1
|
Calvin OL, Erickson MT, Walters CJ, Redish AD. Dorsal hippocampus represents locations to avoid as well as locations to approach during approach-avoidance conflict. PLoS Biol 2025; 23:e3002954. [PMID: 39808614 PMCID: PMC11731767 DOI: 10.1371/journal.pbio.3002954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles. Similarly, important information that is distant from the animal's position is represented during hippocampal high-synchrony events (HSEs), which coincide with sharp-wave ripples (SWRs). It is likely that potential future threats may be similarly represented. We examined how threats and rewards were represented within the hippocampus during approach-avoidance conflicts in rats faced with a predator-like robot guarding a food reward. We found decoding of the pseudo-predator's location during HSEs when hesitating in the nest and during theta prior to retreating as the rats approached the pseudo-predator. After the first attack, we observed new place fields appearing at the location of the robot (not the location the rat was when attacked). The anxiolytic diazepam reduced anxiety-like behavior and altered hippocampal local field potentials (LFPs), including reducing SWRs, suggesting that one potential mechanism of diazepam's actions may be through altered representations of imagined threat. These results suggest that hippocampal representation of potential threats could be an important mechanism that underlies worry and a potential target for anxiolytics.
Collapse
Affiliation(s)
- Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Matthew T. Erickson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cody J. Walters
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Segal M. Distinct Ventral Hippocampus Network Properties in Dissociated Cultures. Hippocampus 2024; 34:744-752. [PMID: 39487646 DOI: 10.1002/hipo.23648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
Extensive research has been focused in the past century on structural, physiological, and molecular attributes of the hippocampus. This interest was created by the unique involvement of the hippocampus in cognitive and affective functions of the brain. Functional analysis revealed that the hippocampus has divergent properties along its axial dimension to the extent that the dorsal sector (dorsal hippocampus, DH) has different connections with the rest of the brain than those of the ventral sector (VH). Still, longitudinal pathways connect the DH with the VH and dampen the functional differences between the sectors. To be able to identify the intrinsic functional difference between the DH and VH, we produced dissociated monolayer cultures from prenatal DH and VH and examined their properties at 10-20 days after plating by imaging the spontaneous activity of the network using Fluo-2 AM, a calcium indicator. Surprisingly, while DH and VH sectors produced dissociated cultures with similar morphological attributes, VH cultures were more active spontaneously than DH cultures. Furthermore, when stimulated to produce action potentials, VH neurons triggered network bursts in postsynaptic neurons more often than DH cultures. Finally, in both DH and VH cultures, electrical stimulation of single cells produced network bursts in response to a burst of action potentials rather than to single spikes. These experiments indicate that even in dissociated cultures, neurons of the VH are more excitable and sensitive to electrical stimulation than DH; hence, they are more likely to generate network bursts and epileptic seizures, as suggested for in vivo brains.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Brain Sciences, The Weizmann Institute, Rehovot, Israel
| |
Collapse
|
3
|
Hou R, Liu Z, Jin Z, Huang D, Hu Y, Du W, Zhu D, Yang L, Weng Y, Yuan T, Lu B, Wang Y, Ping Y, Xiao X. Coordinated Interactions between the Hippocampus and Retrosplenial Cortex in Spatial Memory. RESEARCH (WASHINGTON, D.C.) 2024; 7:0521. [PMID: 39483173 PMCID: PMC11525046 DOI: 10.34133/research.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 11/03/2024]
Abstract
While a hippocampal-cortical dialogue is generally thought to mediate memory consolidation, which is crucial for engram function, how it works remains largely unknown. Here, we examined the interplay of neural signals from the retrosplenial cortex (RSC), a neocortical region, and from the hippocampus in memory consolidation by simultaneously recording sharp-wave ripples (SWRs) of dorsal hippocampal CA1 and neural signals of RSC in free-moving mice during the delayed spatial alternation task (DSAT) and subsequent sleep. Hippocampal-RSC coordination during SWRs was identified in nonrapid eye movement (NREM) sleep, reflecting neural reactivation of decision-making in the task, as shown by a peak reactivation strength within SWRs. Using modified generalized linear models (GLMs), we traced information flow through the RSC-CA1-RSC circuit around SWRs during sleep following DSAT. Our findings show that after spatial training, RSC excitatory neurons typically increase CA1 activity prior to hippocampal SWRs, potentially initiating hippocampal memory replay, while inhibitory neurons are activated by hippocampal outputs in post-SWRs. We further identified certain excitatory neurons in the RSC that encoded spatial information related to the DSAT. These neurons, classified as splitters and location-related cells, showed varied responses to hippocampal SWRs. Overall, our study highlights the complex dynamics between the RSC and hippocampal CA1 region during SWRs in NREM sleep, underscoring their critical interplay in spatial memory consolidation.
Collapse
Affiliation(s)
- Ruiqing Hou
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Ziyue Liu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Zichen Jin
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Dongxue Huang
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Yue Hu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Danyi Zhu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Leiting Yang
- School of Life Science,
Fudan University, Shanghai 200032, China
| | - Yuanfeng Weng
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center,
Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huadong Hospital,
Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education),
Shanghai JiaoTong University, Shanghai 200240, China
| | - Xiao Xiao
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Comrie AE, Monroe EJ, Kahn AE, Denovellis EL, Joshi A, Guidera JA, Krausz TA, Berke JD, Daw ND, Frank LM. Hippocampal representations of alternative possibilities are flexibly generated to meet cognitive demands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.613567. [PMID: 39386651 PMCID: PMC11463554 DOI: 10.1101/2024.09.23.613567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The cognitive ability to go beyond the present to consider alternative possibilities, including potential futures and counterfactual pasts, can support adaptive decision making. Complex and changing real-world environments, however, have many possible alternatives. Whether and how the brain can select among them to represent alternatives that meet current cognitive needs remains unknown. We therefore examined neural representations of alternative spatial locations in the rat hippocampus during navigation in a complex patch foraging environment with changing reward probabilities. We found representations of multiple alternatives along paths ahead and behind the animal, including in distant alternative patches. Critically, these representations were modulated in distinct patterns across successive trials: alternative paths were represented proportionate to their evolving relative value and predicted subsequent decisions, whereas distant alternatives were prevalent during value updating. These results demonstrate that the brain modulates the generation of alternative possibilities in patterns that meet changing cognitive needs for adaptive behavior.
Collapse
Affiliation(s)
- Alison E Comrie
- Neuroscience Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA
| | - Emily J Monroe
- Department of Physiology and Psychiatry, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Ari E Kahn
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
| | | | | | - Jennifer A Guidera
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Timothy A Krausz
- Neuroscience Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA
| | - Joshua D Berke
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Neurology and Department of Psychiatry and Behavioral Science, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Psychology, Princeton University; Princeton, NJ 08544, USA
| | - Loren M Frank
- Department of Physiology and Psychiatry, University of California, San Francisco; San Francisco, CA 94158, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
5
|
Shin JD, Jadhav SP. Prefrontal cortical ripples mediate top-down suppression of hippocampal reactivation during sleep memory consolidation. Curr Biol 2024; 34:2801-2811.e9. [PMID: 38834064 PMCID: PMC11233241 DOI: 10.1016/j.cub.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Consolidation of initially encoded hippocampal representations in the neocortex through reactivation is crucial for long-term memory formation and is facilitated by the coordination of hippocampal sharp-wave ripples (SWRs) with cortical slow and spindle oscillations during non-REM sleep. Recent evidence suggests that high-frequency cortical ripples can also coordinate with hippocampal SWRs in support of consolidation; however, the contribution of cortical ripples to reactivation remains unclear. We used high-density, continuous recordings in the hippocampus (area CA1) and prefrontal cortex (PFC) over the course of spatial learning and show that independent PFC ripples dissociated from SWRs are prevalent in NREM sleep and predominantly suppress hippocampal activity. PFC ripples paradoxically mediate top-down suppression of hippocampal reactivation rather than coordination, and this suppression is stronger for assemblies that are reactivated during coordinated CA1-PFC ripples for consolidation of recent experiences. Further, we show non-canonical, serial coordination of independent cortical ripples with slow and spindle oscillations, which are known signatures of memory consolidation. These results establish a role for prefrontal cortical ripples in top-down regulation of behaviorally relevant hippocampal representations during consolidation.
Collapse
Affiliation(s)
- Justin D Shin
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
6
|
Gillespie AK, Astudillo Maya D, Denovellis EL, Desse S, Frank LM. Neurofeedback training can modulate task-relevant memory replay rate in rats. eLife 2024; 12:RP90944. [PMID: 38958562 PMCID: PMC11221834 DOI: 10.7554/elife.90944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Hippocampal replay - the time-compressed, sequential reactivation of ensembles of neurons related to past experience - is a key neural mechanism of memory consolidation. Replay typically coincides with a characteristic pattern of local field potential activity, the sharp-wave ripple (SWR). Reduced SWR rates are associated with cognitive impairment in multiple models of neurodegenerative disease, suggesting that a clinically viable intervention to promote SWRs and replay would prove beneficial. We therefore developed a neurofeedback paradigm for rat subjects in which SWR detection triggered rapid positive feedback in the context of a memory-dependent task. This training protocol increased the prevalence of task-relevant replay during the targeted neurofeedback period by changing the temporal dynamics of SWR occurrence. This increase was also associated with neural and behavioral forms of compensation after the targeted period. These findings reveal short-timescale regulation of SWR generation and demonstrate that neurofeedback is an effective strategy for modulating hippocampal replay.
