1
|
Pan J, Liu X, Baca M, Calvière-Tonasso L, Schiavinato S, Chauvey L, Tressières G, Perdereau A, Aury JM, Oliveira PH, Wincker P, Abdykanova A, Arsuaga JL, Bayarsaikhan J, Belinskiy AB, Carbonell E, Davoudi H, Lira Garrido J, Gilbert AS, Hermes T, Warinner C, Kalmykov AA, Lordkipanidze D, Mackiewicz P, Mohaseb AF, Richter K, Sayfullaev N, Shapiro B, Shnaider S, Southon J, Stefaniak K, Summers GD, van Asperen EN, Vanishvili N, Hill EA, Kuznetsov P, Reinhold S, Hansen S, Mashkour M, Berthon R, Taylor WTT, Houle JL, Hekkala E, Popović D, Orlando L. Genome-wide population affinities and signatures of adaptation in hydruntines, sussemiones and Asian wild asses. Mol Ecol 2024; 33:e17527. [PMID: 39279684 DOI: 10.1111/mec.17527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
The extremely rich palaeontological record of the horse family, also known as equids, has provided many examples of macroevolutionary change over the last ~55 Mya. This family is also one of the most documented at the palaeogenomic level, with hundreds of ancient genomes sequenced. While these data have advanced understanding of the domestication history of horses and donkeys, the palaeogenomic record of other equids remains limited. In this study, we have generated genome-wide data for 25 ancient equid specimens spanning over 44 Ky and spread across Anatolia, the Caucasus, Central Asia and Mongolia. Our dataset includes the genomes from two extinct species, the European wild ass, Equus hydruntinus, and the sussemione Equus ovodovi. We document, for the first time, the presence of sussemiones in Mongolia and their survival around ~3.9 Kya, a finding that should be considered when discussing the timing of the first arrival of the domestic horse in the region. We also identify strong spatial differentiation within the historical ecological range of Asian wild asses, Equus hemionus, and incomplete reproductive isolation in several groups yet considered as different species. Finally, we find common selection signatures at ANTXR2 gene in European, Asian and African wild asses. This locus, which encodes a receptor for bacterial toxins, shows no selection signal in E. ovodovi, but a 5.4-kb deletion within intron 7. Whether such genetic modifications played any role in the sussemione extinction remains unknown.
Collapse
Affiliation(s)
- Jianfei Pan
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuexue Liu
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Mateusz Baca
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Laure Calvière-Tonasso
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Stéphanie Schiavinato
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Loreleï Chauvey
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Gaétan Tressières
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Aude Perdereau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Aida Abdykanova
- Anthropology Department, American University of Central Asia, Bishkek, Kyrgyzstan
| | - Juan Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología. Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jamsranjav Bayarsaikhan
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- National Museum of Mongolia, Ulaanbaatar, Mongolia
| | | | - Eudald Carbonell
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain
- Institut Català de Paleoecologia Humana I Evolució Social (IPHES-CERCA), Tarragona, Spain
| | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Jaime Lira Garrido
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Allan S Gilbert
- Department of Sociology and Anthropology, Fordham University, New York, New York, USA
| | - Taylor Hermes
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, Harvard University, Cambridge, Massachusetts, USA
| | | | - David Lordkipanidze
- Georgian National Museum, Tbilisi, Tbilisi, Georgia
- Tbilisi State University Tbilisi I. Chavchavadze Avenue 1, Tbilisi, Georgia
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Azadeh F Mohaseb
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Kristine Richter
- Department of Anthropology, Harvard University, Cambridge, Massachusetts, USA
| | - Nuritdin Sayfullaev
- Donish Institute of History, Archaeology and Ethnography, Dushanbe, Tajikistan
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Svetlana Shnaider
- International Laboratory "Archaeozoology in Siberia and Central Asia" ZooSCAn, IRL 2013, National Center for Scientific Research - Institute of Archeology and Ethnography SB RAS, Novosibirsk, Russia
| | - John Southon
- Earth System Science Department, University of California, Irvine, California, USA
| | | | - Geoffrey D Summers
- Ecole Nationale Supérieure d'Architecture de Nantes-Mauritius, Pierrefonds, Mauritius
- The Oriental Institute, Chicago University, Chicago, Illinois, USA
| | | | - Nikoloz Vanishvili
- Department of Vertebrate Paleontology, L. Davitashvili Institute of Paleobiology, Georgian National Museum, Tbilisi, Georgia
| | - Eden A Hill
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pavel Kuznetsov
- The Museum of Archeology of the Volga Region Samara State University of Social Sciences and Education, Samara, Russia
| | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Marjan Mashkour
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Rémi Berthon
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - William Timothy Treal Taylor
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Anthropology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jean-Luc Houle
- Department of Folk Studies and Anthropology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Evon Hekkala
- Department Biological Sciences, Fordham University, New York, New York, USA
| | - Danijela Popović
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
2
