mining algorithm. Methods Documents were retrieved from the Web of Science Core Collection (WoSCC) and Scopus databases and analyzed in Rstudio 1.3.1. Through quantitative and qualitative methods, the most productive and impactful academic journals in the field of connectomes were compared in terms of the total number of publications and h-index over time. Meanwhile, the countries/regions and institutions involved in connectome research were compared, as well as their scientific collaboration. The study analyzed topics and research trends by R package "bibliometrix." The major topics of connectomes were classified by Latent Dirichlet allocation (LDA). Results A total of 14,140 publications were included in the study. NEUROIMAGE ranked first in terms of publication volume (1,427 articles) and impact factor (h-index:122) among all the relevant journals. The majority of articles were published by developed countries, with the United States having the most. Harvard Medical School and the University of Pennsylvania were the two most productive institutions. Neuroimaging analysis technology and brain functions and diseases were the two major topics of connectome research. The application of machine learning, deep learning, and graph theory analysis in connectome research has become the current trend, while an increasing number of studies were concentrating on dynamic functional connectivity. Meanwhile, researchers have begun investigating alcohol use disorders and migraine in terms of brain connectivity in the past 2 years. Conclusion This study illustrates a comprehensive overview of connectome research and provides researchers with critical information for understanding the recent trends and hotspots of connectomes.
Collapse
Affiliation(s)
- Yangye Yan
- Tongji University School of Medicine, Shanghai Eastern Hospital Affiliated to Tongji University, Shanghai, China
| | - Guoxin Fan
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,School of Biomedical Engineering, School of Medicine, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China,Department of Spine Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Liao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,School of Biomedical Engineering, School of Medicine, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China,*Correspondence: Xiang Liao,
| | - Xudong Zhao
- Clinical Research Center for Mental Disorders, Chinese-German Institute of Mental Health, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China,Xudong Zhao,
| |
Collapse
|
28
|
Noonan MP, Geddes MR, Mars RB, Fellows LK. Characterization of structural and functional network organization after focal prefrontal lesions in humans in proof of principle study. Brain Struct Funct 2022; 227:3027-3041. [PMID: 36207644 DOI: 10.1007/s00429-022-02570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022]
Abstract
Lesion research classically maps behavioral effects of focal damage to the directly injured brain region. However, such damage can also have distant effects that can be assessed with modern imaging methods. Furthermore, the combination and comparison of imaging methods in a lesion model may shed light on the biological basis of structural and functional networks in the healthy brain. We characterized network organization assessed with multiple MRI imaging modalities in 13 patients with chronic focal damage affecting either superior or inferior frontal gyrus (SFG, IFG) and 18 demographically matched healthy Controls. We first defined structural and functional network parameters in Controls and then investigated grey matter (GM) and white matter (WM) differences between patients and Controls. Finally, we examined the differences in functional coupling to large-scale resting state networks (RSNs). The results suggest lesions are associated with widespread within-network GM loss at distal sites, yet leave WM and RSNs relatively preserved. Lesions to either prefrontal region also had a similar relative level of impact on structural and functional networks. The findings provide initial evidence for causal contributions of specific prefrontal regions to brain networks in humans that will ultimately help to refine models of the human brain.
Collapse
Affiliation(s)
- Maryann P Noonan
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford, OX2 6HG, UK.
| | - Maiya R Geddes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.,Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Rogier B Mars
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Njmegen, Nijmegen, The Netherlands
| | - Lesley K Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
29
|
Erickson BA, Kim B, Deck BL, Pustina D, DeMarco AT, Dickens JV, Kelkar AS, Turkeltaub PE, Medaglia JD. Preserved anatomical bypasses predict variance in language functions after stroke. Cortex 2022; 155:46-61. [PMID: 35964357 PMCID: PMC11697986 DOI: 10.1016/j.cortex.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/11/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
The severity of post-stroke aphasia is related to damage to white matter connections. However, neural signaling can route not only through direct connections, but also along multi-step network paths. When brain networks are damaged by stroke, paths can bypass around the damage to restore communication. The shortest network paths between regions could be the most efficient routes for mediating bypasses. We examined how shortest-path bypasses after left hemisphere strokes were related to language performance. Regions within and outside of the canonical language network could be important in aphasia recovery. Therefore, we innovated methods to measure the influence of bypasses in the whole brain. Distinguishing bypasses from all residual shortest paths is difficult without pre-stroke imaging. We identified bypasses by finding shortest paths in subjects with stroke that were longer than the most reliably observed connections in age-matched control networks. We tested whether features of those bypasses predicted scores in four orthogonal dimensions of language performance derived from a principal components analysis of a battery of language tasks. The features were the length of each bypass in steps, and how many bypasses overlapped on each individual direct connection. We related these bypass features to language factors using support vector regression, a technique that extracts robust relationships in high-dimensional data analysis. The support vector regression parameters were tuned using grid-search cross-validation. We discovered that the length of bypasses reliably predicted variance in lexical production (R2 = .576) and auditory comprehension scores (R2 = .164). Bypass overlaps reliably predicted variance in Lexical Production scores (R2 = .247). The predictive elongation features revealed that bypass efficiency along the dorsal stream and ventral stream were most related to Lexical Production and Auditory Comprehension, respectively. Among the predictive bypass overlaps, increased bypass routing through the right hemisphere putamen was negatively related to lexical production ability.
