1
|
Chen Y, Zhang L, Zhang J, Yu H, Zhou Y, Li Q, Li X. The path of depression in rural children: A fuzzy-set qualitative comparative analysis across multiple provinces in China. J Affect Disord 2024; 365:237-245. [PMID: 39173922 DOI: 10.1016/j.jad.2024.08.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES This study explores the combinations of conditional variables contributing to depressive symptoms in rural children. METHODS We analyzed data from 715 children from a rural mental health database, conducting detailed follow-up investigations on 129 children in Zhejiang and Henan provinces. We used fuzzy set Qualitative Comparative Analysis (fsQCA) and regression analysis to identify causal pathways leading to depression. RESULTS The results indicate that depression in rural children does not stem from a single, necessary condition but arises from multiple factors. Our findings highlight significant contributions from both maternal and paternal involvement. Specifically, maternal involvement, combined synergistically with peer support and problematic behaviors, as well as paternal involvement, together with peer support and anxiety, significantly affects depressive outcomes. Additionally, anxiety and strong peer relationships independently have a substantial impact on these outcomes. Effective mitigation strategies involve active parental engagement and robust peer support, reducing the influence of risk factors such as problematic behaviors and anxiety. LIMITATIONS The generalizability of the results is limited by cultural and geographical variations. The study also does not account for all potential factors influencing depression in rural children. CONCLUSION Depression in rural children results from multiple interacting factors. Tailored interventions addressing these specific combinations are recommended.
Collapse
Affiliation(s)
- Yubin Chen
- Department of Nursing, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Linghui Zhang
- Department of Nursing, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jiayuan Zhang
- Department of Nursing, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hong Yu
- Department of Nursing, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yuqiu Zhou
- Department of Nursing, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Nursing, Huzhou University, Huzhou, Zhejiang 313000, China.
| | - Qi Li
- Department of Nursing, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiaoyan Li
- Department of Nursing, Lishui University, Lishui, Zhejiang 323000, China
| |
Collapse
|
2
|
Demeter DV, Greene DJ. The promise of precision functional mapping for neuroimaging in psychiatry. Neuropsychopharmacology 2024; 50:16-28. [PMID: 39085426 PMCID: PMC11526039 DOI: 10.1038/s41386-024-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Precision functional mapping (PFM) is a neuroimaging approach to reliably estimate metrics of brain function from individual people via the collection of large amounts of fMRI data (hours per person). This method has revealed much about the inter-individual variation of functional brain networks. While standard group-level studies, in which we average brain measures across groups of people, are important in understanding the generalizable neural underpinnings of neuropsychiatric disorders, many disorders are heterogeneous in nature. This heterogeneity often complicates clinical care, leading to patient uncertainty when considering prognosis or treatment options. We posit that PFM methods may help streamline clinical care in the future, fast-tracking the choice of personalized treatment that is most compatible with the individual. In this review, we provide a history of PFM studies, foundational results highlighting the benefits of PFM methods in the pursuit of an advanced understanding of individual differences in functional network organization, and possible avenues where PFM can contribute to clinical translation of neuroimaging research results in the way of personalized treatment in psychiatry.
Collapse
Affiliation(s)
- Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Fan T, Decker W, Schneider J. The Domain-Specific Neural Basis of Auditory Statistical Learning in 5-7-Year-Old Children. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:981-1007. [PMID: 39483699 PMCID: PMC11527419 DOI: 10.1162/nol_a_00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/17/2024] [Indexed: 11/03/2024]
Abstract
Statistical learning (SL) is the ability to rapidly track statistical regularities and learn patterns in the environment. Recent studies show that SL is constrained by domain-specific features, rather than being a uniform learning mechanism across domains and modalities. This domain-specificity has been reflected at the neural level, as SL occurs in regions primarily involved in processing of specific modalities or domains of input. However, our understanding of how SL is constrained by domain-specific features in the developing brain is severely lacking. The present study aims to identify the functional neural profiles of auditory SL of linguistic and nonlinguistic regularities among children. Thirty children between 5 and 7 years old completed an auditory fMRI SL task containing interwoven sequences of structured and random syllable/tone sequences. Using traditional group univariate analyses and a group-constrained subject-specific analysis, frontal and temporal cortices showed significant activation when processing structured versus random sequences across both linguistic and nonlinguistic domains. However, conjunction analyses failed to identify overlapping neural indices across domains. These findings are the first to compare brain regions supporting SL of linguistic and nonlinguistic regularities in the developing brain and indicate that auditory SL among developing children may be constrained by domain-specific features.
Collapse
Affiliation(s)
- Tengwen Fan
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Will Decker
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
- Department of Psychology, Georgia Tech University, Atlanta, GA, USA
| | - Julie Schneider
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
- School of Education and Information Studies, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Lee HJ, Dworetsky A, Labora N, Gratton C. Using precision approaches to improve brain-behavior prediction. Trends Cogn Sci 2024:S1364-6613(24)00229-8. [PMID: 39419740 DOI: 10.1016/j.tics.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Predicting individual behavioral traits from brain idiosyncrasies has broad practical implications, yet predictions vary widely. This constraint may be driven by a combination of signal and noise in both brain and behavioral variables. Here, we expand on this idea, highlighting the potential of extended sampling 'precision' studies. First, we discuss their relevance to improving the reliability of individualized estimates by minimizing measurement noise. Second, we review how targeted within-subject experiments, when combined with individualized analysis or modeling frameworks, can maximize signal. These improvements in signal-to-noise facilitated by precision designs can help boost prediction studies. We close by discussing the integration of precision approaches with large-sample consortia studies to leverage the advantages of both.
Collapse
Affiliation(s)
- Hyejin J Lee
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| | - Ally Dworetsky
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Nathan Labora
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
5
|
Moser J, Nelson SM, Koirala S, Madison TJ, Labonte AK, Carrasco CM, Feczko E, Moore LA, Lundquist JT, Weldon KB, Grimsrud G, Hufnagle K, Ahmed W, Myers MJ, Adeyemo B, Snyder AZ, Gordon EM, Dosenbach NUF, Tervo-Clemmens B, Larsen B, Moeller S, Yacoub E, Vizioli L, Uğurbil K, Laumann TO, Sylvester CM, Fair DA. Multi-echo Acquisition and Thermal Denoising Advances Precision Functional Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.564416. [PMID: 37961636 PMCID: PMC10634909 DOI: 10.1101/2023.10.27.564416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The characterization of individual functional brain organization with Precision Functional Mapping has provided important insights in recent years in adults. However, little is known about the ontogeny of inter-individual differences in brain functional organization during human development. Precise characterization of systems organization during periods of high plasticity is likely to be essential for discoveries promoting lifelong health. Obtaining precision fMRI data during development has unique challenges that highlight the importance of establishing new methods to improve data acquisition, processing, and analysis. Here, we investigate two methods that can facilitate attaining this goal: multi-echo (ME) data acquisition and thermal noise removal with Noise Reduction with Distribution Corrected (NORDIC) principal component analysis. We applied these methods to precision fMRI data from adults, children, and newborn infants. In adults, both ME acquisitions and NORDIC increased temporal signal to noise ratio (tSNR) as well as the split-half reliability of functional connectivity matrices, with the combination helping more than either technique alone. The benefits of NORDIC denoising replicated in both our developmental samples. ME acquisitions revealed longer and more variable T2* relaxation times across the brain in infants relative to older children and adults, leading to major differences in the echo weighting for optimally combining ME data. This result suggests ME acquisitions may be a promising tool for optimizing developmental fMRI, albeit application in infants needs further investigation. The present work showcases methodological advances that improve Precision Functional Mapping in adults and developmental populations and, at the same time, highlights the need for further improvements in infant specific fMRI.
Collapse
Affiliation(s)
- Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Thomas J Madison
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Alyssa K Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jacob T Lundquist
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Kimberly B Weldon
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Kristina Hufnagle
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Weli Ahmed
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Myers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Timothy O Laumann
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Peng S, Cui Z, Zhong S, Zhang Y, Cohen AL, Fox MD, Gong G. Heterogenous brain activations across individuals localize to a common network. Commun Biol 2024; 7:1270. [PMID: 39369118 PMCID: PMC11455857 DOI: 10.1038/s42003-024-06969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Task functional magnetic resonance imaging research has generally shielded away from studying individuals due to the low reproducibility. Here, we propose that heterogeneous brain activations across individuals localize to a common network. To test this hypothesis, we use working memory (WM) as our example. First, we showed that discrete-brain-based reproducibility of brain activation during WM across individuals was low. Then, we used activation network mapping (ANM) technique to identify each individual's brain network of WM and found that network-based reproducibility was rather high. Prediction analyses using machine learning algorithms indicated that individual WM networks identified via ANM can predict WM behavioral performance. This predictive ability even outperformed that of brain activations. Our study provides a new explanation on the low reproducibility of brain activations across individuals. The results suggest that ANM can be used to identify individual brain networks of cognitive processes, thus promising broad potential applications.
Collapse
Affiliation(s)
- Shaoling Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Suyu Zhong
- Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Alexander L Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| |
Collapse
|
7
|
Baghernezhad S, Daliri MR. Age-related changes in human brain functional connectivity using graph theory and machine learning techniques in resting-state fMRI data. GeroScience 2024; 46:5303-5320. [PMID: 38499956 PMCID: PMC11336041 DOI: 10.1007/s11357-024-01128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Aging is the basis of neurodegeneration and dementia that affects each endemic in the body. Normal aging in the brain is associated with progressive slowdown and disruptions in various abilities such as motor ability, cognitive impairment, decreasing information processing speed, attention, and memory. With the aggravation of global aging, more research focuses on brain changes in the elderly adult. The graph theory, in combination with functional magnetic resonance imaging (fMRI), makes it possible to evaluate the brain network functional connectivity patterns in different conditions with brain modeling. We have evaluated the brain network communication model changes in three different age groups (including 8 to 15 years, 25 to 35 years, and 45 to 75 years) in lifespan pilot data from the human connectome project (HCP). Initially, Pearson correlation-based connectivity networks were calculated and thresholded. Then, network characteristics were compared between the three age groups by calculating the global and local graph measures. In the resting state brain network, we observed decreasing global efficiency and increasing transitivity with age. Also, brain regions, including the amygdala, putamen, hippocampus, precuneus, inferior temporal gyrus, anterior cingulate gyrus, and middle temporal gyrus, were selected as the most affected brain areas with age through statistical tests and machine learning methods. Using feature selection methods, including Fisher score and Kruskal-Wallis, we were able to classify three age groups using SVM, KNN, and decision-tree classifier. The best classification accuracy is in the combination of Fisher score and decision tree classifier obtained, which was 82.2%. Thus, by examining the measures of functional connectivity using graph theory, we will be able to explore normal age-related changes in the human brain, which can be used as a tool to monitor health with age.
