1
|
Nikolova YS, Ruocco AC, Felsky D, Lange S, Prevot TD, Vieira E, Voineskos D, Wardell JD, Blumberger DM, Clifford K, Naik Dharavath R, Gerretsen P, Hassan AN, Hope IM, Irwin SH, Jennings SK, Le Foll B, Melamed O, Orson J, Pangarov P, Quigley L, Russell C, Shield K, Sloan ME, Smoke A, Tang V, Valdes Cabrera D, Wang W, Wells S, Wickramatunga R, Sibille E, Quilty LC. Cognitive Dysfunction in the Addictions (CDiA): protocol for a neuron-to-neighbourhood collaborative research program. Front Psychiatry 2025; 16:1455968. [PMID: 40462873 PMCID: PMC12131087 DOI: 10.3389/fpsyt.2025.1455968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/31/2025] [Indexed: 06/11/2025] Open
Abstract
Substance use disorders (SUDs), including Alcohol Use Disorder, are pressing global public health problems. Executive functions (EFs) are prominently featured in mechanistic models of addiction. However, significant gaps remain in our understanding of EFs in SUDs, including the dimensional relationships of EFs to underlying neural circuits, molecular biomarkers, disorder heterogeneity, and functional ability. Transforming health outcomes for people with SUDs requires an integration of clinical, biomedical, preclinical, and health services research. Through such interdisciplinary research, we can develop policies and interventions that align with biopsychosocial models of addiction, addressing the complex cognitive concerns of people with SUDs in a more holistic and effective way. Here, we introduce the design and procedures underlying Cognitive Dysfunction in the Addictions (CDiA), an integrative research program, which aims to fill these knowledge gaps and facilitate research discoveries to enhance treatments for people living with SUDs. The CDiA Program comprises seven interdisciplinary projects that aim to evaluate the central thesis that EF has a crucial role in functional outcomes in SUDs. The projects draw on a diverse sample of adults aged 18-60 (target N=400) seeking treatment for SUD, who are followed over one year to identify specific EF domains most associated with improved functioning. Projects 1-3 investigate SUD symptoms, brain circuits, and blood biomarkers and their associations with key EF domains (inhibition, working memory, and set-shifting) and functional outcomes (disability, quality of life). Projects 4 and 5 evaluate interventions for SUDs and their impacts on EF: a clinical trial of repetitive transcranial magnetic stimulation and a preclinical study of potential new pharmacological treatments in rodents. Project 6 links EF to healthcare utilization and is supplemented with a qualitative investigation of EF-related barriers to treatment engagement. Project 7 uses whole-person modeling to integrate the multi-modal data generated across projects, applying clustering and deep learning methods to identify patient subtypes and drive future cross-disciplinary initiatives. The CDiA Program will bring scientific domains together to uncover novel ways in which EFs are linked to SUD severity and functional recovery, and facilitate future discoveries to improve health outcomes in individuals living with SUDs.
Collapse
Affiliation(s)
- Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada
| | - Anthony C. Ruocco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Daniel Felsky
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Shannon Lange
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Thomas D. Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daphne Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jeffrey D. Wardell
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
| | - Daniel M. Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kevan Clifford
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ravinder Naik Dharavath
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Philip Gerretsen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ahmed N. Hassan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ingrid M. Hope
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha H. Irwin
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sheila K. Jennings
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Moms Stop the Harm, Victoria, BC, Canada
| | - Bernard Le Foll
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Osnat Melamed
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Josh Orson
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Pangarov
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Leanne Quigley
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY, United States
| | - Cayley Russell
- Ontario Canadian Research Initiative in Substance Matters (CRISM) Node Team, Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kevin Shield
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Matthew E. Sloan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ashley Smoke
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- The Ontario Network of People Who Use Drugs, Toronto, ON, Canada
| | - Victor Tang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Diana Valdes Cabrera
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Wei Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha Wells
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Rajith Wickramatunga
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lena C. Quilty
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Xu TY, Feng YH, Sun ZR, He L, Chen JH, Tian WZ, Zhang HX, Zhu M, Xia JG. Brain white matter microstructural alterations in patients with diabetic retinopathy: an automated fiber-tract quantification study. Quant Imaging Med Surg 2025; 15:3982-3992. [PMID: 40384690 PMCID: PMC12082598 DOI: 10.21037/qims-24-1440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/28/2025] [Indexed: 05/20/2025]
Abstract
Background Cognitive decline may occur in patients with diabetic retinopathy (DR), yet the mechanism underlying the relationship between cognitive decline and DR remains unclear. This study applied an automated fiber-tract quantification (AFQ) technique based on diffusion tensor imaging (DTI) to identify alterations in specific segments of brain white matter fiber tracts in patients with DR, and analyze their correlation with cognitive test scores and clinical biochemical indicators. Methods A total of 19 patients with DR and 20 age-, sex-, and education-matched healthy controls (HCs) were included. Clinical and imaging data were prospectively collected. The AFQ technique was applied to track the whole brain white matter fiber tracts of each participant, and each fiber tract was segmented into 100 equidistant nodes. The fractional anisotropy (FA), mean diffusion (MD), axial diffusion (AD), and radial diffusion in 100 nodes of each fiber tract were calculated and compared between the two groups. Partial correlation analysis was performed to analyze the correlation between altered DTI metrics in segments of the fiber tracts and cognitive test scores, as well as clinical biochemical indicators in patients with DR. Results Compared with the HC group, the DR group showed significantly reduced FA values in nodes 81-100, increased MD values in nodes 39-50, and reduced AD values in nodes 91-100 of the left cingulum cingulate (CGC) [P<0.05, false discovery rate (FDR) corrected], they also showed increased AD values in the left superior longitudinal fasciculus (SLF; nodes 1-23, 37-50, and 66-99), and the right SLF (nodes 1-36 and 79-100) (P<0.05, FDR corrected). Correlation analysis revealed a positive correlation between the FA values in nodes 82-98 of the left CGC and Montreal Cognitive Assessment scores (MoCA scores, r=0.760, P<0.05/P=0.021), and a positive correlation between the AD values in nodes 37-41 in the left SLF and glycated hemoglobin A1c (HbA1c) levels (r=0.559, P<0.05/P=0.039). Conclusions Our findings demonstrated alterations in the white matter fiber tracts at the point-wise level in patients with DR using AFQ analysis. These alterations may be associated with cognitive impairment in DR. The AFQ technique can accurately detect the damage to the integrity of the brain white matter fiber tracts in patients with DR, and have high clinical application value in the diagnosis and evaluation of DR, which can deepen our understanding of brain white matter microstructural abnormalities in patients with DR.
Collapse
Affiliation(s)
- Tian-Ye Xu
- Graduate School of Dalian Medical University, Dalian, China
| | - Yan-Hong Feng
- Graduate School of Dalian Medical University, Dalian, China
| | - Zhong-Ru Sun
- Department of Imaging, Taizhou People’s Hospital, Taizhou, China
| | - Liang He
- Department of Imaging, Taizhou People’s Hospital, Taizhou, China
| | - Jin-Hua Chen
- Department of Imaging, Taizhou People’s Hospital, Taizhou, China
| | - Wei-Zhong Tian
- Department of Imaging, Taizhou People’s Hospital, Taizhou, China
| | - Hong-Xia Zhang
- Department of Imaging, Taizhou People’s Hospital, Taizhou, China
| | - Meng Zhu
- Department of Imaging, Taizhou People’s Hospital, Taizhou, China
| | - Jian-Guo Xia
- Department of Imaging, Taizhou People’s Hospital, Taizhou, China
| |
Collapse
|
3
|
Zhou J, Liu J, Lu JL, Pu XY, Chen HH, Liu H, Xu XQ, Wu FY, Hu H. White-matter alterations in dysthyroid optic neuropathy: a diffusion kurtosis imaging study using tract-based spatial statistics. Jpn J Radiol 2025; 43:603-611. [PMID: 39585557 DOI: 10.1007/s11604-024-01710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE So far, there is no gold standard to diagnosis dysthyroid optic neuropathy (DON). Diffusion kurtosis imaging (DKI) has the potential to provide imaging biomarkers for the timely and accurate diagnosis of DON. This study aimed to explore the white matter (WM) alterations in thyroid-associated ophthalmopathy (TAO) patients with and without DON using DKI with tract-based spatial statistics method. MATERIALS AND METHODS Fifty-three TAO patients (21 DON and 32 non-DON) and 30 healthy controls (HCs) were recruited in this cross-sectional study. DKI data were analyzed and compared among groups. The correlations between diffusion parameters and clinical variables were assessed. Receiver-operating characteristic curve analysis was used to evaluate the feasibility of using DKI parameters to distinguish DON and non-DON. RESULTS Compared with HCs, both DON and non-DON groups exhibited significantly decreased radial kurtosis (RK), mean kurtosis (MK), axial kurtosis (AK), kurtosis fractional anisotropy, and fractional anisotropy values in several WM tracts. No significant differences were observed in mean diffusivity values among groups. Meanwhile, DON patients exhibited lower RK, MK, and AK values than non-DON patients mainly in the visual system. Significant correlations were observed between RK values of posterior thalamic radiation (PTR) and best-corrected visual acuity. For distinguishing DON, the RK values of PTR exhibited decent diagnostic performance. CONCLUSION Microstructural abnormalities in WM, especially in the visual system, could provide novel insights into the potential neural mechanisms of the disease, thereby contributing to the timely diagnosis of DON and the development of neuroprotective therapy.
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China
| | - Jun Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China
| | - Jin-Ling Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China
| | - Xiong-Ying Pu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China.
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China.
| |
Collapse
|
4
|
Mooney KE, Archer DB, Sathe A, Hohman TJ, Kadiri O, Lamar M, Arfanakis K, Yu L, Barnes LL, Deters KD. Associations between APOE-TOMM40 '523 haplotypes and limbic system white matter microstructure. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70099. [PMID: 40201595 PMCID: PMC11973251 DOI: 10.1002/dad2.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION We assessed associations between apolipoprotein E Translocase of Outer Mitochondrial Membrane 40 (APOE-TOMM40)-'523 haplotypes and white matter microstructure (WMM) across limbic tracts important for memory and cognition in non-Hispanic Black and White individuals. METHODS Linear regression models, stratified by APOE and racialized groups, assessed associations between TOMM40-'523-S and limbic tract WMM free-water (FW) and free-water-corrected fractional anisotropy (FAFWcorr). RESULTS Black-ε4+-one-'523-S carriers had lower FW in the cingulum and inferior longitudinal fasciculus compared to Black-ε4+-no-'523-S carriers. Additionally, Black-ε4+-one-'523-S carriers had lower FW in the cingulum, uncinate, and fornix, and higher FAFWcorr in the uncinate compared to Black-ε4+-'523-S/S carriers. White-ε3/ε3-'523-S/S carriers had lower FAFWcorr in the cingulum and inferior temporal gyrus compared to White-ε3/ε3-no-'523-S carriers, and lower FAFWcorr in the cingulum compared to White-ε3/ε3-one-'523-S carriers. DISCUSSION This supports prior work that '523-S is associated with abnormal aging in White-ε3/ε3 carriers, but is potentially risk-mitigating in Black-ε4+ carriers, while suggesting a differential effect by racialized background of APOE on WMM. Highlights White matter microstructure (WMM) across limbic tracts important for cognition was measured by diffusion MRI.Black apolipoprotein E (APOE) ε4+ carriers with one copy of TOMM40-'523-S had normal aging WMM metrics across several tracts, including the cingulum bundle, uncinate fasciculus, fornix, and inferior longitudinal fasciculus.White APOE ε3/ε3 carriers with two copies of TOMM40-'523-S had abnormal aging WMM metrics in the cingulum bundle and inferior temporal gyrus.APOE associations with aging may differ in racialized groups due to TOMM40-'523-S copy number.