Collapse
Affiliation(s)
- B A Erickson
- Department of Psychology, Drexel University, Philadelphia, PA, USA.
| | - B Kim
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | - B L Deck
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | | | - A T DeMarco
- Department of Rehabilitation Medicine, Georgetown University, Washington, DC, USA
| | - J V Dickens
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - A S Kelkar
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | - P E Turkeltaub
- Department of Rehabilitation Medicine, Georgetown University, Washington, DC, USA; Department of Neurology, Georgetown University, Washington, DC, USA; MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - J D Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, USA; Department of Neurology, Drexel University, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Sato Y, Schmitt O, Ip Z, Rabiller G, Omodaka S, Tominaga T, Yazdan-Shahmorad A, Liu J. Pathological changes of brain oscillations following ischemic stroke. J Cereb Blood Flow Metab 2022; 42:1753-1776. [PMID: 35754347 PMCID: PMC9536122 DOI: 10.1177/0271678x221105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Brain oscillations recorded in the extracellular space are among the most important aspects of neurophysiology data reflecting the activity and function of neurons in a population or a network. The signal strength and patterns of brain oscillations can be powerful biomarkers used for disease detection and prediction of the recovery of function. Electrophysiological signals can also serve as an index for many cutting-edge technologies aiming to interface between the nervous system and neuroprosthetic devices and to monitor the efficacy of boosting neural activity. In this review, we provided an overview of the basic knowledge regarding local field potential, electro- or magneto- encephalography signals, and their biological relevance, followed by a summary of the findings reported in various clinical and experimental stroke studies. We reviewed evidence of stroke-induced changes in hippocampal oscillations and disruption of communication between brain networks as potential mechanisms underlying post-stroke cognitive dysfunction. We also discussed the promise of brain stimulation in promoting post stroke functional recovery via restoring neural activity and enhancing brain plasticity.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Oliver Schmitt
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Zachary Ip
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| | - Shunsuke Omodaka
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| |
Collapse
|
31
|
Holguin JA, Margetis JL, Narayan A, Yoneoka GM, Irimia A. Vascular Cognitive Impairment After Mild Stroke: Connectomic Insights, Neuroimaging, and Knowledge Translation. Front Neurosci 2022; 16:905979. [PMID: 35937885 PMCID: PMC9347227 DOI: 10.3389/fnins.2022.905979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Contemporary stroke assessment protocols have a limited ability to detect vascular cognitive impairment (VCI), especially among those with subtle deficits. This lesser-involved categorization, termed mild stroke (MiS), can manifest compromised processing speed that negatively impacts cognition. From a neurorehabilitation perspective, research spanning neuroimaging, neuroinformatics, and cognitive neuroscience supports that processing speed is a valuable proxy for complex neurocognitive operations, insofar as inefficient neural network computation significantly affects daily task performance. This impact is particularly evident when high cognitive loads compromise network efficiency by challenging task speed, complexity, and duration. Screening for VCI using processing speed metrics can be more sensitive and specific. Further, they can inform rehabilitation approaches that enhance patient recovery, clarify the construct of MiS, support clinician-researcher symbiosis, and further clarify the occupational therapy role in targeting functional cognition. To this end, we review relationships between insult-derived connectome alterations and VCI, and discuss novel clinical approaches for identifying disruptions of neural networks and white matter connectivity. Furthermore, we will frame knowledge translation efforts to leverage insights from cutting-edge structural and functional connectomics research. Lastly, we highlight how occupational therapists can provide expertise as knowledge brokers acting within their established scope of practice to drive substantive clinical innovation.
Collapse
Affiliation(s)
- Jess A. Holguin
- T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - John L. Margetis
- T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Anisha Narayan
- Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Grant M. Yoneoka
- John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Andrei Irimia
- Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, United States
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
32
|
Chen Q, Shen W, Sun H, Zhang H, Liu C, Chen Z, Yu L, Cai X, Ke J, Li L, Zhang L, Fang Q. The effect of coupled inhibitory-facilitatory repetitive transcranial magnetic stimulation on shaping early reorganization of the motor network after stroke. Brain Res 2022; 1790:147959. [PMID: 35654120 DOI: 10.1016/j.brainres.2022.147959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Neural plasticity is a major factor driving cortical reorganization after stroke. This study aimed to evaluate functional connectivity (FC) changes in the cortical motor network after coupled inhibitory-facilitatory repetitive transcranial magnetic stimulation (rTMS) treatment and to assess the correlation between FC changes and functional recovery, further characterizing the neural mechanisms underlying the beneficial effects of rTMS. We randomly divided 63 patients with acute stroke into four groups: (1) Group A received coupled inhibitory-facilitatory rTMS [1 Hz over the contralesional primary motor cortex (M1) and 10 Hz over ipsilesional M1]; (2) Group B received a contralesional sham stimulation and ipsilesional 10 Hz stimulation; (3) Group C received a contralesional 1 Hz rTMS and ipsilesional sham stimulation; and (4) Group D received bilateral sham stimulation only. Standardized rehabilitation therapy was performed immediately after rTMS, and each group was treated with their respective treatment modalities for 4 weeks. Twenty-four hours before and after the intervention, participants underwent resting-state functional magnetic resonance imaging. Additional functional assessments were conducted at baseline, after treatment, and at the 3 month follow-up. The rTMS treatment significantly changed the FCs of intra- and inter-hemispheric cortical motor networks in the rTMS groups (A and B) compared with the sham group (Group D). This effect was more pronounced in Group A, which displayed a changed FC between the contralesional postcentral gyrus and contralesional superior parietal gyrus, between the contralesional precentral gyrus and contralesional postcentral gyrus, and between the ipsilesional postcentral gyrus and contralesional superior parietal gyrus, when compared with Groups B and C. Importantly, FC changes were significantly correlated with improvement of motor function. In the early stages of ischemic stroke, coupled rTMS was more conducive to motor recovery by modulating the FCs of intra-hemispheric and inter-hemispheric motor networks. Our results suggested that FC changes were related to motor function recovery for early-stage cerebral stroke patients treated with coupled rTMS. These findings could help to understand the mechanism of coupled rTMS and further the use of this therapy as an adjunct rehabilitation technique in motor recovery.