|
Liu S, Xie T, Huang Y. Insights into the Pathobiology of GM1 Gangliosidosis from Single-Nucleus Transcriptomic Analysis of CNS Cells in a Mouse Model. Int J Mol Sci 2024; 25:9712. [PMID: 39273659 PMCID: PMC11395632 DOI: 10.3390/ijms25179712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
GM1 gangliosidosis is a lysosomal storage disorder characterized by the accumulation of GM1 ganglioside, leading to severe neurodegeneration and early mortality. The disease primarily affects the central nervous system, causing progressive neurodegeneration, including widespread neuronal loss and gliosis. To gain a deeper understanding of the neuropathology associated with GM1 gangliosidosis, we employed single-nucleus RNA sequencing to analyze brain tissues from both GM1 gangliosidosis model mice and control mice. No significant changes in cell proportions were detected between the two groups of animals. Differential expression analysis revealed cell type-specific changes in gene expression in neuronal and glial cells. Functional analysis highlighted the neurodegenerative processes, oxidative phosphorylation, and neuroactive ligand-receptor interactions as the significantly affected pathways. The contribution of the impairment of neurotransmitter system disruption and neuronal circuitry disruption was more important than neuroinflammatory responses to GM1 pathology. In 16-week-old GM1 gangliosidosis mice, no microglial or astrocyte activation or increased expression of innate immunity genes was detected. This suggested that nerve degeneration did not induce the inflammatory response but rather promoted glial cell clearance. Our findings provide a crucial foundation for understanding the cellular and molecular mechanisms of GM1 gangliosidosis, potentially guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Sichi Liu
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ting Xie
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
3
|
Stevens-Sostre WA, Hoon M. Cellular and Molecular Mechanisms Regulating Retinal Synapse Development. Annu Rev Vis Sci 2024; 10:377-402. [PMID: 39292551 DOI: 10.1146/annurev-vision-102122-105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Synapse formation within the retinal circuit ensures that distinct neuronal types can communicate efficiently to process visual signals. Synapses thus form the core of the visual computations performed by the retinal circuit. Retinal synapses are diverse but can be broadly categorized into multipartner ribbon synapses and 1:1 conventional synapses. In this article, we review our current understanding of the cellular and molecular mechanisms that regulate the functional establishment of mammalian retinal synapses, including the role of adhesion proteins, synaptic proteins, extracellular matrix and cytoskeletal-associated proteins, and activity-dependent cues. We outline future directions and areas of research that will expand our knowledge of these mechanisms. Understanding the regulators moderating synapse formation and function not only reveals the integrated developmental processes that establish retinal circuits, but also divulges the identity of mechanisms that could be engaged during disease and degeneration.
Collapse
Affiliation(s)
- Whitney A Stevens-Sostre
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Sigulinsky CL, Pfeiffer RL, Jones BW. Retinal Connectomics: A Review. Annu Rev Vis Sci 2024; 10:263-291. [PMID: 39292552 DOI: 10.1146/annurev-vision-102122-110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.
Collapse
Affiliation(s)
- Crystal L Sigulinsky
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Rebecca L Pfeiffer
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Bryan William Jones
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
5
|
Wolterhoff N, Hiesinger PR. Synaptic promiscuity in brain development. Curr Biol 2024; 34:R102-R116. [PMID: 38320473 PMCID: PMC10849093 DOI: 10.1016/j.cub.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does the genome encode brain wiring in light of this apparent contradiction? Synaptic specificity is the outcome of a long series of developmental processes and mechanisms before, during and after synapse formation. How much promiscuity is permissible or necessary at the moment of synaptic partner choice depends on the extent to which prior development restricts available partners or subsequent development corrects initially made synapses. Synaptic promiscuity at the moment of choice can thereby play important roles in the development of precise connectivity, but also facilitate developmental flexibility and robustness. In this review, we assess the experimental evidence for the prevalence and roles of promiscuous synapse formation during brain development. Many well-established experimental approaches are based on developmental genetic perturbation and an assessment of synaptic connectivity only in the adult; this can make it difficult to pinpoint when a given defect or mechanism occurred. In many cases, such studies reveal mechanisms that restrict partner availability already prior to synapse formation. Subsequently, at the moment of choice, factors including synaptic competency, interaction dynamics and molecular recognition further restrict synaptic partners. The discussion of the development of synaptic specificity through the lens of synaptic promiscuity suggests an algorithmic process based on neurons capable of promiscuous synapse formation that are continuously prevented from making the wrong choices, with no single mechanism or developmental time point sufficient to explain the outcome.
Collapse
Affiliation(s)
- Neele Wolterhoff
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany
| | - P Robin Hiesinger
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany.