Collapse
Affiliation(s)
- Sepideh Baghernezhad
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mohammad Reza Daliri
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
8
|
Keller AS, Sun KY, Francisco A, Robinson H, Beydler E, Bassett DS, Cieslak M, Cui Z, Davatzikos C, Fan Y, Gardner M, Kishton R, Kornfield SL, Larsen B, Li H, Linder I, Pines A, Pritschet L, Raznahan A, Roalf DR, Seidlitz J, Shafiei G, Shinohara RT, Wolf DH, Alexander-Bloch A, Satterthwaite TD, Shanmugan S. Reproducible Sex Differences in Personalized Functional Network Topography in Youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615061. [PMID: 39386637 PMCID: PMC11463432 DOI: 10.1101/2024.09.26.615061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background A key step towards understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organization at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organization of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex. Aims We aimed to evaluate the impact of sex on the spatial organization of person-specific functional brain networks. Method We leveraged person-specific atlases of functional brain networks defined using nonnegative matrix factorization in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalized additive models to uncover associations between sex and the spatial layout ("topography") of personalized functional networks (PFNs). Next, we trained support vector machines to classify participants' sex from multivariate patterns of PFN topography. Finally, we leveraged transcriptomic data from the Allen Human Brain Atlas to evaluate spatial correlations between sex differences in PFN topography and gene expression. Results Sex differences in PFN topography were greatest in association networks including the fronto-parietal, ventral attention, and default mode networks. Machine learning models trained on participants' PFNs were able to classify participant sex with high accuracy. Brain regions with the greatest sex differences in PFN topography were enriched in expression of X-linked genes as well as genes expressed in astrocytes and excitatory neurons. Conclusions Sex differences in PFN topography are robust, replicate across large-scale samples of youth, and are associated with expression patterns of X-linked genes. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.
Collapse
Affiliation(s)
- Arielle S Keller
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, USA
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Kevin Y Sun
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Francisco
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heather Robinson
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Emily Beydler
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering, Electrical & Systems Engineering, Physics & Astronomy, and Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Matthew Cieslak
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Gardner
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Kishton
- Department of Family Medicine and Community Health, Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sara L Kornfield
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Women's Behavioral Wellness, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, Institute of Child Development, University of Minnesota, Minneapolis, MN 55414, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isabella Linder
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Laura Pritschet
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland
| | - David R Roalf
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jakob Seidlitz
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Golia Shafiei
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheila Shanmugan
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Center for Women's Behavioral Wellness, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Sun KY, Schmitt JE, Moore TM, Barzilay R, Almasy L, Schultz LM, Mackey AP, Kafadar E, Sha Z, Seidlitz J, Mallard TT, Cui Z, Li H, Fan Y, Fair DA, Satterthwaite TD, Keller AS, Alexander-Bloch A. Polygenic Risk Underlies Youth Psychopathology and Personalized Functional Brain Network Topography. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.20.24314007. [PMID: 39399003 PMCID: PMC11469391 DOI: 10.1101/2024.09.20.24314007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Importance Functional brain networks are associated with both behavior and genetic factors. To uncover clinically translatable mechanisms of psychopathology, it is critical to define how the spatial organization of these networks relates to genetic risk during development. Objective To determine the relationship between transdiagnostic polygenic risk scores (PRSs), personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during early adolescence. Design The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing longitudinal cohort study of 21 collection sites across the United States. Here, we conduct a cross-sectional analysis of ABCD baseline data, collected 2017-2018. Setting The ABCD Study ® is a multi-site community-based study. Participants The sample is largely recruited through school systems. Exclusion criteria included severe sensory, intellectual, medical, or neurological issues that interfere with protocol and scanner contraindications. Split-half subsets were used for cross-validation, matched on age, ethnicity, family structure, handedness, parental education, site, sex, and anesthesia exposure. Exposures Polygenic risk scores of transdiagnostic genetic factors F1 (PRS-F1) and F2 (PRS-F2) derived from adults in Psychiatric Genomic Consortium and UK Biobanks datasets. PRS-F1 indexes liability for common psychiatric symptoms and disorders related to mood disturbance; PRS-F2 indexes liability for rarer forms of mental illness characterized by mania and psychosis. Main Outcomes and Measures (1) P-factor derived from bifactor models of youth- and parent-reported mental health assessments. (2) Person-specific functional brain network topography derived from functional magnetic resonance imaging (fMRI) scans. Results Total participants included 11,873 youths ages 9-10 years old; 5,678 (47.8%) were female, and the mean (SD) age was 9.92 (0.62) years. PFN topography was found to be heritable (N=7,459, 57.06% of vertices h 2 p FDR <0.05, mean h 2 =0.35). PRS-F1 was associated with p-factor (N=5,815, r=0.12, 95% CI [0.09-0.15], p<0.001). Interindividual differences in functional network topography were associated with p-factor (N=7,459, mean r=0.12), PRS-F1 (N=3,982, mean r=0.05), and PRS-F2 (N=3,982, mean r=0.08). Cortical maps of p-factor and PRS-F1 regression coefficients were highly correlated (r=0.7, p=0.003). Conclusions and Relevance Polygenic risk for transdiagnostic adulthood psychopathology is associated with both p-factor and heritable PFN topography during early adolescence. These results advance our understanding of the developmental drivers of psychopathology.
Collapse
Affiliation(s)
- Kevin Y. Sun
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. Eric Schmitt
- Departments of Radiology and Psychiatry, Division of Neuroradiology, Brain Behavior Laboratory, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Tyler M. Moore
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ran Barzilay
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura Almasy
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura M. Schultz
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Eren Kafadar
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiqiang Sha
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jakob Seidlitz
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Travis T. Mallard
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Damien A. Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Theodore D. Satterthwaite
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arielle S. Keller
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
- CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Guo Y, Chu T, Li Q, Gai Q, Ma H, Shi Y, Che K, Dong F, Zhao F, Chen D, Jing W, Shen X, Hou G, Song X, Mao N, Wang P. Diagnosis of Major Depressive Disorder Based on Individualized Brain Functional and Structural Connectivity. J Magn Reson Imaging 2024. [PMID: 39319502 DOI: 10.1002/jmri.29617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Traditional neuroimaging studies have primarily emphasized analysis at the group level, often neglecting the specificity at the individual level. Recently, there has been a growing interest in individual differences in brain connectivity. Investigating individual-specific connectivity is important for understanding the mechanisms of major depressive disorder (MDD) and the variations among individuals. PURPOSE To integrate individualized functional connectivity and structural connectivity with machine learning techniques to distinguish people with MDD and healthy controls (HCs). STUDY TYPE Prospective. SUBJECTS A total of 182 patients with MDD and 157 HCs and a verification cohort including 54 patients and 46 HCs. FIELD STRENGTH/SEQUENCE 3.0 T/T1-weighted imaging, resting-state functional MRI with echo-planar sequence, and diffusion tensor imaging with single-shot spin echo. ASSESSMENT Functional and structural brain networks from rs-fMRI and DTI data were constructed, respectively. Based on these networks, individualized functional connectivity (IFC) and individualized structural connectivity (ISC) were extracted using common orthogonal basis extraction (COBE). Subsequently, multimodal canonical correlation analysis combined with joint independent component analysis (mCCA + jICA) was conducted to fusion analysis to identify the joint and unique independent components (ICs) across multiple modes. These ICs were utilized to generate features, and a support vector machine (SVM) model was implemented for the classification of MDD. STATISTICAL TESTS The differences in individualized connectivity between patients and controls were compared using two-sample t test, with a significance threshold set at P < 0.05. The established model was tested and evaluated using the receiver operating characteristic (ROC) curve. RESULTS The classification performance of the constructed individualized connectivity feature model after multisequence fusion increased from 72.2% to 90.3%. Furthermore, the prediction model showed significant predictive power for assessing the severity of depression in patients with MDD (r = 0.544). DATA CONCLUSION The integration of IFC and ISC through multisequence fusion enhances our capacity to identify MDD, highlighting the advantages of the individualized approach and underscoring its significance in MDD research. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yuting Guo
- School of Medical Imaging, Binzhou Medical University, Yantai, China
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Yantai, China
| | - Qinghe Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qun Gai
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yinghong Shi
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Fanghui Dong
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Feng Zhao
- School of Compute Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Danni Chen
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Wanying Jing
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiaojun Shen
- Department of Radiology, Binzhou University Hospital, Binzhou, China
| | - Gangqiang Hou
- Department of Radiology, Neuropsychiatry Imaging Center, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Xicheng Song
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Yantai, China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
11
|
Tang Z, Huang J, Zhou Y, Ren J, Duan X, Fu X, Pan R, Wang R, Zhang P, Ding M, Sun J, Zhang X, Chi Q, Zhang Y, Zhang X, Yu W, Xu L, Zhang H, Liu H. Efficacy and Safety of High-Dose TBS on Poststroke Upper Extremity Motor Impairment: A Randomized Controlled Trial. Stroke 2024; 55:2212-2220. [PMID: 39016009 PMCID: PMC11346718 DOI: 10.1161/strokeaha.124.046597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Upper extremity (UE) motor function impairment is a major poststroke complication whose recovery remains one of the most challenging tasks in neurological rehabilitation. This study examined the efficacy and safety of the personalized neuroimaging-guided high-dose theta-burst stimulation (TBS) for poststroke UE motor function recovery. METHODS Patients after stroke with UE motor impairment from a China rehabilitation center were randomly assigned to receive high-dose intermittent TBS (iTBS) to ipsilesional UE sensorimotor network, continuous TBS (cTBS) to contralesional UE sensorimotor network, or sham stimulation, along with conventional therapy for 3 weeks. The primary outcome was the score changes on the Fugl-Meyer assessment-UE from baseline to 1 and 3 weeks. The secondary outcomes included the response rate on Fugl-Meyer assessment-UE scores posttreatment (≥9-point improvement) and score changes in multidimensional scales measuring UE, lower extremity, and activities and participation. RESULTS From June 2021 to June 2022, 45 participants were randomized and 43 were analyzed. The iTBS and continuous TBS groups showed significantly greater improvement in Fugl-Meyer assessment-UE (mean improvement, iTBS: 10.73 points; continuous TBS: 10.79 points) than the sham group (2.43 points) and exhibited significantly greater response rates on Fugl-Meyer assessment-UE (iTBS, 60.0%; continuous TBS, 64.3%) than the sham group (0.0%). The active groups consistently exhibited superior improvement on the other 2 UE assessments at week 3. However, only the iTBS group showed greater efficacy on 1 lower extremity assessment than the sham group at week 3. Both active groups showed significant improvements in activities and participation assessments. CONCLUSIONS The study provides evidence for the efficacy and safety of high-dose TBS in facilitating poststroke UE rehabilitation. REGISTRATION URL: www.chictr.org.cn; Unique identifier: ChiCTR2100047340.