Collapse
Affiliation(s)
- Qingmei Chen
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China; Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Wenjun Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haiwei Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Hanjun Zhang
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Chuandao Liu
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Zhiguo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Xiuying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Li Li
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China.
| | - Lichi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
33
|
Idesis S, Faskowitz J, Betzel RF, Corbetta M, Sporns O, Deco G. Edge-centric analysis of stroke patients: An alternative approach for biomarkers of lesion recovery. Neuroimage Clin 2022; 35:103055. [PMID: 35661469 PMCID: PMC9163596 DOI: 10.1016/j.nicl.2022.103055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Most neuroimaging studies of post-stroke recovery rely on analyses derived from standard node-centric functional connectivity to map the distributed effects in stroke patients. Here, given the importance of nonlocal and diffuse damage, we use an edge-centric approach to functional connectivity in order to provide an alternative description of the effects of this disorder. These techniques allow for the rendering of metrics such as normalized entropy, which describes the diversity of edge communities at each node. Moreover, the approach enables the identification of high amplitude co-fluctuations in fMRI time series. We found that normalized entropy is associated with stroke lesion severity and continually increases across the time of patients' recovery. Furthermore, high amplitude co-fluctuations not only relate to the lesion severity but are also associated with patients' level of recovery. The current study is the first edge-centric application for a clinical population in a longitudinal dataset and demonstrates how a different perspective for functional data analysis can further characterize topographic modulations of brain dynamics.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain.
| | - Joshua Faskowitz
- Department of Psychological and Brain Science, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Richard F Betzel
- Department of Psychological and Brain Science, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States; Network Science Institute, Indiana University, Bloomington, IN 47405, United States
| | - Maurizio Corbetta
- Padova Neuroscience Center (PNC), University of Padova, via Orus 2/B, 35129 Padova, Italy; Department of Neuroscience (DNS), University of Padova, via Giustiniani 2, 35128 Padova, Italy; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, United States; Department of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, United States; VIMM, Venetian Institute of Molecular Medicine (VIMM), Biomedical Foundation, via Orus 2, 35129 Padova, Italy
| | - Olaf Sporns
- Department of Psychological and Brain Science, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States; Network Science Institute, Indiana University, Bloomington, IN 47405, United States
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
34
|
Hua W, Zhang X, Tang H, Li C, Han N, Li H, Ma H, Liu P, Zhou Y, Zhang H, Zhang Y, Zhang L, Li Z, Shen H, Xing P, Yu L, Zhang Y, Zhou Y, Yang P, Liu J. AKG Attenuates Cerebral Ischemia-Reperfusion Injury through c-Fos/IL-10/Stat3 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6839385. [PMID: 35592527 PMCID: PMC9113869 DOI: 10.1155/2022/6839385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/25/2022]
Abstract
Inflammation is dominant in the pathogenesis of ischemic stroke (IS). Alpha-ketoglutarate (AKG), according to previous studies, has demonstrated a variety of pharmacological effects such as antioxidation and inhibitive inflammation activities. However, whether AKG ameliorates cerebral ischemic injury, as well as the underlying molecular events, is still unclear. Therefore, the effect and underlying mechanisms of AKG on ischemic brain injury should be identified. The study established a cerebral ischemia-reperfusion (I/R) model in mice as well as an oxygen-glucose deprivation/reperfusion (OGD/R) model in SH-SY5Y cells, respectively. It was observed that AKG markedly suppressed infarction volume and neuronal injuries and improved the neurological score in vivo. Moreover, AKG reduced the inflammatory response and lowered the expression of proinflammatory cytokines. In vitro, AKG treatment strongly inhibited OGD/R-induced neuronal injury and the proinflammatory factors. It was also found that the increased SOD and GSH levels, as well as the lower ROS levels, showed that AKG reduced oxidative stress in OGD/R-treated SY-SY5Y cells. Mechanistically, AKG largely promoted IL-10 expression in ischemic brain injury and OGD/R-induced neuronal injury. Furthermore, IL-10 silencing neutralized the protective effect of AKG on inflammation. Notably, it was discovered that AKG could upregulate IL-10 expression by promoting the translocation of c-Fos from the cytoplasm to the nucleus. The results indicated that AKG demonstrated neuroprotection on cerebral ischemia while inhibiting inflammation through c-Fos/IL-10/stat3 pathway.
Collapse
Affiliation(s)
- Weilong Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haishuang Tang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ning Han
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - He Li
- Neurovascular Center, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Hongyu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pei Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yihan Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongjian Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongxin Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zifu Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongjian Shen
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Xing
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Longjuan Yu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongwei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
35
|
Dissecting neuropathic from poststroke pain: the white matter within. Pain 2022; 163:765-778. [PMID: 35302975 DOI: 10.1097/j.pain.0000000000002427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Poststroke pain (PSP) is a heterogeneous term encompassing both central neuropathic (ie, central poststroke pain [CPSP]) and nonneuropathic poststroke pain (CNNP) syndromes. Central poststroke pain is classically related to damage in the lateral brainstem, posterior thalamus, and parietoinsular areas, whereas the role of white matter connecting these structures is frequently ignored. In addition, the relationship between stroke topography and CNNP is not completely understood. In this study, we address these issues comparing stroke location in a CPSP group of 35 patients with 2 control groups: 27 patients with CNNP and 27 patients with stroke without pain. Brain MRI images were analyzed by 2 complementary approaches: an exploratory analysis using voxel-wise lesion symptom mapping, to detect significant voxels damaged in CPSP across the whole brain, and a hypothesis-driven, region of interest-based analysis, to replicate previously reported sites involved in CPSP. Odds ratio maps were also calculated to demonstrate the risk for CPSP in each damaged voxel. Our exploratory analysis showed that, besides known thalamic and parietoinsular areas, significant voxels carrying a high risk for CPSP were located in the white matter encompassing thalamoinsular connections (one-tailed threshold Z > 3.96, corrected P value <0.05, odds ratio = 39.7). These results show that the interruption of thalamocortical white matter connections is an important component of CPSP, which is in contrast with findings from nonneuropathic PSP and from strokes without pain. These data can aid in the selection of patients at risk to develop CPSP who could be candidates to pre-emptive or therapeutic interventions.
