1
|
Rosenstein I, Novakova L, Kvartsberg H, Nordin A, Rasch S, Rembeza E, Sandgren S, Malmeström C, Fruhwürth S, Axelsson M, Blennow K, Zetterberg H, Lycke J. Tyro3 and Gas6 are associated with white matter and myelin integrity in multiple sclerosis. J Neuroinflammation 2024; 21:320. [PMID: 39673059 PMCID: PMC11645787 DOI: 10.1186/s12974-024-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND The Gas6/TAM (Tyro3, Axl, and Mer) receptor system has been implicated in demyelination and delayed remyelination in experimental animal models, but data in humans are scarce. We aimed to investigate the role of Gas6/TAM in neurodegenerative processes in multiple sclerosis (MS). METHODS From a prospective 5-year follow-up study, soluble Gas6/TAM biomarkers were analyzed in cerebrospinal fluid (CSF) by enzyme-linked immunosorbent assay (ELISA) at baseline in patients with relapsing-remitting MS (RRMS) (n = 40), progressive MS (PMS) (n = 20), and healthy controls (HC) (n = 25). Brain volumes, including myelin content (MyC) and white matter (WM) were measured by synthetic magnetic resonance imaging at baseline, 12 months, and 60-month follow-up. Associations with brain volume changes were investigated in multivariable linear regression models. Gas6/TAM concentrations were also determined at 12 months follow-up in RRMS to assess treatment response. RESULTS Baseline concentrations of Tyro3, Axl, and Gas6 were significantly higher in PMS vs. RRMS and HC. Mer was higher in PMS vs. HC. Tyro3 and Gas6 were associated with reduced WM (β = 25.5, 95% confidence interval [CI] [6.11-44.96, p = 0.012; β = 11.4, 95% CI [0.42-22.4], p = 0.042, respectively) and MyC (β = 7.95, 95%CI [1.84-14.07], p = 0.012; β = 4.4, 95%CI [1.04-7.75], p = 0.012 respectively) at 60 months. Patients with evidence of remyelination at last follow-up had lower baseline soluble Tyro3 (p = 0.033) and Gas6 (p = 0.014). Except Mer, Gas6/TAM concentrations did not change with treatment in RRMS. DISCUSSION Our data indicate a potential role for the Gas6/TAM receptor system in neurodegenerative processes influencing demyelination and ineffective remyelination.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden.
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hlin Kvartsberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Anna Nordin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Sofia Rasch
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Elzbieta Rembeza
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sofia Sandgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Degl'Innocenti E, Poloni TE, Medici V, Olimpico F, Finamore F, Profka X, Bascarane K, Morrone C, Pastore A, Escartin C, McDonnell LA, Dell'Anno MT. Astrocytic centrin-2 expression in entorhinal cortex correlates with Alzheimer's disease severity. Glia 2024; 72:2158-2177. [PMID: 39145525 DOI: 10.1002/glia.24603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.
Collapse
Affiliation(s)
- Elisa Degl'Innocenti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | | | | | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Karouna Bascarane
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Castrese Morrone
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Aldo Pastore
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Carole Escartin
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | | |
Collapse
|
3
|
Tang J, Cao Z, Lei M, Yu Q, Mai Y, Xu J, Liao W, Ruan Y, Shi L, Yang L, Liu J. Heterogeneity of cerebral atrophic rate in mild cognitive impairment and its interactive association with proteins related to microglia activity on longitudinal cognitive changes. Arch Gerontol Geriatr 2024; 127:105582. [PMID: 39079281 DOI: 10.1016/j.archger.2024.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Heterogeneity of cerebral atrophic rate commonly exists in mild cognitive impairment (MCI), which may be associated with microglia-involved neuropathology and have an influence on cognitive outcomes. OBJECTIVE We aim to explore the heterogeneity of cerebral atrophic rate among MCI and its association with plasma proteins related to microglia activity, with further investigation of their interaction effects on long-term cognition. SUBJECTS A total of 630 MCI subjects in the ADNI database were included, of which 260 subjects were available with baseline data on plasma proteins. METHODS Group-based multi-trajectory modeling (GBMT) was used to identify the latent classes with heterogeneous cerebral atrophic rates. Associations between latent classes and plasma proteins related to microglia activity were investigated with generalized linear models. Linear mixed effect models (LME) were implemented to explore the interaction effects between proteins related to microglia activity and identified latent classes on longitudinal cognitive changes. RESULTS Two latent classes were identified and labeled as the slow-atrophy class and the fast-atrophy class. Associations were found between such heterogeneity of atrophic rates and plasma proteins related to microglia activity, especially AXL receptor tyrosine kinase (AXL), CD40 antigen (CD40), and tumor necrosis factor receptor-like 2 (TNF-R2). Interaction effects on longitudinal cognitive changes showed that higher CD40 was associated with faster cognitive decline in the slow-atrophy class and higher AXL or TNF-R2 was associated with slower cognitive decline in the fast-atrophy class. CONCLUSIONS Heterogeneity of atrophic rates at the MCI stage is associated with several plasma proteins related to microglia activity, which show either protective or adverse effects on long-term cognition depending on the variability of atrophic rates.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China
| | - Zhiyu Cao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Ming Lei
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China
| | - Qun Yu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Yingren Mai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Jiaxin Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China
| | - Wang Liao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Yuting Ruan
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen City, Guangdong Province, MN 518000, China; Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, MN 999077, China
| | - Lianhong Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China.
| | - Jun Liu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China.
| |
Collapse
|
4
|
Vockert N, Machts J, Kleineidam L, Nemali A, Incesoy EI, Bernal J, Schütze H, Yakupov R, Peters O, Gref D, Schneider LS, Preis L, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Rostamzadeh A, Glanz W, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Spottke A, Roy N, Heneka MT, Brosseron F, Wagner M, Wolfsgruber S, Dobisch L, Dechent P, Hetzer S, Scheffler K, Zeidman P, Stern Y, Schott BH, Jessen F, Düzel E, Maass A, Ziegler G. Cognitive reserve against Alzheimer's pathology is linked to brain activity during memory formation. Nat Commun 2024; 15:9815. [PMID: 39537609 PMCID: PMC11561234 DOI: 10.1038/s41467-024-53360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The cognitive reserve (CR) hypothesis posits that individuals can differ in how their brain function is disrupted by pathology associated with aging and neurodegeneration. Here, we test this hypothesis in the continuum from cognitively normal to at-risk stages for Alzheimer's Disease (AD) to AD dementia using longitudinal data from 490 participants of the DELCODE multicentric observational study. Brain function is measured using task fMRI of visual memory encoding. Using a multivariate moderation analysis, we identify a CR-related activity pattern underlying successful memory encoding that moderates the detrimental effect of AD pathological load on cognitive performance. CR is mainly represented by a more pronounced expression of the task-active network encompassing deactivation of the default mode network (DMN) and activation of inferior temporal regions including the fusiform gyrus. We devise personalized fMRI-based CR scores that moderate the impact of AD pathology on cognitive performance and are positively associated with years of education. Furthermore, higher CR scores attenuate the effect of AD pathology on cognitive decline over time. Our findings primarily provide evidence for the maintenance of core cognitive circuits including the DMN as the neural basis of CR. Individual brain activity levels of these areas during memory encoding have prognostic value for future cognitive decline.
Collapse
Affiliation(s)
- Niklas Vockert
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Judith Machts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany
| | - Aditya Nemali
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Enise I Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Magdeburg, Germany
| | - Jose Bernal
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité - Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Daria Gref
- Charité - Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Luisa Sophie Schneider
- Charité - Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| | - Lukas Preis
- Charité - Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Berlin, Germany
- School of Medicine, Technical University of Munich, Department of Psychiatry and Psychotherapy, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ayda Rostamzadeh
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Doreen Goerss
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | | | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Goettingen, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, University of Cologne, Koeln, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Koeln, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
5
|
Roveta F, Bonino L, Piella EM, Rainero I, Rubino E. Neuroinflammatory Biomarkers in Alzheimer's Disease: From Pathophysiology to Clinical Implications. Int J Mol Sci 2024; 25:11941. [PMID: 39596011 PMCID: PMC11593837 DOI: 10.3390/ijms252211941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The identification of neuroinflammation as a critical factor in Alzheimer's disease (AD) has expanded the focus of research beyond amyloid-β and tau pathology. The neuroinflammatory fluid biomarkers GFAP, sTREM2, and YKL-40 have gained attention for their potential in early detection and monitoring of disease progression. Plasma GFAP has demonstrated promise in predicting the conversion from mild cognitive impairment to AD dementia, while sTREM2 highlights microglial activation, although there are conflicting results regarding its dynamics in AD pathogenesis. Advanced imaging techniques, such as PET tracers targeting TSPO and MAO-B, have also been developed to visualize glial activation in vivo, offering spatial and temporal insights into neuroinflammatory processes. However, the clinical implementation of these biomarkers faces challenges due to their lack of specificity, as many of them can be elevated in other conditions. Therapeutic strategies targeting neuroinflammation are emerging, with TREM2-targeting therapies and antidiabetic drugs like GLP-1 receptor agonists showing potential in modulating microglial activity. Nevertheless, the complexity of neuroinflammation, which encompasses both protective and harmful responses, necessitates further research to fully unravel its role and optimize therapeutic approaches for AD.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Rubino
- Aging Brain and Memory Clinic, Department of Neuroscience “Rita Levi-Montalcini”, University of Torino, 10126 Torino, Italy; (F.R.); (L.B.); (E.M.P.); (I.R.)