Collapse
Affiliation(s)
- Katelyn E. Mooney
- University of California Los Angeles, Neuroscience Interdepartmental Program (NSIDP), David Geffen School of MedicineLos AngelesCaliforniaUSA
- Department of Integrative Biology and PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Derek B. Archer
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Aditi Sathe
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University School of MedicineNashvilleTennesseeUSA
- Vanderbilt Department of PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ose Kadiri
- Department of Integrative Biology and PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Melissa Lamar
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoUSA
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoUSA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoUSA
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Department of Diagnostic Radiology and Nuclear MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Lei Yu
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoUSA
| | - Lisa L. Barnes
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoUSA
- Departments of Neurological Sciences, and Psychiatry and Behavioral SciencesRush University Medical CenterChicagoUSA
| | - Kacie D. Deters
- Department of Integrative Biology and PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Ricchi M, Campani G, Nagmutdinova A, Bortolotti V, Greco D, Golini C, Grist J, Brizi L, Testa C. Connectivity related to major brain functions in Alzheimer disease progression: microstructural properties of the cingulum bundle and its subdivision using diffusion-weighted MRI. Eur Radiol Exp 2025; 9:32. [PMID: 40106095 PMCID: PMC11923340 DOI: 10.1186/s41747-025-00570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/05/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The cingulum bundle is a brain white matter fasciculus associated with the cingulate gyrus. It connects areas from the temporal to the frontal lobe. It is composed of fibers with different terminations, lengths, and structural properties, related to specific brain functions. We aimed to automatically reconstruct this fasciculus in patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) and to assess whether trajectories have different microstructural properties in relation to dementia progression. METHODS Multi-shell high angular resolution diffusion imaging-HARDI image datasets from the "Alzheimer's Disease Neuroimaging Initiative"-ADNI repository of 10 AD, 18 MCI, and 21 cognitive normal (CN) subjects were used to reconstruct three subdivisions of the cingulum bundle, using a probabilistic approach, combined with measurements of diffusion tensor and neurite orientation dispersion and density imaging metrics in each subdivision. RESULTS The subdivisions exhibit different pathways, terminations, and structural characteristics. We found differences in almost all the diffusivity metrics among the subdivisions (p < 0.001 for all the metrics) and between AD versus CN and MCI versus CN subjects for mean diffusivity (p = 0.007-0.038), radial diffusivity (p = 0.008-0.049) and neurite dispersion index (p = 0.005-0.049). CONCLUSION Results from tractography analysis of the subdivisions of the cingulum bundle showed an association in the role of groups of fibers with their functions and the variance of their properties in relation to dementia progression. RELEVANCE STATEMENT The cingulum bundle is a complex tract with several pathways and terminations related to many cognitive functions. A probabilistic automatic approach is proposed to reconstruct its subdivisions, showing different microstructural properties and variations. A larger sample of patients is needed to confirm results and elucidate the role of diffusion parameters in characterizing alterations in brain function and progression to dementia. KEY POINTS The microstructure of the cingulum bundle is related to brain cognitive functions. A probabilistic automatic approach is proposed to reconstruct the subdivisions of the cingulum bundle by diffusion-weighted images. The subdivisions showed different microstructural properties and variations in relation to the progression of dementia.
Collapse
Affiliation(s)
- Mattia Ricchi
- Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
- INFN, Division of Bologna, Bologna, Italy
| | - Guido Campani
- European Institue of Oncology (IEO), Via Adamello 16, 20139, Milano, Italy
| | - Anastasiia Nagmutdinova
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, via Umberto Terracini 28, 40131, Bologna, Italy
| | - Villiam Bortolotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, via Umberto Terracini 28, 40131, Bologna, Italy
| | - Danilo Greco
- Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Via Lambruschini 4/b, 20156, Milano, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, Università Degli Studi di Genova, via Dodecaneso 35, 16146, Genova, Italy
| | - Carlo Golini
- Department of Physics and Astronomy, University of Bologna, viale Berti Pichat 6/2, 40126, Bologna, Italy
| | - James Grist
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building Parks Road, OX13PT, Oxford, England
| | - Leonardo Brizi
- Department of Physics and Astronomy, University of Bologna, viale Berti Pichat 6/2, 40126, Bologna, Italy.
| | - Claudia Testa
- INFN, Division of Bologna, Bologna, Italy
- Department of Physics and Astronomy, University of Bologna, viale Berti Pichat 6/2, 40126, Bologna, Italy
| |
Collapse
|
6
|
Khalilian M, Godefroy O, Roussel M, Mousavi A, Aarabi A. Post-stroke outcome prediction based on lesion-derived features. Neuroimage Clin 2025; 45:103747. [PMID: 39914289 PMCID: PMC11847528 DOI: 10.1016/j.nicl.2025.103747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Stroke-induced deficits result from both focal structural damage and widespread network disruption. This study investigated whether simulated measures of network disruption, derived from structural lesions, could predict functional impairments in stroke patients. We extracted four lesion-derived feature sets: lesion masks, probabilistic structural disconnection maps (pSDMs), structural and indirectly estimated functional connectivity strengths between brain regions, and topological properties of functional and structural brain networks to predict motor, executive, and processing speed deficits in 340 S patients, employing PCA-based ridge regression with leave-one-out cross validation. The findings revealed that both structural disconnection map patterns and lesion masks were strong predictors of functional deficits. Lesion masks exhibited superior predictive performance relative to unthresholded pSDMs. Furthermore, applying a probability threshold to the pSDMs - retaining only disconnections present in a sufficient proportion of healthy subjects - significantly improved predictive performance. For motor deficits, thresholded SDMs (tSDMs) with thresholds of 0.9 and 0.5 produced the highest R2 values, 0.95 for left motor deficits and 0.69 for right motor deficits, respectively. In the case of executive function and processing speed, the highest R2 values were 0.58 and 0.64, achieved with tSDM thresholds of 0.3 and 0.5, respectively. Connectome-based features exhibited lower R2 values, with structural connection strength alterations showing stronger associations with post-stroke scores compared to changes in functional connectivity. Nodal parameters (degree and clustering coefficient) had lower explanatory power than the SDM features and lesion masks. Our findings underscore the effectiveness of lesion masks and thresholded SDMs in predicting post-stroke deficits. This study contributes to the growing body of evidence supporting the reliability of simulated structural networks as a complementary approach to lesion patterns and structural disconnection in predicting post-stroke outcomes.
Collapse
Affiliation(s)
- Maedeh Khalilian
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France
| | - Olivier Godefroy
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France; Faculty of Medicine, University of Picardy Jules Verne, Amiens, France; Neurology Department, Amiens University Hospital, Amiens, France
| | - Martine Roussel
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France
| | - Amir Mousavi
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France
| | - Ardalan Aarabi
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France; Neurology Department, Amiens University Hospital, Amiens, France.
| |
Collapse
|
7
|
Goldstein KE, Pietrzak RH, Challman KN, Chu KW, Beck KD, Brenner LA, Interian A, Myers CE, Shafritz KM, Szeszko PR, Goodman M, Haznedar MM, Hazlett EA. Multi-modal risk factors differentiate suicide attempters from ideators in military veterans with major depressive disorder. J Affect Disord 2025; 369:588-598. [PMID: 39341292 DOI: 10.1016/j.jad.2024.09.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The suicide rate for United States military veterans is 1.5× higher than that of non-veterans. To meaningfully advance suicide prevention efforts, research is needed to delineate factors that differentiate veterans with suicide attempt/s, particularly in high-risk groups, e.g., major depressive disorder (MDD), from those with suicidal ideation (no history of attempt/s). The current study aimed to identify clinical, neurocognitive, and neuroimaging variables that differentiate suicide-severity groups in veterans with MDD. METHODS Sixty-eight veterans with a DSM-5 diagnosis of MDD, including those with no ideation or suicide attempt (N = 21; MDD-SI/SA), ideation-only (N = 17; MDD + SI), and one-or-more suicide attempts (N = 30; MDD + SA; aborted, interrupted, actual attempts), participated in this study. Participants underwent a structured diagnostic interview, neurocognitive assessment, and 3 T-structural/diffusion tensor magnetic-resonance-imaging (MRI). Multinomial logistic regression models were conducted to identify variables that differentiated groups with respect to the severity of suicidal behavior. RESULTS Relative to veterans with MDD-SI/SA, those with MDD + SA had significantly higher left cingulum fractional anisotropy, decreased attentional control on emotional-Stroop, and faster response time with intact accuracy on Go/No-Go. Relative to MDD + SI, MDD + SA had higher left cingulum fractional anisotropy and faster response time with intact accuracy on Go/No-Go. LIMITATIONS Findings are based on retrospective, cross-sectional data and cannot identify causal relationships. Also, a healthy control group was not included given the study's focus on differentiating suicide profiles in MDD. CONCLUSIONS This study suggests that MRI and neurocognition differentiate veterans with MDD along the suicide-risk spectrum and could inform suicide-risk stratification and prevention efforts in veterans and other vulnerable populations.
Collapse
Affiliation(s)
- Kim E Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert H Pietrzak
- United States Department of Veterans Affairs National Center for PTSD, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Katelyn N Challman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - King-Wai Chu
- Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Kevin D Beck
- Research Service, VA New Jersey Health Care System, East Orange, NJ, USA; Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Lisa A Brenner
- VA Rocky Mountain Mental Illness Research Education and Clinical Center, Eastern Colorado Health Care System, Aurora, CO, USA; Departments of Physical Medicine and Rehabilitation, Psychiatry, and Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Alejandro Interian
- Mental Health and Behavioral Sciences, VA New Jersey Health Care System, Lyons, NJ, USA; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Catherine E Myers
- Research Service, VA New Jersey Health Care System, East Orange, NJ, USA; Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Keith M Shafritz
- Department of Psychology, Hofstra University, Hempstead, NY, USA; Institute of Behavioral Science, Feinstein Institutes of Medical Research, Northwell Health, Manhasset, NY, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA; Mental Health Patient Care Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Marianne Goodman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA; Mental Health Patient Care Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA; Research & Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
8
|
Nikolova YS, Ruocco AC, Felsky D, Lange S, Prevot TD, Vieira E, Voineskos D, Wardell JD, Blumberger DM, Clifford K, Dharavath RN, Gerretsen P, Hassan AN, Jennings SK, Le Foll B, Melamed O, Orson J, Pangarov P, Quigley L, Russell C, Shield K, Sloan ME, Smoke A, Tang V, Cabrera DV, Wang W, Wells S, Wickramatunga R, Sibille E, Quilty LC, CDiA Program Study Group. Cognitive Dysfunction in the Addictions (CDiA): A Neuron to Neighbourhood Collaborative Research Program on Executive Dysfunction and Functional Outcomes in Outpatients Seeking Treatment for Addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312806. [PMID: 39252904 PMCID: PMC11383479 DOI: 10.1101/2024.08.30.24312806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Substance use disorders (SUDs) are pressing global public health problems. Executive functions (EFs) are prominently featured in mechanistic models of addiction. However, there remain significant gaps in our understanding of EFs in SUDs, including the dimensional relationships of EFs to underlying neural circuits, molecular biomarkers, disorder heterogeneity, and functional ability. To improve health outcomes for people with SUDs, interdisciplinary clinical, preclinical and health services research is needed to inform policies and interventions aligned with biopsychosocial models of addiction. Here, we introduce Cognitive Dysfunction in the Addictions (CDiA), an integrative team-science and translational research program, which aims to fill these knowledge gaps and facilitate research discoveries to enhance treatments for people living with SUDs. Methods The CDiA Program comprises seven complementary interdisciplinary projects that aim to progress understanding of EF in SUDs and investigate new biological treatment approaches. The projects draw on a diverse sample of adults aged 18-60 (target N=400) seeking treatment for addiction, who are followed prospectively over one year to identify EF domains crucial to recovery. Projects 1-3 investigate SUD symptoms, brain circuits, and blood biomarkers and their associations with both EF domains (inhibition, working memory, and set-shifting) and functional outcomes (disability, quality of life). Projects 4 and 5 evaluate interventions for addiction and their impacts on EF: a clinical trial of repetitive transcranial magnetic stimulation and a preclinical study of potential new pharmacological treatments in rodents. Project 6 links EF to healthcare utilization and is supplemented with a qualitative investigation of EF-related barriers to treatment engagement for those with substance use concerns. Project 7 uses innovative whole-person modeling to integrate the multi-modal data generated across projects, applying clustering and deep learning methods to identify patient subtypes and drive future cross-disciplinary initiatives. Discussion The CDiA program has promise to bring scientific domains together to uncover the diverse ways in which EFs are linked to SUD severity and functional recovery. These findings, supported by emerging clinical, preclinical, health service, and whole-person modeling investigations, will facilitate future discoveries about cognitive dysfunction in addiction and could enhance the future clinical care of individuals seeking treatment for SUDs.