Collapse
|
36
|
Merino-Serrais P, Plaza-Alonso S, Hellal F, Valero-Freitag S, Kastanauskaite A, Muñoz A, Plesnila N, DeFelipe J. Microanatomical study of pyramidal neurons in the contralesional somatosensory cortex after experimental ischemic stroke. Cereb Cortex 2022; 33:1074-1089. [PMID: 35353195 PMCID: PMC9930620 DOI: 10.1093/cercor/bhac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
At present, many studies support the notion that after stroke, remote regions connected to the infarcted area are also affected and may contribute to functional outcome. In the present study, we have analyzed possible microanatomical alterations in pyramidal neurons from the contralesional hemisphere after induced stroke. We performed intracellular injections of Lucifer yellow in pyramidal neurons from layer III in the somatosensory cortex of the contralesional hemisphere in an ischemic stroke mouse model. A detailed 3-dimensional analysis of the neuronal complexity and morphological alterations of dendritic spines was then performed. Our results demonstrate that pyramidal neurons from layer III in the somatosensory cortex of the contralesional hemisphere show selective changes in their dendritic arbors, namely, less dendritic complexity of the apical dendritic arbor-but no changes in the basal dendritic arbor. In addition, we found differences in spine morphology in both apical and basal dendrites comparing the contralesional hemisphere with the lesional hemisphere. Our results show that pyramidal neurons of remote areas connected to the infarct zone exhibit a series of selective changes in neuronal complexity and morphological distribution of dendritic spines, supporting the hypothesis that remote regions connected to the peri-infarcted area are also affected after stroke.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Corresponding author: Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcón, Madrid 28223/Instituto Cajal (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain.
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
| | - Farida Hellal
- Institute for Stroke and Dementia Research (ISD), University of Munich, Munich 81337, Germany,iTERM, Helmholtz center, Munich 85764, Germany
| | - Susana Valero-Freitag
- Institute for Stroke and Dementia Research (ISD), University of Munich, Munich 81337, Germany
| | - Asta Kastanauskaite
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
| | - Alberto Muñoz
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain,Departamento de Biología Celular, Universidad Complutense, Madrid 28040, Spain
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University of Munich, Munich 81337, Germany,Munich Cluster of Systems Neurology (Synergy), Munich 85764, Germany
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. (CIBERNED), ISCIII, Madrid 28031, Spain
| |
Collapse
|
37
|
Gongcheng X, Congcong H, Jiahui Y, Wenhao L, Hui X, Xiangyang L, Zengyong L, Yonghui W, Daifa W. Effective brain network analysis in unilateral and bilateral upper limb exercise training in subjects with stroke. Med Phys 2022; 49:3333-3346. [PMID: 35262918 DOI: 10.1002/mp.15570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Knowing the patterns of brain activation that occur and networks involved under different interventions is important for motor recovery in subjects with stroke. This study aimed to study the patterns of brain activation and networks in two interventions, affected upper limb side and bilateral exercise training, using concurrent functional near-infrared spectroscopy (fNIRS) imaging. METHODS Thirty-two patients in the early subacute stage were randomly divided into two groups: unilateral and bilateral groups. The patients in the unilateral group underwent isokinetic muscle strength training on the affected upper limb side and patients in the bilateral group underwent bilateral upper limb training. Oxyhemoglobin and deoxyhemoglobin concentration changes (ΔHbO2 and ΔHbR, respectively) were recorded in the ipsilateral and contralateral prefrontal cortex (IPFC and CPFC, respectively) and ipsilateral and contralateral motor cortex (IMC and CMC, respectively) by fNIRS equipment in the resting state and training conditions. The phase information of a 0.01-0.08 Hz fNIRS signal was extracted by the wavelet transform method. Dynamic Bayesian inference was adopted to calculate the coupling strength and direction of effective connectivity. The network threshold was determined by surrogate signal method, the global (weighted clustering coefficient, global efficiency and small-worldness) and local (degree, betweenness centrality and local efficiency) network metrics were calculated. The degree of cerebral lateralization was also compared between the two groups. RESULTS The results of covariance analysis showed that, compared with bilateral training, the coupling effect of CMC→IMC was significantly enhanced (p = 0.03); also, the local efficiency of the IMC (p = 0.01), IPFC (p<0.001), and CPFC (p = 0.006) and the hemispheric autonomy index of IPFC (p = 0.007) were significantly increased in unilateral training. In addition, there was a significant positive correlation between the coupling intensity of the inter-hemispheric motor area and the shifted local efficiency. CONCLUSIONS The results indicated that unilateral upper limb training could more effectively promote the interaction and balance of bilateral motor hemispheres and help brain reorganization in the IMC and prefrontal cortex in stroke patients. The method provided in this study could be used to evaluate dynamic brain activation and network reorganization under different interventions, thus improving the strategy of rehabilitation intervention in a timely manner and resulting in better motor recovery. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xu Gongcheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Huo Congcong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China
| | - Yin Jiahui
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Li Wenhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China
| | - Xie Hui
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Li Xiangyang
- Nanchang Key Laboratory of Medical and Technology Research, Nanchang University, Nanchang, 330031, China
| | - Li Zengyong
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Wang Yonghui
- Department of physical medicine and rehabilitation, Qilu hospital, Shandong University, Jinan, 250061, China
| | - Wang Daifa
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
38
|
Van der Linden A, Hoehn M. Monitoring Neuronal Network Disturbances of Brain Diseases: A Preclinical MRI Approach in the Rodent Brain. Front Cell Neurosci 2022; 15:815552. [PMID: 35046778 PMCID: PMC8761853 DOI: 10.3389/fncel.2021.815552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Functional and structural neuronal networks, as recorded by resting-state functional MRI and diffusion MRI-based tractography, gain increasing attention as data driven whole brain imaging methods not limited to the foci of the primary pathology or the known key affected regions but permitting to characterize the entire network response of the brain after disease or injury. Their connectome contents thus provide information on distal brain areas, directly or indirectly affected by and interacting with the primary pathological event or affected regions. From such information, a better understanding of the dynamics of disease progression is expected. Furthermore, observation of the brain's spontaneous or treatment-induced improvement will contribute to unravel the underlying mechanisms of plasticity and recovery across the whole-brain networks. In the present review, we discuss the values of functional and structural network information derived from systematic and controlled experimentation using clinically relevant animal models. We focus on rodent models of the cerebral diseases with high impact on social burdens, namely, neurodegeneration, and stroke.