| |
Collapse
|
6
|
Sandoval C, Lee J, Toth B, Nagaraj R, Schauer SP, Hoffman J, Calderon E, Kollmorgen G, Sanabria Bohórquez SM, Monteiro C, Teng E, Hanson JE, Yeh FL, Gutierrez J, Biever A. CSF complement proteins are elevated in prodromal to moderate Alzheimer's disease patients and are not altered by the anti-tau antibody semorinemab. Alzheimers Dement 2024; 20:7940-7953. [PMID: 39369294 PMCID: PMC11567840 DOI: 10.1002/alz.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION Growing evidence suggests a role for neuroinflammation in Alzheimer's disease (AD). We investigated complement pathway activity in AD patient cerebrospinal fluid (CSF) and evaluated its modulation by the anti-tau antibody semorinemab. METHODS Immunoassays were applied to measure CSF complement proteins C4, factor B (FB), C3 and their cleavage fragments C4a, C3a, and factor Bb (Bb) in AD patients and a separate cognitively unimpaired (CU) cohort. RESULTS All measured CSF complement proteins were increased in AD versus CU subjects, with C4a displaying the most robust increase. Finally, semorinemab did not have a significant pharmacodynamic effect on CSF complement proteins. DISCUSSION Elevated levels of CSF C4a, C4, C3a, C3, Bb, and FB are consistent with complement activation in AD brains. Despite showing a reduction in CSF soluble tau species, semorinemab did not impact complement protein levels or activity. Further studies are needed to determine the value of complement proteins as neuroinflammation biomarkers in AD. HIGHLIGHTS Cerebrospinal fluid (CSF) complement proteins C4a, C3a, Bb, C4, C3, and factor B levels were increased in Alzheimer's disease (AD) patients compared to a separate cognitively unimpaired (CU) cohort. Baseline CSF complement protein levels were correlated with neuro-axonal degeneration and glial activation biomarkers in AD patients. The investigational anti-tau antibody semorinemab did not impact CSF complement protein levels or activity relative to the placebo arm.
Collapse
Affiliation(s)
- Cosme Sandoval
- Department of Translational MedicineGenentech IncOMNISouth San FranciscoCaliforniaUSA
| | - Julie Lee
- Department of Translational MedicineGenentech IncOMNISouth San FranciscoCaliforniaUSA
| | - Balazs Toth
- Department of Data and Statistical SciencesGenentech IncImmunology, Infectious Diseases and OpthalmologySouth San FranciscoCaliforniaUSA
| | - Rajini Nagaraj
- Department of Translational MedicineGenentech IncOMNISouth San FranciscoCaliforniaUSA
| | - Stephen P. Schauer
- Department of Translational MedicineGenentech IncOMNISouth San FranciscoCaliforniaUSA
| | - Jennifer Hoffman
- Department of Translational MedicineGenentech IncOperations Diagnostics Technology InnovationSouth San FranciscoCaliforniaUSA
| | - Emilia Calderon
- Department of Translational MedicineGenentech IncOperations Diagnostics Technology InnovationSouth San FranciscoCaliforniaUSA
| | | | | | - Cecilia Monteiro
- Department of Early Clinical DevelopmentGenentech IncSouth San FranciscoCaliforniaUSA
| | - Edmond Teng
- Department of Early Clinical DevelopmentGenentech IncSouth San FranciscoCaliforniaUSA
| | - Jesse E. Hanson
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | - Felix L. Yeh
- Department of Translational MedicineGenentech IncOMNISouth San FranciscoCaliforniaUSA
| | - Johnny Gutierrez
- Department of Translational MedicineGenentech IncOMNISouth San FranciscoCaliforniaUSA
| | - Anne Biever
- Department of Translational MedicineGenentech IncOMNISouth San FranciscoCaliforniaUSA
| |
Collapse
|
7
|
Zhang Y, Yu Z, Ye N, Zhen X. Macrophage migration inhibitory factor (MIF) in CNS diseases: Functional regulation and potential therapeutic indication. FUNDAMENTAL RESEARCH 2024; 4:1375-1388. [PMID: 39734533 PMCID: PMC11670708 DOI: 10.1016/j.fmre.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 12/31/2024] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional protein that possesses cytokine, enzyme, and endocrine activities and acts as a chaperone-like molecule. Owing to its immune-inflammatory regulatory properties, the role of MIF has long been an attractive target in research on various autoimmune and inflammatory disorders. MIF is also widely expressed in the central nervous system (CNS), and its potential roles in CNS disorders have become a focus to elucidate the physiological and pathological effects of MIF and to explore its potential significance in the treatment of CNS diseases. Previously, the majority of work on MIF functional regulation was focused on MIF tautomerase inhibitors. However, mounting information has indicated that the functions of MIF extend far beyond its tautomerase activity. Here, we review the recent advances in understanding the complex roles of MIF in the pathogenesis of CNS disorders as well as the discovery and design of small molecules targeted to tautomerase and nuclease of MIF.
Collapse
Affiliation(s)
- Yu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People′ Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Zhexiang Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2 D02, Ireland
| |
Collapse
|
8
|
Li S, Yang J. Pathogenesis of Alzheimer's disease and therapeutic strategies involving traditional Chinese medicine. RSC Med Chem 2024; 15:d4md00660g. [PMID: 39430949 PMCID: PMC11484936 DOI: 10.1039/d4md00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative disorder affecting the central nervous system of the elderly. Patients primarily manifest cognitive decline and non-cognitive neuro-psychiatric symptoms. Currently, western medications for AD primarily include cholinesterase inhibitors and glutamate receptor inhibitors, which have limited efficacy and accompanied by significant toxic side effects. Given the intricate pathogenesis of AD, the use of single-target inhibitors is limited. In recent years, as research on AD has progressed, traditional Chinese medicine (TCM) and its active ingredients have increasingly played a crucial role in clinical treatment. Numerous studies demonstrate that TCM and its active ingredients can exert anti-Alzheimer's effects by modulating pathological protein production and deposition, inhibiting tau protein hyperphosphorylation, apoptosis, inflammation, and oxidative stress, while enhancing the central cholinergic system, protecting neurons and synapses, and optimizing energy metabolism. This article summarizes extracts from TCM and briefly elucidates their pharmacological mechanisms against AD, aiming to provide a foundation for further research into the specific mechanisms of TCM in the prevention and treatment of the disease, as well as the identification of efficacious active ingredients.
Collapse
Affiliation(s)
- Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
| | - Jinfei Yang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| |
Collapse
|
9
|
Rudolph J, Rueckel J, Döpfert J, Ling WX, Opalka J, Brem C, Hesse N, Ingenerf M, Koliogiannis V, Solyanik O, Hoppe BF, Zimmermann H, Flatz W, Forbrig R, Patzig M, Rauchmann B, Perneczky R, Peters O, Priller J, Schneider A, Fliessbach K, Hermann A, Wiltfang J, Jessen F, Düzel E, Buerger K, Teipel S, Laske C, Synofzik M, Spottke A, Ewers M, Dechent P, Haynes J, Levin J, Liebig T, Ricke J, Ingrisch M, Stoecklein S. Artificial intelligence-based rapid brain volumetry substantially improves differential diagnosis in dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70037. [PMID: 39665087 PMCID: PMC11632536 DOI: 10.1002/dad2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024]
Abstract
Introduction This study evaluates the clinical value of a deep learning-based artificial intelligence (AI) system that performs rapid brain volumetry with automatic lobe segmentation and age- and sex-adjusted percentile comparisons. Methods Fifty-five patients-17 with Alzheimer's disease (AD), 18 with frontotemporal dementia (FTD), and 20 healthy controls-underwent cranial magnetic resonance imaging scans. Two board-certified neuroradiologists (BCNR), two board-certified radiologists (BCR), and three radiology residents (RR) assessed the scans twice: first without AI support and then with AI assistance. Results AI significantly improved diagnostic accuracy for AD (area under the curve -AI: 0.800, +AI: 0.926, p < 0.05), with increased correct diagnoses (p < 0.01) and reduced errors (p < 0.03). BCR and RR showed notable performance gains (BCR: p < 0.04; RR: p < 0.02). For the diagnosis FTD, overall consensus (p < 0.01), BCNR (p < 0.02), and BCR (p < 0.05) recorded significantly more correct diagnoses. Discussion AI-assisted volumetry improves diagnostic performance in differentiating AD and FTD, benefiting all reader groups, including BCNR. Highlights Artificial intelligence (AI)-supported brain volumetry significantly improved the diagnostic accuracy for Alzheimer's disease (AD) and frontotemporal dementia (FTD), with notable performance gains across radiologists of varying expertise levels.The presented AI tool is readily clinically available and reduces brain volumetry processing time from 12 to 24 hours to under 5 minutes, with full integration into picture archiving and communication systems, streamlining the workflow and facilitating real-time clinical decision making.AI-supported rapid brain volumetry has the potential to improve early diagnosis and to improve patient management.