Collapse
Affiliation(s)
- Anna K Gillespie
- Departments of Biological Structure and Lab Medicine & Pathology, University of WashingtonSeattleUnited States
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Daniela Astudillo Maya
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Eric L Denovellis
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Sachi Desse
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Loren M Frank
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
7
|
Chockanathan U, Padmanabhan K. Differential disruptions in population coding along the dorsal-ventral axis of CA1 in the APP/PS1 mouse model of Aβ pathology. PLoS Comput Biol 2024; 20:e1012085. [PMID: 38709845 PMCID: PMC11098488 DOI: 10.1371/journal.pcbi.1012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Alzheimer's Disease (AD) is characterized by a range of behavioral alterations, including memory loss and psychiatric symptoms. While there is evidence that molecular pathologies, such as amyloid beta (Aβ), contribute to AD, it remains unclear how this histopathology gives rise to such disparate behavioral deficits. One hypothesis is that Aβ exerts differential effects on neuronal circuits across brain regions, depending on the neurophysiology and connectivity of different areas. To test this, we recorded from large neuronal populations in dorsal CA1 (dCA1) and ventral CA1 (vCA1), two hippocampal areas known to be structurally and functionally diverse, in the APP/PS1 mouse model of amyloidosis. Despite similar levels of Aβ pathology, dCA1 and vCA1 showed distinct disruptions in neuronal population activity as animals navigated a virtual reality environment. In dCA1, pairwise correlations and entropy, a measure of the diversity of activity patterns, were decreased in APP/PS1 mice relative to age-matched C57BL/6 controls. However, in vCA1, APP/PS1 mice had increased pair-wise correlations and entropy as compared to age matched controls. Finally, using maximum entropy models, we connected the microscopic features of population activity (correlations) to the macroscopic features of the population code (entropy). We found that the models' performance increased in predicting dCA1 activity, but decreased in predicting vCA1 activity, in APP/PS1 mice relative to the controls. Taken together, we found that Aβ exerts distinct effects across different hippocampal regions, suggesting that the various behavioral deficits of AD may reflect underlying heterogeneities in neuronal circuits and the different disruptions that Aβ pathology causes in those circuits.
Collapse
Affiliation(s)
- Udaysankar Chockanathan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Krishnan Padmanabhan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Center for Visual Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Intellectual and Developmental Disabilities Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
8
|
Barnstedt O, Mocellin P, Remy S. A hippocampus-accumbens code guides goal-directed appetitive behavior. Nat Commun 2024; 15:3196. [PMID: 38609363 PMCID: PMC11015045 DOI: 10.1038/s41467-024-47361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The dorsal hippocampus (dHPC) is a key brain region for the expression of spatial memories, such as navigating towards a learned reward location. The nucleus accumbens (NAc) is a prominent projection target of dHPC and implicated in value-based action selection. Yet, the contents of the dHPC→NAc information stream and their acute role in behavior remain largely unknown. Here, we found that optogenetic stimulation of the dHPC→NAc pathway while mice navigated towards a learned reward location was both necessary and sufficient for spatial memory-related appetitive behaviors. To understand the task-relevant coding properties of individual NAc-projecting hippocampal neurons (dHPC→NAc), we used in vivo dual-color two-photon imaging. In contrast to other dHPC neurons, the dHPC→NAc subpopulation contained more place cells, with enriched spatial tuning properties. This subpopulation also showed enhanced coding of non-spatial task-relevant behaviors such as deceleration and appetitive licking. A generalized linear model revealed enhanced conjunctive coding in dHPC→NAc neurons which improved the identification of the reward zone. We propose that dHPC routes specific reward-related spatial and behavioral state information to guide NAc action selection.
Collapse
Affiliation(s)
- Oliver Barnstedt
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Institute for Biology, Otto-von-Guericke University, 39120, Magdeburg, Germany.
| | - Petra Mocellin
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- International Max Planck Research, School for Brain & Behavior (IMPRS), 53175, Bonn, Germany
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720-3370, USA
| | - Stefan Remy
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany.
- German Center for Mental Health (DZGP), partner site Halle-Jena-Magdeburg, 39118, Magdeburg, Germany.
| |
Collapse
|
9
|
Kunz L, Staresina BP, Reinacher PC, Brandt A, Guth TA, Schulze-Bonhage A, Jacobs J. Ripple-locked coactivity of stimulus-specific neurons and human associative memory. Nat Neurosci 2024; 27:587-599. [PMID: 38366143 PMCID: PMC10917673 DOI: 10.1038/s41593-023-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/11/2023] [Indexed: 02/18/2024]
Abstract
Associative memory enables the encoding and retrieval of relations between different stimuli. To better understand its neural basis, we investigated whether associative memory involves temporally correlated spiking of medial temporal lobe (MTL) neurons that exhibit stimulus-specific tuning. Using single-neuron recordings from patients with epilepsy performing an associative object-location memory task, we identified the object-specific and place-specific neurons that represented the separate elements of each memory. When patients encoded and retrieved particular memories, the relevant object-specific and place-specific neurons activated together during hippocampal ripples. This ripple-locked coactivity of stimulus-specific neurons emerged over time as the patients' associative learning progressed. Between encoding and retrieval, the ripple-locked timing of coactivity shifted, suggesting flexibility in the interaction between MTL neurons and hippocampal ripples according to behavioral demands. Our results are consistent with a cellular account of associative memory, in which hippocampal ripples coordinate the activity of specialized cellular populations to facilitate links between stimuli.
Collapse
Affiliation(s)
- Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tim A Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
10
|
Sosa M, Plitt MH, Giocomo LM. Hippocampal sequences span experience relative to rewards. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573490. [PMID: 38234842 PMCID: PMC10793396 DOI: 10.1101/2023.12.27.573490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hippocampal place cells fire in sequences that span spatial environments and non-spatial modalities, suggesting that hippocampal activity can anchor to the most behaviorally salient aspects of experience. As reward is a highly salient event, we hypothesized that sequences of hippocampal activity can anchor to rewards. To test this, we performed two-photon imaging of hippocampal CA1 neurons as mice navigated virtual environments with changing hidden reward locations. When the reward moved, the firing fields of a subpopulation of cells moved to the same relative position with respect to reward, constructing a sequence of reward-relative cells that spanned the entire task structure. The density of these reward-relative sequences increased with task experience as additional neurons were recruited to the reward-relative population. Conversely, a largely separate subpopulation maintained a spatially-based place code. These findings thus reveal separate hippocampal ensembles can flexibly encode multiple behaviorally salient reference frames, reflecting the structure of the experience.
Collapse
Affiliation(s)
- Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| | - Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
11
|
Ibrahim KM, Massaly N, Yoon HJ, Sandoval R, Widman AJ, Heuermann RJ, Williams S, Post W, Pathiranage S, Lintz T, Zec A, Park A, Yu W, Kash TL, Gereau RW, Morón JA. Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons. Nat Commun 2024; 15:750. [PMID: 38286800 PMCID: PMC10825206 DOI: 10.1038/s41467-024-44836-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity's role in reward-seeking behaviors.
Collapse
Affiliation(s)
- Khairunisa Mohamad Ibrahim
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Hye-Jean Yoon
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Rossana Sandoval
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Allie J Widman
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Robert J Heuermann
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University Pain Center, St. Louis, MO, 63110, USA
| | - Sidney Williams
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - William Post
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Sulan Pathiranage
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Tania Lintz
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Azra Zec
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Ashley Park
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Waylin Yu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA.
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Jeong H, Namboodiri VMK, Jung MW, Andermann ML. Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions. Curr Biol 2023; 33:5185-5198.e4. [PMID: 37995696 PMCID: PMC10842729 DOI: 10.1016/j.cub.2023.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Cortical neurons activated during recent experiences often reactivate with dorsal hippocampal CA1 ripples during subsequent rest. Less is known about cortical interactions with intermediate hippocampal CA1, whose connectivity, functions, and ripple events differ from dorsal CA1. We identified three clusters of putative excitatory neurons in mouse visual cortex that are preferentially excited together with either dorsal or intermediate CA1 ripples or suppressed before both ripples. Neurons in each cluster were evenly distributed across primary and higher visual cortices and co-active even in the absence of ripples. These ensembles exhibited similar visual responses but different coupling to thalamus and pupil-indexed arousal. We observed a consistent activity sequence preceding and predicting ripples: (1) suppression of ripple-suppressed cortical neurons, (2) thalamic silence, and (3) activation of intermediate CA1-ripple-activated cortical neurons. We propose that coordinated dynamics of these ensembles relay visual experiences to distinct hippocampal subregions for incorporation into different cognitive maps.
Collapse
Affiliation(s)
- Huijeong Jeong
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA.
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| | - Mark L Andermann
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Plitt MH, Kaganovsky K, Südhof TC, Giocomo LM. Hippocampal place code plasticity in CA1 requires postsynaptic membrane fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567978. [PMID: 38045362 PMCID: PMC10690209 DOI: 10.1101/2023.11.20.567978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rapid delivery of glutamate receptors to the postsynaptic membrane via vesicle fusion is a central component of synaptic plasticity. However, it is unknown how this process supports specific neural computations during behavior. To bridge this gap, we combined conditional genetic deletion of a component of the postsynaptic membrane fusion machinery, Syntaxin3 (Stx3), in hippocampal CA1 neurons of mice with population in vivo calcium imaging. This approach revealed that Stx3 is necessary for forming the neural dynamics that support novelty processing, spatial reward memory and offline memory consolidation. In contrast, CA1 Stx3 was dispensable for maintaining aspects of the neural code that exist presynaptic to CA1 such as representations of context and space. Thus, manipulating postsynaptic membrane fusion identified computations that specifically require synaptic restructuring via membrane trafficking in CA1 and distinguished them from neural representation that could be inherited from upstream brain regions or learned through other mechanisms.