Collapse
Affiliation(s)
- Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mathias Hoehn
- Research Center Jülich, Institute 3 for Neuroscience and Medicine, Jülich, Germany
- *Correspondence: Mathias Hoehn
| |
Collapse
|
39
|
Complete functional recovery in a child after endovascular treatment of basilar artery occlusion caused by spontaneous dissection: a case report. Childs Nerv Syst 2022; 38:1605-1612. [PMID: 34893933 PMCID: PMC9325841 DOI: 10.1007/s00381-021-05428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 10/26/2022]
Abstract
Stroke caused by dissection of arteries of the vertebrobasilar system in children is still poorly investigated in terms of etiology, means of treatment, course of disease, and prognosis. The aim of this report was to describe the unusual course of a spontaneous dissection of the basilar artery (BA) in a child treated with endovascular techniques and to point out that the plasticity of the brain stem can fully compensate for structural damage caused by stroke. We report the case of a 15-year-old boy who suffered a wake-up stroke with BA occlusion caused by spontaneous dissection. A blood clot was aspirated from the false lumen and the true lumen re-opened, but the patient deteriorated a few hours later, and repeated angiography revealed that the intimal flap was detached, occluding the BA again. The lumen of BA was then reconstructed by a stent. Despite a large pons infarction, the patient was completely recovered 11 months after the onset. The case was analyzed with angiograms and magnetic resonance imaging, macroscopic and microscopic pathological analysis, computed tomographic angiography, magnetic resonance-based angiography, and diffusion tensor imaging. This case illustrates that applied endovascular techniques and intensive care measures can alter the course of potentially fatal brain stem infarction. Our multimodal analysis gives new insight into the anatomical basis for the plasticity mechanism of the brain stem.
Collapse
|
40
|
Yang C, Zhang T, Huang K, Xiong M, Liu H, Wang P, Zhang Y. Increased both cortical activation and functional connectivity after transcranial direct current stimulation in patients with post-stroke: A functional near-infrared spectroscopy study. Front Psychiatry 2022; 13:1046849. [PMID: 36569623 PMCID: PMC9784914 DOI: 10.3389/fpsyt.2022.1046849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous studies have shown that cognitive impairment is common after stroke. Transcranial direct current stimulation (tDCS) is a promising tool for rehabilitating cognitive impairment. This study aimed to investigate the effects of tDCS on the rehabilitation of cognitive impairment in patients with stroke. METHODS Twenty-two mild-moderate post-stroke patients with cognitive impairments were treated with 14 tDCS sessions. A total of 14 healthy individuals were included in the control group. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). Cortical activation was assessed using functional near-infrared spectroscopy (fNIRS) during the verbal fluency task (VFT). RESULTS The cognitive function of patients with stroke, as assessed by the MMSE and MoCA scores, was lower than that of healthy individuals but improved after tDCS. The cortical activation of patients with stroke was lower than that of healthy individuals in the left superior temporal cortex (lSTC), right superior temporal cortex (rSTC), right dorsolateral prefrontal cortex (rDLPFC), right ventrolateral prefrontal cortex (rVLPFC), and left ventrolateral prefrontal cortex (lVLPFC) cortical regions. Cortical activation increased in the lSTC cortex after tDCS. The functional connectivity (FC) between the cerebral hemispheres of patients with stroke was lower than that of healthy individuals but increased after tDCS. CONCLUSION The cognitive and brain functions of patients with mild-to-moderate stroke were damaged but recovered to a degree after tDCS. Increased cortical activation and increased FC between the bilateral cerebral hemispheres measured by fNIRS are promising biomarkers to assess the effectiveness of tDCS in stroke.
Collapse
Affiliation(s)
- Caihong Yang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,School of Psychology, Central China Normal University, Wuhan, Hubei, China
| | - Tingyu Zhang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kaiqi Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Menghui Xiong
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huiyu Liu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,Department of Rehabilitation Medicine, Tianyang District People's Hospital, Baise, Guangxi, China
| | - Yan Zhang
- School of Educational Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
41
|
Rapid and Bihemispheric Reorganization of Neuronal Activity in Premotor Cortex after Brain Injury. J Neurosci 2021; 41:9112-9128. [PMID: 34556488 PMCID: PMC8570830 DOI: 10.1523/jneurosci.0196-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Brain injuries cause hemodynamic changes in several distant, spared areas from the lesion. Our objective was to better understand the neuronal correlates of this reorganization in awake, behaving female monkeys. We used reversible inactivation techniques to “injure” the primary motor cortex, while continuously recording neuronal activity of the ventral premotor cortex in the two hemispheres, before and after the onset of behavioral impairments. Inactivation rapidly induced profound alterations of neuronal discharges that were heterogeneous within each and across the two hemispheres, occurred during movements of either the affected or nonaffected arm, and varied during different phases of grasping. Our results support that extensive, and much more complex than expected, neuronal reorganization takes place in spared areas of the bihemispheric cortical network involved in the control of hand movements. This broad pattern of reorganization offers potential targets that should be considered for the development of neuromodulation protocols applied early after brain injury. SIGNIFICANCE STATEMENT It is well known that brain injuries cause changes in several distant, spared areas of the network, often in the premotor cortex. This reorganization is greater early after the injury and the magnitude of early changes correlates with impairments. However, studies to date have used noninvasive brain imaging approaches or have been conducted in sedated animals. Therefore, we do not know how brain injuries specifically affect the activity of neurons during the generation of movements. Our study clearly shows how a lesion rapidly impacts neurons in the premotor cortex of both hemispheres. A better understanding of these complex changes can help formulate hypotheses for the development of new treatments that specifically target neuronal reorganization induced by lesions in the brain.