| |
Collapse
|
6
|
Keeley PW, Trod S, Gamboa BN, Coffey PJ, Reese BE. Nfia Is Critical for AII Amacrine Cell Production: Selective Bipolar Cell Dependencies and Diminished ERG. J Neurosci 2023; 43:8367-8384. [PMID: 37775301 PMCID: PMC10711738 DOI: 10.1523/jneurosci.1099-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
The nuclear factor one (NFI) transcription factor genes Nfia, Nfib, and Nfix are all enriched in late-stage retinal progenitor cells, and their loss has been shown to retain these progenitors at the expense of later-generated retinal cell types. Whether they play any role in the specification of those later-generated fates is unknown, but the expression of one of these, Nfia, in a specific amacrine cell type may intimate such a role. Here, Nfia conditional knockout (Nfia-CKO) mice (both sexes) were assessed, finding a massive and largely selective absence of AII amacrine cells. There was, however, a partial reduction in type 2 cone bipolar cells (CBCs), being richly interconnected to AII cells. Counts of dying cells showed a significant increase in Nfia-CKO retinas at postnatal day (P)7, after AII cell numbers were already reduced but in advance of the loss of type 2 CBCs detected by P10. Those results suggest a role for Nfia in the specification of the AII amacrine cell fate and a dependency of the type 2 CBCs on them. Delaying the conditional loss of Nfia to the first postnatal week did not alter AII cell number nor differentiation, further suggesting that its role in AII cells is solely associated with their production. The physiological consequences of their loss were assessed using the ERG, finding the oscillatory potentials to be profoundly diminished. A slight reduction in the b-wave was also detected, attributed to an altered distribution of the terminals of rod bipolar cells, implicating a role of the AII amacrine cells in constraining their stratification.SIGNIFICANCE STATEMENT The transcription factor NFIA is shown to play a critical role in the specification of a single type of retinal amacrine cell, the AII cell. Using an Nfia-conditional knockout mouse to eliminate this population of retinal neurons, we demonstrate two selective bipolar cell dependencies on the AII cells; the terminals of rod bipolar cells become mis-stratified in the inner plexiform layer, and one type of cone bipolar cell undergoes enhanced cell death. The physiological consequence of this loss of the AII cells was also assessed, finding the cells to be a major contributor to the oscillatory potentials in the electroretinogram.
Collapse
Affiliation(s)
- Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Stephanie Trod
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Bruno N Gamboa
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Pete J Coffey
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-5060
| |
Collapse
|
7
|
Wakeham CM, Shi Q, Ren G, Haley TL, Duvoisin RM, von Gersdorff H, Morgans CW. Trophoblast glycoprotein is required for efficient synaptic vesicle exocytosis from retinal rod bipolar cells. Front Cell Neurosci 2023; 17:1306006. [PMID: 38099150 PMCID: PMC10720453 DOI: 10.3389/fncel.2023.1306006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Rod bipolar cells (RBCs) faithfully transmit light-driven signals from rod photoreceptors in the outer retina to third order neurons in the inner retina. Recently, significant work has focused on the role of leucine-rich repeat (LRR) proteins in synaptic development and signal transduction at RBC synapses. We previously identified trophoblast glycoprotein (TPBG) as a novel transmembrane LRR protein localized to the dendrites and axon terminals of RBCs. Methods We examined the effects on RBC physiology and retinal processing of TPBG genetic knockout in mice using immunofluorescence and electron microscopy, electroretinogram recording, patch-clamp electrophysiology, and time-resolved membrane capacitance measurements. Results The scotopic electroretinogram showed a modest increase in the b-wave and a marked attenuation in oscillatory potentials in the TPBG knockout. No effect of TPBG knockout was observed on the RBC dendritic morphology, TRPM1 currents, or RBC excitability. Because scotopic oscillatory potentials primarily reflect RBC-driven rhythmic activity of the inner retina, we investigated the contribution of TPBG to downstream transmission from RBCs to third-order neurons. Using electron microscopy, we found shorter synaptic ribbons in TPBG knockout axon terminals in RBCs. Time-resolved capacitance measurements indicated that TPBG knockout reduces synaptic vesicle exocytosis and subsequent GABAergic reciprocal feedback without altering voltage-gated Ca2+ currents. Discussion TPBG is required for normal synaptic ribbon development and efficient neurotransmitter release from RBCs to downstream cells. Our results highlight a novel synaptic role for TPBG at RBC ribbon synapses and support further examination into the mechanisms by which TPBG regulates RBC physiology and circuit function.
Collapse
Affiliation(s)
- Colin M. Wakeham
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Qing Shi
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Gaoying Ren
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Tammie L. Haley
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Robert M. Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Henrique von Gersdorff
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
| | - Catherine W. Morgans
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
8
|
Wisner SR, Saha A, Grimes WN, Mizerska K, Kolarik HJ, Wallin J, Diamond JS, Sinha R, Hoon M. Sensory deprivation arrests cellular and synaptic development of the night-vision circuitry in the retina. Curr Biol 2023; 33:4415-4429.e3. [PMID: 37769662 PMCID: PMC10615854 DOI: 10.1016/j.cub.2023.08.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Experience regulates synapse formation and function across sensory circuits. How inhibitory synapses in the mammalian retina are sculpted by visual cues remains unclear. By use of a sensory deprivation paradigm, we find that visual cues regulate maturation of two GABA synapse types (GABAA and GABAC receptor synapses), localized across the axon terminals of rod bipolar cells (RBCs)-second-order retinal neurons integral to the night-vision circuit. Lack of visual cues causes GABAA synapses at RBC terminals to retain an immature receptor configuration with slower response profiles and prevents receptor recruitment at GABAC synapses. Additionally, the organizing protein for both these GABA synapses, LRRTM4, is not clustered at dark-reared RBC synapses. Ultrastructurally, the total number of ribbon-output/inhibitory-input synapses across RBC terminals remains unaltered by sensory deprivation, although ribbon synapse output sites are misarranged when the circuit develops without visual cues. Intrinsic electrophysiological properties of RBCs and expression of chloride transporters across RBC terminals are additionally altered by sensory deprivation. Introduction to normal 12-h light-dark housing conditions facilitates maturation of dark-reared RBC GABA synapses and restoration of intrinsic RBC properties, unveiling a new element of light-dependent retinal cellular and synaptic plasticity.