Collapse
Affiliation(s)
- Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Konstantin Kaganovsky
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Thomas C. Südhof
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
14
|
Girardeau G. [The role of sleep brain oscillations and neuronal patterns for memory]. Med Sci (Paris) 2023; 39:836-844. [PMID: 38018927 DOI: 10.1051/medsci/2023160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Sleep is crucial for the selective processing and strengthening of information encoded during wakefulness, known as memory consolidation. The different phases of sleep are characterized by specific neuronal activities associated with memory consolidation and homeostatic regulation. In the hippocampus during non-REM sleep, neural patterns called sharp-wave ripple complexes are associated with reactivations of the neural activity that occurred during wakefulness. These reactivations, through their coordinations with cortical slow oscillations and thalamocortical spindles, contribute to the consolidation of spatial memories by strengthening neuronal connections. Cortical slow waves are also a marker of synaptic homeostasis, a regulatory phenomenon maintaining networks in a functional range of firing rates. Finally, REM sleep is also important for memory, although the underlying physiology and the role of theta waves deserves to be further explored.
Collapse
|
15
|
Pronier É, Morici JF, Girardeau G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci 2023; 46:912-925. [PMID: 37714808 DOI: 10.1016/j.tins.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023]
Abstract
Episodic memory relies on the hippocampus, a heterogeneous brain region with distinct functions. Spatial representations in the dorsal hippocampus (dHPC) are crucial for contextual memory, while the ventral hippocampus (vHPC) is more involved in emotional processing. Here, we review the literature in rodents highlighting the anatomical and functional properties of the hippocampus along its dorsoventral axis that underlie its role in contextual and emotional memory encoding, consolidation, and retrieval. We propose that the coordination between the dorsal and vHPC through theta oscillations during rapid eye movement (REM) sleep, and through sharp-wave ripples during non-REM (NREM) sleep, might facilitate the transfer of contextual information for integration with valence-related processing in other structures of the network. Further investigation into the physiology of the vHPC and its connections with other brain areas is needed to deepen the current understanding of emotional memory consolidation during sleep.
Collapse
Affiliation(s)
- Éléonore Pronier
- Institut du Fer à Moulin, Inserm U1270, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
16
|
Feliciano-Ramos PA, Galazo M, Penagos H, Wilson M. Hippocampal memory reactivation during sleep is correlated with specific cortical states of the retrosplenial and prefrontal cortices. Learn Mem 2023; 30:221-236. [PMID: 37758288 PMCID: PMC10547389 DOI: 10.1101/lm.053834.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023]
Abstract
Episodic memories are thought to be stabilized through the coordination of cortico-hippocampal activity during sleep. However, the timing and mechanism of this coordination remain unknown. To investigate this, we studied the relationship between hippocampal reactivation and slow-wave sleep up and down states of the retrosplenial cortex (RTC) and prefrontal cortex (PFC). We found that hippocampal reactivations are strongly correlated with specific cortical states. Reactivation occurred during sustained cortical Up states or during the transition from up to down state. Interestingly, the most prevalent interaction with memory reactivation in the hippocampus occurred during sustained up states of the PFC and RTC, while hippocampal reactivation and cortical up-to-down state transition in the RTC showed the strongest coordination. Reactivation usually occurred within 150-200 msec of a cortical Up state onset, indicating that a buildup of excitation during cortical Up state activity influences the probability of memory reactivation in CA1. Conversely, CA1 reactivation occurred 30-50 msec before the onset of a cortical down state, suggesting that memory reactivation affects down state initiation in the RTC and PFC, but the effect in the RTC was more robust. Our findings provide evidence that supports and highlights the complexity of bidirectional communication between cortical regions and the hippocampus during sleep.
Collapse
Affiliation(s)
- Pedro A Feliciano-Ramos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria Galazo
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
| | - Hector Penagos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
den Bakker H, Van Dijck M, Sun JJ, Kloosterman F. Sharp-wave-ripple-associated activity in the medial prefrontal cortex supports spatial rule switching. Cell Rep 2023; 42:112959. [PMID: 37590137 DOI: 10.1016/j.celrep.2023.112959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Previous studies have highlighted an important role for hippocampal sharp-wave ripples in spatial alternation learning, as well as in modulating activity in the medial prefrontal cortex (mPFC). However, the direct influence of hippocampal sharp-wave ripples on mPFC activity during spatial alternation learning has not been investigated. Here, we train Long Evans rats on a three-arm radial maze to perform a sequence of alternations. Three alternation sequences needed to be learned, and while learning a sequence, the activity in the mPFC was inhibited either directly following sharp-wave ripples in the hippocampus (on-time condition) or with a randomized delay (delayed condition). In the on-time condition, the behavioral performance is significantly worse compared to the same animals in the delayed inhibition condition, as measured by a lower correct alternation performance and more perseverative behavior. This indicates that the activity in the mPFC directly following hippocampal sharp-wave ripples is necessary for spatial rule switching.
Collapse
Affiliation(s)
- Hanna den Bakker
- Neuro-Electronics Research Flanders, Leuven, Belgium; Brain & Cognition, KU Leuven, Leuven, Belgium
| | - Marie Van Dijck
- Neuro-Electronics Research Flanders, Leuven, Belgium; Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jyh-Jang Sun
- Neuro-Electronics Research Flanders, Leuven, Belgium
| | - Fabian Kloosterman
- Neuro-Electronics Research Flanders, Leuven, Belgium; Brain & Cognition, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Harvey RE, Robinson HL, Liu C, Oliva A, Fernandez-Ruiz A. Hippocampo-cortical circuits for selective memory encoding, routing, and replay. Neuron 2023; 111:2076-2090.e9. [PMID: 37196658 PMCID: PMC11146684 DOI: 10.1016/j.neuron.2023.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Traditionally considered a homogeneous cell type, hippocampal pyramidal cells have been recently shown to be highly diverse. However, how this cellular diversity relates to the different hippocampal network computations that support memory-guided behavior is not yet known. We show that the anatomical identity of pyramidal cells is a major organizing principle of CA1 assembly dynamics, the emergence of memory replay, and cortical projection patterns in rats. Segregated pyramidal cell subpopulations encoded trajectory and choice-specific information or tracked changes in reward configuration respectively, and their activity was selectively read out by different cortical targets. Furthermore, distinct hippocampo-cortical assemblies coordinated the reactivation of complementary memory representations. These findings reveal the existence of specialized hippocampo-cortical subcircuits and provide a cellular mechanism that supports the computational flexibility and memory capacities of these structures.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Heath L Robinson
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Can Liu
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
19
|
Kopsick JD, Tecuatl C, Moradi K, Attili SM, Kashyap HJ, Xing J, Chen K, Krichmar JL, Ascoli GA. Robust Resting-State Dynamics in a Large-Scale Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus. Cognit Comput 2023; 15:1190-1210. [PMID: 37663748 PMCID: PMC10473858 DOI: 10.1007/s12559-021-09954-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022]
Abstract
Hippocampal area CA3 performs the critical auto-associative function underlying pattern completion in episodic memory. Without external inputs, the electrical activity of this neural circuit reflects the spontaneous spiking interplay among glutamatergic pyramidal neurons and GABAergic interneurons. However, the network mechanisms underlying these resting-state firing patterns are poorly understood. Leveraging the Hippocampome.org knowledge base, we developed a data-driven, large-scale spiking neural network (SNN) model of mouse CA3 with 8 neuron types, 90,000 neurons, 51 neuron-type specific connections, and 250,000,000 synapses. We instantiated the SNN in the CARLsim4 multi-GPU simulation environment using the Izhikevich and Tsodyks-Markram formalisms for neuronal and synaptic dynamics, respectively. We analyzed the resultant population activity upon transient activation. The SNN settled into stable oscillations with a biologically plausible grand-average firing frequency, which was robust relative to a wide range of transient activation. The diverse firing patterns of individual neuron types were consistent with existing knowledge of cell type-specific activity in vivo. Altered network structures that lacked neuron- or connection-type specificity were neither stable nor robust, highlighting the importance of neuron type circuitry. Additionally, external inputs reflecting dentate mossy fibers shifted the observed rhythms to the gamma band. We freely released the CARLsim4-Hippocampome framework on GitHub to test hippocampal hypotheses. Our SNN may be useful to investigate the circuit mechanisms underlying the computational functions of CA3. Moreover, our approach can be scaled to the whole hippocampal formation, which may contribute to elucidating how the unique neuronal architecture of this system subserves its crucial cognitive roles.