Collapse
|
10
|
Duggan MR, Yang Z, Cui Y, Dark HE, Wen J, Erus G, Hohman TJ, Chen J, Lewis A, Moghekar A, Coresh J, Resnick SM, Davatzikos C, Walker KA. Proteomic analyses reveal plasma EFEMP1 and CXCL12 as biomarkers and determinants of neurodegeneration. Alzheimers Dement 2024; 20:6486-6505. [PMID: 39129354 PMCID: PMC11497673 DOI: 10.1002/alz.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Plasma proteomic analyses of unique brain atrophy patterns may illuminate peripheral drivers of neurodegeneration and identify novel biomarkers for predicting clinically relevant outcomes. METHODS We identified proteomic signatures associated with machine learning-derived aging- and Alzheimer's disease (AD) -related brain atrophy patterns in the Baltimore Longitudinal Study of Aging (n = 815). Using data from five cohorts, we examined whether candidate proteins were associated with AD endophenotypes and long-term dementia risk. RESULTS Plasma proteins associated with distinct patterns of age- and AD-related atrophy were also associated with plasma/cerebrospinal fluid (CSF) AD biomarkers, cognition, AD risk, as well as mid-life (20-year) and late-life (8-year) dementia risk. EFEMP1 and CXCL12 showed the most consistent associations across cohorts and were mechanistically implicated as determinants of brain structure using genetic methods, including Mendelian randomization. DISCUSSION Our findings reveal plasma proteomic signatures of unique aging- and AD-related brain atrophy patterns and implicate EFEMP1 and CXCL12 as important molecular drivers of neurodegeneration. HIGHLIGHTS Plasma proteomic signatures are associated with unique patterns of brain atrophy. Brain atrophy-related proteins predict clinically relevant outcomes across cohorts. Genetic variation underlying plasma EFEMP1 and CXCL12 influences brain structure. EFEMP1 and CXCL12 may be important molecular drivers of neurodegeneration.
Collapse
Affiliation(s)
- Michael R. Duggan
- Laboratory of Behavioral NeuroscienceNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging LaboratoryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging LaboratoryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Heather E. Dark
- Laboratory of Behavioral NeuroscienceNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Junhao Wen
- Laboratory of Artificial Intelligence and Biomedical ScienceKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging LaboratoryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jingsha Chen
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Alexandria Lewis
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Abhay Moghekar
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Josef Coresh
- Departments of Population Health and MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Susan M. Resnick
- Laboratory of Behavioral NeuroscienceNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging LaboratoryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Keenan A. Walker
- Laboratory of Behavioral NeuroscienceNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
11
|
Kang DW, Lee JW, Park MY, Kim SH, Um YH, Wang SM, Lee CU, Lim HK. Impact of Helicobacter pylori eradication on age-specific risk of incident dementia in patients with peptic ulcer disease: a nationwide population-based cohort study. GeroScience 2024:10.1007/s11357-024-01284-z. [PMID: 39129052 DOI: 10.1007/s11357-024-01284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
The impact of peptic ulcer disease (PUD) and Helicobacter pylori (H. pylori) eradication therapy on dementia risk in high H. pylori prevalence populations remains uncertain. This study investigates the relationship between PUD, H. pylori eradication, and dementia risk, including Alzheimer's disease (AD), in an elderly South Korean cohort, considering age and eradication timing. Data from the Korean National Health Insurance Service (2002-2015) for individuals aged 55-79 were analyzed. Participants were divided based on PUD and H. pylori therapy status. Propensity score matching was used to evaluate dementia incidence and hazard ratios over 5 and 10 years, alongside the timing of eradication therapy. PUD is linked to higher dementia risk at 5 and 10 years, more for overall dementia than AD, with eradication status not significantly altering the risk. Age-specific analysis showed increased AD risk in the 60s and 70s age groups. Late eradication therapy is correlated with a higher dementia risk. PUD is a risk factor for dementia in elderly South Koreans, particularly with delayed H. pylori therapy. The findings emphasize timely H. pylori management and its potential role in neurodegenerative disease prevention.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Jung-Won Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Man Young Park
- Department of Data Science, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sung-Hwan Kim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Yeouido St. Mary's Hospital, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, St. Vincent's Hospital, Suwon, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Yeouido St. Mary's Hospital, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Yeouido St. Mary's Hospital, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 06591, Republic of Korea.
- Research Institute, NEUROPHET Inc, Seoul, Republic of Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Duggan MR, Gomez GT, Joynes CM, Bilgel M, Chen J, Fattorelli N, Hohman TJ, Mancuso R, Cordon J, Castellano T, Koran MEI, Candia J, Lewis A, Moghekar A, Ashton NJ, Kac PR, Karikari TK, Blennow K, Zetterberg H, Martinez-Muriana A, De Strooper B, Thambisetty M, Ferrucci L, Gottesman RF, Coresh J, Resnick SM, Walker KA. Proteome-wide analysis identifies plasma immune regulators of amyloid-beta progression. Brain Behav Immun 2024; 120:604-619. [PMID: 38977137 PMCID: PMC11682725 DOI: 10.1016/j.bbi.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
While immune function is known to play a mechanistic role in Alzheimer's disease (AD), whether immune proteins in peripheral circulation influence the rate of amyloid-β (Aβ) progression - a central feature of AD - remains unknown. In the Baltimore Longitudinal Study of Aging, we quantified 942 immunological proteins in plasma and identified 32 (including CAT [catalase], CD36 [CD36 antigen], and KRT19 [keratin 19]) associated with rates of cortical Aβ accumulation measured with positron emission tomography (PET). Longitudinal changes in a subset of candidate proteins also predicted Aβ progression, and the mid- to late-life (20-year) trajectory of one protein, CAT, was associated with late-life Aβ-positive status in the Atherosclerosis Risk in Communities (ARIC) study. Genetic variation that influenced plasma levels of CAT, CD36 and KRT19 predicted rates of Aβ accumulation, including causal relationships with Aβ PET levels identified with two-sample Mendelian randomization. In addition to associations with tau PET and plasma AD biomarker changes, as well as expression patterns in human microglia subtypes and neurovascular cells in AD brain tissue, we showed that 31 % of candidate proteins were related to mid-life (20-year) or late-life (8-year) dementia risk in ARIC. Our findings reveal plasma proteins associated with longitudinal Aβ accumulation, and identify specific peripheral immune mediators that may contribute to the progression of AD pathophysiology.
Collapse
Affiliation(s)
- Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gabriela T Gomez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cassandra M Joynes
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicola Fattorelli
- VIB Center for Brain and Disease Research, Flanders Institute for Biotechnology, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders Laboratory, Center for Molecular Neurology, Flanders Institute for Biotechnology, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jenifer Cordon
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tonnar Castellano
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ellen I Koran
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Biomedical Research Center for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK; Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; ICM Institute, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France; First Affiliated Hospital, University of Science and Technology of China, Anhui, PR China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, University College London Institute of Neurology, London, UK; UK Dementia Research Institute, University College London, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Special Administrative Region; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Martinez-Muriana
- VIB Center for Brain and Disease Research, Flanders Institute for Biotechnology, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Flanders Institute for Biotechnology, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium; UK Dementia Research Institute, University College London, London, UK
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Josef Coresh
- Departments of Population Health and Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Preis L, Villringer K, Brosseron F, Düzel E, Jessen F, Petzold GC, Ramirez A, Spottke A, Fiebach JB, Peters O. Assessing blood-brain barrier dysfunction and its association with Alzheimer's pathology, cognitive impairment and neuroinflammation. Alzheimers Res Ther 2024; 16:172. [PMID: 39085945 PMCID: PMC11290219 DOI: 10.1186/s13195-024-01529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Blood-brain barrier (BBB) alterations may contribute to AD pathology through various mechanisms, including impaired amyloid-β (Aβ) clearance and neuroinflammation. Soluble platelet-derived growth factor receptor beta (sPDGFRβ) has emerged as a potential biomarker for BBB integrity. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) offers a direct assessment of BBB permeability. However, the relationship between BBB dysfunction, cognitive impairment, and AD pathology remains unclear, with inconsistent findings in the literature. METHODS We conducted a cross-sectional study using data from the DELCODE and DESCRIBE cohorts to investigate BBB dysfunction in participants with normal cognition (NC), mild cognitive impairment (MCI), and AD dementia. BBB function was assessed using DCE-MRI and sPDGFRβ levels in cerebrospinal fluid and AD biomarkers Aβ and tau were measured. In a subset of patients, the CSF/plasma-ratio of albumin (QAlb) as a standard marker of BBB integrity and markers of neuroinflammation were analyzed. RESULTS 91 participants (NC: 44, MCI: 21, AD: 26) were included in the analysis. The average age was 74.4 years, 42% were female. Increased hippocampal BBB disruption was observed in the AD-group (Ktrans: 0.55 × 10- 3 min- 1 ± 0.74 × 10- 3 min- 1) but not the MCI-group (Ktrans: 0.177 × 10- 3 min- 1 ± 0.22 × 10- 3 min- 1), compared to the NC group (Ktrans: 0.19 × 10- 3 min- 1 ± 0.37 × 10- 3 min- 1, p < .01). sPDGFRβ was not significantly different between the cognitive groups. However, sPDGFRβ levels were significantly associated with age (r = .33, p < .01), independent of vascular risk factors. Further, sPDGFRβ showed significant positive associations with soluble Aβ levels (Aβ40: r = .57, p < .01; Aβ42: r = .39, p < .01) and YKL-40 (r = .53, p < .01), a marker of neuroinflammation. sPDGFRβ/DCE-MRI was not associated with overall AD biomarker positivity or APOE-status. CONCLUSION In dementia, but not MCI, hippocampal BBB disruption was observed. sPDGFRβ increased with age and was associated with neuroinflammation independent of cognitive impairment. The association between Aβ and sPDGFRβ may indicate a bidirectional relationship reflecting pericytes' clearance of soluble Aβ and/or vasculotoxic properties of Aβ.