Collapse
Affiliation(s)
- Serena R Wisner
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aindrila Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kamila Mizerska
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah J Kolarik
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Julie Wallin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raunak Sinha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
9
|
Zhang J, Meng X, Zhou Y, Jiang Z, Chen H, Meng Z, Zhang Q, Chen W. Lnc-LRRTM4 promotes proliferation, metastasis and EMT of colorectal cancer through activating LRRTM4 transcription. Cancer Cell Int 2023; 23:142. [PMID: 37468908 DOI: 10.1186/s12935-023-02986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Numerous mechanisms have shown that long noncoding RNAs (lncRNAs) promote the development of colorectal cancer (CRC), but the role of lnc-LRRTM4 in the progression of CRC remains unclear. In this article, we found that lnc-LRRTM4 was highly expressed in CRC tissues and cell lines and that lnc-LRRTM4 could promote the proliferation and metastasis of CRC cells. These consequences were achieved by lnc-LRRTM4 directly binding to the promoter of LRRTM4 to induce its transcription. Moreover, lnc-LRRTM4 enhanced the growth of CRC cells in vivo by promoting cell cycle progression and reducing apoptosis. Taken together, our results revealed that lnc-LRRTM4 promotes the proliferation and metastasis of CRC cells, suggesting that it may be a potential diagnostic and therapeutic target for CRC.
Collapse
Affiliation(s)
- Jingjie Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Xianmei Meng
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Yi Zhou
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Zhengyu Jiang
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Hongsuo Chen
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Zhiyi Meng
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Qi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China.
| |
Collapse
|
10
|
Xiong Y, Kullberg S, Garman L, Pezant N, Ellinghaus D, Vasila V, Eklund A, Rybicki BA, Iannuzzi MC, Schreiber S, Müller-Quernheim J, Montgomery CG, Grunewald J, Padyukov L, Rivera NV. Sex differences in the genetics of sarcoidosis across European and African ancestry populations. Front Med (Lausanne) 2023; 10:1132799. [PMID: 37250650 PMCID: PMC10213734 DOI: 10.3389/fmed.2023.1132799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Background Sex differences in the susceptibility of sarcoidosis are unknown. The study aims to identify sex-dependent genetic variations in two clinical sarcoidosis phenotypes: Löfgren's syndrome (LS) and non-Löfgren's syndrome (non-LS). Methods A meta-analysis of genome-wide association studies was conducted on Europeans and African Americans, totaling 10,103 individuals from three population-based cohorts, Sweden (n = 3,843), Germany (n = 3,342), and the United States (n = 2,918), followed by an SNP lookup in the UK Biobank (UKB, n = 387,945). A genome-wide association study based on Immunochip data consisting of 141,000 single nucleotide polymorphisms (SNPs) was conducted in the sex groups. The association test was based on logistic regression using the additive model in LS and non-LS sex groups independently. Additionally, gene-based analysis, gene expression, expression quantitative trait loci (eQTL) mapping, and pathway analysis were performed to discover functionally relevant mechanisms related to sarcoidosis and biological sex. Results We identified sex-dependent genetic variations in LS and non-LS sex groups. Genetic findings in LS sex groups were explicitly located in the extended Major Histocompatibility Complex (xMHC). In non-LS, genetic differences in the sex groups were primarily located in the MHC class II subregion and ANXA11. Gene-based analysis and eQTL enrichment revealed distinct sex-specific gene expression patterns in various tissues and immune cell types. In LS sex groups, a pathway map related to antigen presentation machinery by IFN-gamma. In non-LS, pathway maps related to immune response lectin-induced complement pathway in males and related to maturation and migration of dendritic cells in skin sensitization in females were identified. Conclusion Our findings provide new evidence for a sex bias underlying sarcoidosis genetic architecture, particularly in clinical phenotypes LS and non-LS. Biological sex likely plays a role in disease mechanisms in sarcoidosis.
Collapse
Affiliation(s)
- Ying Xiong
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kullberg
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Lori Garman
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Nathan Pezant
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vasiliki Vasila
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anders Eklund
- Department of Respiratory Medicine and Allergy, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin A. Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Michael C. Iannuzzi
- Zucker School of Medicine, Staten Island University Hospital, Northwell/Hofstra University, Staten Island, NY, United States
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Clinic for Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Joachim Müller-Quernheim
- Department of Pneumology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Courtney G. Montgomery
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Johan Grunewald
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leonid Padyukov
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia V. Rivera
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Gregg RG, Hasan N, Borghuis BG. LRIT3 expression in cone photoreceptors restores post-synaptic bipolar cell signalplex assembly and partial function in Lrit3 -/- mice. iScience 2023; 26:106499. [PMID: 37091241 PMCID: PMC10113827 DOI: 10.1016/j.isci.2023.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Complete congenital stationary night blindness (cCSNB) is a heterogeneous disorder characterized by poor dim-light vision, myopia, and nystagmus that is caused by mutations in genes critical for signal transmission between photoreceptors and depolarizing bipolar cells (DBCs). One such gene, LRIT3, is required for assembly of the post-synaptic signaling complex (signalplex) at the dendritic tips of DBCs, although the number of signalplex components impacted is greater in cone DBCs (all components) than in rod bipolar cells (only TRPM1 and Nyctalopin). Here we show that rAAV-mediated expression of LRIT3 in cones results in robust rescue of cone DBC signalplex components and partially restores downstream visual function, as measured by the light-adapted electroretinogram (ERG) b-wave and electrophysiological recordings of bipolar cells (BCs) and RGCs. These data show that LRIT3 successfully restores partial function to cone DBCs most likely in a trans-synaptic manner, potentially paving the way for therapeutic intervention in LRIT3-associated cCSNB.