Collapse
Affiliation(s)
- Jeffrey D. Kopsick
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Carolina Tecuatl
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| | - Keivan Moradi
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Sarojini M. Attili
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Hirak J. Kashyap
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Jinwei Xing
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kexin Chen
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jeffrey L. Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Giorgio A. Ascoli
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| |
Collapse
|
20
|
Xie B, Zhen Z, Guo O, Li H, Guo M, Zhen J. Progress on the hippocampal circuits and functions based on sharp wave ripples. Brain Res Bull 2023:110695. [PMID: 37353037 DOI: 10.1016/j.brainresbull.2023.110695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Sharp wave ripples (SWRs) are high-frequency synchronization events generated by hippocampal neuronal circuits during various forms of learning and reactivated during memory consolidation and recall. There is mounting evidence that SWRs are essential for storing spatial and social memories in rodents and short-term episodic memories in humans. Sharp wave ripples originate mainly from the hippocampal CA3 and subiculum, and can be transmitted to modulate neuronal activity in cortical and subcortical regions for long-term memory consolidation and behavioral guidance. Different hippocampal subregions have distinct functions in learning and memory. For instance, the dorsal CA1 is critical for spatial navigation, episodic memory, and learning, while the ventral CA1 and dorsal CA2 may work cooperatively to store and consolidate social memories. Here, we summarize recent studies demonstrating that SWRs are essential for the consolidation of spatial, episodic, and social memories in various hippocampal-cortical pathways, and review evidence that SWR dysregulation contributes to cognitive impairments in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Boxu Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Heming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Moran Guo
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
21
|
Shiozaki H, Kuga N, Kayama T, Ikegaya Y, Sasaki T. Selective serotonin reuptake inhibitors suppress sharp wave ripples in the ventral hippocampus. J Pharmacol Sci 2023; 152:136-143. [PMID: 37169478 DOI: 10.1016/j.jphs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Biased memory processing contributes to the development and exacerbation of depression, and thus could represent a potential therapeutic target for stress-induced mental disorders. Synchronized spikes in hippocampal neurons, corresponding to sharp wave ripples (SWRs), may play a crucial role in memory reactivation. In this study, we showed that the frequency of SWRs increased in the ventral hippocampus, but not in the dorsal hippocampus, after stress exposure. Administration of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and fluvoxamine inhibited the generation of ventral hippocampal SWRs and reduced locomotor activity and local field potential power in the gamma bands. These results suggest that the antidepressant effects of SSRIs may be mediated by the suppression of ventral hippocampal SWRs.
Collapse
Affiliation(s)
- Hiromi Shiozaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| | - Tasuku Kayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
22
|
Duszkiewicz AJ, Rossato JI, Moreno A, Takeuchi T, Yamasaki M, Genzel L, Spooner P, Canals S, Morris RGM. Execution of new trajectories toward a stable goal without a functional hippocampus. Hippocampus 2023; 33:769-786. [PMID: 36798045 PMCID: PMC10946713 DOI: 10.1002/hipo.23497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 02/18/2023]
Abstract
The hippocampus is a critical component of a mammalian spatial navigation system, with the firing sequences of hippocampal place cells during sleep or immobility constituting a "replay" of an animal's past trajectories. A novel spatial navigation task recently revealed that such "replay" sequences of place fields can also prospectively map onto imminent new paths to a goal that occupies a stable location during each session. It was hypothesized that such "prospective replay" sequences may play a causal role in goal-directed navigation. In the present study, we query this putative causal role in finding only minimal effects of muscimol-induced inactivation of the dorsal and intermediate hippocampus on the same spatial navigation task. The concentration of muscimol used demonstrably inhibited hippocampal cell firing in vivo and caused a severe deficit in a hippocampal-dependent "episodic-like" spatial memory task in a watermaze. These findings call into question whether "prospective replay" of an imminent and direct path is actually necessary for its execution in certain navigational tasks.
Collapse
Affiliation(s)
- Adrian J. Duszkiewicz
- Centre for Discovery Brain Sciences, Edinburgh NeuroscienceUniversity of EdinburghEdinburghUK
- Department of PsychologyUniversity of StirlingStirlingScotlandUK
| | - Janine I. Rossato
- Centre for Discovery Brain Sciences, Edinburgh NeuroscienceUniversity of EdinburghEdinburghUK
- Department of PhysiologyUniversidade Federal do Rio Grande do NorteRio Grande do NorteBrazil
| | - Andrea Moreno
- Centre for Discovery Brain Sciences, Edinburgh NeuroscienceUniversity of EdinburghEdinburghUK
- Instituto de Neurociencias, CSIC‐UMHSan Juan de AlicanteSpain
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE)Aarhus UniversityAarhus CDenmark
| | - Tomonori Takeuchi
- Centre for Discovery Brain Sciences, Edinburgh NeuroscienceUniversity of EdinburghEdinburghUK
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE)Aarhus UniversityAarhus CDenmark
| | - Miwako Yamasaki
- Department of Anatomy, Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Lisa Genzel
- Centre for Discovery Brain Sciences, Edinburgh NeuroscienceUniversity of EdinburghEdinburghUK
- Donders Institute for Brain, Cognition, and BehaviourRadboud University and RadboudumcNijmegenThe Netherlands
| | - Patrick Spooner
- Centre for Discovery Brain Sciences, Edinburgh NeuroscienceUniversity of EdinburghEdinburghUK
| | - Santiago Canals
- Instituto de Neurociencias, CSIC‐UMHSan Juan de AlicanteSpain
| | - Richard G. M. Morris
- Centre for Discovery Brain Sciences, Edinburgh NeuroscienceUniversity of EdinburghEdinburghUK
- Instituto de Neurociencias, CSIC‐UMHSan Juan de AlicanteSpain
| |
Collapse
|
23
|
Biane JS, Ladow MA, Stefanini F, Boddu SP, Fan A, Hassan S, Dundar N, Apodaca-Montano DL, Zhou LZ, Fayner V, Woods NI, Kheirbek MA. Neural dynamics underlying associative learning in the dorsal and ventral hippocampus. Nat Neurosci 2023; 26:798-809. [PMID: 37012382 PMCID: PMC10448873 DOI: 10.1038/s41593-023-01296-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Animals associate cues with outcomes and update these associations as new information is presented. This requires the hippocampus, yet how hippocampal neurons track changes in cue-outcome associations remains unclear. Using two-photon calcium imaging, we tracked the same dCA1 and vCA1 neurons across days to determine how responses evolve across phases of odor-outcome learning. Initially, odors elicited robust responses in dCA1, whereas, in vCA1, odor responses primarily emerged after learning and embedded information about the paired outcome. Population activity in both regions rapidly reorganized with learning and then stabilized, storing learned odor representations for days, even after extinction or pairing with a different outcome. Additionally, we found stable, robust signals across CA1 when mice anticipated outcomes under behavioral control but not when mice anticipated an inescapable aversive outcome. These results show how the hippocampus encodes, stores and updates learned associations and illuminates the unique contributions of dorsal and ventral hippocampus.
Collapse
Affiliation(s)
- Jeremy S Biane
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Max A Ladow
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Fabio Stefanini
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Sayi P Boddu
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Austin Fan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Shazreh Hassan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Naz Dundar
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel L Apodaca-Montano
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lexi Zichen Zhou
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Varya Fayner
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas I Woods
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Kuga N, Nakayama R, Morikawa S, Yagishita H, Konno D, Shiozaki H, Honjoya N, Ikegaya Y, Sasaki T. Hippocampal sharp wave ripples underlie stress susceptibility in male mice. Nat Commun 2023; 14:2105. [PMID: 37080967 PMCID: PMC10119298 DOI: 10.1038/s41467-023-37736-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
The ventral hippocampus (vHC) is a core brain region for emotional memory. Here, we examined how the vHC regulates stress susceptibility from the level of gene expression to neuronal population dynamics in male mice. Transcriptome analysis of samples from stress-naïve mice revealed that intrinsic calbindin (Calb1) expression in the vHC is associated with susceptibility to social defeat stress. Mice with Calb1 gene knockdown in the vHC exhibited increased stress resilience and failed to show the increase in the poststress ventral hippocampal sharp wave ripple (SWR) rate. Poststress vHC SWRs triggered synchronous reactivation of stress memory-encoding neuronal ensembles and facilitated information transfer to the amygdala. Suppression of poststress vHC SWRs by real-time feedback stimulation or walking prevented social behavior deficits. Taken together, our results demonstrate that internal reactivation of memories of negative stressful episodes supported by ventral hippocampal SWRs serves as a crucial neurophysiological substrate for determining stress susceptibility.
Collapse
Affiliation(s)
- Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Ryota Nakayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shota Morikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruya Yagishita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Daichi Konno
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiromi Shiozaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Natsumi Honjoya
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan
- Institute for AI and Beyond, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
25
|
Zhou Z, Norimoto H. Sleep sharp wave ripple and its functions in memory and synaptic plasticity. Neurosci Res 2023; 189:20-28. [PMID: 37045494 DOI: 10.1016/j.neures.2023.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 04/14/2023]
Abstract
Memory is one of the fundamental cognitive functions of brain. The formation and consolidation of memory depend on the hippocampus and sleep. Sharp wave ripple (SWR) is an electrophysiological event which is most frequently observed in the hippocampus during sleep. It represents a highly synchronized neuronal activity pattern which modulates numerous brain regions including the neocortex, subcortical areas, and the hippocampus itself. In this review, we discuss how SWRs link experiences to memories and what happens in the hippocampus and other brain regions during sleep by focusing on synaptic plasticity.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Graduate School of Medicine, Hokkaido University, West 7 North 15 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Hiroaki Norimoto
- Graduate School of Medicine, Hokkaido University, West 7 North 15 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
26
|
Jeong H, Namboodiri VMK, Jung MW, Andermann ML. Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533028. [PMID: 36993665 PMCID: PMC10055189 DOI: 10.1101/2023.03.17.533028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cortical neurons activated during recent experiences often reactivate with dorsal hippocampal CA1 sharp-wave ripples (SWRs) during subsequent rest. Less is known about cortical interactions with intermediate hippocampal CA1, whose connectivity, functions, and SWRs differ from those of dorsal CA1. We identified three clusters of visual cortical excitatory neurons that are excited together with either dorsal or intermediate CA1 SWRs, or suppressed before both SWRs. Neurons in each cluster were distributed across primary and higher visual cortices and co-active even in the absence of SWRs. These ensembles exhibited similar visual responses but different coupling to thalamus and pupil-indexed arousal. We observed a consistent activity sequence: (i) suppression of SWR-suppressed cortical neurons, (ii) thalamic silence, and (iii) activation of the cortical ensemble preceding and predicting intermediate CA1 SWRs. We propose that the coordinated dynamics of these ensembles relay visual experiences to distinct hippocampal subregions for incorporation into different cognitive maps.