Collapse
Affiliation(s)
- Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Jianting Huang
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
- Academy for Advanced Interdisciplinary Studies (J.H.), Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China (J.H.)
| | - Ying Zhou
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
| | - Jianxun Ren
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
| | - Xinyu Duan
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
| | - Xiaoxuan Fu
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
| | - Ruiqi Pan
- Neural Galaxy, Inc, Beijing, China (R.P., M.D., J.S.)
| | - Rongrong Wang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Ping Zhang
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
| | - Mengying Ding
- Neural Galaxy, Inc, Beijing, China (R.P., M.D., J.S.)
| | - Jian Sun
- Neural Galaxy, Inc, Beijing, China (R.P., M.D., J.S.)
| | - Xiaonian Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Qianqian Chi
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Yue Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Xin Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Weiyong Yu
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Radiology (W.Y.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
| | - Liu Xu
- West China Medical School, Sichuan University, Chengdu (L.X.)
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, W.Y., H.Z.)
- Department of Neurorehabilitation (Z.T., R.W., Xiaonian Zhang, Q.C., Y. Zhang, Xin Zhang, H.Z.), Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing
- University of Health and Rehabilitation Sciences, Qingdao, China (H.Z.)
- Cheeloo College of Medicine, Shandong University, Jinan, China (H.Z.)
| | - Hesheng Liu
- Changping Laboratory, Beijing, China (J.H., Y. Zhou, J.R., X.D., X.F., P.Z., H.L.)
- Biomedical Pioneering Innovation Center (H.L.), Peking University, Beijing, China
| |
Collapse
|
12
|
Lynch CJ, Elbau IG, Ng T, Ayaz A, Zhu S, Wolk D, Manfredi N, Johnson M, Chang M, Chou J, Summerville I, Ho C, Lueckel M, Bukhari H, Buchanan D, Victoria LW, Solomonov N, Goldwaser E, Moia S, Caballero-Gaudes C, Downar J, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Kay K, Aloysi A, Gordon EM, Bhati MT, Williams N, Power JD, Zebley B, Grosenick L, Gunning FM, Liston C. Frontostriatal salience network expansion in individuals in depression. Nature 2024; 633:624-633. [PMID: 39232159 PMCID: PMC11410656 DOI: 10.1038/s41586-024-07805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/09/2024] [Indexed: 09/06/2024]
Abstract
Decades of neuroimaging studies have shown modest differences in brain structure and connectivity in depression, hindering mechanistic insights or the identification of risk factors for disease onset1. Furthermore, whereas depression is episodic, few longitudinal neuroimaging studies exist, limiting understanding of mechanisms that drive mood-state transitions. The emerging field of precision functional mapping has used densely sampled longitudinal neuroimaging data to show behaviourally meaningful differences in brain network topography and connectivity between and in healthy individuals2-4, but this approach has not been applied in depression. Here, using precision functional mapping and several samples of deeply sampled individuals, we found that the frontostriatal salience network is expanded nearly twofold in the cortex of most individuals with depression. This effect was replicable in several samples and caused primarily by network border shifts, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was stable over time, unaffected by mood state and detectable in children before the onset of depression later in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in frontostriatal circuits that tracked fluctuations in specific symptoms and predicted future anhedonia symptoms. Together, these findings identify a trait-like brain network topology that may confer risk for depression and mood-state-dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Immanuel G Elbau
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Tommy Ng
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Aliza Ayaz
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Shasha Zhu
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Danielle Wolk
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Nicola Manfredi
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Johnson
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Chang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jolin Chou
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | - Claire Ho
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Maximilian Lueckel
- Leibniz Institute for Resilience Research, Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Hussain Bukhari
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Derrick Buchanan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Nili Solomonov
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Eric Goldwaser
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Stefano Moia
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | | | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Daniel M Blumberger
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Amy Aloysi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mahendra T Bhati
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nolan Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Wu G, Cui Z, Wang X, Du Y. Unveiling the core functional networks of cognition: An ontology-guided machine learning approach. Neuroimage 2024; 298:120804. [PMID: 39173695 DOI: 10.1016/j.neuroimage.2024.120804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
Deciphering the functional architecture that underpins diverse cognitive functions is fundamental quest in neuroscience. In this study, we employed an innovative machine learning framework that integrated cognitive ontology with functional connectivity analysis to identify brain networks essential for cognition. We identified a core assembly of functional connectomes, primarily located within the association cortex, which showed superior predictive performance compared to two conventional methods widely employed in previous research across various cognitive domains. Our approach achieved a mean prediction accuracy of 0.13 across 16 cognitive tasks, including working memory, reading comprehension, and sustained attention, outperforming the traditional methods' accuracy of 0.08. In contrast, our method showed limited predictive power for sensory, motor, and emotional functions, with a mean prediction accuracy of 0.03 across 9 relevant tasks, slightly lower than the traditional methods' accuracy of 0.04. These cognitive connectomes were further characterized by distinctive patterns of resting-state functional connectivity, structural connectivity via white matter tracts, and gene expression, highlighting their neurogenetic underpinnings. Our findings reveal a domain-general functional network fingerprint that pivotal to cognition, offering a novel computational approach to explore the neural foundations of cognitive abilities.
Collapse
Affiliation(s)
- Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
14
|
Sun H, Cui H, Sun Q, Li Y, Bai T, Wang K, Zhang J, Tian Y, Wang J. Individual large-scale functional network mapping for major depressive disorder with electroconvulsive therapy. J Affect Disord 2024; 360:116-125. [PMID: 38821362 DOI: 10.1016/j.jad.2024.05.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Personalized functional connectivity mapping has been demonstrated to be promising in identifying underlying neurophysiological basis for brain disorders and treatment effects. Electroconvulsive therapy (ECT) has been proved to be an effective treatment for major depressive disorder (MDD) while its active mechanisms remain unclear. Here, 46 MDD patients before and after ECT as well as 46 demographically matched healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. A spatially regularized form of non-negative matrix factorization (NMF) was used to accurately identify functional networks (FNs) in individuals to map individual-level static and dynamic functional network connectivity (FNC) to reveal the underlying neurophysiological basis of therepetical effects of ECT for MDD. Moreover, these static and dynamic FNCs were used as features to predict the clinical treatment outcomes for MDD patients. We found that ECT could modulate both static and dynamic large-scale FNCs at individual level in MDD patients, and dynamic FNCs were closely associated with depression and anxiety symptoms. Importantly, we found that individual FNCs, particularly the individual dynamic FNCs could better predict the treatment outcomes of ECT suggesting that dynamic functional connectivity analysis may be better to link brain functional characteristics with clinical symptoms and treatment outcomes. Taken together, our findings provide new evidence for the active mechanisms and biomarkers for ECT to improve diagnostic accuracy and to guide individual treatment selection for MDD patients.
Collapse
Affiliation(s)
- Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongjie Cui
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Qinyao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Yuanyuan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Tongjian Bai
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China
| | - Kai Wang
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230022, China
| | - Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yanghua Tian
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230022, China.
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China.
| |
Collapse
|
15
|
Lei T, Liao X, Liang X, Sun L, Xia M, Xia Y, Zhao T, Chen X, Men W, Wang Y, Ma L, Liu N, Lu J, Zhao G, Ding Y, Deng Y, Wang J, Chen R, Zhang H, Tan S, Gao JH, Qin S, Tao S, Dong Q, He Y. Functional network modules overlap and are linked to interindividual connectome differences during human brain development. PLoS Biol 2024; 22:e3002653. [PMID: 39292711 PMCID: PMC11441662 DOI: 10.1371/journal.pbio.3002653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/30/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024] Open
Abstract
The modular structure of functional connectomes in the human brain undergoes substantial reorganization during development. However, previous studies have implicitly assumed that each region participates in one single module, ignoring the potential spatial overlap between modules. How the overlapping functional modules develop and whether this development is related to gray and white matter features remain unknown. Using longitudinal multimodal structural, functional, and diffusion MRI data from 305 children (aged 6 to 14 years), we investigated the maturation of overlapping modules of functional networks and further revealed their structural associations. An edge-centric network model was used to identify the overlapping modules, and the nodal overlap in module affiliations was quantified using the entropy measure. We showed a regionally heterogeneous spatial topography of the overlapping extent of brain nodes in module affiliations in children, with higher entropy (i.e., more module involvement) in the ventral attention, somatomotor, and subcortical regions and lower entropy (i.e., less module involvement) in the visual and default-mode regions. The overlapping modules developed in a linear, spatially dissociable manner, with decreased entropy (i.e., decreased module involvement) in the dorsomedial prefrontal cortex, ventral prefrontal cortex, and putamen and increased entropy (i.e., increased module involvement) in the parietal lobules and lateral prefrontal cortex. The overlapping modular patterns captured individual brain maturity as characterized by chronological age and were predicted by integrating gray matter morphology and white matter microstructural properties. Our findings highlight the maturation of overlapping functional modules and their structural substrates, thereby advancing our understanding of the principles of connectome development.
Collapse
Affiliation(s)
- Tianyuan Lei
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yunman Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaodan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jing Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yuyin Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yao Deng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical College, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
16
|
Picchioni D, Yang FN, de Zwart JA, Wang Y, Mandelkow H, Özbay PS, Chen G, Taylor PA, Lam N, Chappel-Farley MG, Chang C, Liu J, van Gelderen P, Duyn JH. Sleep defined by arousal threshold reveals decreases in corticocortical functional correlations independently from the conventional sleep stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607376. [PMID: 39149368 PMCID: PMC11326234 DOI: 10.1101/2024.08.09.607376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sleep research and sleep medicine have benefited from the use of polysomnography but have also suffered from an overreliance on the conventional, polysomnography-defined sleep stages. For example, reports of sleep-specific brain activity patterns have, with few exceptions, been constrained by assessing brain function as it relates to the conventional sleep stages. This limits the variety of sleep states and underlying activity patterns that one can discover. If undiscovered brain activity patterns exist during sleep, then removing the constraint of a stage-specific analysis may uncover them. The current study used all-night functional magnetic resonance imaging sleep data and defined sleep behaviorally with auditory arousal threshold (AAT) to begin to search for new brain states. It was hypothesized that, during sleep compared to wakefulness, corticocortical functional correlations would decrease. Functional correlation values calculated in a window immediately before the determination of AAT were entered into a linear mixed effects model, allowing multiple arousals across the night per subject into the analysis. The hypothesis was supported using both correlation matrices of brain networks and single seed-region analyses showing whole-brain maps. This represents a novel approach to studying the neuroanatomical correlates of sleep with high spatial resolution by defining sleep in a way that was independent from the conventional sleep stages. This work provides initial evidence to justify searching for sleep stages that are more neuroanatomically localized and unrelated to the conventional sleep stages.
Collapse
Affiliation(s)
- Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Fan Nils Yang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jacco A. de Zwart
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Yicun Wang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Department of Radiology, Stony Brook University, USA
| | - Hendrik Mandelkow
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Artificial Intelligence for Image-Guided Therapy, Koninklijke Philips NV, Netherlands
| | - Pinar S. Özbay
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Institute of Biomedical Engineering, Boğaziçi University, Turkey
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Paul A. Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Niki Lam
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- School of Medicine and Dentistry, University of Rochester, USA
| | - Miranda G. Chappel-Farley
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Center for Sleep and Circadian Science, University of Pittsburgh, USA
| | - Catie Chang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Departments of Electrical Engineering and Computer Science, Vanderbilt University, USA
| | - Jiaen Liu
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, USA
| | - Peter van Gelderen
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jeff H. Duyn
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| |
Collapse
|
17
|
Dong Q, Cai H, Li Z, Liu J, Hu B. A Multiview Brain Network Transformer Fusing Individualized Information for Autism Spectrum Disorder Diagnosis. IEEE J Biomed Health Inform 2024; 28:4854-4865. [PMID: 38700974 DOI: 10.1109/jbhi.2024.3396457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis.