Collapse
Affiliation(s)
- Ronald G. Gregg
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292, USA
- Corresponding author
| | - Nazarul Hasan
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Bart G. Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
- Corresponding author
| |
Collapse
|
12
|
Sawant A, Saha A, Khoussine J, Sinha R, Hoon M. New insights into retinal circuits through EM connectomics: what we have learnt and what remains to be learned. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1168548. [PMID: 38983069 PMCID: PMC11182165 DOI: 10.3389/fopht.2023.1168548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 07/11/2024]
Abstract
The retinal neural circuit is intricately wired for efficient processing of visual signals. This is well-supported by the specialized connections between retinal neurons at both the functional and ultrastructural levels. Through 3D electron microscopic (EM) reconstructions of retinal neurons and circuits we have learnt much about the specificities of connections within the retinal layers including new insights into how retinal neurons establish connections and perform sophisticated visual computations. This mini-review will summarize the retinal circuitry and provide details about the novel insights EM connectomics has brought into our understanding of the retinal circuitry. We will also discuss unresolved questions about the retinal circuitry that can be addressed by EM connectomics in the future.
Collapse
Affiliation(s)
- Abhilash Sawant
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Aindrila Saha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Jacob Khoussine
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Raunak Sinha
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Yu WQ, Swanstrom R, Sigulinsky CL, Ahlquist RM, Knecht S, Jones BW, Berson DM, Wong RO. Distinctive synaptic structural motifs link excitatory retinal interneurons to diverse postsynaptic partner types. Cell Rep 2023; 42:112006. [PMID: 36680773 PMCID: PMC9946794 DOI: 10.1016/j.celrep.2023.112006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Neurons make converging and diverging synaptic connections with distinct partner types. Whether synapses involving separate partners demonstrate similar or distinct structural motifs is not yet well understood. We thus used serial electron microscopy in mouse retina to map output synapses of cone bipolar cells (CBCs) and compare their structural arrangements across bipolar types and postsynaptic partners. Three presynaptic configurations emerge-single-ribbon, ribbonless, and multiribbon synapses. Each CBC type exploits these arrangements in a unique combination, a feature also found among rabbit ON CBCs. Though most synapses are dyads, monads and triads are also seen. Altogether, mouse CBCs exhibit at least six motifs, and each CBC type uses these in a stereotypic pattern. Moreover, synapses between CBCs and particular partner types appear biased toward certain motifs. Our observations reveal synaptic strategies that diversify the output within and across CBC types, potentially shaping the distinct functions of retinal microcircuits.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Rachael Swanstrom
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA,The authors contributed equally
| | - Crystal L. Sigulinsky
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA,The authors contributed equally
| | - Richard M. Ahlquist
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195 WA, USA,The authors contributed equally
| | - Sharm Knecht
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Bryan W. Jones
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Rachel O. Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA,Lead contact,Correspondence:
| |
Collapse
|
14
|
Zhang C, Hellevik A, Takeuchi S, Wong RO. Hierarchical partner selection shapes rod-cone pathway specificity in the inner retina. iScience 2022; 25:105032. [PMID: 36117987 PMCID: PMC9474917 DOI: 10.1016/j.isci.2022.105032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Neurons form stereotyped microcircuits that underlie specific functions. In the vertebrate retina, the primary rod and cone pathways that convey dim and bright light signals, respectively, exhibit distinct wiring patterns. Rod and cone pathways are thought to be assembled separately during development. However, using correlative fluorescence imaging and serial electron microscopy, we show here that cross-pathway interactions are involved to achieve pathway-specific connectivity within the inner retina. We found that A17 amacrine cells, a rod pathway-specific cellular component, heavily bias their synaptogenesis with rod bipolar cells (RBCs) but increase their connectivity with cone bipolar cells (CBCs) when RBCs are largely ablated. This cross-pathway synaptic plasticity occurs during synaptogenesis and is triggered even on partial loss of RBCs. Thus, A17 cells adopt a hierarchical approach in selecting postsynaptic partners from functionally distinct pathways (RBC>CBC), in which contact and/or synaptogenesis with preferred partners (RBCs) influences connectivity with less-preferred partners (CBCs).