Collapse
Affiliation(s)
- Huijeong Jeong
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
- Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco 94158, CA, USA
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Mark L. Andermann
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
- Lead contact
| |
Collapse
|
27
|
Yun M, Hwang JY, Jung MW. Septotemporal variations in hippocampal value and outcome processing. Cell Rep 2023; 42:112094. [PMID: 36763498 DOI: 10.1016/j.celrep.2023.112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
A large body of evidence indicates functional variations along the hippocampal longitudinal axis. To investigate whether and how value and outcome processing vary between the dorsal (DH) and the ventral hippocampus (VH), we examined neuronal activity and inactivation effects of the DH and VH in mice performing probabilistic classical conditioning tasks. Inactivation of either structure disrupts value-dependent anticipatory licking, and value-coding neurons are found in both structures, indicating their involvement in value processing. However, the DH neuronal population increases activity as a function of value, while the VH neuronal population is preferentially responsive to the highest-value sensory cue. Also, signals related to outcome-dependent value learning are stronger in the DH. VH neurons instead show rapid responses to punishment and strongly biased responses to negative prediction error. These findings suggest that the DH faithfully represents the external value landscape, whereas the VH preferentially represents behaviorally relevant, salient features of experienced events.
Collapse
Affiliation(s)
- Miru Yun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Ji Young Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea.
| |
Collapse
|
28
|
Jamali S, Dezfouli MP, Kalbasi A, Daliri MR, Haghparast A. Selective Modulation of Hippocampal Theta Oscillations in Response to Morphine versus Natural Reward. Brain Sci 2023; 13:322. [PMID: 36831866 PMCID: PMC9953863 DOI: 10.3390/brainsci13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Despite the overlapping neural circuits underlying natural and drug rewards, several studies have suggested different behavioral and neurochemical mechanisms in response to drug vs. natural rewards. The strong link between hippocampal theta oscillations (4-12 Hz) and reward-associated learning and memory has raised the hypothesis that this rhythm in hippocampal CA1 might be differently modulated by drug- and natural-conditioned place preference (CPP). Time-frequency analysis of recorded local field potentials (LFPs) from the CA1 of freely moving male rats previously exposed to a natural (in this case, food), drug (in this case, morphine), or saline (control) reward cue in the CPP paradigm showed that the hippocampal CA1 theta activity represents a different pattern for entrance to the rewarded compared to unrewarded compartment during the post-test session of morphine- and natural-CPP. Comparing LFP activity in the CA1 between the saline and morphine/natural groups showed that the maximum theta power occurred before entering the unrewarded compartment and after the entrance to the rewarded compartment in morphine and natural groups, respectively. In conclusion, our findings suggest that drug and natural rewards could differently affect the theta dynamic in the hippocampal CA1 region during reward-associated learning and contextual cueing in the CPP paradigm.
Collapse
Affiliation(s)
- Shole Jamali
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19615-1178, Iran
| | - Mohsen Parto Dezfouli
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran P.O. Box 19395-5531, Iran
| | - AmirAli Kalbasi
- Department of Mechatronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran P.O. Box 16315-1355, Iran
| | - Mohammad Reza Daliri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran P.O. Box 19395-5531, Iran
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran P.O. Box 16846-13114, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19615-1178, Iran
| |
Collapse
|
29
|
Gao Y. A computational model of learning flexible navigation in a maze by layout-conforming replay of place cells. Front Comput Neurosci 2023; 17:1053097. [PMID: 36846726 PMCID: PMC9947252 DOI: 10.3389/fncom.2023.1053097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Recent experimental observations have shown that the reactivation of hippocampal place cells (PC) during sleep or wakeful immobility depicts trajectories that can go around barriers and can flexibly adapt to a changing maze layout. However, existing computational models of replay fall short of generating such layout-conforming replay, restricting their usage to simple environments, like linear tracks or open fields. In this paper, we propose a computational model that generates layout-conforming replay and explains how such replay drives the learning of flexible navigation in a maze. First, we propose a Hebbian-like rule to learn the inter-PC synaptic strength during exploration. Then we use a continuous attractor network (CAN) with feedback inhibition to model the interaction among place cells and hippocampal interneurons. The activity bump of place cells drifts along paths in the maze, which models layout-conforming replay. During replay in sleep, the synaptic strengths from place cells to striatal medium spiny neurons (MSN) are learned by a novel dopamine-modulated three-factor rule to store place-reward associations. During goal-directed navigation, the CAN periodically generates replay trajectories from the animal's location for path planning, and the trajectory leading to a maximal MSN activity is followed by the animal. We have implemented our model into a high-fidelity virtual rat in the MuJoCo physics simulator. Extensive experiments have demonstrated that its superior flexibility during navigation in a maze is due to a continuous re-learning of inter-PC and PC-MSN synaptic strength.
Collapse
Affiliation(s)
- Yuanxiang Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China,CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China,*Correspondence: Yuanxiang Gao ✉
| |
Collapse
|
30
|
Wimmer GE, Liu Y, McNamee DC, Dolan RJ. Distinct replay signatures for prospective decision-making and memory preservation. Proc Natl Acad Sci U S A 2023; 120:e2205211120. [PMID: 36719914 PMCID: PMC9963918 DOI: 10.1073/pnas.2205211120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/05/2022] [Indexed: 02/01/2023] Open
Abstract
Theories of neural replay propose that it supports a range of functions, most prominently planning and memory consolidation. Here, we test the hypothesis that distinct signatures of replay in the same task are related to model-based decision-making ("planning") and memory preservation. We designed a reward learning task wherein participants utilized structure knowledge for model-based evaluation, while at the same time had to maintain knowledge of two independent and randomly alternating task environments. Using magnetoencephalography and multivariate analysis, we first identified temporally compressed sequential reactivation, or replay, both prior to choice and following reward feedback. Before choice, prospective replay strength was enhanced for the current task-relevant environment when a model-based planning strategy was beneficial. Following reward receipt, and consistent with a memory preservation role, replay for the alternative distal task environment was enhanced as a function of decreasing recency of experience with that environment. Critically, these planning and memory preservation relationships were selective to pre-choice and post-feedback periods, respectively. Our results provide support for key theoretical proposals regarding the functional role of replay and demonstrate that the relative strength of planning and memory-related signals are modulated by ongoing computational and task demands.
Collapse
Affiliation(s)
- G. Elliott Wimmer
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, LondonWC1B 5EH, UK
- Wellcome Centre for Human Neuroimaging, University College London, LondonWC1N 3BG, UK
| | - Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
- Chinese Institute for Brain Research, Beijing100875, China
| | - Daniel C. McNamee
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, LondonWC1B 5EH, UK
- Wellcome Centre for Human Neuroimaging, University College London, LondonWC1N 3BG, UK
- Neuroscience Programme, Champalimaud Research, Lisbon1400-038, Portugal
| | - Raymond J. Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, LondonWC1B 5EH, UK
- Wellcome Centre for Human Neuroimaging, University College London, LondonWC1N 3BG, UK
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| |
Collapse
|
31
|
Ohara S, Rannap M, Tsutsui KI, Draguhn A, Egorov AV, Witter MP. Hippocampal-medial entorhinal circuit is differently organized along the dorsoventral axis in rodents. Cell Rep 2023; 42:112001. [PMID: 36680772 DOI: 10.1016/j.celrep.2023.112001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/14/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
The general understanding of hippocampal circuits is that the hippocampus and the entorhinal cortex (EC) are topographically connected through parallel identical circuits along the dorsoventral axis. Our anterograde tracing and in vitro electrophysiology data, however, show a markedly different dorsoventral organization of the hippocampal projection to the medial EC (MEC). While dorsal hippocampal projections are confined to the dorsal MEC, ventral hippocampal projections innervate both dorsal and ventral MEC. Further, whereas the dorsal hippocampus preferentially targets layer Vb (LVb) neurons, the ventral hippocampus mainly targets cells in layer Va (LVa). This connectivity scheme differs from hippocampal projections to the lateral EC, which are topographically organized along the dorsoventral axis. As LVa neurons project to telencephalic structures, our findings indicate that the ventral hippocampus regulates LVa-mediated entorhinal-neocortical output from both dorsal and ventral MEC. Overall, the marked dorsoventral differences in hippocampal-entorhinal connectivity impose important constraints on signal flow in hippocampal-neocortical circuits.