Collapse
|
18
|
Du Y, Fang S, He X, Calhoun VD. A survey of brain functional network extraction methods using fMRI data. Trends Neurosci 2024; 47:608-621. [PMID: 38906797 DOI: 10.1016/j.tins.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Functional network (FN) analyses play a pivotal role in uncovering insights into brain function and understanding the pathophysiology of various brain disorders. This paper focuses on classical and advanced methods for deriving brain FNs from functional magnetic resonance imaging (fMRI) data. We systematically review their foundational principles, advantages, shortcomings, and interrelations, encompassing both static and dynamic FN extraction approaches. In the context of static FN extraction, we present hypothesis-driven methods such as region of interest (ROI)-based approaches as well as data-driven methods including matrix decomposition, clustering, and deep learning. For dynamic FN extraction, both window-based and windowless methods are surveyed with respect to the estimation of time-varying FN and the subsequent computation of FN states. We also discuss the scope of application of the various methods and avenues for future improvements.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, China.
| | - Songke Fang
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Xingyu He
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| |
Collapse
|
19
|
Wang X, Krieger-Redwood K, Cui Y, Smallwood J, Du Y, Jefferies E. Macroscale brain states support the control of semantic cognition. Commun Biol 2024; 7:926. [PMID: 39090387 PMCID: PMC11294576 DOI: 10.1038/s42003-024-06630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
A crucial aim in neuroscience is to understand how the human brain adapts to varying cognitive demands. This study investigates network reconfiguration during controlled semantic retrieval in differing contexts. We analyze brain responses to two semantic tasks of varying difficulty - global association and feature matching judgments - which are contrasted with non-semantic tasks on the cortical surface and within a whole-brain state space. Demanding semantic association tasks elicit activation in anterior prefrontal and temporal regions, while challenging semantic feature matching and non-semantic tasks predominantly activate posterior regions. Task difficulty also modulates activation along different dimensions of functional organization, suggesting different mechanisms of cognitive control. More demanding semantic association judgments engage cognitive control and default mode networks together, while feature matching and non-semantic tasks are skewed towards cognitive control networks. These findings highlight the brain's dynamic ability to tailor its networks to support diverse neurocognitive states, enriching our understanding of controlled cognition.
Collapse
Affiliation(s)
- Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK.
| | | | - Yanni Cui
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
20
|
Tu JC, Wang Y, Wang X, Dierker D, Sobolewski CM, Day TKM, Kardan O, Miranda-Domínguez Ó, Moore LA, Elison JT, Gordon EM, Laumann TO, Eggebrecht AT, Wheelock MD. A subset of brain regions within adult functional connectivity networks demonstrate high reliability across early development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606025. [PMID: 39131337 PMCID: PMC11312607 DOI: 10.1101/2024.07.31.606025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The human cerebral cortex contains groups of areas that support sensory, motor, cognitive, and affective functions, often categorized as functional networks. These areas show stronger internal and weaker external functional connectivity (FC) and exhibit similar FC profiles within rather than between networks. Previous studies have demonstrated the development of these networks from nascent forms present before birth to their mature, adult-like topography in childhood. However, analyses often still use definitions based on adult functional networks. We aim to assess how this might lead to the misidentification of functional networks and explore potential consequences and solutions. Our findings suggest that even though adult networks provide only a marginally better than-chance description of the infant FC organization, misidentification was largely driven by specific areas. By restricting functional networks to areas showing adult-like network clustering, we observed consistent within-network FC both within and across scans and throughout development. Additionally, these areas were spatially closer to locations with low variability in network identity among adults. Our analysis aids in understanding the potential consequences of using adult networks "as is" and provides guidance for future research on selecting and utilizing functional network models based on the research question and scenario.
Collapse
Affiliation(s)
| | - Yu Wang
- Department of Mathematics and Statistics, Washington University in St. Louis
| | - Xintian Wang
- Department of Radiology, Washington University in St. Louis
| | - Donna Dierker
- Department of Radiology, Washington University in St. Louis
| | - Chloe M. Sobolewski
- Department of Radiology, Washington University in St. Louis
- Department of Psychology, Virginia Commonwealth University
| | - Trevor K. M. Day
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
- Center for Brain Plasticity and Recovery, Georgetown University
| | - Omid Kardan
- Department of Psychiatry, University of Michigan
| | | | - Lucille A. Moore
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Jed T. Elison
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
| | - Evan M. Gordon
- Department of Radiology, Washington University in St. Louis
| | | | | | | |
Collapse
|
21
|
Wang G, Datta A, Lindquist MA. Improved fMRI-based pain prediction using Bayesian group-wise functional registration. Biostatistics 2024; 25:885-903. [PMID: 37805937 DOI: 10.1093/biostatistics/kxad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023] Open
Abstract
In recent years, the field of neuroimaging has undergone a paradigm shift, moving away from the traditional brain mapping approach towards the development of integrated, multivariate brain models that can predict categories of mental events. However, large interindividual differences in both brain anatomy and functional localization after standard anatomical alignment remain a major limitation in performing this type of analysis, as it leads to feature misalignment across subjects in subsequent predictive models. This article addresses this problem by developing and validating a new computational technique for reducing misalignment across individuals in functional brain systems by spatially transforming each subject's functional data to a common latent template map. Our proposed Bayesian functional group-wise registration approach allows us to assess differences in brain function across subjects and individual differences in activation topology. We achieve the probabilistic registration with inverse-consistency by utilizing the generalized Bayes framework with a loss function for the symmetric group-wise registration. It models the latent template with a Gaussian process, which helps capture spatial features in the template, producing a more precise estimation. We evaluate the method in simulation studies and apply it to data from an fMRI study of thermal pain, with the goal of using functional brain activity to predict physical pain. We find that the proposed approach allows for improved prediction of reported pain scores over conventional approaches. Received on 2 January 2017. Editorial decision on 8 June 2021.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Abhirup Datta
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Bottenhorn KL, Corbett JD, Ahmadi H, Herting MM. Spatiotemporal patterns in cortical development: Age, puberty, and individual variability from 9 to 13 years of age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601354. [PMID: 39005403 PMCID: PMC11244861 DOI: 10.1101/2024.06.29.601354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Humans and nonhuman primate studies suggest that timing and tempo of cortical development varies neuroanatomically along a sensorimotor-to-association (S-A) axis. Prior human studies have reported a principal S-A axis across various modalities, but largely rely on cross-sectional samples with wide age-ranges. Here, we investigate developmental changes and individual variability in cortical organization along the S-A axis between the ages of 9-13 years using a large, longitudinal sample (N = 2487-3747, 46-50% female) from the Adolescent Brain Cognitive Development Study (ABCD Study®). This work assesses multiple aspects of neurodevelopment indexed by changes in cortical thickness, cortical microarchitecture, and resting-state functional fluctuations. First, we evaluated S-A organization in age-related changes and, then, computed individual-level S-A alignment in brain changes and assessing differences therein due to age, sex, and puberty. Varying degrees of linear and quadratic age-related brain changes were identified along the S-A axis. Yet, these patterns of cortical development were overshadowed by considerable individual variability in S-A alignment. Even within individuals, there was little correspondence between S-A patterning across the different aspects of neurodevelopment investigated (i.e., cortical morphology, microarchitecture, function). Some of the individual variation in developmental patterning of cortical morphology and microarchitecture was explained by age, sex, and pubertal development. Altogether, this work contextualizes prior findings that regional age differences do progress along an S-A axis at a group level, while highlighting broad variation in developmental change between individuals and between aspects of cortical development, in part due to sex and puberty. Significance Statement Understanding normative patterns of adolescent brain change, and individual variability therein, is crucial for disentangling healthy and abnormal development. We used longitudinal human neuroimaging data to study several aspects of neurodevelopment during early adolescence and assessed their organization along a sensorimotor-to-association (S-A) axis across the cerebral cortex. Age differences in brain changes were linear and curvilinear along this S-A axis. However, individual-level sensorimotor-association alignment varied considerably, driven in part by differences in age, sex, and pubertal development.
Collapse
|
23
|
Xu X, Yang H, Cong J, Sydnor V, Cui Z. Structural connectivity matures along a sensorimotor-association connectional axis in youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599267. [PMID: 38948845 PMCID: PMC11212872 DOI: 10.1101/2024.06.17.599267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Childhood and adolescence are associated with protracted developmental remodeling of cortico-cortical structural connectivity. However, how heterochronous development in white matter structural connectivity spatially and temporally unfolds across the macroscale human connectome remains unknown. Leveraging non-invasive diffusion MRI data from both cross-sectional (N = 590) and longitudinal (baseline: N = 3,949; two-year follow-up: N = 3,155) developmental datasets, we found that structural connectivity development diverges along a pre-defined sensorimotor-association (S-A) connectional axis from ages 8.1 to 21.9 years. Specifically, we observed a continuum of developmental profiles that spans from an early childhood increase in connectivity strength in sensorimotor-sensorimotor connections to a late adolescent increase in association-association connectional strength. The S-A connectional axis also captured spatial variations in associations between structural connectivity and both higher-order cognition and general psychopathology. Together, our findings reveal a hierarchical axis in the development of structural connectivity across the human connectome.
Collapse
Affiliation(s)
- Xiaoyu Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University; Beijing, 100875, China
- Chinese Institute for Brain Research, Beijing; Beijing, 102206, China
| | - Hang Yang
- Chinese Institute for Brain Research, Beijing; Beijing, 102206, China
| | - Jing Cong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University; Beijing, 100875, China
- Chinese Institute for Brain Research, Beijing; Beijing, 102206, China
| | - Valerie Sydnor
- Department of Psychiatry, University of Pittsburgh Medical Center; Pittsburgh, PA, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing; Beijing, 102206, China
| |
Collapse
|
24
|
Dworetsky A, Seitzman BA, Adeyemo B, Nielsen AN, Hatoum AS, Smith DM, Nichols TE, Neta M, Petersen SE, Gratton C. Two common and distinct forms of variation in human functional brain networks. Nat Neurosci 2024; 27:1187-1198. [PMID: 38689142 PMCID: PMC11248096 DOI: 10.1038/s41593-024-01618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical 'variants' also occur at a distance from their typical position, forming ectopic intrusions. Both 'border' and 'ectopic' variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation-border shifts and ectopic intrusions-must be separately accounted for in the analysis of individual differences in cortical systems across people.
Collapse
Affiliation(s)
- Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Benjamin A Seitzman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek M Smith
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Steven E Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
- Department of Psychology, Northwestern University, Evanston, IL, USA.