Collapse
Affiliation(s)
- Lukas Preis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany.
| | - Kersten Villringer
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Köln, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Center for Neurology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Köln, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Center for Neurology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jochen B Fiebach
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Oliver Peters
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| |
Collapse
|
14
|
Lista S, Imbimbo BP, Grasso M, Fidilio A, Emanuele E, Minoretti P, López-Ortiz S, Martín-Hernández J, Gabelle A, Caruso G, Malaguti M, Melchiorri D, Santos-Lozano A, Imbimbo C, Heneka MT, Caraci F. Tracking neuroinflammatory biomarkers in Alzheimer's disease: a strategy for individualized therapeutic approaches? J Neuroinflammation 2024; 21:187. [PMID: 39080712 PMCID: PMC11289964 DOI: 10.1186/s12974-024-03163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Recent trials of anti-amyloid-β (Aβ) monoclonal antibodies, including lecanemab and donanemab, in early Alzheimer disease (AD) showed that these drugs have limited clinical benefits and their use comes with a significant risk of serious adverse events. Thus, it seems crucial to explore complementary therapeutic approaches. Genome-wide association studies identified robust associations between AD and several AD risk genes related to immune response, including but not restricted to CD33 and TREM2. Here, we critically reviewed the current knowledge on candidate neuroinflammatory biomarkers and their role in characterizing the pathophysiology of AD. MAIN BODY Neuroinflammation is recognized to be a crucial and contributing component of AD pathogenesis. The fact that neuroinflammation is most likely present from earliest pre-stages of AD and co-occurs with the deposition of Aβ reinforces the need to precisely define the sequence and nature of neuroinflammatory events. Numerous clinical trials involving anti-inflammatory drugs previously yielded unfavorable outcomes in early and mild-to-moderate AD. Although the reasons behind these failures remain unclear, these may include the time and the target selected for intervention. Indeed, in our review, we observed a stage-dependent neuroinflammatory process in the AD brain. While the initial activation of glial cells counteracts early brain Aβ deposition, the downregulation in the functional state of microglia occurs at more advanced disease stages. To address this issue, personalized neuroinflammatory modulation therapy is required. The emergence of reliable blood-based neuroinflammatory biomarkers, particularly glial fibrillary acidic protein, a marker of reactive astrocytes, may facilitate the classification of AD patients based on the ATI(N) biomarker framework. This expands upon the traditional classification of Aβ ("A"), tau ("T"), and neurodegeneration ("N"), by incorporating a novel inflammatory component ("I"). CONCLUSIONS The present review outlines the current knowledge on potential neuroinflammatory biomarkers and, importantly, emphasizes the role of longitudinal analyses, which are needed to accurately monitor the dynamics of cerebral inflammation. Such a precise information on time and place will be required before anti-inflammatory therapeutic interventions can be considered for clinical evaluation. We propose that an effective anti-neuroinflammatory therapy should specifically target microglia and astrocytes, while considering the individual ATI(N) status of patients.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, 43122, Parma, Italy
| | | | | | | | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Audrey Gabelle
- CMRR, Memory Resources and Research Center, Montpellier University of Excellence i-site, 34295, Montpellier, France
| | - Giuseppe Caruso
- Oasi Research Institute-IRCCS, 94018, Troina, Italy
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126, Bologna, Italy
| | - Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
- Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital, 12 de Octubre ('imas12'), 28041, Madrid, Spain
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Esch-Belval, Luxembourg.
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018, Troina, Italy.
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
15
|
Karlsson L, Vogel J, Arvidsson I, Åström K, Janelidze S, Blennow K, Palmqvist S, Stomrud E, Mattsson-Carlgren N, Hansson O. Cerebrospinal fluid reference proteins increase accuracy and interpretability of biomarkers for brain diseases. Nat Commun 2024; 15:3676. [PMID: 38693142 PMCID: PMC11063138 DOI: 10.1038/s41467-024-47971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers reflect brain pathophysiology and are used extensively in translational research as well as in clinical practice for diagnosis of neurological diseases, e.g., Alzheimer's disease (AD). However, CSF biomarker concentrations may be influenced by non-disease related inter-individual variability. Here we use a data-driven approach to demonstrate the existence of inter-individual variability in mean standardized CSF protein levels. We show that these non-disease related differences cause many commonly reported CSF biomarkers to be highly correlated, thereby producing misleading results if not accounted for. To adjust for this inter-individual variability, we identified and evaluated high-performing reference proteins which improved the diagnostic accuracy of key CSF AD biomarkers. Our reference protein method attenuates the risk for false positive findings, and improves the sensitivity and specificity of CSF biomarkers, with broad implications for both research and clinical practice.
Collapse
Affiliation(s)
- Linda Karlsson
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.
| | - Jacob Vogel
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Clinical Sciences, Clinical Memory Research Unit, SciLifeLab, Lund University, Lund, Sweden
| | - Ida Arvidsson
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Kalle Åström
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sebastian Palmqvist
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
16
|
Wang S, Xie S, Zheng Q, Zhang Z, Wang T, Zhang G. Biofluid biomarkers for Alzheimer's disease. Front Aging Neurosci 2024; 16:1380237. [PMID: 38659704 PMCID: PMC11039951 DOI: 10.3389/fnagi.2024.1380237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease, with a complex pathogenesis and an irreversible course. Therefore, the early diagnosis of AD is particularly important for the intervention, prevention, and treatment of the disease. Based on the different pathophysiological mechanisms of AD, the research progress of biofluid biomarkers are classified and reviewed. In the end, the challenges and perspectives of future research are proposed.
Collapse
Affiliation(s)
- Sensen Wang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sitan Xie
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Qinpin Zheng
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhihui Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| |
Collapse
|
17
|
Castro-Gomez S, Heneka MT. Innate immune activation in neurodegenerative diseases. Immunity 2024; 57:790-814. [PMID: 38599171 DOI: 10.1016/j.immuni.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Activation of the innate immune system following pattern recognition receptor binding has emerged as one of the major pathogenic mechanisms in neurodegenerative disease. Experimental, epidemiological, pathological, and genetic evidence underscores the meaning of innate immune activation during the prodromal as well as clinical phases of several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Importantly, innate immune activation and the subsequent release of inflammatory mediators contribute mechanistically to other hallmarks of neurodegenerative diseases such as aberrant proteostatis, pathological protein aggregation, cytoskeleton abnormalities, altered energy homeostasis, RNA and DNA defects, and synaptic and network disbalance and ultimately to the induction of neuronal cell death. In this review, we discuss common mechanisms of innate immune activation in neurodegeneration, with particular emphasis on the pattern recognition receptors (PRRs) and other receptors involved in the detection of damage-associated molecular patterns (DAMPs).
Collapse
Affiliation(s)
- Sergio Castro-Gomez
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany; Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
18
|
Hayek D, Ziegler G, Kleineidam L, Brosseron F, Nemali A, Vockert N, Ravichandran KA, Betts MJ, Peters O, Schneider LS, Wang X, Priller J, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Bartels C, Rostamzadeh A, Glanz W, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Laske C, Mengel D, Synofzik M, Munk MH, Spottke A, Roy N, Roeske S, Kuhn E, Ramirez A, Dobisch L, Schmid M, Berger M, Wolfsgruber S, Yakupov R, Hetzer S, Dechent P, Ewers M, Scheffler K, Schott BH, Schreiber S, Orellana A, de Rojas I, Marquié M, Boada M, Sotolongo O, González PG, Puerta R, Düzel E, Jessen F, Wagner M, Ruiz A, Heneka MT, Maass A. Different inflammatory signatures based on CSF biomarkers relate to preserved or diminished brain structure and cognition. Mol Psychiatry 2024; 29:992-1004. [PMID: 38216727 PMCID: PMC11176056 DOI: 10.1038/s41380-023-02387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
Neuroinflammation is a hallmark of Alzheimer's disease (AD) and both positive and negative associations of individual inflammation-related markers with brain structure and cognitive function have been described. We aimed to identify inflammatory signatures of CSF immune-related markers that relate to changes of brain structure and cognition across the clinical spectrum ranging from normal aging to AD. A panel of 16 inflammatory markers, Aβ42/40 and p-tau181 were measured in CSF at baseline in the DZNE DELCODE cohort (n = 295); a longitudinal observational study focusing on at-risk stages of AD. Volumetric maps of gray and white matter (GM/WM; n = 261) and white matter hyperintensities (WMHs, n = 249) were derived from baseline MRIs. Cognitive decline (n = 204) and the rate of change in GM volume was measured in subjects with at least 3 visits (n = 175). A principal component analysis on the CSF markers revealed four inflammatory components (PCs). Of these, the first component PC1 (highly loading on sTyro3, sAXL, sTREM2, YKL-40, and C1q) was associated with older age and higher p-tau levels, but with less pathological Aβ when controlling for p-tau. PC2 (highly loading on CRP, IL-18, complement factor F/H and C4) was related to male gender, higher body mass index and greater vascular risk. PC1 levels, adjusted for AD markers, were related to higher GM and WM volumes, less WMHs, better baseline memory, and to slower atrophy rates in AD-related areas and less cognitive decline. In contrast, PC2 related to less GM and WM volumes and worse memory at baseline. Similar inflammatory signatures and associations were identified in the independent F.ACE cohort. Our data suggest that there are beneficial and detrimental signatures of inflammatory CSF biomarkers. While higher levels of TAM receptors (sTyro/sAXL) or sTREM2 might reflect a protective glia response to degeneration related to phagocytic clearance, other markers might rather reflect proinflammatory states that have detrimental impact on brain integrity.