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ayana Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Rachel O. Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Boulund U, Bastos DM, Ferwerda B, van den Born BJ, Pinto-Sietsma SJ, Galenkamp H, Levin E, Groen AK, Zwinderman AH, Nieuwdorp M. Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell Host Microbe 2022; 30:1464-1480.e6. [PMID: 36099924 DOI: 10.1016/j.chom.2022.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/16/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
Previous studies in mainly European populations have reported that the gut microbiome composition is associated with the human genome. However, the genotype-microbiome interaction in different ethnicities is largely unknown. We performed a large fecal microbiome genome-wide association study of a single multiethnic cohort, the Healthy Life in an Urban Setting (HELIUS) cohort (N = 4,117). Mendelian randomization was performed using the multiethnic Pan-UK Biobank (N = 460,000) to dissect potential causality. We identified ethnicity-specific associations between host genomes and gut microbiota. Certain microbes were associated with genotype in multiple ethnicities. Several of the microbe-associated loci were found to be related to immune functions, interact with glutamate and the mucus layer, or be expressed in the gut or brain. Additionally, we found that gut microbes potentially influence cardiometabolic health factors such as BMI, cholesterol, and blood pressure. This provides insight into the relationship of ethnicity and gut microbiota and into the possible causal effects of gut microbes on cardiometabolic traits.
Collapse
Affiliation(s)
- Ulrika Boulund
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Diogo M Bastos
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Bert-Jan van den Born
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; Department of Public and Occupational Health, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; HorAIzon BV, 2645 LT Delfgauw, the Netherlands
| | - Albert K Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Alkhalfan F, Gyftopoulos A, Chen YJ, Williams CH, Perry JA, Hong CC. Identifying genetic variants associated with the ICD10 (International Classification of Diseases10)-based diagnosis of cerebrovascular disease using a large-scale biomedical database. PLoS One 2022; 17:e0273217. [PMID: 35994481 PMCID: PMC9394849 DOI: 10.1371/journal.pone.0273217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To utilize the UK Biobank to identify genetic variants associated with the ICD10 (International Classification of Diseases10)-based diagnosis of cerebrovascular disease (CeVD). BACKGROUND Cerebrovascular disease occurs because of a complex interplay between vascular, environmental, and genetic factors. It is the second leading cause of disability worldwide. Understanding who may be genetically predisposed to cerebrovascular disease can help guide preventative efforts. Moreover, there is considerable interest in the use of real-world data, such as EHR (electronic health records) to better understand disease mechanisms and to discover new treatment strategies, but whether ICD10-based diagnosis can be used to study CeVD genetics is unknown. METHODS Using the UK Biobank, we conducted a genome-wide association study (GWAS) where we analyzed the genomes of 11,155 cases and 122,705 controls who were sex, age and ancestry-matched in a 1:11 case: control design. Genetic variants were identified by Plink's firth logistic regression and assessed for association with the ICD10 codes corresponding to CeVD. RESULTS We identified two groups of SNPs closely linked to PITX2 and LRRTM4 that were significantly associated with CeVD in this study (p < 5 x 10-8) and had a minor allele frequency of > 0.5%. DISCUSSION Disease assignment based on ICD10 codes may underestimate prevalence; however, for CeVD, this does not appear to be the case. Compared to the age- and sex-matched control population, individuals with CeVD were more frequently diagnosed with comorbid conditions, such as hypertension, hyperlipidemia & atrial fibrillation or flutter, confirming their contribution to CeVD. The UK Biobank based ICD10 study identified 2 groups of variants that were associated with CeVD. The association between PITX2 and CeVD is likely explained by the increased rates of atrial fibrillation and flutter. While the mechanism explaining the relationship between LRRTM4 and CeVD is unclear, this has been documented in previous studies.
Collapse
Affiliation(s)
- Fahad Alkhalfan
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alex Gyftopoulos
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yi-Ju Chen
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Charles H. Williams
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James A. Perry
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Charles C. Hong
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
17
|
Lipshutz SE, Howell CR, Buechlein AM, Rusch DB, Rosvall KA, Derryberry EP. How thermal challenges change gene regulation in the songbird brain and gonad: implications for sexual selection in our changing world. Mol Ecol 2022; 31:3613-3626. [PMID: 35567363 DOI: 10.1111/mec.16506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
In a rapidly warming world, exposure to high temperatures may impact fitness, but the gene regulatory mechanisms that link sublethal heat to sexually selected traits are not well understood, particularly in endothermic animals. Our experiment used zebra finches (Taeniopygia guttata), songbirds that experience extreme temperature fluctuations in their native Australia. We exposed captive males to an acute thermal challenge (43°C) compared with thermoneutral (35°C) and lower (27°C) temperatures. We found significantly more heat dissipation behaviors at 43°C, a temperature previously shown to reduce song production and fertility, and more heat retention behaviors at 27°C. Next, we characterized transcriptomic responses in tissues important for mating effort - the posterior telencephalon, for its role in song production, and the testis, for its role in fertility and hormone production. Differential expression of hundreds of genes in the testes, but few in the brain, suggest the brain is less responsive to extreme temperatures. Nevertheless, gene network analyses revealed that expression related to dopaminergic signaling in the brain co-varied with heat dissipation behaviors, providing a mechanism by which temporary thermal challenges may alter motivational circuits for song production. In both brain and testis, we observed correlations between thermally sensitive gene networks and individual differences in thermoregulatory behavior. Although we cannot directly relate these gene regulatory changes to mating success, our results suggest that individual variation in response to thermal challenges could impact sexually selected traits in a warming world.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Clara R Howell
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,Department of Biology, Duke University, Durham, NC, USA
| | - Aaron M Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
18
|
Kim J, Park D, Seo NY, Yoon TH, Kim GH, Lee SH, Seo J, Um JW, Lee KJ, Ko J. LRRTM3 regulates activity-dependent synchronization of synapse properties in topographically connected hippocampal neural circuits. Proc Natl Acad Sci U S A 2022; 119:e2110196119. [PMID: 35022233 PMCID: PMC8784129 DOI: 10.1073/pnas.2110196119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons. Here, we report that Lrrtm3-deficient mice exhibit selective reductions in excitatory synapse density and synaptic strength in projections involving the medial entorhinal cortex (MEC) and DG granule neurons, accompanied by increased neurotransmitter release and decreased excitability of granule neurons. LRRTM3 deletion significantly reduced excitatory synaptic innervation of hippocampal mossy fibers (Mf) of DG granule neurons onto thorny excrescences in hippocampal CA3 neurons. Moreover, LRRTM3 loss in DG neurons significantly decreased mossy fiber long-term potentiation (Mf-LTP). Remarkably, silencing MEC-DG circuits protected against the decrease in the excitatory synaptic inputs onto DG and CA3 neurons, excitability of DG granule neurons, and Mf-LTP in Lrrtm3-deficient mice. These results suggest that LRRTM3 may be a critical factor in activity-dependent synchronization of the topography of MEC-DG-CA3 excitatory synaptic connections. Collectively, our data propose that LRRTM3 shapes the target-specific structural and functional properties of specific hippocampal circuits.