- Neuroscience Program, Florida State University, Tallahassee, FL, USA.
- Department of Neurology, Northwestern University, Evanston, IL, USA.
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
25
|
Wang X, Krieger-Redwood K, Lyu B, Lowndes R, Wu G, Souter NE, Wang X, Kong R, Shafiei G, Bernhardt BC, Cui Z, Smallwood J, Du Y, Jefferies E. The Brain's Topographical Organization Shapes Dynamic Interaction Patterns That Support Flexible Behavior Based on Rules and Long-Term Knowledge. J Neurosci 2024; 44:e2223232024. [PMID: 38527807 PMCID: PMC11140685 DOI: 10.1523/jneurosci.2223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.
Collapse
Affiliation(s)
- Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rebecca Lowndes
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas E Souter
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Xiaokang Wang
- Department of Biomedical Engineering, University of California, Davis, California 95616
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jonathan Smallwood
- Department of Psychology, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
26
|
Li J, Wang Q, Li K, Yao L, Guo X. Tracking Age-Related Topological Changes in Individual Brain Morphological Networks Across the Human Lifespan. J Magn Reson Imaging 2024; 59:1841-1851. [PMID: 37702277 DOI: 10.1002/jmri.28984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Many studies have shown topological alterations associated with age in population-based brain morphological networks. However, it is not clear how individual brain morphological networks change with age across the lifespan. PURPOSE To characterize age-related topological changes in individual networks and investigate the relationships between individual- and group-based brain networks at the nodal, modular, and connectome levels. STUDY TYPE Retrospective analysis. POPULATION One hundred seventy-nine healthy subjects (108 males and 71 females), aged 6-85 years with a median age of 32 years and an inter-quartile range (IQR) of 26 years. FIELD STRENGTH/SEQUENCE T1-weighted images using the magnetization-prepared rapid gradient echo (MPRAGE) sequences. ASSESSMENT Two nodal-level indicators (nodal similarity and node matching), five modular-level indicators (modularity, intra/inter-module similarity, adjusted mutual information [AMI], and module variation), and five connectome-level indicators (global efficiency, characteristic path length, clustering coefficient, local efficiency, and individual contribution) were calculated in brain morphological networks. Regression models for different indicators were built to examine their lifetime trajectory patterns. STATISTICAL TESTS Single-sample t-test, Mantel's test, Pearson correlation coefficient. A P value <0.05 was considered statistically significant. RESULTS Among 68 nodes, 34 nodes showed significant age-related patterns (all P < 0.05, FDR-corrected) in nodal similarity, including linear decline and quadratic trends. The lifespan trajectory of the connectome-level topological attributes of the individual networks presented U-shaped or inverse U-shaped trends with age. Between the individual- and group-based brain networks, the average nodal similarity was 0.67 and the average AMI of module partitions was 0.57. DATA CONCLUSION The lifespan trajectories of the nodal similarity mainly followed linear decreasing and nonlinear trends, whereas the modularity and the global topological attributes exhibited nonlinear patterns. There was a high degree of consistency at both nodal similarity and modular division between the individual and group networks. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Jingming Li
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Qian Wang
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Ke Li
- Strategic Support Force Medical Center, Beijing, China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Xiaojuan Guo
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
27
|
Lee Y, Chahal R, Gotlib IH. The default mode network is associated with changes in internalizing and externalizing problems differently in adolescent boys and girls. Dev Psychopathol 2024; 36:834-843. [PMID: 36847268 DOI: 10.1017/s0954579423000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Internalizing and externalizing problems that emerge during adolescence differentially increase boys' and girls' risk for developing psychiatric disorders. It is not clear, however, whether there are sex differences in the intrinsic functional architecture of the brain that underlie changes in the severity of internalizing and externalizing problems in adolescents. Using resting-state fMRI data and self-reports of behavioral problems obtained from 128 adolescents (73 females; 9-14 years old) at two timepoints, we conducted multivoxel pattern analysis to identify resting-state functional connectivity markers at baseline that predict changes in the severity of internalizing and externalizing problems in boys and girls 2 years later. We found sex-differentiated involvement of the default mode network in changes in internalizing and externalizing problems. Whereas changes in internalizing problems were associated with the dorsal medial subsystem in boys and with the medial temporal subsystem in girls, changes in externalizing problems were predicted by hyperconnectivity between core nodes of the DMN and frontoparietal network in boys and hypoconnectivity between the DMN and affective networks in girls. Our results suggest that different neural mechanisms predict changes in internalizing and externalizing problems in adolescent boys and girls and offer insights concerning mechanisms that underlie sex differences in the expression of psychopathology in adolescence.
Collapse
Affiliation(s)
- Yoonji Lee
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Rajpreet Chahal
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
28
|
Hermosillo RJM, Moore LA, Feczko E, Miranda-Domínguez Ó, Pines A, Dworetsky A, Conan G, Mooney MA, Randolph A, Graham A, Adeyemo B, Earl E, Perrone A, Carrasco CM, Uriarte-Lopez J, Snider K, Doyle O, Cordova M, Koirala S, Grimsrud GJ, Byington N, Nelson SM, Gratton C, Petersen S, Feldstein Ewing SW, Nagel BJ, Dosenbach NUF, Satterthwaite TD, Fair DA. A precision functional atlas of personalized network topography and probabilities. Nat Neurosci 2024; 27:1000-1013. [PMID: 38532024 PMCID: PMC11089006 DOI: 10.1038/s41593-024-01596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/08/2024] [Indexed: 03/28/2024]
Abstract
Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.
Collapse
Affiliation(s)
- Robert J M Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Óscar Miranda-Domínguez
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Adam Pines
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Michael A Mooney
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health and Science University, Portland, OR, USA
| | - Anita Randolph
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Alice Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Earl
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Cristian Morales Carrasco
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Kathy Snider
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Olivia Doyle
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Michaela Cordova
- Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, University of California San Diego, San Diego, CA, USA
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Gracie J Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Ma Y, Li H, Zhou Z, Chen X, Ma L, Guray E, Balderston NL, Oathes DJ, Shinohara RT, Wolf DH, Nasrallah IM, Shou H, Satterthwaite TD, Davatzikos C, Fan Y. pNet: A toolbox for personalized functional networks modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591367. [PMID: 38746228 PMCID: PMC11092457 DOI: 10.1101/2024.04.26.591367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Personalized functional networks (FNs) derived from functional magnetic resonance imaging (fMRI) data are useful for characterizing individual variations in the brain functional topography associated with the brain development, aging, and disorders. To facilitate applications of the personalized FNs with enhanced reliability and reproducibility, we develop an open-source toolbox that is user-friendly, extendable, and includes rigorous quality control (QC), featuring multiple user interfaces (graphics, command line, and a step-by-step guideline) and job-scheduling for high performance computing (HPC) clusters. Particularly, the toolbox, named personalized functional network modeling (pNet), takes fMRI inputs in either volumetric or surface type, ensuring compatibility with multiple fMRI data formats, and computes personalized FNs using two distinct modeling methods: one method optimizes the functional coherence of FNs, while the other enhances their independence. Additionally, the toolbox provides HTML-based reports for QC and visualization of personalized FNs. The toolbox is developed in both MATLAB and Python platforms with a modular design to facilitate extension and modification by users familiar with either programming language. We have evaluated the toolbox on two fMRI datasets and demonstrated its effectiveness and user-friendliness with interactive and scripting examples. pNet is publicly available at https://github.com/MLDataAnalytics/pNet.
Collapse
Affiliation(s)
- Yuncong Ma
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Hongming Li
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Zhen Zhou
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyang Chen
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Liang Ma
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Erus Guray
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Wolf
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Psychiatry, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ilya M Nasrallah
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Clinical Epidemiology (CCEB), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Statistics in Big Data (CSBD), Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Psychiatry, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- 9. Penn Lifespan Informatics and Neuroimaging Center (PennLINC), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Luo AC, Sydnor VJ, Pines A, Larsen B, Alexander-Bloch AF, Cieslak M, Covitz S, Chen AA, Esper NB, Feczko E, Franco AR, Gur RE, Gur RC, Houghton A, Hu F, Keller AS, Kiar G, Mehta K, Salum GA, Tapera T, Xu T, Zhao C, Salo T, Fair DA, Shinohara RT, Milham MP, Satterthwaite TD. Functional connectivity development along the sensorimotor-association axis enhances the cortical hierarchy. Nat Commun 2024; 15:3511. [PMID: 38664387 PMCID: PMC11045762 DOI: 10.1038/s41467-024-47748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.
Collapse
Affiliation(s)
- Audrey C Luo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam Pines
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sydney Covitz
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew A Chen
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Eric Feczko
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Alexandre R Franco
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fengling Hu
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory Kiar
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Kahini Mehta
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giovanni A Salum
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tinashe Tapera
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Chenying Zhao
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Taylor Salo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Wu G, Cui Z, Wang X, Du Y. Unveiling the Core Functional Networks of Cognition: An Ontology-Guided Machine Learning Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587855. [PMID: 38617291 PMCID: PMC11014632 DOI: 10.1101/2024.04.02.587855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Deciphering the functional architecture that underpins diverse cognitive functions is fundamental quest in neuroscience. In this study, we employed an innovative machine learning framework that integrated cognitive ontology with functional connectivity analysis to identify brain networks essential for cognition. We identified a core assembly of functional connectomes, primarily located within the association cortex, which showed superior predictive performance compared to two conventional methods widely employed in previous research across various cognitive domains. Our approach achieved a mean prediction accuracy of 0.13 across 16 cognitive tasks, including working memory, reading comprehension, and sustained attention, outperforming the traditional methods' accuracy of 0.08. In contrast, our method showed limited predictive power for sensory, motor, and emotional functions, with a mean prediction accuracy of 0.03 across 9 relevant tasks, slightly lower than the traditional methods' accuracy of 0.04. These cognitive connectomes were further characterized by distinctive patterns of resting-state functional connectivity, structural connectivity via white matter tracts, and gene expression, highlighting their neurogenetic underpinnings. Our findings reveal a domain-general functional network fingerprint that pivotal to cognition, offering a novel computational approach to explore the neural foundations of cognitive abilities.