Collapse
Affiliation(s)
- Dayana Hayek
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Luca Kleineidam
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Aditya Nemali
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Niklas Vockert
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany
| | - Kishore A Ravichandran
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Oliver Peters
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Psychiatry and Neuroscience, Hindenburgdamm 30, 12203, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Luisa-Sophie Schneider
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Psychiatry and Neuroscience, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Xiao Wang
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Psychiatry and Neuroscience, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
- School of Medicine, Technical University of Munich; Department of Psychiatry and Psychotherapy, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Anja Schneider
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Klaus Fliessbach
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, Göttingen, 37075, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- Department of Neuroradiology, University Hospital LMU, Munich, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - David Mengel
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Elizabeth Kuhn
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alfredo Ramirez
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Köln, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Institute for Medical Biometry, University Hospital Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Moritz Berger
- Institute for Medical Biometry, University Hospital Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Goettingen, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377, Munich, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076, Tübingen, Germany
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, Göttingen, 37075, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Adelina Orellana
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Oscar Sotolongo
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García González
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Köln, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Augustín Ruiz
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, 4362, Esch-sur- Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, 55 Lake Avenue, North Worcester, MA, 01655, USA
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg, 39120, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
19
|
Petrican R, Fornito A, Boyland E. Lifestyle Factors Counteract the Neurodevelopmental Impact of Genetic Risk for Accelerated Brain Aging in Adolescence. Biol Psychiatry 2024; 95:453-464. [PMID: 37393046 DOI: 10.1016/j.biopsych.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND The transition from childhood to adolescence is characterized by enhanced neural plasticity and a consequent susceptibility to both beneficial and adverse aspects of one's milieu. METHODS To understand the implications of the interplay between protective and risk-enhancing factors, we analyzed longitudinal data from the Adolescent Brain Cognitive Development (ABCD) Study (n = 834; 394 female). We probed the maturational correlates of positive lifestyle variables (friendships, parental warmth, school engagement, physical exercise, healthy nutrition) and genetic vulnerability to neuropsychiatric disorders (major depressive disorder, Alzheimer's disease, anxiety disorders, bipolar disorder, schizophrenia) and sought to further elucidate their implications for psychological well-being. RESULTS Genetic risk factors and lifestyle buffers showed divergent relationships with later attentional and interpersonal problems. These effects were mediated by distinguishable functional neurodevelopmental deviations spanning the limbic, default mode, visual, and control systems. More specifically, greater genetic vulnerability was associated with alterations in the normative maturation of areas rich in dopamine (D2), glutamate, and serotonin receptors and of areas with stronger expression of astrocytic and microglial genes, a molecular signature implicated in the brain disorders discussed here. Greater availability of lifestyle buffers predicted deviations in the normative functional development of higher density GABAergic (gamma-aminobutyric acidergic) receptor regions. The two profiles of neurodevelopmental alterations showed complementary roles in protection against psychopathology, which varied with environmental stress levels. CONCLUSIONS Our results underscore the importance of educational involvement and healthy nutrition in attenuating the neurodevelopmental sequelae of genetic risk factors. They also underscore the importance of characterizing early-life biomarkers associated with adult-onset pathologies.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Liverpool, United Kingdom.
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Emma Boyland
- Institute of Population Health, Department of Psychology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
20
|
Dorion MF, Yaqubi M, Senkevich K, Kieran NW, MacDonald A, Chen CXQ, Luo W, Wallis A, Shlaifer I, Hall JA, Dudley RWR, Glass IA, Stratton JA, Fon EA, Bartels T, Antel JP, Gan-or Z, Durcan TM, Healy LM. MerTK is a mediator of alpha-synuclein fibril uptake by human microglia. Brain 2024; 147:427-443. [PMID: 37671615 PMCID: PMC10834256 DOI: 10.1093/brain/awad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Mer tyrosine kinase (MerTK) is a receptor tyrosine kinase that mediates non-inflammatory, homeostatic phagocytosis of diverse types of cellular debris. Highly expressed on the surface of microglial cells, MerTK is of importance in brain development, homeostasis, plasticity and disease. Yet, involvement of this receptor in the clearance of protein aggregates that accumulate with ageing and in neurodegenerative diseases has yet to be defined. The current study explored the function of MerTK in the microglial uptake of alpha-synuclein fibrils which play a causative role in the pathobiology of synucleinopathies. Using human primary and induced pluripotent stem cell-derived microglia, the MerTK-dependence of alpha-synuclein fibril internalization was investigated in vitro. Relevance of this pathway in synucleinopathies was assessed through burden analysis of MERTK variants and analysis of MerTK expression in patient-derived cells and tissues. Pharmacological inhibition of MerTK and siRNA-mediated MERTK knockdown both caused a decreased rate of alpha-synuclein fibril internalization by human microglia. Consistent with the non-inflammatory nature of MerTK-mediated phagocytosis, alpha-synuclein fibril internalization was not observed to induce secretion of pro-inflammatory cytokines such as IL-6 or TNF, and downmodulated IL-1β secretion from microglia. Burden analysis in two independent patient cohorts revealed a significant association between rare functionally deleterious MERTK variants and Parkinson's disease in one of the cohorts (P = 0.002). Despite a small upregulation in MERTK mRNA expression in nigral microglia from Parkinson's disease/Lewy body dementia patients compared to those from non-neurological control donors in a single-nuclei RNA-sequencing dataset (P = 5.08 × 10-21), no significant upregulation in MerTK protein expression was observed in human cortex and substantia nigra lysates from Lewy body dementia patients compared to controls. Taken together, our findings define a novel role for MerTK in mediating the uptake of alpha-synuclein fibrils by human microglia, with possible involvement in limiting alpha-synuclein spread in synucleinopathies such as Parkinson's disease. Upregulation of this pathway in synucleinopathies could have therapeutic values in enhancing alpha-synuclein fibril clearance in the brain.
Collapse
Affiliation(s)
- Marie-France Dorion
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Konstantin Senkevich
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal H3A 0C7, Canada
| | - Nicholas W Kieran
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Adam MacDonald
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Carol X Q Chen
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Wen Luo
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Amber Wallis
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Irina Shlaifer
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Roy W R Dudley
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University Health Centers, Montreal H4A 3J1, Canada
| | - Ian A Glass
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Edward A Fon
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Ziv Gan-or
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal H3A 0C7, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| |
Collapse
|
21
|
Gutierrez J, Kurz C, Sandoval C, Edmonds R, Bittner T, Perneczky R, Biever A. Impact of Preanalytical Procedures on Complement Biomarkers in Cerebrospinal Fluid and Plasma from Controls and Alzheimer's Disease Patients. J Alzheimers Dis 2024; 101:563-576. [PMID: 39213066 PMCID: PMC11492022 DOI: 10.3233/jad-240287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
Background Studies comparing cerebrospinal fluid (CSF) and plasma complement proteins in Alzheimer's disease (AD) patients versus healthy controls (HC) have yielded inconsistent results. Discrepancies in the preanalytical sample handling could contribute to the heterogeneity in the reported findings. Objective Using qualified immunoassays, we aimed at assessing the impact of preanalytical procedures on complement proteins in blood and CSF from AD patients and HCs. Methods We supplemented HC and AD CSF/plasma with complement stabilizers and measured the complement proteins C4a, C4, C3a, C3, Factor Bb and Factor B by immunoassay. We tested the impact of freeze-thaw (FT) cycles on fluid complement proteins. Results Most complement proteins were mildly impacted by FT cycles in plasma but not CSF, except for C3a which displayed greater sensitivity to FTs in CSF than in plasma. In CSF, the effect of FTs on C3a was reduced but not prevented by the supplementation with EDTA (±Futhan). Conclusions Our findings provide recommendations for CSF/plasma sample handling to ensure robust and reproducible complement biomarker analyses in AD.