Collapse
Affiliation(s)
- Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Anthony C Ruocco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Daniel Felsky
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Shannon Lange
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey D Wardell
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kevan Clifford
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ravinder Naik Dharavath
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed N Hassan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sheila K Jennings
- Centre for Addiction & Mental Health, Toronto, Ontario, Canada
- Moms Stop the Harm, Victoria, British Columbia
| | - Bernard Le Foll
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Osnat Melamed
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Family and Community Medicine, University of Toronto
| | - Joshua Orson
- Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Peter Pangarov
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Leanne Quigley
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, USA
| | - Cayley Russell
- Ontario CRISM Node Team, Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kevin Shield
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E Sloan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ashley Smoke
- Centre for Addiction & Mental Health, Toronto, Ontario, Canada
- The Ontario Network of People Who Use Drugs, Toronto, Ontario, Canada
| | - Victor Tang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Diana Valdes Cabrera
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wei Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Samantha Wells
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Western University, London, Ontario, Canada
| | - Rajith Wickramatunga
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lena C Quilty
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Thomsen K, Keulen S, Arslan S. Functional correlates of executive dysfunction in primary progressive aphasia: a systematic review. Front Aging Neurosci 2024; 16:1448214. [PMID: 39493277 PMCID: PMC11528424 DOI: 10.3389/fnagi.2024.1448214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Recent research has recognized executive dysfunction as another component affected in Primary Progressive Aphasia (PPA). This systematic review aimed to examine what information distinctive neurophysiological markers can provide in the evaluation of executive function (EF) deficits in PPA, and to what effect executive function deficits can be assessed through the characteristics of functional markers. Methods We conducted a systematic literature search following the PRISMA guidelines across studies that employed neuropsychological assessments and neurophysiological imaging techniques (EEG, MEG; PET, SPECT, fMRI, fNIRS) to investigate executive dysfunction correlates in PPA. Results Findings from nine articles including a total number of 111 individuals with PPA met our inclusion criteria and were synthesized. Although research on the neural correlates of EF deficits is scarce, MEG studies revealed widespread oscillatory slowing, with increased delta and decreased alpha power, where alterations in alpha, theta, and beta activities were significant predictors of executive function deficits. PET findings demonstrated significant correlations between executive dysfunction and hypometabolism in frontal brain regions. fMRI results indicated elevated homotopic connectivity in PPA patients, with a broader and more anterior distribution of abnormal hippocampal connections of which were associated with reduced executive performance. Conclusion Our study provides indirect support for the assumption regarding the significance of the frontal regions and inferior frontal junction in executive control and demonstrates that neurophysiological tools can be a useful aid to further investigate clinical-neurophysiological correlations in PPA.
Collapse
Affiliation(s)
- Kristin Thomsen
- Université Côte d'Azur, CNRS, BCL, Nice, France
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Center for Research in Cognitive Neuroscience (CRCN), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
10
|
Griffiths-King D, Seri S, Catroppa C, Anderson VA, Wood AG. Network analysis of structural MRI predicts executive function in paediatric traumatic brain injury. Neuroimage Clin 2024; 44:103685. [PMID: 39423568 PMCID: PMC11531611 DOI: 10.1016/j.nicl.2024.103685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
INTRO Paediatric traumatic brain injury (pTBI) is likely to result in cognitive impairment, specifically executive dysfunction. Evidence of the neuroanatomical correlates of this executive function (EF) impairment is derived from studies that treat morphometry of brain regions as distinct, independent features, rather than as a complex network of interrelationships. Morphometric similarity captures the meso-scale organisation of the cortex as the interrelatedness of multiple macro-architectural features and presents a novel tool with which to investigate the brain post pTBI. METHODS In a retrospective sample (83 pTBI patients, 33 controls), we estimate morphometric similarity from structural MRI by correlating morphometric features between cortical regions. We compared the meso-scale organisation of the cortex between groups then, using partial least squares regression, assessed the predictive validity of morphometric similarity in understanding later executive functioning, two years post-injury. RESULTS We found that patients and controls did not differ in terms of the overall magnitude of morphometric similarity. However, a pattern of ROI-level morphometric similarity was predictive of day-to-day EF difficulties reported by parents two years post-injury. This prediction was validated using a leave-one-out, and 20-fold cross-validation approach. Prediction was driven by regions of the prefrontal cortex, typically important for healthy maturation of EF skills in childhood. The meso-scale organisation of the cortex also produced more accurate predictions than any one morphometric feature (i.e. cortical thickness or folding index) alone. CONCLUSION We conclude that these methodologies show utility in predicting later executive functioning in this population.
Collapse
Affiliation(s)
- Daniel Griffiths-King
- College of Health & Life Sciences & Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK.
| | - Stefano Seri
- College of Health & Life Sciences & Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK; Department of Clinical Neurophysiology, Birmingham Women's and Children's Hospital NHS Foundation Trust, UK
| | - Cathy Catroppa
- Brain and Mind Research, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Psychology, Royal Children's Hospital, Melbourne, Australia
| | - Vicki A Anderson
- Brain and Mind Research, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Psychology, Royal Children's Hospital, Melbourne, Australia
| | - Amanda G Wood
- College of Health & Life Sciences & Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK; School of Psychology, Faculty of Health, Melbourne Burwood Campus, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
11
|
Serrano Del Pueblo VM, Serrano-Heras G, Romero Sánchez CM, Landete PP, Rojas-Bartolome L, Feria I, Morris RGM, Strange B, Mansilla F, Zhang L, Castro-Robles B, Arias-Salazar L, López-López S, Payá M, Segura T, Muñoz-López M. Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects. Brain 2024; 147:3611-3623. [PMID: 38562097 DOI: 10.1093/brain/awae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024] Open
Abstract
Between 2.5% and 28% of people infected with SARS-CoV-2 suffer long COVID or persistence of symptoms for months after acute illness. Many symptoms are neurological, but the brain changes underlying the neuropsychological impairments remain unclear. This study aimed to provide a detailed description of the cognitive profile, the pattern of brain alterations in long COVID and the potential association between them. To address these objectives, 83 patients with persistent neurological symptoms after COVID-19 were recruited, and 22 now healthy control subjects chosen because they had suffered COVID-19 but did not experience persistent neurological symptoms. Patients and controls were matched for age, sex and educational level. All participants were assessed by clinical interview, comprehensive standardized neuropsychological tests and structural MRI. The mean global cognitive function of patients with long COVID assessed by Addenbrooke's Cognitive Examination-III screening test [overall cognitive level (OCLz) = -0.39 ± 0.12] was significantly below the infection recovered-controls (OCLz = +0.32 ± 0.16, P < 0.01). We observed that 48% of patients with long COVID had episodic memory deficit, with 27% also with impaired overall cognitive function, especially attention, working memory, processing speed and verbal fluency. The MRI examination included grey matter morphometry and whole brain structural connectivity analysis. Compared to infection recovered controls, patients had thinner cortex in a specific cluster centred on the left posterior superior temporal gyrus. In addition, lower fractional anisotropy and higher radial diffusivity were observed in widespread areas of the patients' cerebral white matter relative to these controls. Correlations between cognitive status and brain abnormalities revealed a relationship between altered connectivity of white matter regions and impairments of episodic memory, overall cognitive function, attention and verbal fluency. This study shows that patients with neurological long COVID suffer brain changes, especially in several white matter areas, and these are associated with impairments of specific cognitive functions.
Collapse
Affiliation(s)
| | - Gemma Serrano-Heras
- Research Unit, University General Hospital of Albacete, 02008 Albacete, Spain
| | | | | | | | - Inmaculada Feria
- Neurology Service, University General Hospital of Albacete, 02008 Albacete, Spain
| | | | - Bryan Strange
- The Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Madrid Polytechnic University, IdISSC, 28223 Madrid, Spain
- Reina Sofia Centre for Alzheimer's Research, 28031 Madrid, Spain
| | - Francisco Mansilla
- Radiology Service, University Hospital Complex of Albacete and Mansilla Diagnostic Imaging Clinic, 02008 Albacete, Spain
| | - Linda Zhang
- The Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Madrid Polytechnic University, IdISSC, 28223 Madrid, Spain
- Reina Sofia Centre for Alzheimer's Research, 28031 Madrid, Spain
| | | | | | - Susana López-López
- Research Unit, University General Hospital of Albacete, 02008 Albacete, Spain
| | - María Payá
- Neurology Service, University General Hospital of Albacete, 02008 Albacete, Spain
| | - Tomás Segura
- Faculty of Medicine, Albacete, University of Castilla-La Mancha, 02008 Albacete, Spain
- Neurology Service, University General Hospital of Albacete, 02008 Albacete, Spain
- Institute for Research in Neurological Disabilities (IDINE), 02008 Albacete, Spain
| | - Mónica Muñoz-López
- Faculty of Medicine, Albacete, University of Castilla-La Mancha, 02008 Albacete, Spain
- Regional Centre for Biomedical Research (CRIB), 02008 Albacete, Spain
| |
Collapse
|
12
|
Wu Q, He W, Liu C, Yang X, Chen J, Xu B, Zhou X, Huang G, Xia J. Diffusion spectrum imaging in patients with idiopathic normal pressure hydrocephalus: correlation with ventricular enlargement. BMC Neurol 2024; 24:246. [PMID: 39014305 PMCID: PMC11251323 DOI: 10.1186/s12883-024-03741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND To investigate the association between white matter changes and ventricular expansion in idiopathic normal pressure hydrocephalus (iNPH) based on diffusion spectrum imaging (DSI). METHODS We included 32 patients with iNPH who underwent DSI using a 3T MRI scanner. The lateral ventricles were manually segmented, and ventricular volumes were measured. Two methods were utilised in the study: manual region-of-interest (ROI) delineation and tract diffusion profile analysis. General fractional anisotropy (GFA) and fractional anisotropy (FA) were extracted in different white matter regions, including the bilateral internal capsule (anterior and posterior limbs) and corpus callosum (body, genu, and splenium) with manual ROI delineation. The 18 main tracts in the brain of each patient were extracted; the diffusion metrics of 100 equidistant nodes on each fibre were calculated, and Spearman's correlation coefficient was used to determine the correlation between diffusion measures and ventricular volume of iNPH patients. RESULTS The GFA and FA of all ROI showed no significant correlation with lateral ventricular volume. However, in the tract diffusion profile analysis, lateral ventricular volume was positively correlated with part of the cingulum bundle, left corticospinal tract, and bilateral thalamic radiation posterior, whereas it was negatively correlated with the bilateral cingulum parahippocampal (all p < 0.05). CONCLUSIONS The effect of ventricular enlargement in iNPH on some white matter fibre tracts around the ventricles was limited and polarizing, and most white matter fibre tract integrity changes were not associated with ventricular enlargement; this reflects that multiple pathological mechanisms may have been combined to cause white matter alterations in iNPH.
Collapse
Affiliation(s)
- Qian Wu
- Department of Radiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University, 3002 SunGang Road West, Shenzhen, Guangdong Province, 518035, China
| | - Wenjie He
- Department of Radiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University, 3002 SunGang Road West, Shenzhen, Guangdong Province, 518035, China
| | - Chenyuan Liu
- Five-year Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, 410083, China
| | - Xiaolin Yang
- Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Jiakuan Chen
- Department of Radiology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, China
| | - Boyan Xu
- MR Research, GE Healthcare, Beijing, 100076, China
| | - Xi Zhou
- Department of Radiology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Second people's hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University, 3002 SunGang Road West, Shenzhen, Guangdong Province, 518035, China.
| | - Jun Xia
- Department of Radiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University, 3002 SunGang Road West, Shenzhen, Guangdong Province, 518035, China.
| |
Collapse
|
13
|
Zhang F, Li L, Liu B, Shao Y, Tan Y, Niu Q, Zhang H. Decoupling of gray and white matter functional networks in cognitive impairment induced by occupational aluminum exposure. Neurotoxicology 2024; 103:1-8. [PMID: 38777096 DOI: 10.1016/j.neuro.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/21/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Aluminum (Al) is a low-toxic, accumulative substance with neurotoxicity properties that adversely affect human cognitive function. This study aimed to investigate the neurobiological mechanisms underlying cognitive impairment resulting from occupational Al exposure. Resting-state functional magnetic resonance imaging was conducted on 54 individuals with over 10 years of Al exposure. Al levels were measured, and cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Subsequently, the K-means clustering algorithm was employed to identify functional gray matter (GM) and white matter (WM) networks. Two-sample t-tests were conducted between the cognition impairment group and the control group. Al exhibited a negative correlation with MoCA scores. Participants with cognitive impairment demonstrated reduced functional connectivity (FC) between the middle cingulum network (WM1) and anterior cingulum network (WM2), as well as between the executive control network (WM6) and limbic network (WM10). Notably, decreased FCs were observed between the executive control network (GM5) and WM1, WM4, WM6, and WM10. Additionally, the FC of GM5-GM4 and WM1-WM2 negatively correlated with Trail Making Test Part A (TMT-A) scores. Prolonged Al accumulation detrimentally affects cognition, primarily attributable to executive control and limbic network disruptions.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China; Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Lina Li
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China; Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Bo Liu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China; Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Yingbo Shao
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China; Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Yan Tan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China; Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China.