Collapse
Affiliation(s)
- Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang, Beijing 100101, China
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
32
|
Keller AS, Moore TM, Luo A, Visoki E, Gataviņš MM, Shetty A, Cui Z, Fan Y, Feczko E, Houghton A, Li H, Mackey AP, Miranda-Dominguez O, Pines A, Shinohara RT, Sun KY, Fair DA, Satterthwaite TD, Barzilay R. A general exposome factor explains individual differences in functional brain network topography and cognition in youth. Dev Cogn Neurosci 2024; 66:101370. [PMID: 38583301 PMCID: PMC11004064 DOI: 10.1016/j.dcn.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Childhood environments are critical in shaping cognitive neurodevelopment. With the increasing availability of large-scale neuroimaging datasets with deep phenotyping of childhood environments, we can now build upon prior studies that have considered relationships between one or a handful of environmental and neuroimaging features at a time. Here, we characterize the combined effects of hundreds of inter-connected and co-occurring features of a child's environment ("exposome") and investigate associations with each child's unique, multidimensional pattern of functional brain network organization ("functional topography") and cognition. We apply data-driven computational models to measure the exposome and define personalized functional brain networks in pre-registered analyses. Across matched discovery (n=5139, 48.5% female) and replication (n=5137, 47.1% female) samples from the Adolescent Brain Cognitive Development study, the exposome was associated with current (ages 9-10) and future (ages 11-12) cognition. Changes in the exposome were also associated with changes in cognition after accounting for baseline scores. Cross-validated ridge regressions revealed that the exposome is reflected in functional topography and can predict performance across cognitive domains. Importantly, a single measure capturing a child's exposome could more accurately and parsimoniously predict cognition than a wealth of personalized neuroimaging data, highlighting the importance of children's complex, multidimensional environments in cognitive neurodevelopment.
Collapse
Affiliation(s)
- Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Tyler M Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey Luo
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Elina Visoki
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mārtiņš M Gataviņš
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alisha Shetty
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson P Mackey
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Adam Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Y Sun
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ran Barzilay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
33
|
Zhang S, Larsen B, Sydnor VJ, Zeng T, An L, Yan X, Kong R, Kong X, Gur RC, Gur RE, Moore TM, Wolf DH, Holmes AJ, Xie Y, Zhou JH, Fortier MV, Tan AP, Gluckman P, Chong YS, Meaney MJ, Deco G, Satterthwaite TD, Yeo BT. In-vivo whole-cortex marker of excitation-inhibition ratio indexes cortical maturation and cognitive ability in youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546023. [PMID: 38586012 PMCID: PMC10996460 DOI: 10.1101/2023.06.22.546023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here we non-invasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically-plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the GABA-agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 years old) and Asian (7.2 to 7.9 years old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.
Collapse
Affiliation(s)
- Shaoshi Zhang
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valerie J. Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianchu Zeng
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Lijun An
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Xiaoxuan Yan
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Ru Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Xiaolu Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
- ByteDance, Singapore
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler M. Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Yapei Xie
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peter Gluckman
- UK Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Technology and Information, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Universitat Barcelona, Barcelona, Spain
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - B.T. Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hopstial, Charlestown, MA, USA
| |
Collapse
|
34
|
Chu C, Li W, Shi W, Wang H, Wang J, Liu Y, Liu B, Elmenhorst D, Eickhoff SB, Fan L, Jiang T. Co-representation of Functional Brain Networks Is Shaped by Cortical Myeloarchitecture and Reveals Individual Behavioral Ability. J Neurosci 2024; 44:e0856232024. [PMID: 38290847 PMCID: PMC10977027 DOI: 10.1523/jneurosci.0856-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating their functional roles, how the brain navigates the spatial coordination among them and the biological relevance of this coordination is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed a new concept, that is, co-representation of functional brain networks, to delineate the spatial coordination among them. To further quantify the co-representation pattern, we defined two indexes, that is, the co-representation specificity (CoRS) and intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic) regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, paralimbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual behavioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical organization of the brain by emphasizing the assembly of functional networks.
Collapse
Affiliation(s)
- Congying Chu
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Wen Li
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Forschungszentrum Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf 40204, Germany
| | - Lingzhong Fan
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzi Jiang
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China
| |
Collapse
|
35
|
Gao C, Wu X, Wang Y, Li G, Ma L, Wang C, Xie S, Chu C, Madsen KH, Hou Z, Fan L. Prior-guided individualized thalamic parcellation based on local diffusion characteristics. Hum Brain Mapp 2024; 45:e26646. [PMID: 38433705 PMCID: PMC10910286 DOI: 10.1002/hbm.26646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Comprising numerous subnuclei, the thalamus intricately interconnects the cortex and subcortex, orchestrating various facets of brain functions. Extracting personalized parcellation patterns for these subnuclei is crucial, as different thalamic nuclei play varying roles in cognition and serve as therapeutic targets for neuromodulation. However, accurately delineating the thalamic nuclei boundary at the individual level is challenging due to intersubject variability. In this study, we proposed a prior-guided parcellation (PG-par) method to achieve robust individualized thalamic parcellation based on a central-boundary prior. We first constructed probabilistic atlas of thalamic nuclei using high-quality diffusion MRI datasets based on the local diffusion characteristics. Subsequently, high-probability voxels in the probabilistic atlas were utilized as prior guidance to train unique multiple classification models for each subject based on a multilayer perceptron. Finally, we employed the trained model to predict the parcellation labels for thalamic voxels and construct individualized thalamic parcellation. Through a test-retest assessment, the proposed prior-guided individualized thalamic parcellation exhibited excellent reproducibility and the capacity to detect individual variability. Compared with group atlas registration and individual clustering parcellation, the proposed PG-par demonstrated superior parcellation performance under different scanning protocols and clinic settings. Furthermore, the prior-guided individualized parcellation exhibited better correspondence with the histological staining atlas. The proposed prior-guided individualized thalamic parcellation method contributes to the personalized modeling of brain parcellation.
Collapse
Affiliation(s)
- Chaohong Gao
- Sino‐Danish CollegeSino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijingChina
- Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | - Xia Wu
- Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Yaping Wang
- Sino‐Danish CollegeSino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijingChina
- Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | - Gang Li
- Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Liang Ma
- Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Changshuo Wang
- Sino‐Danish CollegeSino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijingChina
- Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, School of AutomationHangzhou Dianzi UniversityHangzhouChina
| | - Congying Chu
- Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Kristoffer Hougaard Madsen
- Sino‐Danish CollegeSino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijingChina
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Zhongyu Hou
- Department of Medical ImagingShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Lingzhong Fan
- Sino‐Danish CollegeSino‐Danish Center for Education and ResearchUniversity of Chinese Academy of SciencesBeijingChina
- Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of AutomationChinese Academy of SciencesBeijingChina
- School of Health and Life SciencesUniversity of Health and Rehabilitation SciencesQingdaoShandongChina
| |
Collapse
|
36
|
Tu D, Wrobel J, Satterthwaite TD, Goldsmith J, Gur RC, Gur RE, Gertheiss J, Bassett DS, Shinohara RT. Regression and Alignment for Functional Data and Network Topology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.13.548836. [PMID: 37503017 PMCID: PMC10370026 DOI: 10.1101/2023.07.13.548836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In the brain, functional connections form a network whose topological organization can be described by graph-theoretic network diagnostics. These include characterizations of the community structure, such as modularity and participation coefficient, which have been shown to change over the course of childhood and adolescence. To investigate if such changes in the functional network are associated with changes in cognitive performance during development, network studies often rely on an arbitrary choice of pre-processing parameters, in particular the proportional threshold of network edges. Because the choice of parameter can impact the value of the network diagnostic, and therefore downstream conclusions, we propose to circumvent that choice by conceptualizing the network diagnostic as a function of the parameter. As opposed to a single value, a network diagnostic curve describes the connectome topology at multiple scales-from the sparsest group of the strongest edges to the entire edge set. To relate these curves to executive function and other covariates, we use scalar-on-function regression, which is more flexible than previous functional data-based models used in network neuroscience. We then consider how systematic differences between networks can manifest in misalignment of diagnostic curves, and consequently propose a supervised curve alignment method that incorporates auxiliary information from other variables. Our algorithm performs both functional regression and alignment via an iterative, penalized, and nonlinear likelihood optimization. The illustrated method has the potential to improve the interpretability and generalizability of neuroscience studies where the goal is to study heterogeneity among a mixture of function- and scalar-valued measures.
Collapse
Affiliation(s)
- Danni Tu
- The Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Wrobel
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center, Philadelphia, PA, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
- The Penn Medicine-CHOP Lifespan Brain Institute, Philadelphia, PA, USA
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
- The Penn Medicine-CHOP Lifespan Brain Institute, Philadelphia, PA, USA
| | - Jan Gertheiss
- Department of Mathematics and Statistics, School of Economics and Social Sciences, Helmut Schmidt University, Hamburg, Germany
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T. Shinohara
- The Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Zhang J, Zhang Z, Sun H, Ma Y, Yang J, Chen K, Yu X, Qin T, Zhao T, Zhang J, Chu C, Wang J. Personalized functional network mapping for autism spectrum disorder and attention-deficit/hyperactivity disorder. Transl Psychiatry 2024; 14:92. [PMID: 38346949 PMCID: PMC10861462 DOI: 10.1038/s41398-024-02797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Autism spectrum disorder (ASD) and Attention-deficit/hyperactivity disorder (ADHD) are two typical neurodevelopmental disorders that have a long-term impact on physical and mental health. ASD is usually comorbid with ADHD and thus shares highly overlapping clinical symptoms. Delineating the shared and distinct neurophysiological profiles is important to uncover the neurobiological mechanisms to guide better therapy. In this study, we aimed to establish the behaviors, functional connectome, and network properties differences between ASD, ADHD-Combined, and ADHD-Inattentive using resting-state functional magnetic resonance imaging. We used the non-negative matrix fraction method to define personalized large-scale functional networks for each participant. The individual large-scale functional network connectivity (FNC) and graph-theory-based complex network analyses were executed and identified shared and disorder-specific differences in FNCs and network attributes. In addition, edge-wise functional connectivity analysis revealed abnormal edge co-fluctuation amplitude and number of transitions among different groups. Taken together, our study revealed disorder-specific and -shared regional and edge-wise functional connectivity and network differences for ASD and ADHD using an individual-level functional network mapping approach, which provides new evidence for the brain functional abnormalities in ASD and ADHD and facilitates understanding the neurobiological basis for both disorders.
Collapse
Affiliation(s)
- Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Zhiwei Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaohui Yu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Tianwei Qin
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tianyu Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Jingyue Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| |
Collapse
|
38
|
Roalf DR, Figee M, Oathes DJ. Elevating the field for applying neuroimaging to individual patients in psychiatry. Transl Psychiatry 2024; 14:87. [PMID: 38341414 PMCID: PMC10858949 DOI: 10.1038/s41398-024-02781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Although neuroimaging has been widely applied in psychiatry, much of the exuberance in decades past has been tempered by failed replications and a lack of definitive evidence to support the utility of imaging to inform clinical decisions. There are multiple promising ways forward to demonstrate the relevance of neuroimaging for psychiatry at the individual patient level. Ultra-high field magnetic resonance imaging is developing as a sensitive measure of neurometabolic processes of particular relevance that holds promise as a new way to characterize patient abnormalities as well as variability in response to treatment. Neuroimaging may also be particularly suited to the science of brain stimulation interventions in psychiatry given that imaging can both inform brain targeting as well as measure changes in brain circuit communication as a function of how effectively interventions improve symptoms. We argue that a greater focus on individual patient imaging data will pave the way to stronger relevance to clinical care in psychiatry. We also stress the importance of using imaging in symptom-relevant experimental manipulations and how relevance will be best demonstrated by pairing imaging with differential treatment prediction and outcome measurement. The priorities for using brain imaging to inform psychiatry may be shifting, which compels the field to solidify clinical relevance for individual patients over exploratory associations and biomarkers that ultimately fail to replicate.