Collapse
|
42
|
Cortese AM, Cacciante L, Schuler AL, Turolla A, Pellegrino G. Cortical Thickness of Brain Areas Beyond Stroke Lesions and Sensory-Motor Recovery: A Systematic Review. Front Neurosci 2021; 15:764671. [PMID: 34803596 PMCID: PMC8595399 DOI: 10.3389/fnins.2021.764671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The clinical outcome of patients suffering from stroke is dependent on multiple factors. The features of the lesion itself play an important role but clinical recovery is remarkably influenced by the plasticity mechanisms triggered by the stroke and occurring at a distance from the lesion. The latter translate into functional and structural changes of which cortical thickness might be easy to quantify one of the main players. However, studies on the changes of cortical thickness in brain areas beyond stroke lesion and their relationship to sensory-motor recovery are sparse. Objectives: To evaluate the effects of cerebral stroke on cortical thickness (CT) beyond the stroke lesion and its association with sensory-motor recovery. Materials and Methods: Five electronic databases (PubMed, Embase, Web of Science, Scopus and the Cochrane Library) were searched. Methodological quality of the included studies was assessed with the Newcastle-Ottawa Scale for non-randomized controlled trials and the Risk of Bias Cochrane tool for randomized controlled trials. Results: The search strategy retrieved 821 records, 12 studies were included and risk of bias assessed. In most of the included studies, cortical thinning was seen at the ipsilesional motor area (M1). Cortical thinning can occur beyond the stroke lesion, typically in regions anatomically connected because of anterograde degeneration. Nonetheless, studies also reported cortical thickening of regions of the unaffected hemisphere, likely related to compensatory plasticity. Some studies revealed a significant correlation between changes in cortical thickness of M1 or somatosensory (S1) cortical areas and motor function recovery. Discussion and Conclusions: Following a stroke, changes in cortical thickness occur both in regions directly connected to the stroke lesion and in contralateral hemisphere areas as well as in the cerebellum. The underlying mechanisms leading to these changes in cortical thickness are still to be fully understood and further research in the field is needed. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020200539; PROSPERO 2020, identifier: CRD42020200539.
Collapse
Affiliation(s)
- Anna Maria Cortese
- Laboratory of Rehabilitation Technologies, San Camillo Istituto di Ricovero e Cura a Carattere Scientifico, Venice, Italy
| | - Luisa Cacciante
- Laboratory of Rehabilitation Technologies, San Camillo Istituto di Ricovero e Cura a Carattere Scientifico, Venice, Italy
| | - Anna-Lisa Schuler
- Laboratory of Clinical Imaging and Stimulation, San Camillo Istituto di Ricovero e Cura a Carattere Scientifico, Venice, Italy
| | - Andrea Turolla
- Laboratory of Rehabilitation Technologies, San Camillo Istituto di Ricovero e Cura a Carattere Scientifico, Venice, Italy
| | - Giovanni Pellegrino
- Laboratory of Clinical Imaging and Stimulation, San Camillo Istituto di Ricovero e Cura a Carattere Scientifico, Venice, Italy
| |
Collapse
|
43
|
Aswendt M, Green C, Sadler R, Llovera G, Dzikowski L, Heindl S, Gomez de Agüero M, Diedenhofen M, Vogel S, Wieters F, Wiedermann D, Liesz A, Hoehn M. The gut microbiota modulates brain network connectivity under physiological conditions and after acute brain ischemia. iScience 2021; 24:103095. [PMID: 34622150 PMCID: PMC8479691 DOI: 10.1016/j.isci.2021.103095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/14/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome has been implicated as a key regulator of brain function in health and disease. But the impact of gut microbiota on functional brain connectivity is unknown. We used resting-state functional magnetic resonance imaging in germ-free and normally colonized mice under naive conditions and after ischemic stroke. We observed a strong, brain-wide increase of functional connectivity in germ-free animals. Graph theoretical analysis revealed significant higher values in germ-free animals, indicating a stronger and denser global network but with less structural organization. Breakdown of network function after stroke equally affected germ-free and colonized mice. Results from histological analyses showed changes in dendritic spine densities, as well as an immature microglial phenotype, indicating impaired microglia-neuron interaction in germ-free mice as potential cause of this phenomenon. These results demonstrate the substantial impact of bacterial colonization on brain-wide function and extend our so far mainly (sub) cellular understanding of the gut-brain axis.
Collapse
Affiliation(s)
- Markus Aswendt
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital, 50923 Cologne, Germany
| | - Claudia Green
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Rebecca Sadler
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Lauren Dzikowski
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Mercedes Gomez de Agüero
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
- Institute of Systems Immunology, Julius-Maximilians University of Würzburg, 97070 Würzburg, Germany
| | - Michael Diedenhofen
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Stefanie Vogel
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Frederique Wieters
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital, 50923 Cologne, Germany
| | - Dirk Wiedermann
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Feodor-Lynen Strasse 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 80807 Munich, Germany
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| |
Collapse
|
44
|
Colamarino E, de Seta V, Masciullo M, Cincotti F, Mattia D, Pichiorri F, Toppi J. Corticomuscular and Intermuscular Coupling in Simple Hand Movements to Enable a Hybrid Brain-Computer Interface. Int J Neural Syst 2021; 31:2150052. [PMID: 34590990 DOI: 10.1142/s0129065721500520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hybrid Brain-Computer Interfaces (BCIs) for upper limb rehabilitation after stroke should enable the reinforcement of "more normal" brain and muscular activity. Here, we propose the combination of corticomuscular coherence (CMC) and intermuscular coherence (IMC) as control features for a novel hybrid BCI for rehabilitation purposes. Multiple electroencephalographic (EEG) signals and surface electromyography (EMG) from 5 muscles per side were collected in 20 healthy participants performing finger extension (Ext) and grasping (Grasp) with both dominant and non-dominant hand. Grand average of CMC and IMC patterns showed a bilateral sensorimotor area as well as multiple muscles involvement. CMC and IMC values were used as features to classify each task versus rest and Ext versus Grasp. We demonstrated that a combination of CMC and IMC features allows for classification of both movements versus rest with better performance (Area Under the receiver operating characteristic Curve, AUC) for the Ext movement (0.97) with respect to Grasp (0.88). Classification of Ext versus Grasp also showed high performances (0.99). All in all, these preliminary findings indicate that the combination of CMC and IMC could provide for a comprehensive framework for simple hand movements to eventually be employed in a hybrid BCI system for post-stroke rehabilitation.