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China; Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China.
| |
Collapse
|
14
|
Chirokoff V, Pohl KM, Berthoz S, Fatseas M, Misdrahi D, Serre F, Auriacombe M, Pfefferbaum A, Sullivan EV, Chanraud S. Multi-level prediction of substance use: Interaction of white matter integrity, resting-state connectivity and inhibitory control measured repeatedly in every-day life. Addict Biol 2024; 29:e13400. [PMID: 38706091 PMCID: PMC11070496 DOI: 10.1111/adb.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Substance use disorders are characterized by inhibition deficits related to disrupted connectivity in white matter pathways, leading via interaction to difficulties in resisting substance use. By combining neuroimaging with smartphone-based ecological momentary assessment (EMA), we questioned how biomarkers moderate inhibition deficits to predict use. Thus, we aimed to assess white matter integrity interaction with everyday inhibition deficits and related resting-state network connectivity to identify multi-dimensional predictors of substance use. Thirty-eight patients treated for alcohol, cannabis or tobacco use disorder completed 1 week of EMA to report substance use five times and complete Stroop inhibition testing twice daily. Before EMA tracking, participants underwent resting state functional MRI and diffusion tensor imaging (DTI) scanning. Regression analyses were conducted between mean Stroop performances and whole-brain fractional anisotropy (FA) in white matter. Moderation testing was conducted between mean FA within significant clusters as moderator and the link between momentary Stroop performance and use as outcome. Predictions between FA and resting-state connectivity strength in known inhibition-related networks were assessed using mixed modelling. Higher FA values in the anterior corpus callosum and bilateral anterior corona radiata predicted higher mean Stroop performance during the EMA week and stronger functional connectivity in occipital-frontal-cerebellar regions. Integrity in these regions moderated the link between inhibitory control and substance use, whereby stronger inhibition was predictive of the lowest probability of use for the highest FA values. In conclusion, compromised white matter structural integrity in anterior brain systems appears to underlie impairment in inhibitory control functional networks and compromised ability to refrain from substance use.
Collapse
Affiliation(s)
- Valentine Chirokoff
- Univ. Bordeaux, INCIA CNRS‐UMR 5287BordeauxFrance
- EPHEPSL Research UniversityParisFrance
| | - Kilian M. Pohl
- Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Sylvie Berthoz
- Univ. Bordeaux, INCIA CNRS‐UMR 5287BordeauxFrance
- Department of Psychiatry for Adolescents and Young AdultsInstitut Mutualiste MontsourisParisFrance
| | - Melina Fatseas
- Univ. Bordeaux, INCIA CNRS‐UMR 5287BordeauxFrance
- CH Charles PerrensBordeauxFrance
- CHU BordeauxBordeauxFrance
| | - David Misdrahi
- Univ. Bordeaux, INCIA CNRS‐UMR 5287BordeauxFrance
- CH Charles PerrensBordeauxFrance
| | - Fuschia Serre
- CNRS UMR 6033 – Sleep, Addiction and Neuropsychiatry (SANPSY)University of BordeauxBordeauxFrance
| | - Marc Auriacombe
- CH Charles PerrensBordeauxFrance
- CNRS UMR 6033 – Sleep, Addiction and Neuropsychiatry (SANPSY)University of BordeauxBordeauxFrance
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Center for Health SciencesSRI InternationalMenlo ParkCaliforniaUSA
| | - Edith V. Sullivan
- Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Sandra Chanraud
- Univ. Bordeaux, INCIA CNRS‐UMR 5287BordeauxFrance
- EPHEPSL Research UniversityParisFrance
| |
Collapse
|
15
|
Isella V, Licciardo D, Ferri F, Crivellaro C, Morzenti S, Appollonio IM, Ferrarese C. Left and right corticobasal syndrome: comparison of cognitive profiles between metabolic imaging - matched groups. Neurol Sci 2024; 45:1499-1506. [PMID: 37889380 PMCID: PMC10942890 DOI: 10.1007/s10072-023-07148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Corticobasal syndrome (CBS) is typically asymmetric. Case reports suggest that left-hemisphere CBS (lhCBS) is associated with major language impairment, and right-hemisphere CBS (rhCBS) is associated with major visuospatial deficits, but no group study has ever verified these observations. In our study, we enrolled 49 patients with CBS, classified them as lhCBS or rhCBS based on asymmetry of hypometabolism on brain FDG-PET and compared their cognitive and behavioural profiles. METHODS We defined asymmetry of hypometabolism upon visual inspection of qualitative PET images and confirmed it through paired comparison of left- and right-hemisphere FDG uptake values. The two groups were also matched for severity of hypometabolism within the more affected and more preserved hemispheres, to unravel differences in the cognitive profiles ascribable specifically to each hemisphere's functional specializations. All patients were assessed for memory, language, executive and visuospatial deficits, apraxia, neglect, dyscalculia, agraphia and behavioural disturbances. RESULTS LhCBS (n. 26) and rhCBS (n. 23) patients did not differ for demographics, disease duration and severity of global cognitive impairment. The two cognitive profiles were largely overlapping, with two exceptions: Digit span forward was poorer in lhCBS, and visual neglect was more frequent in rhCBS. CONCLUSIONS After balancing out patients for hemispheric hypometabolism, we did not confirm worse language or visuospatial deficits in, respectively, lhCBS and rhCBS. However, verbal short-term memory was more impaired in lhCBS, and spatial attention was more impaired in rhCBS. Both of these functions reflect the functional specialization of the left and right fronto-parietal pathways, i.e. of the main loci of neurodegeneration in CBS.
Collapse
Affiliation(s)
- Valeria Isella
- School of Medicine and Surgery (Neurology), University of Milano-Bicocca, Via Cadore 48, 20900, Monza(MB), Italy.
| | - Daniele Licciardo
- School of Medicine and Surgery (Neurology), University of Milano-Bicocca, Via Cadore 48, 20900, Monza(MB), Italy
- Fondazione IRCCS San Gerardo Dei Tintori (Neurology), Monza, Italy
| | - Francesca Ferri
- Fondazione IRCCS San Gerardo Dei Tintori (Neurology), Monza, Italy
| | - Cinzia Crivellaro
- Fondazione IRCCS San Gerardo Dei Tintori (Nuclear Medicine), Monza, Italy
| | - Sabrina Morzenti
- Fondazione IRCCS San Gerardo Dei Tintori (Medical Physics), Monza, Italy
| | - Ildebrando Marco Appollonio
- School of Medicine and Surgery (Neurology), University of Milano-Bicocca, Via Cadore 48, 20900, Monza(MB), Italy
- Fondazione IRCCS San Gerardo Dei Tintori (Neurology), Monza, Italy
| | - Carlo Ferrarese
- School of Medicine and Surgery (Neurology), University of Milano-Bicocca, Via Cadore 48, 20900, Monza(MB), Italy
- Fondazione IRCCS San Gerardo Dei Tintori (Neurology), Monza, Italy
| |
Collapse
|
16
|
Callahan BL, Becker S, Ramirez J, Taylor R, Shammi P, Gao F, Black SE. Vascular Burden Moderates the Relationship Between ADHD and Cognition in Older Adults. Am J Geriatr Psychiatry 2024; 32:427-442. [PMID: 37989710 DOI: 10.1016/j.jagp.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVES Recent evidence suggests attention-deficit/hyperactivity disorder (ADHD) is a risk factor for cognitive impairment in later life. Here, we investigated cerebrovascular burden, quantified using white matter hyperintensity (WMH) volumes, as a potential mediator of this relationship. DESIGN This was a cross-sectional observational study. SETTING Participants were recruited from a cognitive neurology clinic where they had been referred for cognitive assessment, or from the community. PARTICIPANTS Thirty-nine older adults with clinical ADHD and 50 age- and gender-matched older adults without ADHD. MEASUREMENTS A semiautomated structural MRI pipeline was used to quantify periventricular (pWMH) and deep WMH (dWMH) volumes. Cognition was measured using standardized tests of memory, processing speed, visuo-construction, language, and executive functioning. Mediation models, adjusted for sex, were built to test the hypothesis that ADHD status exerts a deleterious impact on cognitive performance via WMH burden. RESULTS Results did not support a mediated effect of ADHD on cognition. Post hoc inspection of the data rather suggested a moderated effect, which was investigated as an a posteriori hypothesis. These results revealed a significant moderating effect of WMH on the relationship between ADHD memory, speed, and executive functioning, wherein ADHD was negatively associated with cognition at high and medium levels of WMH, but not when WMH volumes were low. CONCLUSIONS ADHD increases older adults' susceptibility to the deleterious cognitive effects of WMH in the brain. Older adults with ADHD may be at risk for cognitive impairment if they have deep WMH volumes above 61 mm3 and periventricular WMH above 260 mm3.
Collapse
Affiliation(s)
- Brandy L Callahan
- Department of Psychology (BLC, SB), University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (BLC, SB), Calgary, Alberta, Canada.
| | - Sara Becker
- Department of Psychology (BLC, SB), University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (BLC, SB), Calgary, Alberta, Canada
| | - Joel Ramirez
- Dr. Sandra Black Centre for Brain Resilience & Recovery (JR, RT, FG, SEB), LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Ontario, Canada; Hurvitz Brain Sciences Program (JR, RT, PS, FG, SEB), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rebecca Taylor
- Dr. Sandra Black Centre for Brain Resilience & Recovery (JR, RT, FG, SEB), LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Ontario, Canada; Hurvitz Brain Sciences Program (JR, RT, PS, FG, SEB), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Prathiba Shammi
- Hurvitz Brain Sciences Program (JR, RT, PS, FG, SEB), Sunnybrook Research Institute, Toronto, Ontario, Canada; Neuropsychology & Cognitive Health Program (PS), Baycrest Health Sciences Centre, Toronto, Ontario, Canada
| | - Fuqiang Gao
- Dr. Sandra Black Centre for Brain Resilience & Recovery (JR, RT, FG, SEB), LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Ontario, Canada; Hurvitz Brain Sciences Program (JR, RT, PS, FG, SEB), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sandra E Black
- Dr. Sandra Black Centre for Brain Resilience & Recovery (JR, RT, FG, SEB), LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Ontario, Canada; Hurvitz Brain Sciences Program (JR, RT, PS, FG, SEB), Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medicine (Neurology) (SEB), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Ribeiro M, Yordanova YN, Noblet V, Herbet G, Ricard D. White matter tracts and executive functions: a review of causal and correlation evidence. Brain 2024; 147:352-371. [PMID: 37703295 DOI: 10.1093/brain/awad308] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Executive functions are high-level cognitive processes involving abilities such as working memory/updating, set-shifting and inhibition. These complex cognitive functions are enabled by interactions among widely distributed cognitive networks, supported by white matter tracts. Executive impairment is frequent in neurological conditions affecting white matter; however, whether specific tracts are crucial for normal executive functions is unclear. We review causal and correlation evidence from studies that used direct electrical stimulation during awake surgery for gliomas, voxel-based and tract-based lesion-symptom mapping, and diffusion tensor imaging to explore associations between the integrity of white matter tracts and executive functions in healthy and impaired adults. The corpus callosum was consistently associated with all executive processes, notably its anterior segments. Both causal and correlation evidence showed prominent support of the superior longitudinal fasciculus to executive functions, notably to working memory. More specifically, strong evidence suggested that the second branch of the superior longitudinal fasciculus is crucial for all executive functions, especially for flexibility. Global results showed left lateralization for verbal tasks and right lateralization for executive tasks with visual demands. The frontal aslant tract potentially supports executive functions, however, additional evidence is needed to clarify whether its involvement in executive tasks goes beyond the control of language. Converging evidence indicates that a right-lateralized network of tracts connecting cortical and subcortical grey matter regions supports the performance of tasks assessing response inhibition, some suggesting a role for the right anterior thalamic radiation. Finally, correlation evidence suggests a role for the cingulum bundle in executive functions, especially in tasks assessing inhibition. We discuss these findings in light of current knowledge about the functional role of these tracts, descriptions of the brain networks supporting executive functions and clinical implications for individuals with brain tumours.
Collapse
Affiliation(s)
- Monica Ribeiro
- Service de neuro-oncologie, Hôpital La Pitié-Salpêtrière, Groupe Hospitalier Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
| | - Yordanka Nikolova Yordanova
- Service de neurochirurgie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
| | - Vincent Noblet
- ICube, IMAGeS team, Université de Strasbourg, CNRS, UMR 7357, 67412 Illkirch, France
| | - Guillaume Herbet
- Praxiling, UMR 5267, CNRS, Université Paul Valéry Montpellier 3, 34090 Montpellier, France
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- Institut Universitaire de France
| | - Damien Ricard
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
- Département de neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
18
|
Groechel RC, Alosco ML, Dixon D, Tripodis Y, Mez J, Goldstein L, Budson AE, Qiu WQ, Killiany RJ. Associations between white matter integrity of the cingulum bundle, surrounding gray matter regions, and cognition across the dementia continuum. J Comp Neurol 2023; 531:2162-2171. [PMID: 38010204 PMCID: PMC10841586 DOI: 10.1002/cne.25564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Previous Alzheimer's disease and related dementias (AD/ADRD) research studies have illustrated the significance of studying alterations in white matter (WM). Fewer studies have examined how WM integrity, measured with diffusion tensor imaging (DTI), is associated with volume of gray matter (GM) regions and measures of cognitive function in aged participants spanning the dementia continuum. METHODS Magnetic resonance imaging and cognitive data were collected from 241 Boston University Alzheimer's Disease Research Center participants who spanned from cognitively normal controls to amnestic mild cognitive impairment to having dementia. Primary DTI tracts of interest were the cingulum ventral (CV) and cingulum dorsal (CD) pathways. GM regions of interest (ROIs) were in the medial temporal lobe (MTL), prefrontal cortex, and retrosplenial cortex. Analyses of covariance models were used to assess differences in WM integrity across groups (control, amnestic mild cognitive impairment, and dementia). Multiple linear regression models were used to assess associations between WM integrity and GM volume, and with measures of memory and executive function. RESULTS Differences in WM integrity were shown in both cingulum pathways in participants across the dementia continuum. Associations between WM integrity of both cingulum pathways and volume of selected GM ROIs were widespread. Functionally significant associations were found between WM of the CV pathway and memory, independent of MTL GM volume. DISCUSSION Differences in WM integrity of the cingulum bundle and surrounding GM ROI are likely related to the progression of AD/ADRD. Such differences should continue to be studied, particularly in association with memory performance.