Collapse
Affiliation(s)
- Johnny Gutierrez
- Department of Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Cosme Sandoval
- Department of Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Rose Edmonds
- Department of Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Tobias Bittner
- Department of Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Anne Biever
- Department of Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
22
|
Teipel SJ, Dyrba M, Kleineidam L, Brosseron F, Levin F, Bruno D, Buerger K, Cosma N, Schneider L, Düzel E, Glanz W, Fliessbach K, Janowitz D, Kilimann I, Laske C, Munk MH, Maier F, Peters O, Pomara N, Perneczky R, Rauchmann B, Priller J, Ramirez A, Roy N, Schneider A, Spottke A, Spruth EJ, Roeske S, Wagner M, Wiltfang J, Wolfsgruber S, Bartels C, Jessen F, Heneka MT. Association of latent factors of neuroinflammation with Alzheimer's disease pathology and longitudinal cognitive decline. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12510. [PMID: 38213951 PMCID: PMC10781650 DOI: 10.1002/dad2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION We investigated the association of inflammatory mechanisms with markers of Alzheimer's disease (AD) pathology and rates of cognitive decline in the AD spectrum. METHODS We studied 296 cases from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study (DELCODE) cohort, and an extension cohort of 276 cases of the Alzheimer's Disease Neuroimaging Initiative study. Using Bayesian confirmatory factor analysis, we constructed latent factors for synaptic integrity, microglia, cerebrovascular endothelial function, cytokine/chemokine, and complement components of the inflammatory response using a set of inflammatory markers in cerebrospinal fluid. RESULTS We found strong evidence for an association of synaptic integrity, microglia response, and cerebrovascular endothelial function with a latent factor of AD pathology and with rates of cognitive decline. We found evidence against an association of complement and cytokine/chemokine factors with AD pathology and rates of cognitive decline. DISCUSSION Latent factors provided access to directly unobservable components of the neuroinflammatory response and their association with AD pathology and cognitive decline.
Collapse
|
23
|
Bartsch T, Berg D, Heneka M, Leypoldt F. [Parkinson's and Alzheimer's disease as system-wide neurodegenerative disorders]. DER NERVENARZT 2023; 94:875-884. [PMID: 37672086 DOI: 10.1007/s00115-023-01542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Parkinson's and Alzheimer's disease (PD/AD) are characterized by cellular pathological changes that precede clinical manifestation and symptom onset by decades (prodromal period) as well as by a heterogeneity of clinical symptoms. Both diseases are recognized as system-wide diseases with organ-transgressing dysregulation and involvement of immunological and neuroinflammatory mechanisms facilitating pathological protein aggregation and neurodegeneration. OBJECTIVES Overview of natural course, phenotypes and classification of PD/AD with a focus on underlying (system-wide) immunological and neuroinflammatory mechanisms. METHODS Literature research and consideration of expert opinions. RESULTS The accumulation of misfolded proteins such as amyloid‑β and synuclein in the course of neurodegenerative processes forms the basis of the current biological classifications, understanding of course and subtypes. Protein aggregation in PD/AD induces an innate immune response by activating microglia and the release of inflammatory mediators such as cytokines and chemokines and leading to further spread of neurodegeneration and accumulation of intracellular neurofibrillary tangles (NFTs). There is also growing evidence that adaptive immune responses involving auto-antibodies or auto-antigen-specific T‑/B-cell reactions involving tau, amyloid‑β or synuclein might be involved in the disease progression or subtypes of PD/AD. CONCLUSIONS Both innate and adaptive immune responses seem to be substantially involved in the pathological cascade leading to neurodegeneration in PD/AD and may contribute to disease progression and clinical subtypes. Thus, future targeted interventions should not only focus on protein aggregation but also on neuroinflammatory and immunological mechanisms.
Collapse
Affiliation(s)
- Thorsten Bartsch
- Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland.
- Klinik für Neurologie, AG Gedächtnis und Plastizität, Gedächtnis- und Demenzsprechstunde, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Deutschland.
| | - Daniela Berg
- Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
| | - Michael Heneka
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Belvaux, Luxemburg
| | - Frank Leypoldt
- Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
- Institut für Klinische Chemie, Universitätsklinikum Schleswig-Holstein, Campus Kiel und Lübeck, Kiel, Deutschland
| |
Collapse
|
24
|
Rupprecht R, Pradhan AK, Kufner M, Brunner LM, Nothdurfter C, Wein S, Schwarzbach J, Puig X, Rupprecht C, Rammes G. Neurosteroids and translocator protein 18 kDa (TSPO) in depression: implications for synaptic plasticity, cognition, and treatment options. Eur Arch Psychiatry Clin Neurosci 2023; 273:1477-1487. [PMID: 36574032 DOI: 10.1007/s00406-022-01532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022]
Abstract
There is need for novel fast acting treatment options in affective disorders. 3α-reduced neurosteroids such as allopregnanolone are powerful positive allosteric modulators of GABAA receptors and target also extrasynaptic receptors. Their synthesis is mediated by the translocator protein 18 kDa (TSPO). TSPO ligands not only promote endogenous neurosteroidogenesis, but also exert a broad spectrum of functions involving modulation of mitochondrial activity and acting as anti-inflammatory and neuroregenerative agents. Besides affective symptoms, in depression cognitive impairment can be frequently observed, which may be ameliorated through targeting of extrasynaptic GABAA receptors either via TSPO ligands or exogenously administered 3α-reduced neurosteroids. Interestingly, recent findings indicate an enhanced activation of the complement system, e.g., enhanced expression of C1q, both in depression and dementia. It is of note that benzodiazepines have been shown to reduce long-term potentiation and to cause cognitive decline. Intriguingly, TSPO may be crucial in mediating the effects of benzodiazepines on synaptic pruning. Here, we discuss how benzodiazepines and TSPO may interfere with synaptic pruning. Moreover, we highlight recent developments of TSPO ligands and 3α-reduced neurosteroids as therapeutic agents. Etifoxine is the only clinically available TSPO ligand so far and has been studied in anxiety disorders. Regarding 3α-reduced neurosteroids, brexanolone, an intravenous formulation of allopregnanolone, has been approved for the treatment of postpartum depression and zuranolone, an orally available 3α-reduced neurosteroid, is currently being studied in major depressive disorder and postpartum depression. As such, 3α-reduced neurosteroids and TSPO ligands may constitute promising treatment approaches for affective disorders.
Collapse
Affiliation(s)
- Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany.
| | - Arpit Kumar Pradhan
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| | - Marco Kufner
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Lisa Marie Brunner
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Simon Wein
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Jens Schwarzbach
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Xenia Puig
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| | - Christian Rupprecht
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| | - Gerhard Rammes
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| |
Collapse
|
25
|
Cai Q, Shubhra QTH. Overcoming blood-brain barrier for targeted delivery of lysosome-targeting chimeras. Neuron 2023; 111:2778-2780. [PMID: 37734321 DOI: 10.1016/j.neuron.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
In a recent Chem article, Liu et al.1 introduced polydopamine-based lysosome-targeting chimeras (KPLYs). In in vitro cellular models, KPLYs adeptly cross the blood-brain barrier to target and eliminate β-amyloid aggregates. They also reduce inflammation and modulate microglial activity.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Quazi T H Shubhra
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Chemistry, University of Silesia in Katowice, 41-500 Chorzów, Poland.
| |
Collapse
|
26
|
Jagust WJ, Teunissen CE, DeCarli C. The complex pathway between amyloid β and cognition: implications for therapy. Lancet Neurol 2023; 22:847-857. [PMID: 37454670 DOI: 10.1016/s1474-4422(23)00128-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 07/18/2023]
Abstract
For decades, the hypothesis that brain deposition of the amyloid β protein initiates Alzheimer's disease has dominated research and clinical trials. Targeting amyloid β is starting to produce therapeutic benefit, although whether amyloid-lowering drugs will be widely and meaningfully effective is still unclear. Despite extensive in-vivo biomarker evidence in humans showing the importance of an amyloid cascade that drives cognitive decline, the amyloid hypothesis does not fully account for the complexity of late-life cognitive impairment. Multiple brain pathological changes, inflammation, and host factors of resilience might also be involved in contributing to the development of dementia. This variability suggests that the benefits of lowering amyloid β might depend on how strongly an amyloid pathway is manifest in an individual in relation to other coexisting pathophysiological processes. A new approach to research and treatment, which fully considers the multiple factors that drive cognitive decline, is necessary.