Collapse
Affiliation(s)
- Emma Colamarino
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, Rome 00185, Italy.,Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy
| | - Valeria de Seta
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, Rome 00185, Italy.,Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy
| | | | - Febo Cincotti
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, Rome 00185, Italy.,Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy
| | - Donatella Mattia
- Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy
| | | | - Jlenia Toppi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, Rome 00185, Italy.,Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy
| |
Collapse
|
45
|
Neuroplasticity of Acupuncture for Stroke: An Evidence-Based Review of MRI. Neural Plast 2021; 2021:2662585. [PMID: 34456996 PMCID: PMC8397547 DOI: 10.1155/2021/2662585] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Acupuncture is widely recognized as a potentially effective treatment for stroke rehabilitation. Researchers in this area are actively investigating its therapeutic mechanisms. Magnetic resonance imaging (MRI), as a noninvasive, high anatomical resolution technique, has been employed to investigate neuroplasticity on acupuncture in stroke patients from a system level. However, there is no review on the mechanism of acupuncture treatment for stroke based on MRI. Therefore, we aim to summarize the current evidence about this aspect and provide useful information for future research. After searching PubMed, Web of Science, and Embase databases, 24 human and five animal studies were identified. This review focuses on the evidence on the possible mechanisms underlying mechanisms of acupuncture therapy in treating stroke by regulating brain plasticity. We found that acupuncture reorganizes not only motor-related network, including primary motor cortex (M1), premotor cortex, supplementary motor area (SMA), frontoparietal network (LFPN and RFPN), and sensorimotor network (SMN), as well as default mode network (aDMN and pDMN), but also language-related brain areas including inferior frontal gyrus frontal, temporal, parietal, and occipital lobes, as well as cognition-related brain regions. In addition, acupuncture therapy can modulate the function and structural plasticity of post-stroke, which may be linked to the mechanism effect of acupuncture.
Collapse
|
46
|
Takahashi H, Asahina R, Fujioka M, Matsui TK, Kato S, Mori E, Hioki H, Yamamoto T, Kobayashi K, Tsuboi A. Ras-like Gem GTPase induced by Npas4 promotes activity-dependent neuronal tolerance for ischemic stroke. Proc Natl Acad Sci U S A 2021; 118:e2018850118. [PMID: 34349016 PMCID: PMC8364162 DOI: 10.1073/pnas.2018850118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Ischemic stroke, which results in loss of neurological function, initiates a complex cascade of pathological events in the brain, largely driven by excitotoxic Ca2+ influx in neurons. This leads to cortical spreading depolarization, which induces expression of genes involved in both neuronal death and survival; yet, the functions of these genes remain poorly understood. Here, we profiled gene expression changes that are common to ischemia (modeled by middle cerebral artery occlusion [MCAO]) and to experience-dependent activation (modeled by exposure to an enriched environment [EE]), which also induces Ca2+ transients that trigger transcriptional programs. We found that the activity-dependent transcription factor Npas4 was up-regulated under MCAO and EE conditions and that transient activation of cortical neurons in the healthy brain by the EE decreased cell death after stroke. Furthermore, both MCAO in vivo and oxygen-glucose deprivation in vitro revealed that Npas4 is necessary and sufficient for neuroprotection. We also found that this protection involves the inhibition of L-type voltage-gated Ca2+ channels (VGCCs). Next, our systematic search for Npas4-downstream genes identified Gem, which encodes a Ras-related small GTPase that mediates neuroprotective effects of Npas4. Gem suppresses the membrane localization of L-type VGCCs to inhibit excess Ca2+ influx, thereby protecting neurons from excitotoxic death after in vitro and in vivo ischemia. Collectively, our findings indicate that Gem expression via Npas4 is necessary and sufficient to promote neuroprotection in the injured brain. Importantly, Gem is also induced in human cerebral organoids cultured under an ischemic condition, revealing Gem as a new target for drug discovery.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan;
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Ryo Asahina
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Masayuki Fujioka
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Takeshi K Matsui
- Department of Future Basic Medicine, School of Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, School of Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Akio Tsuboi
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan;
- Laboratory for Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
47
|
Wei HT, Francois-Nienaber A, Deschamps T, Bellana B, Hebscher M, Sivaratnam G, Zadeh M, Meltzer JA. Sensitivity of amplitude and phase based MEG measures of interhemispheric connectivity during unilateral finger movements. Neuroimage 2021; 242:118457. [PMID: 34363959 DOI: 10.1016/j.neuroimage.2021.118457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Interactions between different brain regions can be revealed by dependencies between their neuronal oscillations. We examined the sensitivity of different oscillatory connectivity measures in revealing interhemispheric interactions between primary motor cortices (M1s) during unilateral finger movements. Based on frequency, amplitude, and phase of the oscillations, a number of metrics have been developed to measure connectivity between brain regions, and each metric has its own strengths, weaknesses, and pitfalls. Taking advantage of the well-known movement-related modulations of oscillatory amplitude in M1s, this study compared and contrasted a number of leading connectivity metrics during distinct phases of oscillatory power changes. Between M1s during unilateral movements, we found that phase-based metrics were effective at revealing connectivity during the beta (15-35 Hz) rebound period linked to movement termination, but not during the early period of beta desynchronization occurring during the movement itself. Amplitude correlation metrics revealed robust connectivity during both periods. Techniques for estimating the direction of connectivity had limited success. Granger Causality was not well suited to studying these connections because it was strongly confounded by differences in signal-to-noise ratio linked to modulation of beta amplitude occurring during the task. Phase slope index was suggestive but not conclusive of a unidirectional influence between motor cortices during the beta rebound. Our findings suggest that a combination of amplitude and phase-based metrics is likely required to fully characterize connectivity during task protocols that involve modulation of oscillatory power, and that amplitude-based metrics appear to be more sensitive despite the lack of directional information.