Collapse
Affiliation(s)
- David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Desmond J Oathes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Neuromodulation in Depression and Stress, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Brain Science Translation, Innovation, and Modulation Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Busch EL, Rapuano KM, Anderson KM, Rosenberg MD, Watts R, Casey BJ, Haxby JV, Feilong M. Dissociation of Reliability, Heritability, and Predictivity in Coarse- and Fine-Scale Functional Connectomes during Development. J Neurosci 2024; 44:e0735232023. [PMID: 38148152 PMCID: PMC10866091 DOI: 10.1523/jneurosci.0735-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
The functional connectome supports information transmission through the brain at various spatial scales, from exchange between broad cortical regions to finer-scale, vertex-wise connections that underlie specific information processing mechanisms. In adults, while both the coarse- and fine-scale functional connectomes predict cognition, the fine scale can predict up to twice the variance as the coarse-scale functional connectome. Yet, past brain-wide association studies, particularly using large developmental samples, focus on the coarse connectome to understand the neural underpinnings of individual differences in cognition. Using a large cohort of children (age 9-10 years; n = 1,115 individuals; both sexes; 50% female, including 170 monozygotic and 219 dizygotic twin pairs and 337 unrelated individuals), we examine the reliability, heritability, and behavioral relevance of resting-state functional connectivity computed at different spatial scales. We use connectivity hyperalignment to improve access to reliable fine-scale (vertex-wise) connectivity information and compare the fine-scale connectome with the traditional parcel-wise (coarse scale) functional connectomes. Though individual differences in the fine-scale connectome are more reliable than those in the coarse-scale, they are less heritable. Further, the alignment and scale of connectomes influence their ability to predict behavior, whereby some cognitive traits are equally well predicted by both connectome scales, but other, less heritable cognitive traits are better predicted by the fine-scale connectome. Together, our findings suggest there are dissociable individual differences in information processing represented at different scales of the functional connectome which, in turn, have distinct implications for heritability and cognition.
Collapse
Affiliation(s)
- Erica L Busch
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Kristina M Rapuano
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Kevin M Anderson
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, Illinois, 60637
| | - Richard Watts
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - B J Casey
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - James V Haxby
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Ma Feilong
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| |
Collapse
|
40
|
Yang J, Huggins AA, Sun D, Baird CL, Haswell CC, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawijn L, Veltman DJ, Suarez-Jimenez B, Zhu X, Neria Y, Hudson AR, Mueller SC, Baker JT, Lebois LAM, Kaufman ML, Qi R, Lu GM, Říha P, Rektor I, Dennis EL, Ching CRK, Thomopoulos SI, Salminen LE, Jahanshad N, Thompson PM, Stein DJ, Koopowitz SM, Ipser JC, Seedat S, du Plessis S, van den Heuvel LL, Wang L, Zhu Y, Li G, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Liberzon I, King A, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Blackford JU, Olatunji BO, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, Krystal JH, Morey RA, Sotiras A. Examining the association between posttraumatic stress disorder and disruptions in cortical networks identified using data-driven methods. Neuropsychopharmacology 2024; 49:609-619. [PMID: 38017161 PMCID: PMC10789873 DOI: 10.1038/s41386-023-01763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some studies have failed to detect differences between PTSD patients and healthy controls or reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, we sought to conduct a well-powered study to identify vulnerable networks without regard to neuroanatomic boundaries. Moreover, this approach enabled us to avoid the excessive burden of multiple comparison correction that plagues vertex-wise methods. We derived structural covariance networks (SCNs) by applying non-negative matrix factorization (NMF) to CT data from 961 PTSD patients and 1124 trauma-exposed controls without PTSD. We used regression analyses to investigate associations between CT within SCNs and PTSD diagnosis (with and without accounting for the potential confounding effect of trauma type) and symptom severity in the full sample. We performed additional regression analyses in subsets of the data to examine associations between SCNs and comorbid depression, childhood trauma severity, and alcohol abuse. NMF identified 20 unbiased SCNs, which aligned closely with functionally defined brain networks. PTSD diagnosis was most strongly associated with diminished CT in SCNs that encompassed the bilateral superior frontal cortex, motor cortex, insular cortex, orbitofrontal cortex, medial occipital cortex, anterior cingulate cortex, and posterior cingulate cortex. CT in these networks was significantly negatively correlated with PTSD symptom severity. Collectively, these findings suggest that PTSD diagnosis is associated with widespread reductions in CT, particularly within prefrontal regulatory regions and broader emotion and sensory processing cortical regions.
Collapse
Affiliation(s)
- Jin Yang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ashley A Huggins
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Delin Sun
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - C Lexi Baird
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Courtney C Haswell
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Miranda Olff
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Saskia B J Koch
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Benjamin Suarez-Jimenez
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Justin T Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Pavel Říha
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Emily L Dennis
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sheri M Koopowitz
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan C Ipser
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | | | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Science, Texas A&M University, College Station, TX, USA
| | - Anthony King
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer U Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Chadi G Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry of Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ifat Levy
- Department of Comparative Medicine, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA.
| | - Aristeidis Sotiras
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
41
|
Jirsaraie RJ, Palma AM, Small SL, Sandman CA, Davis EP, Baram TZ, Stern H, Glynn LM, Yassa MA. Prenatal Exposure to Maternal Mood Entropy Is Associated With a Weakened and Inflexible Salience Network in Adolescence. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:207-216. [PMID: 37611745 PMCID: PMC10881896 DOI: 10.1016/j.bpsc.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Fetal exposure to maternal mood dysregulation influences child cognitive and emotional development, which may have long-lasting implications for mental health. However, the neurobiological alterations associated with this dimension of adversity have yet to be explored. Here, we tested the hypothesis that fetal exposure to entropy, a novel index of dysregulated maternal mood, would predict the integrity of the salience network, which is involved in emotional processing. METHODS A sample of 138 child-mother pairs (70 females) participated in this prospective longitudinal study. Maternal negative mood level and entropy (an index of variable and unpredictable mood) were assessed 5 times during pregnancy. Adolescents engaged in a functional magnetic resonance imaging task that was acquired between 2 resting-state scans. Changes in network integrity were analyzed using mixed-effect and latent growth curve models. The amplitude of low frequency fluctuations was analyzed to corroborate findings. RESULTS Prenatal maternal mood entropy, but not mood level, was associated with salience network integrity. Both prenatal negative mood level and entropy were associated with the amplitude of low frequency fluctuations of the salience network. Latent class analysis yielded 2 profiles based on changes in network integrity across all functional magnetic resonance imaging sequences. The profile that exhibited little variation in network connectivity (i.e., inflexibility) consisted of adolescents who were exposed to higher negative maternal mood levels and more entropy. CONCLUSIONS These findings suggest that fetal exposure to maternal mood dysregulation is associated with a weakened and inflexible salience network. More broadly, they identify maternal mood entropy as a novel marker of early adversity that exhibits long-lasting associations with offspring brain development.
Collapse
Affiliation(s)
- Robert J Jirsaraie
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California
| | - Anton M Palma
- Department of Statistics, University of California, Irvine, Irvine, California
| | - Steven L Small
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
| | - Curt A Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, Colorado; Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Tallie Z Baram
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California; Department of Pediatrics, University of California, Irvine, Irvine, California; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Hal Stern
- Department of Statistics, University of California, Irvine, Irvine, California
| | - Laura M Glynn
- Department of Psychology, Chapman University, Orange, California.
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California; Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California.
| |
Collapse
|
42
|
Wang Q, Qi L, He C, Feng H, Xie C. Age- and gender-related dispersion of brain networks across the lifespan. GeroScience 2024; 46:1303-1318. [PMID: 37542582 PMCID: PMC10828139 DOI: 10.1007/s11357-023-00900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
The effects of age and gender on large-scale resting-state networks (RSNs) reflecting within- and between-network connectivity in the healthy brain remain unclear. This study investigated how age and gender influence the brain network roles and topological properties underlying the ageing process. Ten RSNs were constructed based on 998 participants from the REST-meta-MDD cohort. Multivariate linear regression analysis was used to examine the independent and interactive influences of age and gender on large-scale RSNs and their topological properties. A support vector regression model integrating whole-brain network features was used to predict brain age across the lifespan and cognitive decline in an Alzheimer's disease spectrum (ADS) sample. Differential effects of age and gender on brain network roles were demonstrated across the lifespan. Specifically, cingulo-opercular, auditory, and visual (VIS) networks showed more incohesive features reflected by decreased intra-network connectivity with ageing. Further, females displayed distinctive brain network trajectory patterns in middle-early age, showing enhanced network connectivity within the fronto-parietal network (FPN) and salience network (SAN) and weakened network connectivity between the FPN-somatomotor, FPN-VIS, and SAN-VIS networks. Age - but not gender - induced widespread decrease in topological properties of brain networks. Importantly, these differential network features predicted brain age and cognitive impairment in the ADS sample. By showing that age and gender exert specific dispersion of dynamic network roles and trajectories across the lifespan, this study has expanded our understanding of age- and gender-related brain changes with ageing. Moreover, the findings may be useful for detecting early-stage dementia.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lingyu Qi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Haixia Feng
- Department of Nursing, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
- Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
43
|
Luo J, Qin P, Bi Q, Wu K, Gong G. Individual variability in functional connectivity of human auditory cortex. Cereb Cortex 2024; 34:bhae007. [PMID: 38282455 DOI: 10.1093/cercor/bhae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/30/2024] Open
Abstract
Individual variability in functional connectivity underlies individual differences in cognition and behaviors, yet its association with functional specialization in the auditory cortex remains elusive. Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, this study was designed to investigate the spatial distribution of auditory cortex individual variability in its whole-brain functional network architecture. An inherent hierarchical axis of the variability was discerned, which radiates from the medial to lateral orientation, with the left auditory cortex demonstrating more pronounced variations than the right. This variability exhibited a significant correlation with the variations in structural and functional metrics in the auditory cortex. Four auditory cortex subregions, which were identified from a clustering analysis based on this variability, exhibited unique connectional fingerprints and cognitive maps, with certain subregions showing specificity to speech perception functional activation. Moreover, the lateralization of the connectional fingerprint exhibited a U-shaped trajectory across the subregions. These findings emphasize the role of individual variability in functional connectivity in understanding cortical functional organization, as well as in revealing its association with functional specialization from the activation, connectome, and cognition perspectives.