Collapse
Affiliation(s)
- Renée C. Groechel
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine
- National Institute of Neurological Disorders & Stroke Intramural Research Program
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine
- Boston University Chronic Traumatic Encephalopathy Center
| | - Diane Dixon
- Boston University Alzheimer’s Disease Research Center
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease Research Center
- Department of Biostatistics, Boston University School of Public Health
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine
- Boston University Chronic Traumatic Encephalopathy Center
| | - Lee Goldstein
- Boston University Alzheimer’s Disease Research Center
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine
| | - Andrew E. Budson
- Boston University Alzheimer’s Disease Research Center
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine
- Neurology Service, VA Boston Healthcare System
| | - Wei Qiao Qiu
- Boston University Alzheimer’s Disease Research Center
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine
| | - Ronald J. Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine
- Department of Environmental Health, Boston University School of Public Health
| |
Collapse
|
19
|
Escelsior A, Inuggi A, Amadeo MB, Engel-Yeger B, Trabucco A, Esposito D, Campus C, Bovio A, Comparini S, Pereira da Silva B, Serafini G, Gori M, Amore M. Sensation seeking correlates with increased white matter integrity of structures associated with visuospatial processing in healthy adults. Front Neurosci 2023; 17:1267700. [PMID: 37954876 PMCID: PMC10637364 DOI: 10.3389/fnins.2023.1267700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction The ability to process sensory information is an essential adaptive function, and hyper- or hypo-sensitive maladaptive profiles of responses to environmental stimuli generate sensory processing disorders linked to cognitive, affective, and behavioral alterations. Consequently, assessing sensory processing profiles might help research the vulnerability and resilience to mental disorders. The research on neuroradiological correlates of the sensory processing profiles is mainly limited to the young-age population or neurodevelopmental disorders. So, this study aims to examine the structural MRI correlates of sensory profiles in a sample of typically developed adults. Methods We investigated structural cortical thickness (CT) and white matter integrity, through Diffusion Tensor Imaging (DTI), correlates of Adolescent/Adult Sensory Profile (AASP) questionnaire subscales in 57 typical developing subjects (34F; mean age: 32.7 ± 9.3). Results We found significant results only for the sensation seeking (STS) subscale. Positive and negative correlations emerged with fractional anisotropy (FA) and radial diffusivity (RD) in anterior thalamic radiation, optic radiation, superior longitudinal fasciculus, corpus callosum, and the cingulum bundle. No correlation between sensation seeking and whole brain cortical thickness was found. Discussion Overall, our results suggest a positive correlation between sensation seeking and higher white matter structural integrity in those tracts mainly involved in visuospatial processing but no correlation with gray matter structure. The enhanced structural integrity associated with sensation seeking may reflect a neurobiological substrate linked to active research of sensory stimuli and resilience to major psychiatric disorders like schizophrenia, bipolar disorder, and depression.
Collapse
Affiliation(s)
- Andrea Escelsior
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Inuggi
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Maria Bianca Amadeo
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Batya Engel-Yeger
- Faculty of Social Welfare and Health Sciences, Department of Occupational Therapy, University of Haifa, Haifa, Israel
| | - Alice Trabucco
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Davide Esposito
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anna Bovio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Sara Comparini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatriz Pereira da Silva
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Gori
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
20
|
Lavazza A, Inglese S. The physiology of free will. J Physiol 2023; 601:3977-3982. [PMID: 37556507 DOI: 10.1113/jp284398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Andrea Lavazza
- Centro Universitario Internazionale, Arezzo, Italy
- University of Pavia, Italy
| | - Silvia Inglese
- Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Geriatric Unit, Milan, Italy
| |
Collapse
|
21
|
Ma J, Tang L, Peng P, Wang T, Gui H, Ren X. Shifting as an executive function separate from updating and inhibition in old age: Behavioral and genetic evidence. Behav Brain Res 2023; 452:114604. [PMID: 37516210 DOI: 10.1016/j.bbr.2023.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
This study aimed to examine the organization of executive functions (EFs), specifically working memory updating, prepotent response inhibition, and mental-set shifting in old age, with a particular focus on determining whether the shifting function was behaviorally and genetically separated from the other functions. A total of 248 healthy older Chinese individuals participated, and multiple measures of executive functions were collected. Additionally, measures of fluid intelligence were included to explore the varying relationships between the three executive functions and this higher-order cognitive ability. Furthermore, genetic data were gathered and analyzed to investigate the associations between EFs and six candidate single-nucleotide polymorphisms (SNPs) mapped to dopaminergic, serotonergic, or glutamatergic genes. The results indicated that both the three-factor model and the two-factor model, which combined updating and inhibition, demonstrated a good fit. Furthermore, shifting was found to be behaviorally separated from the other two functions, and the correlation between shifting and fluid intelligence was smaller compared to the correlations between updating and inhibition with fluid intelligence. Moreover, the DRD2 SNPs showed significant associations with shifting, rather than with updating and inhibition. These findings provide evidence that shifting is distinct and separate from updating and inhibition, highlighting the diversity of EFs among older adults.
Collapse
Affiliation(s)
- Juanjuan Ma
- School of Education, Huazhong University of Science & Technology, Wuhan, China
| | - Lixu Tang
- School of Wushu, Wuhan Sports University, Wuhan 430079, China
| | - Peng Peng
- Department of Special Education, University of Texas at Austin, Austin, USA
| | - Tengfei Wang
- Department of Psychology, Zhejiang University, Hangzhou, China
| | - Hongsheng Gui
- Behavioral Health Services and Psychiatry Research, Henry Ford Health, USA; Department of Psychiatry, Michigan State University, USA
| | - Xuezhu Ren
- School of Education, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
22
|
Thams F, Li SC, Flöel A, Antonenko D. Functional Connectivity and Microstructural Network Correlates of Interindividual Variability in Distinct Executive Functions of Healthy Older Adults. Neuroscience 2023; 526:61-73. [PMID: 37321368 DOI: 10.1016/j.neuroscience.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Executive functions, essential for daily life, are known to be impaired in older age. Some executive functions, including working memory updating and value-based decision-making, are specifically sensitive to age-related deterioration. While their neural correlates in young adults are well-described, a comprehensive delineation of the underlying brain substrates in older populations, relevant to identify targets for modulation against cognitive decline, is missing. Here, we assessed letter updating and Markov decision-making task performance to operationalize these trainable functions in 48 older adults. Resting-state functional magnetic resonance imaging was acquired to quantify functional connectivity (FC) in task-relevant frontoparietal and default mode networks. Microstructure in white matter pathways mediating executive functions was assessed with diffusion tensor imaging and quantified by tract-based fractional anisotropy (FA). Superior letter updating performance correlated with higher FC between dorsolateral prefrontal cortex and left frontoparietal and hippocampal areas, while superior Markov decision-making performance correlated with decreased FC between basal ganglia and right angular gyrus. Furthermore, better working memory updating performance was related to higher FA in the cingulum bundle and the superior longitudinal fasciculus. Stepwise linear regression showed that cingulum bundle FA added significant incremental contribution to the variance explained by fronto-angular FC alone. Our findings provide a characterization of distinct functional and structural connectivity correlates associated with performance of specific executive functions. Thereby, this study contributes to the understanding of the neural correlates of updating and decision-making functions in older adults, paving the way for targeted modulation of specific networks by modulatory techniques such as behavioral interventions and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Zellescher Weg 17, 01062 Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, TU Dresden, 01062 Dresden, Germany.
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475 Greifswald, Germany.
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|
23
|
Ludyga S, Held S, Rappelt L, Donath L, Klatt S. A network meta-analysis comparing the effects of exercise and cognitive training on executive function in young and middle-aged adults. Eur J Sport Sci 2023; 23:1415-1425. [PMID: 35848068 DOI: 10.1080/17461391.2022.2099765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In young and middle-aged adults, executive function is associated with success in work-life and mental health. Physical activity with and without cognitive training has the potential to benefit executive function, but its relative effectiveness remains unclear. This network meta-analysis compares the effectiveness of different exercise and cognitive training types and their combination on executive function in young and middle-aged adults. PubMed, Web of Science, MEDLINE, Cochrane, PsycINFO, and SPORTDiscus were searched for experimental studies that compared pre- to posttest changes in inhibitory control and/ or working memory between one or more intervention groups and a control group. Interventions were ranked on their relative effectiveness using P-scores. Study quality was rated using the PEDro scale. Forty-six studies were included and yielded 30 and 70 pair-wise effect sizes for the inhibitory control and working memory networks, respectively. With one exception, all studies were of high quality. Combined exercise and working memory training induced the greatest benefits for working memory (standardized mean differences, SMD = 0.59), whereas training a single executive function (SMD = 0.32) was most effective for inhibitory control. The effectiveness of working memory training (SMD ≥ 0.27) and coordinative exercise (SMD ≥ 0.20-0.29) ranked second and third for both executive function outcomes. In contrast, the effectiveness of endurance exercise was comparable to active controls on both networks. In young and middle-aged adults, exercise with coordinative demands seems to have an effectiveness similar to working memory training. The combination of exercise and cognitive training further increases executive function benefits.HighlightsDespite a developmental peak of executive function in young adulthood, this cognitive domain can be trained by exercise and cognitive trainingExercise with coordinative demands and working memory training benefit inhibitory control and working memory to a similar extentThe combination of exercise and working memory training elicited even greater benefits for working memoryYoung and middle-aged adults cannot expect executive function benefits following endurance exercise.
Collapse
Affiliation(s)
- Sebastian Ludyga
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Steffen Held
- Department of Intervention Research in Exercise Training, German Sport University, Cologne, Germany
| | - Ludwig Rappelt
- Department of Intervention Research in Exercise Training, German Sport University, Cologne, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University, Cologne, Germany
| | - Stefanie Klatt
- Department of Cognitive and Team/Racket Sport Research, German Sport University, Cologne, Germany
| |
Collapse
|
24
|
Lima Santos JP, Jia-Richards M, Kontos AP, Collins MW, Versace A. Emotional Regulation and Adolescent Concussion: Overview and Role of Neuroimaging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6274. [PMID: 37444121 PMCID: PMC10341732 DOI: 10.3390/ijerph20136274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Emotional dysregulation symptoms following a concussion are associated with an increased risk for emotional dysregulation disorders (e.g., depression and anxiety), especially in adolescents. However, predicting the emergence or worsening of emotional dysregulation symptoms after concussion and the extent to which this predates the onset of subsequent psychiatric morbidity after injury remains challenging. Although advanced neuroimaging techniques, such as functional magnetic resonance imaging and diffusion magnetic resonance imaging, have been used to detect and monitor concussion-related brain abnormalities in research settings, their clinical utility remains limited. In this narrative review, we have performed a comprehensive search of the available literature regarding emotional regulation, adolescent concussion, and advanced neuroimaging techniques in electronic databases (PubMed, Scopus, and Google Scholar). We highlight clinical evidence showing the heightened susceptibility of adolescents to experiencing emotional dysregulation symptoms following a concussion. Furthermore, we describe and provide empirical support for widely used magnetic resonance imaging modalities (i.e., functional and diffusion imaging), which are utilized to detect abnormalities in circuits responsible for emotional regulation. Additionally, we assess how these abnormalities relate to the emotional dysregulation symptoms often reported by adolescents post-injury. Yet, it remains to be determined if a progression of concussion-related abnormalities exists, especially in brain regions that undergo significant developmental changes during adolescence. We conclude that neuroimaging techniques hold potential as clinically useful tools for predicting and, ultimately, monitoring the treatment response to emotional dysregulation in adolescents following a concussion.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| | - Meilin Jia-Richards
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| | - Anthony P. Kontos
- Department of Orthopaedic Surgery, UPMC Sports Concussion Program, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.P.K.); (M.W.C.)
| | - Michael W. Collins
- Department of Orthopaedic Surgery, UPMC Sports Concussion Program, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.P.K.); (M.W.C.)