Collapse
Affiliation(s)
- Hsi T Wei
- Department of Psychology, University of Toronto, Canada; Rotman Research Institute, Baycrest Hospital, Canada.
| | | | | | - Buddhika Bellana
- Rotman Research Institute, Baycrest Hospital, Canada; Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| | - Melissa Hebscher
- Rotman Research Institute, Baycrest Hospital, Canada; Feinberg School of Medicine, Northwestern University, United States
| | | | - Maryam Zadeh
- Rotman Research Institute, Baycrest Hospital, Canada
| | - Jed A Meltzer
- Department of Psychology, University of Toronto, Canada; Rotman Research Institute, Baycrest Hospital, Canada; Department of Speech-Language Pathology, University of Toronto, Canada
| |
Collapse
|
48
|
Vahdat S, Pendharkar AV, Chiang T, Harvey S, Uchino H, Cao Z, Kim A, Choy M, Chen H, Lee HJ, Cheng MY, Lee JH, Steinberg GK. Brain-wide neural dynamics of poststroke recovery induced by optogenetic stimulation. SCIENCE ADVANCES 2021; 7:eabd9465. [PMID: 34380610 PMCID: PMC8357234 DOI: 10.1126/sciadv.abd9465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/23/2021] [Indexed: 05/18/2023]
Abstract
Poststroke optogenetic stimulations can promote functional recovery. However, the circuit mechanisms underlying recovery remain unclear. Elucidating key neural circuits involved in recovery will be invaluable for translating neuromodulation strategies after stroke. Here, we used optogenetic functional magnetic resonance imaging to map brain-wide neural circuit dynamics after stroke in mice treated with and without optogenetic excitatory neuronal stimulations in the ipsilesional primary motor cortex (iM1). We identified key sensorimotor circuits affected by stroke. iM1 stimulation treatment restored activation of the ipsilesional corticothalamic and corticocortical circuits, and the extent of activation was correlated with functional recovery. Furthermore, stimulated mice exhibited higher expression of axonal growth-associated protein 43 in the ipsilesional thalamus and showed increased Synaptophysin+/channelrhodopsin+ presynaptic axonal terminals in the corticothalamic circuit. Selective stimulation of the corticothalamic circuit was sufficient to improve functional recovery. Together, these findings suggest early involvement of corticothalamic circuit as an important mediator of poststroke recovery.
Collapse
Affiliation(s)
- Shahabeddin Vahdat
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Arjun Vivek Pendharkar
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Terrance Chiang
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Sean Harvey
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Haruto Uchino
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Zhijuan Cao
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Anika Kim
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - ManKin Choy
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Hansen Chen
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Stanford Stroke Center, Stanford, CA, USA
| | - Jin Hyung Lee
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| |
Collapse
|
49
|
Storch S, Samantzis M, Balbi M. Driving Oscillatory Dynamics: Neuromodulation for Recovery After Stroke. Front Syst Neurosci 2021; 15:712664. [PMID: 34366801 PMCID: PMC8339272 DOI: 10.3389/fnsys.2021.712664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of death and disability worldwide, with limited treatments being available. However, advances in optic methods in neuroscience are providing new insights into the damaged brain and potential avenues for recovery. Direct brain stimulation has revealed close associations between mental states and neuroprotective processes in health and disease, and activity-dependent calcium indicators are being used to decode brain dynamics to understand the mechanisms underlying these associations. Evoked neural oscillations have recently shown the ability to restore and maintain intrinsic homeostatic processes in the brain and could be rapidly deployed during emergency care or shortly after admission into the clinic, making them a promising, non-invasive therapeutic option. We present an overview of the most relevant descriptions of brain injury after stroke, with a focus on disruptions to neural oscillations. We discuss the optical technologies that are currently used and lay out a roadmap for future studies needed to inform the next generation of strategies to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Sven Storch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Montana Samantzis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Fanciullacci C, Panarese A, Spina V, Lassi M, Mazzoni A, Artoni F, Micera S, Chisari C. Connectivity Measures Differentiate Cortical and Subcortical Sub-Acute Ischemic Stroke Patients. Front Hum Neurosci 2021; 15:669915. [PMID: 34276326 PMCID: PMC8281978 DOI: 10.3389/fnhum.2021.669915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/08/2021] [Indexed: 01/14/2023] Open
Abstract
Brain lesions caused by cerebral ischemia lead to network disturbances in both hemispheres, causing a subsequent reorganization of functional connectivity both locally and remotely with respect to the injury. Quantitative electroencephalography (qEEG) methods have long been used for exploring brain electrical activity and functional connectivity modifications after stroke. However, results obtained so far are not univocal. Here, we used basic and advanced EEG methods to characterize how brain activity and functional connectivity change after stroke. Thirty-three unilateral post stroke patients in the sub-acute phase and ten neurologically intact age-matched right-handed subjects were enrolled. Patients were subdivided into two groups based on lesion location: cortico-subcortical (CS, n = 18) and subcortical (S, n = 15), respectively. Stroke patients were evaluated in the period ranging from 45 days since the acute event (T0) up to 3 months after stroke (T1) with both neurophysiological (resting state EEG) and clinical assessment (Barthel Index, BI) measures, while healthy subjects were evaluated once. Brain power at T0 was similar between the two groups of patients in all frequency bands considered (δ, θ, α, and β). However, evolution of θ-band power over time was different, with a normalization only in the CS group. Instead, average connectivity and specific network measures (Integration, Segregation, and Small-worldness) in the β-band at T0 were significantly different between the two groups. The connectivity and network measures at T0 also appear to have a predictive role in functional recovery (BI T1-T0), again group-dependent. The results obtained in this study showed that connectivity measures and correlations between EEG features and recovery depend on lesion location. These data, if confirmed in further studies, on the one hand could explain the heterogeneity of results so far observed in previous studies, on the other hand they could be used by researchers as biomarkers predicting spontaneous recovery, to select homogenous groups of patients for the inclusion in clinical trials.
Collapse
Affiliation(s)
- Chiara Fanciullacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | | | - Vincenzo Spina
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Michael Lassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fiorenzo Artoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Translational Neural Engineering Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Translational Neural Engineering Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|