Collapse
Affiliation(s)
- Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peipei Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qiuhui Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
| | - Ke Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
44
|
Liu X, Hu Y, Hao Y, Yang L. Individual differences in the neural architecture in semantic processing. Sci Rep 2024; 14:170. [PMID: 38168133 PMCID: PMC10761854 DOI: 10.1038/s41598-023-49538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Neural mechanisms underlying semantic processing have been extensively studied by using functional magnetic resonance imaging, nevertheless, the individual differences of it are yet to be unveiled. To further our understanding of functional and anatomical brain organization underlying semantic processing to the level of individual humans, we used out-of-scanner language behavioral data, T1, resting-state, and story comprehension task-evoked functional image data in the Human Connectome Project, to investigate individual variability in the task-evoked semantic processing network, and attempted to predict individuals' language skills based on task and intrinsic functional connectivity of highly variable regions, by employing a machine-learning framework. Our findings first confirmed that individual variability in both functional and anatomical markers were heterogeneously distributed throughout the semantic processing network, and that the variability increased towards higher levels in the processing hierarchy. Furthermore, intrinsic functional connectivities among these highly variable regions were found to contribute to predict individual reading decoding abilities. The contributing nodes in the overall network were distributed in the left superior, inferior frontal, and temporo-parietal cortices. Our results suggested that the individual differences of neurobiological markers were heterogeneously distributed in the semantic processing network, and that neurobiological markers of highly variable areas are not only linked to individual variability in language skills, but can predict language skills at the individual level.
Collapse
Affiliation(s)
- Xin Liu
- Air Force Medical Center, Air Force Medical University, No. 28, Fucheng Street, Haidian District, Beijing, 100142, China.
| | - Yiwen Hu
- Air Force Medical Center, Air Force Medical University, No. 28, Fucheng Street, Haidian District, Beijing, 100142, China
| | - Yaokun Hao
- Air Force Medical Center, Air Force Medical University, No. 28, Fucheng Street, Haidian District, Beijing, 100142, China
| | - Liu Yang
- Air Force Medical Center, Air Force Medical University, No. 28, Fucheng Street, Haidian District, Beijing, 100142, China
| |
Collapse
|
45
|
Bagautdinova J, Bourque J, Sydnor VJ, Cieslak M, Alexander-Bloch AF, Bertolero MA, Cook PA, Gur RE, Gur RC, Hu F, Larsen B, Moore TM, Radhakrishnan H, Roalf DR, Shinohara RT, Tapera TM, Zhao C, Sotiras A, Davatzikos C, Satterthwaite TD. Development of white matter fiber covariance networks supports executive function in youth. Cell Rep 2023; 42:113487. [PMID: 37995188 PMCID: PMC10795769 DOI: 10.1016/j.celrep.2023.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
During adolescence, the brain undergoes extensive changes in white matter structure that support cognition. Data-driven approaches applied to cortical surface properties have led the field to understand brain development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. Although white matter development also appears asynchronous, previous studies have relied largely on anatomical tract-based atlases, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Harnessing advances in diffusion modeling and machine learning, we identified 14 data-driven patterns of covarying white matter structure in a large sample of youth. Fiber covariance networks aligned with known major tracts, while also capturing distinct patterns of spatial covariance across distributed white matter locations. Most networks showed age-related increases in fiber network properties, which were also related to developmental changes in executive function. This study delineates data-driven patterns of white matter development that support cognition.
Collapse
Affiliation(s)
- Joëlle Bagautdinova
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josiane Bourque
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxwell A Bertolero
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fengling Hu
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamsanandini Radhakrishnan
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russel T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tinashe M Tapera
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chenying Zhao
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Keller AS, Pines AR, Shanmugan S, Sydnor VJ, Cui Z, Bertolero MA, Barzilay R, Alexander-Bloch AF, Byington N, Chen A, Conan GM, Davatzikos C, Feczko E, Hendrickson TJ, Houghton A, Larsen B, Li H, Miranda-Dominguez O, Roalf DR, Perrone A, Shetty A, Shinohara RT, Fan Y, Fair DA, Satterthwaite TD. Personalized functional brain network topography is associated with individual differences in youth cognition. Nat Commun 2023; 14:8411. [PMID: 38110396 PMCID: PMC10728159 DOI: 10.1038/s41467-023-44087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across matched discovery (n = 3525) and replication (n = 3447) samples, the total cortical representation of fronto-parietal PFNs positively correlates with general cognition. Cross-validated ridge regressions trained on PFN topography predict cognition in unseen data across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.
Collapse
Affiliation(s)
- Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam R Pines
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sheila Shanmugan
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Maxwell A Bertolero
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ran Barzilay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Andrew Chen
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory M Conan
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Alisha Shetty
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
47
|
Li S, Chen Y, Ren P, Li Z, Zhang J, Liang X. Alterations in rat brain modular organization during unconsciousness are dependent on communication efficiency and metabolic cost. Brain Struct Funct 2023; 228:2115-2124. [PMID: 37733058 DOI: 10.1007/s00429-023-02708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
Spontaneous brain activity exhibits a highly structured modular organization that varies across individuals and reconfigures over time. Although it has been proposed that brain organization is shaped by an economic trade-off between minimizing costs and facilitating efficient information transfer, it remains untested whether modular variability and its changes during unconscious conditions might be constrained by the economy of brain organization. We acquired functional MRI and FDG-PET in rats under three different levels of consciousness induced by propofol administration. We examined alterations in brain modular variability during loss of consciousness from mild sedation to deep anesthesia. We also investigated the relationships between modular variability with glucose metabolism and functional connectivity strength as well as their alterations during unconsciousness. We observed that modular variability increased during loss of consciousness. Critically, across-individual modular variability is oppositely associated with functional connectivity strength and cerebral metabolism, and with deepening dosage of anesthesia, becoming increasingly dependent on basal metabolism over functional connectivity. These results suggested that, propofol-induced unconsciousness may lead to brain modular reorganization, which are putatively shaped by re-negotiations between energetic resources and communication efficiency.
Collapse
Affiliation(s)
- Siyang Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Yali Chen
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Peng Ren
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhipeng Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Jun Zhang
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xia Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
48
|
Deck BL, Kelkar A, Erickson B, Erani F, McConathey E, Sacchetti D, Faseyitan O, Hamilton R, Medaglia JD. Individual-level functional connectivity predicts cognitive control efficiency. Neuroimage 2023; 283:120386. [PMID: 37820860 DOI: 10.1016/j.neuroimage.2023.120386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Cognitive control (CC) is essential for problem-solving in everyday life, and CC-related deficits occur alongside costly and debilitating disorders. The tri-partite model suggests that CC comprises multiple behaviors, including switching, inhibiting, and updating. Activity within the fronto-parietal control network B (FPCN-B), the dorsal attention network (DAN), the cingulo-opercular network (CON), and the lateral default-mode network (L-DMN) is related to switching and inhibiting behaviors. However, our understanding of how these brain regions interact to bring about cognitive switching and inhibiting in individuals is unclear. In the current study, subjects performed two in-scanner tasks that required switching and inhibiting. We used support vector regression (SVR) models containing individually-estimated functional connectivity between the FPCN-B, DAN, CON and L-DMN to predict switching and inhibiting behaviors. We observed that: inter-network connectivity can predict inhibiting and switching behaviors in individuals, and the L-DMN plays a role in switching and inhibiting behaviors. Therefore, individually estimated inter-network connections are markers of CC behaviors, and CC behaviors may arise due to interactions between a set of networks.
Collapse
Affiliation(s)
- Benjamin L Deck
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Apoorva Kelkar
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Brian Erickson
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Fareshte Erani
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Eric McConathey
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Daniela Sacchetti
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Olufunsho Faseyitan
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Roy Hamilton
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA; Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA.
| |
Collapse
|
49
|
Xie S, Liu J, Hu Y, Liu W, Ma C, Jin S, Zhang L, Kang Y, Ding Y, Zhang X, Hu Z, Cheng W, Yang Z. A normative model of brain responses to social scenarios reflects the maturity of children and adolescents' social-emotional abilities. Soc Cogn Affect Neurosci 2023; 18:nsad062. [PMID: 37930841 PMCID: PMC10649363 DOI: 10.1093/scan/nsad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
The rapid brain maturation in childhood and adolescence accompanies the development of socio-emotional functioning. However, it is unclear how the maturation of the neural activity drives the development of socio-emotional functioning and individual differences. This study aimed to reflect the age dependence of inter-individual differences in brain responses to socio-emotional scenarios and to develop naturalistic imaging indicators to assess the maturity of socio-emotional ability at the individual level. Using three independent naturalistic imaging datasets containing healthy participants (n = 111, 21 and 122), we found and validated that age-modulated inter-individual concordance of brain responses to socio-emotional movies in specific brain regions. The similarity of an individual's brain response to the average response of older participants was defined as response typicality, which predicted an individual's emotion regulation strategies in adolescence and theory of mind (ToM) in childhood. Its predictive power was not superseded by age, sex, cognitive performance or executive function. We further showed that the movie's valence and arousal ratings grounded the response typicality. The findings highlight that forming typical brain response patterns may be a neural phenotype underlying the maturation of socio-emotional ability. The proposed response typicality represents a neuroimaging approach to measure individuals' maturity of cognitive reappraisal and ToM.
Collapse
Affiliation(s)
- Shuqi Xie
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jingjing Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Changminghao Ma
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Shuyu Jin
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lei Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yinzhi Kang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yue Ding
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaochen Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhishan Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Department of Psychological Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100035, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100054, China
| |
Collapse
|
50
|
Li J, Tan C, Zhang L, Cai S, Shen Q, Liu Q, Wang M, Song C, Zhou F, Yuan J, Liu Y, Lan B, Liao H. Neural functional network of early Parkinson's disease based on independent component analysis. Cereb Cortex 2023; 33:11025-11035. [PMID: 37746803 DOI: 10.1093/cercor/bhad342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
This work explored neural network changes in early Parkinson's disease: Resting-state functional magnetic resonance imaging was used to investigate functional alterations in different stages of Parkinson's disease (PD). Ninety-five PD patients (50 early/mild and 45 early/moderate) and 37 healthy controls (HCs) were included. Independent component analysis revealed significant differences in intra-network connectivity, specifically in the default mode network (DMN) and right frontoparietal network (RFPN), in both PD groups compared to HCs. Inter-network connectivity analysis showed reduced connectivity between the executive control network (ECN) and DMN, as well as ECN-left frontoparietal network (LFPN), in early/mild PD. Early/moderate PD exhibited decreased connectivity in ECN-LFPN, ECN-RFPN, ECN-DMN, and DMN-auditory network, along with increased connectivity in LFPN-cerebellar network. Correlations were found between ECN-DMN and ECN-LFPN connections with UPDRS-III scores in early/mild PD. These findings suggest that PD progression involves dysfunction in multiple intra- and inter-networks, particularly implicating the ECN, and a wider range of abnormal functional networks may mark the progression of the disease.
Collapse
Affiliation(s)
- Junli Li
- Department of Medical Imaging, Huizhou Central People's Hospital, Eling North Road, Huicheng District, Huizhou, Guangdong 516001, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Lin Zhang
- Department of Radiology, Chengdu Fifth People's Hospital, Mashi Street, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Qinru Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - ChenDie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Yujing Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Bowen Lan
- Department of Medical Imaging, Huizhou Central People's Hospital, Eling North Road, Huicheng District, Huizhou, Guangdong 516001, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| |
Collapse
|