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| |
Collapse
|
25
|
Salazar-Frías D, Funes MJ, Merchán-Baeza JA, Ricchetti G, Torralba-Muñoz JM, Rodríguez-Bailón M. Translation, cross-cultural adaptation and validation of the 10-item Weekly Calendar Planning Activity in Spanish-speaking ABI patients: a multicenter study. Front Psychol 2023; 14:1018055. [PMID: 37384192 PMCID: PMC10293833 DOI: 10.3389/fpsyg.2023.1018055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
We present the process of translation, adaptation, and validation in the Spanish context of the 10-item version of the Weekly Calendar Planning Activity (WCPA-10), a performance-based measure of cognitive instrumental activities of daily living (C-IADL). The study consisted of two phases: I) translation/cultural adaptation of the WCPA, conducted by professional bilingual translators, a panel of experts, and a pilot study, and II) validation in a sample of 42 acquired brain injury patients (ABI) and 42 healthy participants (HC). WCPA primary outcomes showed expected convergent/discriminant validity patterns with socio-demographical and clinical variables and cognitive processes identifying those WCPA outcomes that best predicted executive and memory deficits measured with a battery of traditional neuropsychological tests. In addition, performance on the WCPA was a significant predictor of everyday functioning over variables such as socio-demographics or global cognition when measured with traditional tests. External validity was established by the WCPA's ability to identify everyday cognitive deficits in ABI patients compared to HC, even in those with subtle cognitive impairment based on neuropsychological tests. The Spanish WCPA-10 seems an appropriate and sensitive assessment tool to identify cognitive-functional impairment in ABI-patients, even those with subtle cognitive impairment. The results also highlight the relevance of this kind of test, as they indicate a better prediction of patients' real-world functioning than traditional neuropsychological tests.
Collapse
Affiliation(s)
- Daniel Salazar-Frías
- Mind, Brain and Behavior Research Centre (CIMCYC), Experimental Psychology Department, School of Psychology, University of Granada, Granada, Spain
| | - María Jesús Funes
- Mind, Brain and Behavior Research Centre (CIMCYC), Experimental Psychology Department, School of Psychology, University of Granada, Granada, Spain
| | - Jose Antonio Merchán-Baeza
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Science and Welfare, University of Vic-Central University of Catalonia (UVIC-UCC), Barcelona, Spain
| | - Giorgia Ricchetti
- Mind, Brain and Behavior Research Centre (CIMCYC), Experimental Psychology Department, School of Psychology, University of Granada, Granada, Spain
| | - Jose Maria Torralba-Muñoz
- Asociación Granadina de Familias por la Rehabilitación del Daño Cerebral Adquirido, AGREDACE, Granada, Spain
| | - María Rodríguez-Bailón
- Department of Physiotherapy (Occupational Therapy), Health Science School, University of Málaga, Málaga, Spain
| |
Collapse
|
26
|
Paolillo EW, You M, Gontrum E, Saloner R, Gaynor LS, Kramer JH, Casaletto KB. Sex Differences in the Relationship between Perceived Stress and Cognitive Trajectories. Am J Geriatr Psychiatry 2023; 31:401-410. [PMID: 36509633 PMCID: PMC10468214 DOI: 10.1016/j.jagp.2022.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Chronic stress adversely affects cognition, in part due to stress-induced inflammation. Rodent models suggest females are more resilient against stress-related cognitive dysfunction than males; however, few studies have examined this in humans. We examined sex differences in the relationship between perceived stress, cognitive functioning, and peripheral inflammation over time among cognitively normal older adults. DESIGN Longitudinal observational study. SETTING University research center. PARTICIPANTS 274 community-dwelling older adults (baseline age: M=70.7, SD=7.2; 58% women; Clinical Dementia Rating=0) who completed at least two study visits. MEASUREMENTS Neurocognitive functioning and perceived stress (Perceived Stress Scale [PSS]) were assessed at each visit. Plasma was analyzed for interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in a subset of 147 participants. Linear mixed effects models examined the interaction between average PSS (i.e., averaged within persons across visits), sex, and time on cognitive domains and on inflammatory markers. RESULTS The interaction between stress, sex, and time predicted executive functioning (β = 0.26, SE = 0.10, p = 0.01) such that higher average PSS related to steeper declines in men, but not in women. Among the 147 participants with inflammatory data, higher average PSS was associated with steeper increases in IL-6 over time in men, but not in women. CONCLUSION Consistent with animal models, results showed older men were more vulnerable to negative effects of stress on cognitive aging, with domain-specific declines in executive function. Findings also suggest systemic immunological mechanisms may underlie increased risk for cognitive decline in men with higher levels of stress. Future work is needed to examine the potential efficacy of person-specific stress interventions.
Collapse
Affiliation(s)
- Emily W Paolillo
- Memory and Aging Center (EWP, MY, EG, RS, LSG, JHK, KBC), Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA.
| | - Michelle You
- Memory and Aging Center (EWP, MY, EG, RS, LSG, JHK, KBC), Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Eva Gontrum
- Memory and Aging Center (EWP, MY, EG, RS, LSG, JHK, KBC), Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Rowan Saloner
- Memory and Aging Center (EWP, MY, EG, RS, LSG, JHK, KBC), Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Leslie S Gaynor
- Memory and Aging Center (EWP, MY, EG, RS, LSG, JHK, KBC), Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Joel H Kramer
- Memory and Aging Center (EWP, MY, EG, RS, LSG, JHK, KBC), Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Kaitlin B Casaletto
- Memory and Aging Center (EWP, MY, EG, RS, LSG, JHK, KBC), Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
27
|
Sambol S, Suleyman E, Scarfo J, Ball M. A true reflection of executive functioning or a representation of task-specific variance? Re-evaluating the unity/diversity framework. Acta Psychol (Amst) 2023; 236:103934. [PMID: 37156119 DOI: 10.1016/j.actpsy.2023.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
The unity/diversity framework, originally published by Miyake et al. (2000) has become the most cited model of executive functioning. Consequently, when researchers operationalise executive function (EF) they often exclusively assess the three "core" EFs: updating, shifting, and inhibition. However, rather than core EFs representing domain general cognitive abilities, these three EFs may instead represent specific procedural skills from the overlapping methodologies of the tasks selected. In this study, we conducted a confirmatory factor analysis (CFA) which showed both the traditional three-factor and nested-factor model from the unity/diversity framework failed to reach satisfactory levels of fit. Subsequently, an exploratory factor analysis supported a three-factor model reflecting: an expanded working memory factor, a combined shifting/inhibition factor representing cognitive flexibility, and a factor comprised solely of the Stroop task. These results demonstrate that working memory remains the most robustly operationalised EF construct, whereas shifting and inhibition may represent task-specific mechanisms of a broader domain-general cognitive flexibility factor. Ultimately, there is little evidence to suggest that updating, shifting, and inhibition encapsulates all core EFs. Further research is needed to develop an ecologically valid model of executive functioning that captures the cognitive abilities associated with real world goal-directed behaviour.
Collapse
Affiliation(s)
- Stjepan Sambol
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia.
| | - Emra Suleyman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Jessica Scarfo
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Michelle Ball
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Dennis EL, Newsome MR, Lindsey HM, Adamson M, Austin TA, Disner SG, Eapen BC, Esopenko C, Franz CE, Geuze E, Haswell C, Hinds SR, Hodges CB, Irimia A, Kenney K, Koerte IK, Kremen WS, Levin HS, Morey RA, Ollinger J, Rowland JA, Scheibel RS, Shenton ME, Sullivan DR, Talbert LD, Thomopoulos SI, Troyanskaya M, Walker WC, Wang X, Ware AL, Werner JK, Williams W, Thompson PM, Tate DF, Wilde EA. Altered lateralization of the cingulum in deployment-related traumatic brain injury: An ENIGMA military-relevant brain injury study. Hum Brain Mapp 2023; 44:1888-1900. [PMID: 36583562 PMCID: PMC9980891 DOI: 10.1002/hbm.26179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) in military populations can cause disruptions in brain structure and function, along with cognitive and psychological dysfunction. Diffusion magnetic resonance imaging (dMRI) can detect alterations in white matter (WM) microstructure, but few studies have examined brain asymmetry. Examining asymmetry in large samples may increase sensitivity to detect heterogeneous areas of WM alteration in mild TBI. Through the Enhancing Neuroimaging Genetics Through Meta-Analysis Military-Relevant Brain Injury working group, we conducted a mega-analysis of neuroimaging and clinical data from 16 cohorts of Active Duty Service Members and Veterans (n = 2598). dMRI data were processed together along with harmonized demographic, injury, psychiatric, and cognitive measures. Fractional anisotropy in the cingulum showed greater asymmetry in individuals with deployment-related TBI, driven by greater left lateralization in TBI. Results remained significant after accounting for potentially confounding variables including posttraumatic stress disorder, depression, and handedness, and were driven primarily by individuals whose worst TBI occurred before age 40. Alterations in the cingulum were also associated with slower processing speed and poorer set shifting. The results indicate an enhancement of the natural left laterality of the cingulum, possibly due to vulnerability of the nondominant hemisphere or compensatory mechanisms in the dominant hemisphere. The cingulum is one of the last WM tracts to mature, reaching peak FA around 42 years old. This effect was primarily detected in individuals whose worst injury occurred before age 40, suggesting that the protracted development of the cingulum may lead to increased vulnerability to insults, such as TBI.