Collapse
Affiliation(s)
- William J Jagust
- School of Public Health, and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, CA, USA
| |
Collapse
|
27
|
Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019. Microorganisms 2023; 11:2038. [PMID: 37630598 PMCID: PMC10459962 DOI: 10.3390/microorganisms11082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The tyrosine kinase receptors of the TAM family-Tyro3, Axl and Mer-and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Alice Di Tizio
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Barbara Ruaro
- Pulmonology Department, University of Trieste, 34128 Trieste, Italy;
| | - Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Division of Internal Medicine, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
28
|
Huang Q, Jiang C, Xia X, Wang Y, Yan C, Wang X, Lei T, Yang X, Yang W, Cheng G, Gao H. Pathological BBB Crossing Melanin-Like Nanoparticles as Metal-Ion Chelators and Neuroinflammation Regulators against Alzheimer's Disease. RESEARCH (WASHINGTON, D.C.) 2023; 6:0180. [PMID: 37363131 PMCID: PMC10289297 DOI: 10.34133/research.0180] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Inflammatory responses, manifested in excessive oxidative stress and microglia overactivation, together with metal ion-triggered amyloid-beta (Aβ) deposition, are critical hallmarks of Alzheimer's disease (AD). The intricate pathogenesis causes severe impairment of neurons, which, in turn, exacerbates Aβ aggregation and facilitates AD progression. Herein, multifunctional melanin-like metal ion chelators and neuroinflammation regulators (named PDA@K) were constructed for targeted treatment of AD. In this platform, intrinsically bioactive material polydopamine nanoparticles (PDA) with potent metal ion chelating and ROS scavenging effects were decorated with the KLVFF peptide, endowing the system with the capacity of enhanced pathological blood-brain barrier (BBB) crossing and lesion site accumulation via Aβ hitchhiking. In vitro and in vivo experiment revealed that PDA@K had high affinity toward Aβ and were able to hitch a ride on Aβ to achieve increased pathological BBB crossing. The engineered PDA@K effectively mitigated Aβ aggregate and alleviated neuroinflammation. The modulated inflammatory microenvironment by PDA@K promoted microglial polarization toward the M2-like phenotype, which restored their critical functions for neuron care and plaque removal. After 3-week treatment of PDA@K, spatial learning and memory deficit as well as neurologic changes of FAD4T transgenic mice were largely rescued. Transcriptomics analysis further revealed the therapeutic mechanism of PDA@K. Our study provided an appealing paradigm for directly utilizing intrinsic properties of nanomaterials as therapeutics for AD instead of just using them as nanocarriers, which largely widen the application of nanomaterials in AD therapy.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Chaoqing Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Yufan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Chenxing Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital,
Sichuan University, Chengdu 610041, P.R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
29
|
Raschick M, Richter A, Fischer L, Knopf L, Schult A, Yakupov R, Behnisch G, Guttek K, Düzel E, Dunay IR, Seidenbecher CI, Schraven B, Reinhold D, Schott BH. Plasma concentrations of anti-inflammatory cytokine TGF-β are associated with hippocampal structure related to explicit memory performance in older adults. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02638-1. [PMID: 37115329 PMCID: PMC10374779 DOI: 10.1007/s00702-023-02638-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Human cognitive abilities, and particularly hippocampus-dependent memory performance typically decline with increasing age. Immunosenescence, the age-related disintegration of the immune system, is increasingly coming into the focus of research as a considerable factor contributing to cognitive decline. In the present study, we investigated potential associations between plasma levels of pro- and anti-inflammatory cytokines and learning and memory performance as well as hippocampal anatomy in young and older adults. Plasma concentrations of the inflammation marker CRP as well as the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine TGF-β1 were measured in 142 healthy adults (57 young, 24.47 ± 4.48 years; 85 older, 63.66 ± 7.32 years) who performed tests of explicit memory (Verbal Learning and Memory Test, VLMT; Wechsler Memory Scale, Logical Memory, WMS) with an additional delayed recall test after 24 h. Hippocampal volumetry and hippocampal subfield segmentation were performed using FreeSurfer, based on T1-weighted and high-resolution T2-weighted MR images. When investigating the relationship between memory performance, hippocampal structure, and plasma cytokine levels, we found that TGF-β1 concentrations were positively correlated with the volumes of the hippocampal CA4-dentate gyrus region in older adults. These volumes were in turn positively associated with better performance in the WMS, particularly in the delayed memory test. Our results support the notion that endogenous anti-inflammatory mechanisms may act as protective factors in neurocognitive aging.
Collapse
Affiliation(s)
- Matthias Raschick
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Larissa Fischer
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lea Knopf
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gusalija Behnisch
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Emrah Düzel
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute for Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
30
|
Keep RF, Jones HC, Hamilton MG, Drewes LR. A year in review: brain barriers and brain fluids research in 2022. Fluids Barriers CNS 2023; 20:30. [PMID: 37085841 PMCID: PMC10120509 DOI: 10.1186/s12987-023-00429-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
This aim of this editorial is to highlight progress made in brain barrier and brain fluid research in 2022. It covers studies on the blood-brain, blood-retina and blood-CSF barriers (choroid plexus and meninges), signaling within the neurovascular unit and elements of the brain fluid systems. It further discusses how brain barriers and brain fluid systems are impacted in CNS diseases, their role in disease progression and progress being made in treating such diseases.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Mark G Hamilton
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Alberta, Canada
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
31
|
Wang M, Zhang H, Liang J, Huang J, Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer's disease. J Neuroinflammation 2023; 20:76. [PMID: 36935511 PMCID: PMC10026496 DOI: 10.1186/s12974-023-02753-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/28/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle (NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory microglia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterioration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to provide a new direction for exploring the neuroinflammation activity in AD.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
32
|
Zhou S, Li Y, Zhang Z, Yuan Y. An insight into the TAM system in Alzheimer's disease. Int Immunopharmacol 2023; 116:109791. [PMID: 36738678 DOI: 10.1016/j.intimp.2023.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
The TAM receptors may help delay the progression of Alzheimer's disease (AD). AD is the most common neurodegenerative disease associated with human aging. The TAM receptors, derived from the first letter of its three constituents -Tyro3, Axl, and Mertk, are associated with immune responses, cellular differentiation and migration, and clearance of apoptotic cells and debris, with the two canonical ligands, Growth Arrest Specific 6 (Gas6) and ProS1. Several kinds of research have indicated the participation of the TAM system in AD pathology. Also, the TAMs regulate multiple features of microglia, the significant sensors of disorder in the central nervous system (CNS). In this review, we describe the biology of the TAM receptors and ligands in the CNS. Then, we discuss the relationship between the TAM system and AD, specially focusing on its functional expression in the microglia. Finally, we also summarize some agents that could interfere with the TAM signaling pathways and discuss potential difficulties and strategies for drug development.
Collapse
Affiliation(s)
- Shiqi Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yanyan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
33
|
Zhang L, He CH, Coffey S, Yin D, Hsu IU, Su C, Ye Y, Zhang C, Spurrier J, Nicholson L, Rothlin CV, Ghosh S, Gopal PP, Hafler DA, Zhao H, Strittmatter SM. Single-cell transcriptomic atlas of Alzheimer's disease middle temporal gyrus reveals region, cell type and sex specificity of gene expression with novel genetic risk for MERTK in female. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.18.23286037. [PMID: 36865305 PMCID: PMC9980267 DOI: 10.1101/2023.02.18.23286037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Alzheimer's disease, the most common age-related neurodegenerative disease, is closely associated with both amyloid-ß plaque and neuroinflammation. Two thirds of Alzheimer's disease patients are females and they have a higher disease risk. Moreover, women with Alzheimer's disease have more extensive brain histological changes than men along with more severe cognitive symptoms and neurodegeneration. To identify how sex difference induces structural brain changes, we performed unbiased massively parallel single nucleus RNA sequencing on Alzheimer's disease and control brains focusing on the middle temporal gyrus, a brain region strongly affected by the disease but not previously studied with these methods. We identified a subpopulation of selectively vulnerable layer 2/3 excitatory neurons that that were RORB-negative and CDH9-expressing. This vulnerability differs from that reported for other brain regions, but there was no detectable difference between male and female patterns in middle temporal gyrus samples. Disease-associated, but sex-independent, reactive astrocyte signatures were also present. In clear contrast, the microglia signatures of diseased brains differed between males and females. Combining single cell transcriptomic data with results from genome-wide association studies (GWAS), we identified MERTK genetic variation as a risk factor for Alzheimer's disease selectively in females. Taken together, our single cell dataset revealed a unique cellular-level view of sex-specific transcriptional changes in Alzheimer's disease, illuminating GWAS identification of sex-specific Alzheimer's risk genes. These data serve as a rich resource for interrogation of the molecular and cellular basis of Alzheimer's disease.
Collapse
|
34
|
Initial and ongoing tobacco smoking elicits vascular damage and distinct inflammatory response linked to neurodegeneration. Brain Behav Immun Health 2023; 28:100597. [PMID: 36817509 PMCID: PMC9931921 DOI: 10.1016/j.bbih.2023.100597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/07/2022] [Accepted: 01/21/2023] [Indexed: 01/30/2023] Open
Abstract
Tobacco smoking is strongly linked to vascular damage contributing to the development of hypertension, atherosclerosis, as well as increasing the risk for neurodegeneration. Still, the involvement of the innate immune system in the development of vascular damage upon chronic tobacco use before the onset of clinical symptoms is not fully characterized. Our data provide evidence that a single acute exposure to tobacco elicits the secretion of extracellular vesicles expressing CD105 and CD49e from endothelial cells, granting further recognition of early preclinical biomarkers of vascular damage. Furthermore, we investigated the effects of smoking on the immune system of healthy asymptomatic chronic smokers compared to never-smokers, focusing on the innate immune system. Our data reveal a distinct immune landscape representative for early stages of vascular damage in clinically asymptomatic chronic smokers, before tobacco smoking related diseases develop. These results indicate a dysregulated immuno-vascular axis in chronic tobacco smokers that are otherwise considered as healthy individuals. The distinct alterations are characterized by increased CD36 expression by the blood monocyte subsets, neutrophilia and increased plasma IL-18 and reduced levels of IL-33, IL-10 and IL-8. Additionally, reduced levels of circulating BDNF and elevated sTREM2, which are associated with neurodegeneration, suggest a considerable impact of tobacco smoking on CNS function in clinically healthy individuals. These findings provide profound insight into the initial and ongoing effects of tobacco smoking and the potential vascular damage contributing to neurodegenerative disorders, specifically cerebrovascular dysfunction and dementia.