Collapse
Affiliation(s)
- Shinya Ohara
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan; Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway; PRESTO, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Märt Rannap
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
32
|
Mizuseki K, Miyawaki H. Fast network oscillations during non-REM sleep support memory consolidation. Neurosci Res 2022; 189:3-12. [PMID: 36581177 DOI: 10.1016/j.neures.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The neocortex is disconnected from the outside world during sleep, which has been hypothesized to be relevant for synaptic reorganization involved in memory consolidation. Fast network oscillations, such as hippocampal sharp-wave ripples, cortical ripples, and amygdalar high-frequency oscillations, are prominent during non-REM sleep. Although these oscillations are thought to be generated by local circuit mechanisms, their occurrence rates and amplitudes are modulated by thalamocortical spindles and neocortical slow oscillations during non-REM sleep, suggesting that fast network oscillations and slower oscillations cooperatively work to facilitate memory consolidation. This review discusses the recent progress in understanding the generation, coordination, and functional roles of fast network oscillations. Further, it outlines how fast network oscillations in distinct brain regions synergistically support memory consolidation and retrieval by hosting cross-regional coactivation of memory-related neuronal ensembles.
Collapse
Affiliation(s)
- Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Miyawaki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
33
|
Comrie AE, Frank LM, Kay K. Imagination as a fundamental function of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210336. [PMID: 36314152 PMCID: PMC9620759 DOI: 10.1098/rstb.2021.0336] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 08/25/2023] Open
Abstract
Imagination is a biological function that is vital to human experience and advanced cognition. Despite this importance, it remains unknown how imagination is realized in the brain. Substantial research focusing on the hippocampus, a brain structure traditionally linked to memory, indicates that firing patterns in spatially tuned neurons can represent previous and upcoming paths in space. This work has generally been interpreted under standard views that the hippocampus implements cognitive abilities primarily related to actual experience, whether in the past (e.g. recollection, consolidation), present (e.g. spatial mapping) or future (e.g. planning). However, relatively recent findings in rodents identify robust patterns of hippocampal firing corresponding to a variety of alternatives to actual experience, in many cases without overt reference to the past, present or future. Given these findings, and others on hippocampal contributions to human imagination, we suggest that a fundamental function of the hippocampus is to generate a wealth of hypothetical experiences and thoughts. Under this view, traditional accounts of hippocampal function in episodic memory and spatial navigation can be understood as particular applications of a more general system for imagination. This view also suggests that the hippocampus contributes to a wider range of cognitive abilities than previously thought. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.
Collapse
Affiliation(s)
- Alison E. Comrie
- Neuroscience Graduate Program, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Kenneth Kay
- Zuckerman Institute, Center for Theoretical Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| |
Collapse
|
34
|
Goral RO, Harper KM, Bernstein BJ, Fry SA, Lamb PW, Moy SS, Cushman JD, Yakel JL. Loss of GABA co-transmission from cholinergic neurons impairs behaviors related to hippocampal, striatal, and medial prefrontal cortex functions. Front Behav Neurosci 2022; 16:1067409. [PMID: 36505727 PMCID: PMC9730538 DOI: 10.3389/fnbeh.2022.1067409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction: Altered signaling or function of acetylcholine (ACh) has been reported in various neurological diseases, including Alzheimer's disease, Tourette syndrome, epilepsy among others. Many neurons that release ACh also co-transmit the neurotransmitter gamma-aminobutyrate (GABA) at synapses in the hippocampus, striatum, substantia nigra, and medial prefrontal cortex (mPFC). Although ACh transmission is crucial for higher brain functions such as learning and memory, the role of co-transmitted GABA from ACh neurons in brain function remains unknown. Thus, the overarching goal of this study was to investigate how a systemic loss of GABA co-transmission from ACh neurons affected the behavioral performance of mice. Methods: To do this, we used a conditional knock-out mouse of the vesicular GABA transporter (vGAT) crossed with the ChAT-Cre driver line to selectively ablate GABA co-transmission at ACh synapses. In a comprehensive series of standardized behavioral assays, we compared Cre-negative control mice with Cre-positive vGAT knock-out mice of both sexes. Results: Loss of GABA co-transmission from ACh neurons did not disrupt the animal's sociability, motor skills or sensation. However, in the absence of GABA co-transmission, we found significant alterations in social, spatial and fear memory as well as a reduced reliance on striatum-dependent response strategies in a T-maze. In addition, male conditional knockout (CKO) mice showed increased locomotion. Discussion: Taken together, the loss of GABA co-transmission leads to deficits in higher brain functions and behaviors. Therefore, we propose that ACh/GABA co-transmission modulates neural circuitry involved in the affected behaviors.
Collapse
Affiliation(s)
- R. Oliver Goral
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States
| | - Kathryn M. Harper
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, United States
| | - Briana J. Bernstein
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sydney A. Fry
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Patricia W. Lamb
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sheryl S. Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, United States
| | - Jesse D. Cushman
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Jerrel L. Yakel
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,*Correspondence: Jerrel L. Yakel
| |
Collapse
|
35
|
Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, Foster DJ, Frank LM, Gedankien T, Gotman J, Guidera JA, Hoffman KL, Jacobs J, Kahana MJ, Li L, Liao Z, Lin JJ, Losonczy A, Malach R, van der Meer MA, McClain K, McNaughton BL, Norman Y, Navas-Olive A, de la Prida LM, Rueckemann JW, Sakon JJ, Skelin I, Soltesz I, Staresina BP, Weiss SA, Wilson MA, Zaghloul KA, Zugaro M, Buzsáki G. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 2022; 13:6000. [PMID: 36224194 PMCID: PMC9556539 DOI: 10.1038/s41467-022-33536-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.
Collapse
Affiliation(s)
- Anli A Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Simon Henin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Saman Abbaspoor
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - David J Foster
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tamara Gedankien
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer A Guidera
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, Department of Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kari L Hoffman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jack J Lin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Kathryn McClain
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Bruce L McNaughton
- The Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Yitzhak Norman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | - Jon W Rueckemann
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Skelin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Bernhard P Staresina
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Shennan A Weiss
- Brookdale Hospital Medical Center, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - György Buzsáki
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
36
|
Turner VS, O'Sullivan RO, Kheirbek MA. Linking external stimuli with internal drives: A role for the ventral hippocampus. Curr Opin Neurobiol 2022; 76:102590. [PMID: 35753108 PMCID: PMC9818033 DOI: 10.1016/j.conb.2022.102590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
The ventral hippocampus (vHPC) has long been thought of as the "emotional" hippocampus. Over the past several years, the complexity of vHPC has come to light, highlighting the diversity of cell types, inputs, and outputs that coordinate a constellation of positively and negatively motivated behaviors. Here, we review recent work on how vCA1 contributes to a network that associates external stimuli with internal motivational drive states to promote the selection of adaptive behavioral responses. We propose a model of vHPC function that emphasizes its role in the integration and transformation of internal and external cues to guide behavioral selection when faced with multiple potential outcomes.
Collapse
Affiliation(s)
- Victoria S Turner
- Neuroscience Graduate Program, University of California, San Francisco, USA. https://twitter.com/vs_turner
| | - Rachel O O'Sullivan
- Neuroscience Graduate Program, University of California, San Francisco, USA. https://twitter.com/itsROsulli
| | - Mazen A Kheirbek
- Neuroscience Graduate Program, University of California, San Francisco, USA; Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience and Weill Institute for Neurosciences, University of California, San Francisco, USA.
| |
Collapse
|
37
|
Totty MS, Maren S. Neural Oscillations in Aversively Motivated Behavior. Front Behav Neurosci 2022; 16:936036. [PMID: 35846784 PMCID: PMC9284508 DOI: 10.3389/fnbeh.2022.936036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Fear and anxiety-based disorders are highly debilitating and among the most prevalent psychiatric disorders. These disorders are associated with abnormal network oscillations in the brain, yet a comprehensive understanding of the role of network oscillations in the regulation of aversively motivated behavior is lacking. In this review, we examine the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the theta and gamma-range. First, we describe neural oscillations and their link to neural function by detailing the role of well-studied theta and gamma rhythms to spatial and memory functions of the hippocampus. We then describe how theta and gamma oscillations act to synchronize brain structures to guide adaptive fear and anxiety-like behavior. In short, that hippocampal network oscillations act to integrate spatial information with motivationally salient information from the amygdala during states of anxiety before routing this information via theta oscillations to appropriate target regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop in the amygdala and neocortical areas during the encoding of fear memories, and interregional synchronization reflects the retrieval of both recent and remotely encoded fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic extinction memories in the hippocampus.
Collapse
|
38
|
Nitzan N, Swanson R, Schmitz D, Buzsáki G. Brain-wide interactions during hippocampal sharp wave ripples. Proc Natl Acad Sci U S A 2022; 119:e2200931119. [PMID: 35561219 PMCID: PMC9171920 DOI: 10.1073/pnas.2200931119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
During periods of disengagement from the environment, transient population bursts, known as sharp wave ripples (SPW-Rs), occur sporadically. While numerous experiments have characterized the bidirectional relationship between SPW-Rs and activity in chosen brain areas, the topographic relationship between different segments of the hippocampus and brain-wide target areas has not been studied at high temporal and spatial resolution. Yet, such knowledge is necessary to infer the direction of communication. We analyzed two publicly available datasets with simultaneous high-density silicon probe recordings from across the mouse forebrain. We found that SPW-Rs coincide with a transient brain-wide increase in functional connectivity. In addition, we show that the diversity in SPW-R features, such as their incidence, magnitude, and intrahippocampal topography in the septotemporal axis, are correlated with slower excitability fluctuations in cortical and subcortical areas. Further, variations in SPW-R features correlated with the timing, sign, and magnitude of downstream responses with large-amplitude SPW-Rs followed by transient silence in extrahippocampal structures. Our findings expand on previous results and demonstrate that the activity patterns in extrahippocampal structures depend both on the intrahippocampal topographic origin and magnitude of hippocampal SPW-Rs.