Collapse
Affiliation(s)
- Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Na-Young Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Taek-Han Yoon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Gyu Hyun Kim
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Sang-Hoon Lee
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Brain Research Core Facilities, KBRI, Daegu 41062, Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kea Joo Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| |
Collapse
|
19
|
Schizophrenia-associated LRRTM1 regulates cognitive behavior through controlling synaptic function in the mediodorsal thalamus. Mol Psychiatry 2021; 26:6912-6925. [PMID: 33981006 DOI: 10.1038/s41380-021-01146-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
Reduced activity of the mediodorsal thalamus (MD) and abnormal functional connectivity of the MD with the prefrontal cortex (PFC) cause cognitive deficits in schizophrenia. However, the molecular basis of MD hypofunction in schizophrenia is not known. Here, we identified leucine-rich-repeat transmembrane neuronal protein 1 (LRRTM1), a postsynaptic cell-adhesion molecule, as a key regulator of excitatory synaptic function and excitation-inhibition balance in the MD. LRRTM1 is strongly associated with schizophrenia and is highly expressed in the thalamus. Conditional deletion of Lrrtm1 in the MD in adult mice reduced excitatory synaptic function and caused a parallel reduction in the afferent synaptic activity of the PFC, which was reversed by the reintroduction of LRRTM1 in the MD. Our results indicate that chronic reduction of synaptic strength in the MD by targeted deletion of Lrrtm1 functionally disengages the MD from the PFC and may account for cognitive, social, and sensorimotor gating deficits, reminiscent of schizophrenia.
Collapse
|
20
|
Sinha R, Grimes WN, Wallin J, Ebbinghaus BN, Luu K, Cherry T, Rieke F, Rudolph U, Wong RO, Hoon M. Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function. Curr Biol 2021; 31:4314-4326.e5. [PMID: 34433078 DOI: 10.1016/j.cub.2021.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Developing neural circuits, including GABAergic circuits, switch receptor types. But the role of early GABA receptor expression for establishment of functional inhibitory circuits remains unclear. Tracking the development of GABAergic synapses across axon terminals of retinal bipolar cells (BCs), we uncovered a crucial role of early GABAA receptor expression for the formation and function of presynaptic inhibitory synapses. Specifically, early α3-subunit-containing GABAA (GABAAα3) receptors are a key developmental organizer. Before eye opening, GABAAα3 gives way to GABAAα1 at individual BC presynaptic inhibitory synapses. The developmental downregulation of GABAAα3 is independent of GABAAα1 expression. Importantly, lack of early GABAAα3 impairs clustering of GABAAα1 and formation of functional GABAA synapses across mature BC terminals. This impacts the sensitivity of visual responses transmitted through the circuit. Lack of early GABAAα3 also perturbs aggregation of LRRTM4, the organizing protein at GABAergic synapses of rod BC terminals, and their arrangement of output ribbon synapses.
Collapse
Affiliation(s)
- Raunak Sinha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD, USA
| | - Julie Wallin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Briana N Ebbinghaus
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelsey Luu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Timothy Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington-Seattle and the Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
Nagy J, Ebbinghaus B, Hoon M, Sinha R. GABA A presynaptic inhibition regulates the gain and kinetics of retinal output neurons. eLife 2021; 10:60994. [PMID: 33904401 PMCID: PMC8110304 DOI: 10.7554/elife.60994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Output signals of neural circuits, including the retina, are shaped by a combination of excitatory and inhibitory signals. Inhibitory signals can act presynaptically on axon terminals to control neurotransmitter release and regulate circuit function. However, it has been difficult to study the role of presynaptic inhibition in most neural circuits due to lack of cell type-specific and receptor type-specific perturbations. In this study, we used a transgenic approach to selectively eliminate GABAA inhibitory receptors from select types of second-order neurons - bipolar cells - in mouse retina and examined how this affects the light response properties of the well-characterized ON alpha ganglion cell retinal circuit. Selective loss of GABAA receptor-mediated presynaptic inhibition causes an enhanced sensitivity and slower kinetics of light-evoked responses from ON alpha ganglion cells thus highlighting the role of presynaptic inhibition in gain control and temporal filtering of sensory signals in a key neural circuit in the mammalian retina.