Collapse
Affiliation(s)
- Emily L. Dennis
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
| | - Mary R. Newsome
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - Hannah M. Lindsey
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
| | - Maheen Adamson
- Rehabilitation DepartmentVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
- NeurosurgeryStanford School of MedicineStanfordCaliforniaUSA
- Operational Military Exposure Network (WOMEN), VA Palo Alto Healthcare SystemCaliforniaPalo Alto94304USA
| | - Tara A. Austin
- The VA Center of Excellence for Research on Returning War VeteransWacoTexasUSA
| | - Seth G. Disner
- Minneapolis VA Health Care SystemMinneapolisMinnesottaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of Minnesota Medical SchoolMinneapolisMinnesottaUSA
| | - Blessen C. Eapen
- Department of Physical Medicine and RehabilitationVA Greater Los Angeles Health Care SystemLos AngelesCaliforniaUSA
- Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Carrie Esopenko
- Department of Rehabilitation and Human PerformanceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Carol E. Franz
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Elbert Geuze
- University Medical Center UtrechtUtrechtThe Netherlands
- Brain Research and Innovation CentreMinistry of DefenceUtrechtThe Netherlands
| | - Courtney Haswell
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Sidney R. Hinds
- Department of NeurologyUniformed Services UniversityBethesdaMarylandUSA
| | - Cooper B. Hodges
- Department of Physical Medicine and RehabilitationVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringViterbi School of Engineering, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kimbra Kenney
- Department of NeurologyUniformed Services UniversityBethesdaMarylandUSA
- National Intrepid Center of ExcellenceWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Inga K. Koerte
- Psychiatry Neuroimaging LaboratoryBrigham and Women's HospitalBostonMassachusettsUSA
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyLudwig‐Maximilians‐UniversitätMunichGermany
| | - William S. Kremen
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center of Excellence for Stress and Mental HealthVA San Diego Healthcare SystemLa JollaCaliforniaUSA
| | - Harvey S. Levin
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - Rajendra A. Morey
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Duke‐UNC Brain Imaging and Analysis CenterDuke UniversityDurhamNorth CarolinaUSA
- VA Mid‐Atlantic Mental Illness Research Education and Clinical Center (MA‐MIRECC)DurhamNorth CarolinaUSA
| | - John Ollinger
- National Intrepid Center of ExcellenceWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Jared A. Rowland
- VA Mid‐Atlantic Mental Illness Research Education and Clinical Center (MA‐MIRECC)DurhamNorth CarolinaUSA
- W.G. (Bill) Hefner VA Medical CenterSalisburyNorth CarolinaUSA
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Randall S. Scheibel
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - Martha E. Shenton
- Psychiatry Neuroimaging LaboratoryBrigham and Women's HospitalBostonMassachusettsUSA
- VA Boston Healthcare SystemBostonMassachusettsUSA
| | - Danielle R. Sullivan
- National Center for PTSDVA Boston Healthcare SystemBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
| | - Leah D. Talbert
- Department of PsychologyBrigham Young UniversityProvoUtahUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterStevens Neuroimaging & Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Maya Troyanskaya
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - William C. Walker
- Department of Physical Medicine and RehabilitationVirginia Commonwealth UniversityRichmondVirginiaUSA
- Hunter Holmes McGuire Veterans Affairs Medical CenterRichmondVirginiaUSA
| | - Xin Wang
- Department of PsychiatryUniversity of ToledoToledoOhioUSA
| | - Ashley L. Ware
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
| | - John Kent Werner
- Department of NeurologyUniformed Services UniversityBethesdaMarylandUSA
| | - Wright Williams
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
| | - Paul M. Thompson
- Imaging Genetics CenterStevens Neuroimaging & Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and OphthalmologyUSCLos AngelesCaliforniaUSA
| | - David F. Tate
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
| | - Elisabeth A. Wilde
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
29
|
Gervasi MT, Romero R, Cainelli E, Veronese P, Tran MR, Jung E, Suksai M, Bosco M, Gotsch F. Intra-amniotic inflammation in the mid-trimester of pregnancy is a risk factor for neuropsychological disorders in childhood. J Perinat Med 2023; 51:363-378. [PMID: 36173676 PMCID: PMC10010737 DOI: 10.1515/jpm-2022-0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Intra-amniotic inflammation is a subclinical condition frequently caused by either microbial invasion of the amniotic cavity or sterile inflammatory stimuli, e.g., alarmins. An accumulating body of evidence supports a role for maternal immune activation in the genesis of fetal neuroinflammation and the occurrence of neurodevelopmental disorders such as cerebral palsy, schizophrenia, and autism. The objective of this study was to determine whether fetal exposure to mid-trimester intra-amniotic inflammation is associated with neurodevelopmental disorders in children eight to 12 years of age. METHODS This is a retrospective case-control study comprising 20 children with evidence of prenatal exposure to intra-amniotic inflammation in the mid-trimester and 20 controls matched for gestational age at amniocentesis and at delivery. Amniotic fluid samples were tested for concentrations of interleukin-6 and C-X-C motif chemokine ligand 10, for bacteria by culture and molecular microbiologic methods as well as by polymerase chain reaction for eight viruses. Neuropsychological testing of children, performed by two experienced psychologists, assessed cognitive and behavioral domains. Neuropsychological dysfunction was defined as the presence of an abnormal score (<2 standard deviations) on at least two cognitive tasks. RESULTS Neuropsychological dysfunction was present in 45% (9/20) of children exposed to intra-amniotic inflammation but in only 10% (2/20) of those in the control group (p=0.03). The relative risk (RR) of neuropsychological dysfunction conferred by amniotic fluid inflammation remained significant after adjusting for gestational age at delivery [aRR=4.5 (1.07-16.7)]. Of the 11 children diagnosed with neuropsychological dysfunction, nine were delivered at term and eight of them had mothers with intra-amniotic inflammation. Children exposed to intra-amniotic inflammation were found to have abnormalities in neuropsychological tasks evaluating complex skills, e.g., auditory attention, executive functions, and social skills, whereas the domains of reasoning, language, and memory were not affected in the cases and controls. CONCLUSIONS Asymptomatic sterile intra-amniotic inflammation in the mid-trimester of pregnancy, followed by a term birth, can still confer to the offspring a substantial risk for neurodevelopmental disorders in childhood. Early recognition and treatment of maternal immune activation in pregnancy may be a strategy for the prevention of subsequent neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Maria Teresa Gervasi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Elisa Cainelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Paola Veronese
- Maternal-Fetal Medicine Unit, Department of Women’s and Children’s Health, AOPD, Padua, Italy
| | - Maria Rosa Tran
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
30
|
Martinelli D, Catesini G, Greco B, Guarnera A, Parrillo C, Maines E, Longo D, Napolitano A, De Nictolis F, Cairoli S, Liccardo D, Caviglia S, Sidorina A, Olivieri G, Siri B, Bianchi R, Spagnoletti G, Dello Strologo L, Spada M, Dionisi-Vici C. Neurologic outcome following liver transplantation for methylmalonic aciduria. J Inherit Metab Dis 2023; 46:450-465. [PMID: 36861405 DOI: 10.1002/jimd.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Liver and liver/kidney transplantation are increasingly used in methylmalonic aciduria, but little is known on their impact on CNS. The effect of transplantation on neurological outcome was prospectively assessed in six patients pre- and post-transplant by clinical evaluation and by measuring disease biomarkers in plasma and CSF, in combination with psychometric tests and brain MRI studies. Primary (methylmalonic- and methylcitric acid) and secondary biomarkers (glycine and glutamine) significantly improved in plasma, while they remained unchanged in CSF. Differently, biomarkers of mitochondrial dysfunction (lactate, alanine, and related ratios) significantly decreased in CSF. Neurocognitive evaluation documented significant higher post-transplant developmental/cognitive scores and maturation of executive functions corresponding to improvement of brain atrophy, cortical thickness, and white matter maturation indexes at MRI. Three patients presented post-transplantation reversible neurological events, which were differentiated, by means of biochemical and neuroradiological evaluations, into calcineurin inhibitor-induced neurotoxicity and metabolic stroke-like episode. Our study shows that transplantation has a beneficial impact on neurological outcome in methylmalonic aciduria. Early transplantation is recommended due to the high risk of long-term complications, high disease burden, and low quality of life.
Collapse
Affiliation(s)
- Diego Martinelli
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giulio Catesini
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Benedetta Greco
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
- Clinical Psychology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessia Guarnera
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Parrillo
- Medical Physics Unit, Risk Management Enterprise, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Evelina Maines
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
- Pediatric Department, S.Chiara Hospital of Trento, Trento, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Unit, Risk Management Enterprise, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca De Nictolis
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Sara Cairoli
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Daniela Liccardo
- Division of Hepatology, Gastroenterology and Nutrition, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Caviglia
- Clinical Psychology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Sidorina
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giorgia Olivieri
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Barbara Siri
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Roberto Bianchi
- Department of Anesthesiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gionata Spagnoletti
- Unit of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Dello Strologo
- Renal Transplant Unit, Bambino Gesù, Children's Hospital, IRCCS, Rome, Italy
| | - Marco Spada
- Unit of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
31
|
Abul Hasan M, Shahid H, Ahmed Qazi S, Ejaz O, Danish Mujib M, Vuckovic A. Underpinning the neurological source of executive function following cross hemispheric tDCS stimulation. Int J Psychophysiol 2023; 185:1-10. [PMID: 36634750 DOI: 10.1016/j.ijpsycho.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a promising technique for enhancement of executive functions in healthy as well as neurologically disturbed patients. However, the evidence regarding the neuropsychological and behavioral change with neurophysiological shifts as well as the mechanism of tDCS action as evidenced by activation of neuronal sources important for executive functions have remained unaddressed. The study thereby endeavors to (1) determine the neuropsychological, behavioral, and neurophysiological change induced with five sessions of bilateral tDCS stimulation and (2) identify putative neuronal sources related to the executive functions responsible for neuropsychological and behavioral change. For this single blinded study, a total of 40 healthy participants, randomly allocated to active (n = 19) or sham (n = 21) groups completed five sessions of 2 mA tDCS stimulation administered over Dorso-Lateral Prefrontal Cortex (DLPFC) (F3 as anode, F4 as cathode). Repeated measure analysis was performed on neuropsychological (Everyday Memory Questionnaire and Mindful Attention Awareness Scale), and behavioral assessment (n-Back and Stroop tests) to investigate within and between group differences. Pre and post neurophysiological (Electroencephalogram) results showed that bilateral tDCS stimulation activates cortical regions responsible for executive functions including updation (working memory) and inhibition (interference control or attention). Multiple sessions of bilateral tDCS stimulation results in a significant increase in theta, alpha, and beta-band activity in the DLPFC, cingulate and parietal cortex. This study provides evidence that tDCS can be used for performance enhancement of executive functions in able-bodied people.
Collapse
Affiliation(s)
- Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan; Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Hira Shahid
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom.
| | - Saad Ahmed Qazi
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Department of Electrical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Osama Ejaz
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Muhammad Danish Mujib
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Aleksandra Vuckovic
- Biomedical Engineering Division, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
32
|
Idowu MI, Szameitat AJ. Executive function abilities in cognitively healthy young and older adults-A cross-sectional study. Front Aging Neurosci 2023; 15:976915. [PMID: 36845657 PMCID: PMC9945216 DOI: 10.3389/fnagi.2023.976915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
A prominent feature of cognitive aging is the decline of executive function (EF) abilities. Numerous studies have reported that older adults perform poorer than younger adults in such tasks. In this cross-sectional study, the effect of age on four EFs, inhibition, shifting, updating, and dual-tasking, was examined in 26 young adults (mean 21.18 years) and 25 older adults (mean 71.56 years) with the utilization of a pair of tasks for each EF. The tasks employed for DT were the Psychological Refractory Period paradigm (PRP) and a modified test for everyday attention, for inhibition the Stroop and Hayling sentence completion test (HSCT), for shifting a task switching paradigm and the trail making test (TMT), and for updating the backward digit span (BDS) task and a n-back paradigm. As all participants performed all tasks, a further aim was to compare the size of the age-related cognitive decline among the four EFs. Age-related decline was observed in all four EFs in one or both of the tasks employed. The results revealed significantly poorer performance in the older adults in the response times (RTs) of the PRP effect, interference score of the Stroop, RT inhibition costs of the HSCT, RT and error-rate shifting costs of the task switching paradigm, and the error-rate updating costs of the n-back paradigm. A comparison between the rates of decline revealed numerical and statistically significant differences between the four EFs, with inhibition showing the greatest decline, followed by shifting, updating, and dual-tasking. Thus, we conclude that with age, these four EFs decline at different rates.
Collapse
Affiliation(s)
- Mojitola I. Idowu
- Department of Life Sciences, Division of Psychology, Centre for Cognitive and Clinical Neuroscience (CCN), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Andre J. Szameitat
- Department of Life Sciences, Division of Psychology, Centre for Cognitive and Clinical Neuroscience (CCN), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
33
|
The effect of mindfulness-based intervention on neurobehavioural functioning and its association with white-matter microstructural changes in preterm young adolescents. Sci Rep 2023; 13:2010. [PMID: 36737638 PMCID: PMC9898533 DOI: 10.1038/s41598-023-29205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Very preterm (VPT) young adolescents are at high risk of executive, behavioural and socio-emotional difficulties. Previous research has shown significant evidence of the benefits of mindfulness-based intervention (MBI) on these abilities. This study aims to assess the association between the effects of MBI on neurobehavioral functioning and changes in white-matter microstructure in VPT young adolescents who completed an 8-week MBI program. Neurobehavioural assessments (i.e., neuropsychological testing, parents- and self-reported questionnaires) and multi-shell diffusion MRI were performed before and after MBI in 32 VPT young adolescents. Combined diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) measures were extracted on well-defined white matter tracts (TractSeg). A multivariate data-driven approach (partial least squares correlation) was used to explore associations between MBI-related changes on neurobehavioural measures and microstructural changes. The results showed an enhancement of global executive functioning using parent-reported questionnaire after MBI that was associated with a general pattern of increase in fractional anisotropy (FA) and decrease in axonal dispersion (ODI) in white-matter tracts involved in executive processes. Young VPT adolescents with lower gestational age at birth showed the greatest gain in white-matter microstructural changes after MBI.
Collapse
|
34
|
Cabello-Toscano M, Vaqué-Alcázar L, Cattaneo G, Solana-Sánchez J, Bayes-Marin I, Abellaneda-Pérez K, Macià-Bros D, Mulet-Pons L, Portellano-Ortiz C, Fullana MA, Oleaga L, González S, Bargalló N, Tormos JM, Pascual-Leone A, Bartrés-Faz D. Functional Brain Connectivity Prior to the COVID-19 Outbreak Moderates the Effects of Coping and Perceived Stress on Mental Health Changes: A First Year of COVID-19 Pandemic Follow-up Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:200-209. [PMID: 35998824 PMCID: PMC9392559 DOI: 10.1016/j.bpsc.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The COVID-19 pandemic provides a unique opportunity to investigate the psychological impact of a global major adverse situation. Our aim was to examine, in a longitudinal prospective study, the demographic, psychological, and neurobiological factors associated with interindividual differences in resilience to the mental health impact of the pandemic. METHODS We included 2023 healthy participants (age: 54.32 ± 7.18 years, 65.69% female) from the Barcelona Brain Health Initiative cohort. A linear mixed model was used to characterize the change in anxiety and depression symptoms based on data collected both pre-pandemic and during the pandemic. During the pandemic, psychological variables assessing individual differences in perceived stress and coping strategies were obtained. In addition, in a subsample (n = 433, age 53.02 ± 7.04 years, 46.88% female) with pre-pandemic resting-state functional magnetic resonance imaging available, the system segregation of networks was calculated. Multivariate linear models were fitted to test associations between COVID-19-related changes in mental health and demographics, psychological features, and brain network status. RESULTS The whole sample showed a general increase in anxiety and depressive symptoms after the pandemic onset, and both age and sex were independent predictors. Coping strategies attenuated the impact of perceived stress on mental health. The system segregation of the frontoparietal control and default mode networks were found to modulate the impact of perceived stress on mental health. CONCLUSIONS Preventive strategies targeting the promotion of mental health at the individual level during similar adverse events in the future should consider intervening on sociodemographic and psychological factors as well as their interplay with neurobiological substrates.