Collapse
Affiliation(s)
- Noam Nitzan
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
| | - Rachel Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
- Department of Neurology, Langone Medical Center, New York University, New York, NY 10016
| |
Collapse
|
39
|
Pompili MN, Todorova R. Discriminating Sleep From Freezing With Cortical Spindle Oscillations. Front Neural Circuits 2022; 16:783768. [PMID: 35399613 PMCID: PMC8988299 DOI: 10.3389/fncir.2022.783768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
In-vivo longitudinal recordings require reliable means to automatically discriminate between distinct behavioral states, in particular between awake and sleep epochs. The typical approach is to use some measure of motor activity together with extracellular electrophysiological signals, namely the relative contribution of theta and delta frequency bands to the Local Field Potential (LFP). However, these bands can partially overlap with oscillations characterizing other behaviors such as the 4 Hz accompanying rodent freezing. Here, we first demonstrate how standard methods fail to discriminate between sleep and freezing in protocols where both behaviors are observed. Then, as an alternative, we propose to use the smoothed cortical spindle power to detect sleep epochs. Finally, we show the effectiveness of this method in discriminating between sleep and freezing in our recordings.
Collapse
Affiliation(s)
- Marco N. Pompili
- Aix Marseille University, INSERM, Institut de Neurosciences des Systèmes (INS), Marseille, France
- *Correspondence: Marco N. Pompili
| | - Ralitsa Todorova
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
- Ralitsa Todorova
| |
Collapse
|
40
|
Miyawaki H, Mizuseki K. De novo inter-regional coactivations of preconfigured local ensembles support memory. Nat Commun 2022; 13:1272. [PMID: 35277492 PMCID: PMC8917150 DOI: 10.1038/s41467-022-28929-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Neuronal ensembles in the amygdala, ventral hippocampus, and prefrontal cortex are involved in fear memory; however, how inter-regional ensemble interactions support memory remains elusive. Using multi-regional large-scale electrophysiology in the aforementioned structures of fear-conditioned rats, we found that the local ensembles activated during fear memory acquisition are inter-regionally coactivated during the subsequent sleep period, which relied on brief bouts of fast network oscillations. During memory retrieval, the coactivations reappeared, together with fast oscillations. Coactivation-participating-ensembles were configured prior to memory acquisition in the amygdala and prefrontal cortex but developed through experience in the hippocampus. Our findings suggest that elements of a given memory are instantly encoded within various brain regions in a preconfigured manner, whereas hippocampal ensembles and the network for inter-regional integration of the distributed information develop in an experience-dependent manner to form a new memory, which is consistent with the hippocampal memory index hypothesis. The authors show that fear-memory-related cell-ensembles in the amygdala, hippocampus, and prefrontal cortex are inter-regionally co-activated in post-learning sleep. The co-activations are hosted by fast network oscillations and re-appear during recall.
Collapse
Affiliation(s)
- Hiroyuki Miyawaki
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
41
|
Nyberg N, Duvelle É, Barry C, Spiers HJ. Spatial goal coding in the hippocampal formation. Neuron 2022; 110:394-422. [PMID: 35032426 DOI: 10.1016/j.neuron.2021.12.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
The mammalian hippocampal formation contains several distinct populations of neurons involved in representing self-position and orientation. These neurons, which include place, grid, head direction, and boundary-vector cells, are thought to collectively instantiate cognitive maps supporting flexible navigation. However, to flexibly navigate, it is necessary to also maintain internal representations of goal locations, such that goal-directed routes can be planned and executed. Although it has remained unclear how the mammalian brain represents goal locations, multiple neural candidates have recently been uncovered during different phases of navigation. For example, during planning, sequential activation of spatial cells may enable simulation of future routes toward the goal. During travel, modulation of spatial cells by the prospective route, or by distance and direction to the goal, may allow maintenance of route and goal-location information, supporting navigation on an ongoing basis. As the goal is approached, an increased activation of spatial cells may enable the goal location to become distinctly represented within cognitive maps, aiding goal localization. Lastly, after arrival at the goal, sequential activation of spatial cells may represent the just-taken route, enabling route learning and evaluation. Here, we review and synthesize these and other evidence for goal coding in mammalian brains, relate the experimental findings to predictions from computational models, and discuss outstanding questions and future challenges.
Collapse
Affiliation(s)
- Nils Nyberg
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Éléonore Duvelle
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| |
Collapse
|
42
|
Tao K, Chung M, Watarai A, Huang Z, Wang MY, Okuyama T. Disrupted social memory ensembles in the ventral hippocampus underlie social amnesia in autism-associated Shank3 mutant mice. Mol Psychiatry 2022; 27:2095-2105. [PMID: 35115700 PMCID: PMC9126818 DOI: 10.1038/s41380-021-01430-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
The ability to remember conspecifics is critical for adaptive cognitive functioning and social communication, and impairments of this ability are hallmarks of autism spectrum disorders (ASDs). Although hippocampal ventral CA1 (vCA1) neurons are known to store social memories, how their activities are coordinated remains unclear. Here we show that vCA1 social memory neurons, characterized by enhanced activity in response to memorized individuals, were preferentially reactivated during sharp-wave ripples (SPW-Rs). Spike sequences of these social replays reflected the temporal orders of neuronal activities within theta cycles during social experiences. In ASD model Shank3 knockout mice, the proportion of social memory neurons was reduced, and neuronal ensemble spike sequences during SPW-Rs were disrupted, which correlated with impaired discriminatory social behavior. These results suggest that SPW-R-mediated sequential reactivation of neuronal ensembles is a canonical mechanism for coordinating hippocampus-dependent social memories and its disruption underlie the pathophysiology of social memory defects associated with ASD.
Collapse
Affiliation(s)
- Kentaro Tao
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Myung Chung
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Akiyuki Watarai
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Ziyan Huang
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Mu-Yun Wang
- grid.26999.3d0000 0001 2151 536XLaboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032 Japan
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, 113-0032, Japan. .,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
43
|
Howe AG, Blair HT. Modulation of lateral septal and dorsomedial striatal neurons by hippocampal sharp-wave ripples, theta rhythm, and running speed. Hippocampus 2021; 32:153-178. [PMID: 34918836 PMCID: PMC9299855 DOI: 10.1002/hipo.23398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 05/04/2021] [Accepted: 11/28/2021] [Indexed: 11/12/2022]
Abstract
Single units were recorded in hippocampus, lateral septum (LS), and dorsomedial striatum (DMS) while freely behaving rats (n = 3) ran trials in a T‐maze task and rested in a holding bucket between trials. In LS, 28% (64/226) of recorded neurons were excited and 14% (31/226) were inhibited during sharp wave ripples (SWRs). LS neurons that were excited during SWRs fired preferentially on the downslope of hippocampal theta rhythm and had firing rates that were positively correlated with running speed; LS neurons that were inhibited during SWRs fired preferentially on the upslope of hippocampal theta rhythm and had firing rates that were negatively correlated with running speed. In DMS, only 3.3% (12/366) of recorded neurons were excited and 5.7% (21/366) were inhibited during SWRs. As in LS, DMS neurons that were excited by SWRs tended to have firing rates that were positively modulated by running speed, whereas DMS neurons that were inhibited by SWRs tended to have firing rates that were negatively modulated by running speed. But in contrast with LS, these two DMS subpopulations did not clearly segregate their spikes to different phases of the theta cycle. Based on these results and a review of prior findings, we discuss how concurrent activation of spatial trajectories in hippocampus and motor representations in LS and DMS may contribute to neural computations that support reinforcement learning and value‐based decision making.
Collapse
Affiliation(s)
- Andrew G Howe
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Hugh T Blair
- Department of Psychology, UCLA, Los Angeles, California, USA
| |
Collapse
|
44
|
Zajner C, Spreng RN, Bzdok D. Loneliness is linked to specific subregional alterations in hippocampus-default network covariation. J Neurophysiol 2021; 126:2138-2157. [PMID: 34817294 PMCID: PMC8715056 DOI: 10.1152/jn.00339.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Social interaction complexity makes humans unique. But in times of social deprivation, this strength risks exposure of important vulnerabilities. Human social neuroscience studies have placed a premium on the default network (DN). In contrast, hippocampus (HC) subfields have been intensely studied in rodents and monkeys. To bridge these two literatures, we here quantified how DN subregions systematically covary with specific HC subfields in the context of subjective social isolation (i.e., loneliness). By codecomposition using structural brain scans of ∼40,000 UK Biobank participants, loneliness was specially linked to midline subregions in the uncovered DN patterns. These association cortex patterns coincided with concomitant HC patterns implicating especially CA1 and molecular layer. These patterns also showed a strong affiliation with the fornix white matter tract and the nucleus accumbens. In addition, separable signatures of structural HC-DN covariation had distinct associations with the genetic predisposition for loneliness at the population level. NEW & NOTEWORTHY The hippocampus and default network have been implicated in rich social interaction. Yet, these allocortical and neocortical neural systems have been interrogated in mostly separate literatures. Here, we conjointly investigate the hippocampus and default network at a subregion level, by capitalizing structural brain scans from ∼40,000 participants. We thus reveal unique insights on the nature of the “lonely brain” by estimating the regimes of covariation between the hippocampus and default network at population scale.