Collapse
|
35
|
Brosseron F, Maass A, Kleineidam L, Ravichandran KA, Kolbe CC, Wolfsgruber S, Santarelli F, Häsler LM, McManus R, Ising C, Röske S, Peters O, Cosma NC, Schneider LS, Wang X, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Schott BH, Buerger K, Janowitz D, Dichgans M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Görß D, Laske C, Munk MH, Düzel E, Yakupow R, Dobisch L, Metzger CD, Glanz W, Ewers M, Dechent P, Haynes JD, Scheffler K, Roy N, Rostamzadeh A, Spottke A, Ramirez A, Mengel D, Synofzik M, Jucker M, Latz E, Jessen F, Wagner M, Heneka MT. Serum IL-6, sAXL, and YKL-40 as systemic correlates of reduced brain structure and function in Alzheimer's disease: results from the DELCODE study. Alzheimers Res Ther 2023; 15:13. [PMID: 36631909 PMCID: PMC9835320 DOI: 10.1186/s13195-022-01118-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/06/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Neuroinflammation constitutes a pathological hallmark of Alzheimer's disease (AD). Still, it remains unresolved if peripheral inflammatory markers can be utilized for research purposes similar to blood-based beta-amyloid and neurodegeneration measures. We investigated experimental inflammation markers in serum and analyzed interrelations towards AD pathology features in a cohort with a focus on at-risk stages of AD. METHODS Data of 74 healthy controls (HC), 99 subjective cognitive decline (SCD), 75 mild cognitive impairment (MCI), 23 AD relatives, and 38 AD subjects were obtained from the DELCODE cohort. A panel of 20 serum biomarkers was determined using immunoassays. Analyses were adjusted for age, sex, APOE status, and body mass index and included correlations between serum and CSF marker levels and AD biomarker levels. Group-wise comparisons were based on screening diagnosis and routine AD biomarker-based schematics. Structural imaging data were combined into composite scores representing Braak stage regions and related to serum biomarker levels. The Preclinical Alzheimer's Cognitive Composite (PACC5) score was used to test for associations between the biomarkers and cognitive performance. RESULTS Each experimental marker displayed an individual profile of interrelations to AD biomarkers, imaging, or cognition features. Serum-soluble AXL (sAXL), IL-6, and YKL-40 showed the most striking associations. Soluble AXL was significantly elevated in AD subjects with pathological CSF beta-amyloid/tau profile and negatively related to structural imaging and cognitive function. Serum IL-6 was negatively correlated to structural measures of Braak regions, without associations to corresponding IL-6 CSF levels or other AD features. Serum YKL-40 correlated most consistently to CSF AD biomarker profiles and showed the strongest negative relations to structure, but none to cognitive outcomes. CONCLUSIONS Serum sAXL, IL-6, and YKL-40 relate to different AD features, including the degree of neuropathology and cognitive functioning. This may suggest that peripheral blood signatures correspond to specific stages of the disease. As serum markers did not reflect the corresponding CSF protein levels, our data highlight the need to interpret serum inflammatory markers depending on the respective protein's specific biology and cellular origin. These marker-specific differences will have to be considered to further define and interpret blood-based inflammatory profiles for AD research.
Collapse
Affiliation(s)
- Frederic Brosseron
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anne Maass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Luca Kleineidam
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kishore Aravind Ravichandran
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Carl-Christian Kolbe
- grid.15090.3d0000 0000 8786 803XInstitute of Innate Immunity, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.420044.60000 0004 0374 4101Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Steffen Wolfsgruber
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Francesco Santarelli
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Lisa M. Häsler
- grid.10392.390000 0001 2190 1447Hertie Institute for Clinical Brain Research, Department Cellular Neurology, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Róisín McManus
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christina Ising
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.452408.fExcellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany
| | - Sandra Röske
- grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Oliver Peters
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicoleta-Carmen Cosma
- grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Luisa-Sophie Schneider
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Xiao Wang
- grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Josef Priller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany ,grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University Munich, 81675 Munich, Germany
| | - Eike J. Spruth
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Slawek Altenstein
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Anja Schneider
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Klaus Fliessbach
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jens Wiltfang
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany ,grid.7311.40000000123236065Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Björn H. Schott
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Katharina Buerger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany ,grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Daniel Janowitz
- grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Martin Dichgans
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany ,grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Robert Perneczky
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany ,grid.411095.80000 0004 0477 2585Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany ,grid.7445.20000 0001 2113 8111Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK ,grid.11835.3e0000 0004 1936 9262Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Boris-Stephan Rauchmann
- grid.411095.80000 0004 0477 2585Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Teipel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20, 18147 Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Ingo Kilimann
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20, 18147 Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Doreen Görß
- grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Christoph Laske
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H. Munk
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Emrah Düzel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Renat Yakupow
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Laura Dobisch
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Coraline D. Metzger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Wenzel Glanz
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Michael Ewers
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Peter Dechent
- grid.7450.60000 0001 2364 4210MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University, Goettingen, Germany
| | - John Dylan Haynes
- grid.6363.00000 0001 2218 4662Bernstein Center for Computational Neurosciences, Charité – Universitätsmedizin, Berlin, Germany
| | - Klaus Scheffler
- grid.10392.390000 0001 2190 1447Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Nina Roy
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ayda Rostamzadeh
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Annika Spottke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alfredo Ramirez
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.452408.fExcellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany ,grid.6190.e0000 0000 8580 3777Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany ,Department of Psychiatry & Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX USA
| | - David Mengel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
| | - Matthis Synofzik
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
| | - Mathias Jucker
- grid.10392.390000 0001 2190 1447Hertie Institute for Clinical Brain Research, Department Cellular Neurology, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Eicke Latz
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XInstitute of Innate Immunity, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Frank Jessen
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.452408.fExcellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany ,grid.6190.e0000 0000 8580 3777Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Michael Wagner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael T. Heneka
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.16008.3f0000 0001 2295 9843Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, 4362 Esch-sur- Alzette, Luxembourg
| | | |
Collapse
|
36
|
Zhou J, Wang ZB, Sun Y, Fu Y, Li D, Tan L. Cerebrospinal Fluid Complement 4 Levels Were Associated with Alzheimer's Disease Pathology and Cognition in Non-Demented Elderly. J Alzheimers Dis 2023; 96:1071-1081. [PMID: 38007670 DOI: 10.3233/jad-230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Numerous studies have shown that the complement system plays an important role in Alzheimer's disease (AD). However, whether complement 4 (C4) protein in cerebrospinal fluid (CSF) was associated with AD pathology, especially in the early stage of AD, is still unclear. OBJECTIVE We aimed to explore the association of CSF C4 with AD pathology and cognition in the preclinical AD. METHODS The study included a total of 287 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Based on the A/T scheme, they were divided into four groups to access the changes of CSF C4 in the preclinical AD. Linear regression models were used to test the associations between CSF C4 and AD core biomarkers, namely Aβ42, P-tau, and T-tau. RESULTS The level of CSF C4 decreased in the A + T- group compared with the A-T- group (p = 0.04) and it increased in the A-T+ group compared to the A + T- group (p = 0.01). In pooled samples, C4 was significantly associated with AD core biomarkers (all p < 0.05), but only in the A + group after stratification according to the A/T scheme. Furthermore, CSF C4 levels at baseline were associated with longitudinal cognitive changes. CONCLUSIONS Our results showed that CSF C4 levels changed dynamically in the preclinical AD, and that the responses of CSF C4 to brain Aβ pathology, tau pathology and neurodegeneration were found only in the presence of amyloid plaques, both of which indicates the complex link between C4 and AD.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-Bo Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Da Li
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
37
|
Zhang W, Chen Y, Pei H. C1q and central nervous system disorders. Front Immunol 2023; 14:1145649. [PMID: 37033981 PMCID: PMC10076750 DOI: 10.3389/fimmu.2023.1145649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
C1q is a crucial component of the complement system, which is activated through the classical pathway to perform non-specific immune functions, serving as the first line of defense against pathogens. C1q can also bind to specific receptors to carry out immune and other functions, playing a vital role in maintaining immune homeostasis and normal physiological functions. In the developing central nervous system (CNS), C1q functions in synapse formation and pruning, serving as a key player in the development and homeostasis of neuronal networks in the CNS. C1q has a close relationship with microglia and astrocytes, and under their influence, C1q may contribute to the development of CNS disorders. Furthermore, C1q can also have independent effects on neurological disorders, producing either beneficial or detrimental outcomes. Most of the evidence for these functions comes from animal models, with some also from human specimen studies. C1q is now emerging as a promising target for the treatment of a variety of diseases, and clinical trials are already underway for CNS disorders. This article highlights the role of C1q in CNS diseases, offering new directions for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of General Practice, Xingyang Sishui Central Health Center, Zhengzhou, China
| | - Yuan Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Pei
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hui Pei,
| |
Collapse
|
38
|
Abstract
Alzheimer's disease (AD) characterization has progressed from being indexed using clinical symptomatology followed by neuropathological examination at autopsy to in vivo signatures using cerebrospinal fluid (CSF) biomarkers and positron emission tomography. The core AD biomarkers reflect amyloid-β plaques (A), tau pathology (T) and neurodegeneration (N), following the ATN schedule, and are now being introduced into clinical routine practice. This is an important development, as disease-modifying treatments are now emerging. Further, there are now reproducible data on CSF biomarkers which reflect synaptic pathology, neuroinflammation and common co-pathologies. In addition, the development of ultrasensitive techniques has enabled the core CSF biomarkers of AD pathophysiology to be translated to blood (e.g., phosphorylated tau, amyloid-β and neurofilament light). In this chapter, we review where we stand with both core and novel CSF biomarkers, as well as the explosion of data on blood biomarkers. Also, we discuss potential applications in research aiming to better understand the disease, as well as possible use in routine clinical practice and therapeutic trials.
Collapse
Affiliation(s)
- Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Anders Elmgren
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom; UK Dementia Research Institute, University College London, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|