Collapse
Affiliation(s)
- Jenna Nagy
- Department of Neuroscience, University of WisconsinMadisonUnited States
- McPherson Eye Research Institute, University of WisconsinMadisonUnited States
- Cellular and Molecular Pathology Training Program, University of WisconsinMadisonUnited States
| | - Briana Ebbinghaus
- McPherson Eye Research Institute, University of WisconsinMadisonUnited States
- Department of Ophthalmology and Visual Sciences, University of WisconsinMadisonUnited States
- Neuroscience Training Program, University of WisconsinMadisonUnited States
| | - Mrinalini Hoon
- Department of Neuroscience, University of WisconsinMadisonUnited States
- McPherson Eye Research Institute, University of WisconsinMadisonUnited States
- Department of Ophthalmology and Visual Sciences, University of WisconsinMadisonUnited States
| | - Raunak Sinha
- Department of Neuroscience, University of WisconsinMadisonUnited States
- McPherson Eye Research Institute, University of WisconsinMadisonUnited States
- Department of Ophthalmology and Visual Sciences, University of WisconsinMadisonUnited States
| |
Collapse
|
22
|
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021; 200:101983. [PMID: 33422662 DOI: 10.1016/j.pneurobio.2020.101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea; Core Protein Resources Center, DGIST, Daegu, 42988, South Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
23
|
Peng YR, Sampath AP. LRR-ning the Rules: Synapse Organization in the Primary Rod Pathway. Neuron 2020; 105:949-951. [PMID: 32191854 DOI: 10.1016/j.neuron.2020.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Neuron, Sinha et al. (2020) demonstrate that synaptic organization at rod bipolar cell terminals is regulated by a leucine-rich repeat protein, LRRTM4. LRRTM4 is expressed specifically by rod bipolar cells; eliminating it in mouse retina perturbs the organization of synaptic ribbons and impairs the function of inhibitory synapses.
Collapse
Affiliation(s)
- Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| | - Alapakkam P Sampath
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Agosto MA, Wensel TG. LRRTM4 is a member of the transsynaptic complex between rod photoreceptors and bipolar cells. J Comp Neurol 2020; 529:221-233. [PMID: 32390181 DOI: 10.1002/cne.24944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Leucine rich repeat transmembrane (LRRTM) proteins are synaptic adhesion molecules with roles in synapse formation and signaling. LRRTM4 transcripts were previously shown to be enriched in rod bipolar cells (BCs), secondary neurons of the retina that form synapses with rod photoreceptors. Using two different antibodies, LRRTM4 was found to reside primarily at rod BC dendritic tips, where it colocalized with the transduction channel protein, TRPM1. LRRTM4 was not detected at dendritic tips of ON-cone BCs. Following somatic knockout of LRRTM4 in BCs by subretinal injection and electroporation of CRISPR/Cas9, LRRTM4 was abolished or reduced in the dendritic tips of transfected cells. Knockout cells had a normal complement of TRPM1 at their dendritic tips, while GPR179 accumulation was partially reduced. In experiments with heterologously expressed protein, the extracellular domain of LRRTM4 was found to engage in heparan-sulfate dependent binding with pikachurin. These results implicate LRRTM4 in the GPR179-pikachurin-dystroglycan transsynaptic complex at rod synapses.
Collapse
Affiliation(s)
- Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
25
|
Graham HK, Duan X. Molecular mechanisms regulating synaptic specificity and retinal circuit formation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e379. [PMID: 32267095 DOI: 10.1002/wdev.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
The central nervous system (CNS) is composed of precisely assembled circuits which support a variety of physiological functions and behaviors. These circuits include multiple subtypes of neurons with unique morphologies, electrical properties, and molecular identities. How these component parts are precisely wired-up has been a topic of great interest to the field of developmental neurobiology and has implications for our understanding of the etiology of many neurological disorders and mental illnesses. To date, many molecules involved in synaptic choice and specificity have been identified, including members of several families of cell-adhesion molecules (CAMs), which are cell-surface molecules that mediate cell-cell contacts and subsequent intracellular signaling. One favored hypothesis is that unique expression patterns of CAMs define specific neuronal subtype populations and determine compatible pre- and postsynaptic neuronal partners based on the expression of these unique CAMs. The mouse retina has served as a beautiful model for investigations into mammalian CAM interactions due to its well-defined neuronal subtypes and distinct circuits. Moreover, the retina is readily amenable to visualization of circuit organization and electrophysiological measurement of circuit function. The advent of recent genetic, genomic, and imaging technologies has opened the field up to large-scale, unbiased approaches for identification of new molecular determinants of synaptic specificity. Thus, building on the foundation of work reviewed here, we can expect rapid expansion of the field, harnessing the mouse retina as a model to understand the molecular basis for synaptic specificity and functional circuit assembly. This article is categorized under: Nervous System Development > Vertebrates: General Principles Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Hannah K Graham
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA.,Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA.,Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA.,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|