Collapse
Affiliation(s)
- Chris Zajner
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - R Nathan Spreng
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Danilo Bzdok
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Méndez-Couz M, González-Pardo H, Arias JL, Conejo NM. Hippocampal neuropeptide Y 2 receptor blockade improves spatial memory retrieval and modulates limbic brain metabolism. Neurobiol Learn Mem 2021; 187:107561. [PMID: 34838984 DOI: 10.1016/j.nlm.2021.107561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The neuropeptide Y (NPY) is broadly distributed in the central nervous system (CNS), and it has been related to neuroprotective functions. NPY seems to be an important component to counteract brain damage and cognitive impairment mediated by drugs of abuse and neurodegenerative diseases, and both NPY and its Y2 receptor (Y2R) are highly expressed in the hippocampus, critical for learning and memory. We have recently demonstrated its influence on cognitive functions; however, the specific mechanism and involved brain regions where NPY modulates spatial memory by acting on Y2R remain unclear. METHODS Here, we examined the involvement of the hippocampal NPY Y2R in spatial memory and associated changes in brain metabolism by bilateral administration of the selective antagonist BIIE0246 into the rat dorsal hippocampus. To further evaluate the relationship between memory functions and neuronal activity, we analysed the regional expression of the mitochondrial enzyme cytochrome c oxidase (CCO) as an index of oxidative metabolic capacity in limbic and non-limbic brain regions. RESULTS The acute blockade of NPY Y2R significantly improved spatial memory recall in rats trained in the Morris water maze that matched metabolic activity changes in spatial memory processing regions. Specifically, CCO activity changes were found in the dentate gyrus of the dorsal hippocampus and CA1 subfield of the ventral hippocampus, the infralimbic region of the PFC and the mammillary bodies. CONCLUSIONS These findings suggest that the NPY hippocampal system, through its Y2R receptor, influences spatial memory recall (retrieval) and exerts control over patterns of brain activation that are relevant for associative learning, probably mediated by Y2R modulation of long-term potentiation and long-term depression.
Collapse
Affiliation(s)
- Marta Méndez-Couz
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Dept. Neurophysiology. Medical Faculty, Ruhr-University Bochum. Universitätsstraße, 150. Building MA 01/551, 44780 Bochum, Germany.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
46
|
Abstract
Sleep is crucial for healthy cognition, including memory. The two main phases of sleep, REM (rapid eye movement) and non-REM sleep, are associated with characteristic electrophysiological patterns that are recorded using surface and intracranial electrodes. These patterns include sharp-wave ripples, cortical slow oscillations, delta waves, and spindles during non-REM sleep and theta oscillations during REM sleep. They reflect the precisely timed activity of underlying neural circuits. Here, we review how these electrical signatures have been guiding our understanding of the circuits and processes sustaining memory consolidation during sleep, focusing on hippocampal theta oscillations and sharp-wave ripples and how they coordinate with cortical patterns. Finally, we highlight how these brain patterns could also sustain sleep-dependent homeostatic processes and evoke several potential future directions for research on the memory function of sleep.
Collapse
Affiliation(s)
- Gabrielle Girardeau
- Institut du Fer a Moulin, UMR-S 1270 INSERM and Sorbonne Université, 75005 Paris, France
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| |
Collapse
|
47
|
Gillespie AK, Astudillo Maya DA, Denovellis EL, Liu DF, Kastner DB, Coulter ME, Roumis DK, Eden UT, Frank LM. Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice. Neuron 2021; 109:3149-3163.e6. [PMID: 34450026 DOI: 10.1016/j.neuron.2021.07.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 01/06/2023]
Abstract
Executing memory-guided behavior requires storage of information about experience and later recall of that information to inform choices. Awake hippocampal replay, when hippocampal neural ensembles briefly reactivate a representation related to prior experience, has been proposed to critically contribute to these memory-related processes. However, it remains unclear whether awake replay contributes to memory function by promoting the storage of past experiences, facilitating planning based on evaluation of those experiences, or both. We designed a dynamic spatial task that promotes replay before a memory-based choice and assessed how the content of replay related to past and future behavior. We found that replay content was decoupled from subsequent choice and instead was enriched for representations of previously rewarded locations and places that had not been visited recently, indicating a role in memory storage rather than in directly guiding subsequent behavior.
Collapse
Affiliation(s)
- Anna K Gillespie
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Daniela A Astudillo Maya
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric L Denovellis
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel F Liu
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David B Kastner
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael E Coulter
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Demetris K Roumis
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Loren M Frank
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
48
|
Tingley D, McClain K, Kaya E, Carpenter J, Buzsáki G. A metabolic function of the hippocampal sharp wave-ripple. Nature 2021; 597:82-86. [PMID: 34381214 PMCID: PMC9214835 DOI: 10.1038/s41586-021-03811-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
The hippocampus has previously been implicated in both cognitive and endocrine functions1-15. We simultaneously measured electrophysiological activity from the hippocampus and interstitial glucose concentrations in the body of freely behaving rats to identify an activity pattern that may link these disparate functions of the hippocampus. Here we report that clusters of sharp wave-ripples recorded from the hippocampus reliably predicted a decrease in peripheral glucose concentrations within about 10 min. This correlation was not dependent on circadian, ultradian or meal-triggered fluctuations, could be mimicked with optogenetically induced ripples in the hippocampus (but not in the parietal cortex) and was attenuated to chance levels by pharmacogenetically suppressing activity of the lateral septum, which is the major conduit between the hippocampus and the hypothalamus. Our findings demonstrate that a function of the sharp wave-ripple is to modulate peripheral glucose homeostasis, and offer a mechanism for the link between sleep disruption and blood glucose dysregulation in type 2 diabetes16-18.
Collapse
Affiliation(s)
- David Tingley
- Neuroscience Institute, New York University, New York, NY, USA.
| | - Kathryn McClain
- Center for Neural Science, New York University, New York, NY, USA
| | - Ekin Kaya
- Neuroscience Institute, New York University, New York, NY, USA
- Department of Psychology, Bogazici University, Istanbul, Turkey
| | - Jordan Carpenter
- Neuroscience Institute, New York University, New York, NY, USA
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Department of Neurology, New York University, New York, NY, USA.
- Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|
49
|
Abstract
An organism's survival can depend on its ability to recall and navigate to spatial locations associated with rewards, such as food or a home. Accumulating research has revealed that computations of reward and its prediction occur on multiple levels across a complex set of interacting brain regions, including those that support memory and navigation. However, how the brain coordinates the encoding, recall and use of reward information to guide navigation remains incompletely understood. In this Review, we propose that the brain's classical navigation centres - the hippocampus and the entorhinal cortex - are ideally suited to coordinate this larger network by representing both physical and mental space as a series of states. These states may be linked to reward via neuromodulatory inputs to the hippocampus-entorhinal cortex system. Hippocampal outputs can then broadcast sequences of states to the rest of the brain to store reward associations or to facilitate decision-making, potentially engaging additional value signals downstream. This proposal is supported by recent advances in both experimental and theoretical neuroscience. By discussing the neural systems traditionally tied to navigation and reward at their intersection, we aim to offer an integrated framework for understanding navigation to reward as a fundamental feature of many cognitive processes.
Collapse
|
50
|
Berners-Lee A, Wu X, Foster DJ. Prefrontal Cortical Neurons Are Selective for Non-Local Hippocampal Representations during Replay and Behavior. J Neurosci 2021; 41:5894-5908. [PMID: 34035138 PMCID: PMC8265798 DOI: 10.1523/jneurosci.1158-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Diverse functions such as decision-making and memory consolidation may depend on communication between neurons in the hippocampus (HP) and prefrontal cortex (PFC). HP replay is a candidate mechanism to facilitate this communication, however details remain largely unknown because of the technical challenges of recording sufficient numbers of HP neurons for replay while also recording PFC neurons. Here, we implanted male rats with 40-tetrode drives, split between HP and PFC, during learning of a Y-maze spatial memory task. Surprisingly, we found that in contrast to their non-selectivity for maze arm during movement, a portion of PFC neurons were highly selective for HP replay of different arms. Moreover, PFC neurons' selectivity to HP non-local arm representation during running tended to match their replay arm selectivity and was predictive of future choice. Thus, PFC activity that is tuned to HP activity is best explained by non-local HP position representations rather than HP representation of actual position, providing a new potential mechanism of HP-PFC coordination during HP replay.SIGNIFICANCE STATEMENT The hippocampus (HP) is implicated in spatial learning while the prefrontal cortex (PFC) is implicated in decision-making. The question of how the two areas interact has been of great interest. A specific activity type in HP called replay is particularly interesting because it resembles internal exploration of non-local experiences, but is technically challenging to study, requiring recordings from large numbers of HP neurons simultaneously. Here, we combined replay recordings from HP with prefrontal recordings, to reveal a surprising degree of selectivity for replay, and a pattern of coordination that supports some conceptions of hippocampocortical interaction and challenges others.
Collapse
Affiliation(s)
- Alice Berners-Lee
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California 94720
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Xiaojing Wu
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David J Foster
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California 94720
| |
Collapse
|