Collapse
Affiliation(s)
- María Cabello-Toscano
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain; Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain; Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Ivet Bayes-Marin
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Dídac Macià-Bros
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Lídia Mulet-Pons
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Cristina Portellano-Ortiz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Miquel Angel Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain; Imaging of Mood- and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centre for Biomedical Research on Mental Health, Barcelona, Spain
| | - Laura Oleaga
- Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sofía González
- Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Nuria Bargalló
- Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain; Centre for Biomedical Research on Mental Health, Barcelona, Spain; Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jose M Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain; Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Harvard Medical School, Boston Massachusetts; Department of Neurology, Harvard Medical School, Boston Massachusetts.
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
35
|
von Cederwald BF, Johansson J, Riklund K, Karalija N, Boraxbekk CJ. White matter lesion load determines exercise-induced dopaminergic plasticity and working memory gains in aging. Transl Psychiatry 2023; 13:28. [PMID: 36720847 PMCID: PMC9889313 DOI: 10.1038/s41398-022-02270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Age-related dopamine reductions have been suggested to contribute to maladaptive working memory (WM) function in older ages. One promising intervention approach is to increase physical activity, as this has been associated with plasticity of the striatal dopamine system and WM improvements, however with individual differences in efficacy. The present work focused on the impact of individual differences in white-matter lesion burden upon dopamine D2-like receptor (DRD2) availability and WM changes in response to a 6 months physical activity intervention. While the intervention altered striatal DRD2 availability and WM performance in individuals with no or only mild lesions (p < 0.05), no such effects were found in individuals with moderate-to-severe lesion severity (p > 0.05). Follow-up analyses revealed a similar pattern for processing speed, but not for episodic memory performance. Linear analyses further revealed that lesion volume (ml) at baseline was associated with reduced DRD2 availability (r = -0.41, p < 0.05), and level of DRD2 change (r = 0.40, p < 0.05). Taken together, this study underlines the necessity to consider cerebrovascular health in interventions with neurocognitive targets. Future work should assess whether these findings extend beyond measures of DRD2 availability and WM.
Collapse
Affiliation(s)
- Bryn Farnsworth von Cederwald
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jarkko Johansson
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden. .,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden. .,Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden. .,Danish Research Center for Magnetic Resonance (DRCMR), Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Copenhagen, Denmark. .,Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark. .,Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Kabiri S, Jameie M, Balali P, Adib Moradi S, Sanjari Moghaddam H, Aghamollaii V, Harirchian MH. Trail Making Test Could Predict Impairment in Cognitive Domains in Patients with Multiple Sclerosis: A Study of Diagnostic Accuracy. ARCHIVES OF CLINICAL NEUROPSYCHOLOGY : THE OFFICIAL JOURNAL OF THE NATIONAL ACADEMY OF NEUROPSYCHOLOGISTS 2023; 38:37-48. [PMID: 35901460 DOI: 10.1093/arclin/acac059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Cognitive impairment (CI) and executive dysfunction (ED) are prevalent in patients with multiple sclerosis (PwMS). The Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) is the gold standard neuropsychological battery (NPB) for detecting CI. Delis-Kaplan Executive Function System (DKEFS) NPB evaluates ED. We aimed to find practical test(s) from DKEFS with acceptable diagnostic utility for early detection of impairment in cognitive and executive domains. METHODS Cognitive and executive tasks, physical disability, and depression scores of 30 PwMS were assessed (17 women, age: 38.1). Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test (PASAT), and Controlled Oral Word Association Test (COWAT) from MACFIMS and Trail Making Test (TMT), Design Fluency Test (DFT), and Verbal Fluency Test (VFT) from DKEFS were selected. The association between patients' characteristics and performance in tests, and diagnostic accuracy of DKEFS tests in detecting impairment in cognitive tasks were evaluated, using Pearson correlation and receiver operator characteristic curve analyses, respectively. RESULTS A significant correlation was found between disease duration and SDMT and TMT subtests. Expanded Disability Status Scale was significantly related to SDMT, VFT-switching, and TMT subtests. Beck Depression Inventory was significantly related to DFT. TMT-switching detected abnormalities in SDMT and PASAT with 100% sensitivity, 93.3% (for SDMT), and 85.7% specificity (for PASAT). TMT-letter showed 100% sensitivity and 90% specificity in identifying abnormalities in COWAT. CONCLUSIONS TMT, particularly the switching condition, is a practical paper-based test that could predict impairment in cognitive tasks. Clinicians may use TMT as a screening tool among PwMS.
Collapse
Affiliation(s)
- Samaneh Kabiri
- Neurology Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Jameie
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Pargol Balali
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahand Adib Moradi
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sanjari Moghaddam
- Department of Neurology, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vajiheh Aghamollaii
- Department of Neurology, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Harirchian
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Stammen C, Fraenz C, Grazioplene RG, Schlüter C, Merhof V, Johnson W, Güntürkün O, DeYoung CG, Genç E. Robust associations between white matter microstructure and general intelligence. Cereb Cortex 2023:6994402. [PMID: 36682883 DOI: 10.1093/cercor/bhac538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023] Open
Abstract
Few tract-based spatial statistics (TBSS) studies have investigated the relations between intelligence and white matter microstructure in healthy (young) adults, and those have yielded mixed observations, yet white matter is fundamental for efficient and accurate information transfer throughout the human brain. We used a multicenter approach to identify white matter regions that show replicable structure-function associations, employing data from 4 independent samples comprising over 2000 healthy participants. TBSS indicated 188 voxels exhibited significant positive associations between g factor scores and fractional anisotropy (FA) in all 4 data sets. Replicable voxels formed 3 clusters, located around the left-hemispheric forceps minor, superior longitudinal fasciculus, and cingulum-cingulate gyrus with extensions into their surrounding areas (anterior thalamic radiation, inferior fronto-occipital fasciculus). Our results suggested that individual differences in general intelligence are robustly associated with white matter FA in specific fiber bundles distributed across the brain, consistent with the Parieto-Frontal Integration Theory of intelligence. Three possible reasons higher FA values might create links with higher g are faster information processing due to greater myelination, more direct information processing due to parallel, homogenous fiber orientation distributions, or more parallel information processing due to greater axon density.
Collapse
Affiliation(s)
- Christina Stammen
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| | - Christoph Fraenz
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| | | | - Caroline Schlüter
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Viola Merhof
- Chair of Research Methods and Psychological Assessment, University of Mannheim, 68161 Mannheim, Germany
| | - Wendy Johnson
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Erhan Genç
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| |
Collapse
|
38
|
Meijers J, Harte JM, Scherder EJA. Prison and the brain. HANDBOOK OF CLINICAL NEUROLOGY 2023; 197:55-63. [PMID: 37633718 DOI: 10.1016/b978-0-12-821375-9.00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Imprisonment is a common punishment in most countries. Goals of imprisonment are often not only retribution, but also prevention. Specific prevention aims to reduce the risk of reoffending of the imprisoned offender. The question is whether the goals of retribution and specific prevention contradict each other. Retribution is not only expressed in taking away ones freedom, but also in the prison environment itself. Prisoners live in a sober regime, with a minimal amount of autonomy. There are few cognitive challenges, meaningful social interaction is reduced significantly, and many prisoners are highly sedentary. In other words, prison can be viewed as an impoverished environment. In the last few decades, much knowledge has been gained on the influence of enriched versus impoverished environment on the brain. In this chapter, we discuss the influence of the impoverished prison environment on brain functions of prisoners, with an emphasis on self-regulation and executive functions, since these functions are (1) often impaired in offenders, (2) highly sensitive to environmental influences, and (3) crucial for successful resocialization. We conclude this chapter by discussing possibilities for and potential effects of enriching prison environments.
Collapse
Affiliation(s)
- Jesse Meijers
- Judicial Complex Zaanstad, Dutch Custodial Institutions Agency, Ministry of Justice and Security, Westzaan, The Netherlands; Section Forensic Psychiatry, Willem Pompe Institute for Criminal Law and Criminology, Utrecht University, Utrecht, The Netherlands.
| | - Joke M Harte
- Department of Criminal Law and Criminology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik J A Scherder
- Section Clinical Neuropsychology, Department of Clinical, Neuro- & Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Liu Y, Liu D, Liu M, Li K, Shi Q, Wang C, Pan Z, Zhou L. The microstructural abnormalities of cingulum was related to patients with mild cognitive impairment: a diffusion kurtosis imaging study. Neurol Sci 2023; 44:171-180. [PMID: 36169754 PMCID: PMC9816220 DOI: 10.1007/s10072-022-06408-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Our study aimed to investigate the correlations between microstructural changes of cingulum and patients with mild cognitive impairment (MCI) by diffusion kurtosis imaging (DKI) technique. METHOD A total of 104 patients with cerebral small vessel diseases (cSVD) were retrospectively enrolled in this study. According to Montreal Cognitive Assessment Scale (MoCA) scores, these patients were divided into MCI group (n = 59) and non-MCI group (n = 45). The general clinical data was collected and analyzed. The regions of interests (ROIs) were selected for investigation in cingulum. The values of DKI parameters were measured in each ROI and compared between the two groups, the correlations between DKI parameters and MoCA scores were examined. RESULTS Compared to non-MCI group, MCI patients had more severe white matter hyperintensities (WMHs) (P = 0.038) and lower MoCA scores (P < 0.01). MCI patients showed significantly decreased fractional anisotropy (FA), axial kurtosis (AK), mean kurtosis (MK), radial kurtosis (RK), and kurtosis fractional anisotropy (KFA) in the left cingulum in the cingulated cortex (CgC) region (all P < 0.0125). In the left CgC region, FA, AK, MK, RK, and KFA were positively correlated with MoCA scores (r = 0.348, 0.409, 0.310, 0.441, 0.422, all P < 0.001). Meanwhile, FA, AK, MK, RK, and KFA were also positively correlated with MoCA scores (r = 0.338, 0.352, 0.289, 0.380, 0.370, all P < 0.001) in the right CgC region. CONCLUSION DKI technique could be used to explore the microstructural changes of cingulum in MCI patients and DKI-derived parameters might be feasible to evaluate MCI patients.
Collapse
Affiliation(s)
- Yueyang Liu
- Department of Neurology, Civil Aviation General Hospital, Beijing, China
| | - Dongtao Liu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5, Jingyuan Road, Beijing, China
| | - Mingyong Liu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5, Jingyuan Road, Beijing, China
| | - Kun Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qinglei Shi
- MR Scientific Marketing, Diagnosis Imaging, Siemens Healthineers China, Beijing, China
| | - Chenlong Wang
- Department of Neurology, Civil Aviation General Hospital, Beijing, China
| | - Zhenyu Pan
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lichun Zhou
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5, Jingyuan Road, Beijing, China
| |
Collapse
|
40
|
van Grinsven EE, Smits AR, van Kessel E, Raemaekers MAH, de Haan EHF, Huenges Wajer IMC, Ruijters VJ, Philippens MEP, Verhoeff JJC, Ramsey NF, Robe PAJT, Snijders TJ, van Zandvoort MJE. The impact of etiology in lesion-symptom mapping - A direct comparison between tumor and stroke. Neuroimage Clin 2022; 37:103305. [PMID: 36610310 PMCID: PMC9850191 DOI: 10.1016/j.nicl.2022.103305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Lesion-symptom mapping is a key tool in understanding the relationship between brain structures and behavior. However, the behavioral consequences of lesions from different etiologies may vary because of how they affect brain tissue and how they are distributed. The inclusion of different etiologies would increase the statistical power but has been critically debated. Meanwhile, findings from lesion studies are a valuable resource for clinicians and used across different etiologies. Therefore, the main objective of the present study was to directly compare lesion-symptom maps for memory and language functions from two populations, a tumor versus a stroke population. METHODS Data from two different studies were combined. Both the brain tumor (N = 196) and stroke (N = 147) patient populations underwent neuropsychological testing and an MRI, pre-operatively for the tumor population and within three months after stroke. For this study, we selected two internationally widely used standardized cognitive tasks, the Rey Auditory Verbal Learning Test and the Verbal Fluency Test. We used a state-of-the-art machine learning-based, multivariate voxel-wise approach to produce lesion-symptom maps for these cognitive tasks for both populations separately and combined. RESULTS Our lesion-symptom mapping results for the separate patient populations largely followed the expected neuroanatomical pattern based on previous literature. Substantial differences in lesion distribution hindered direct comparison. Still, in brain areas with adequate coverage in both groups, considerable LSM differences between the two populations were present for both memory and fluency tasks. Post-hoc analyses of these locations confirmed that the cognitive consequences of focal brain damage varied between etiologies. CONCLUSION The differences in the lesion-symptom maps between the stroke and tumor population could partly be explained by differences in lesion volume and topography. Despite these methodological limitations, both the lesion-symptom mapping results and the post-hoc analyses confirmed that etiology matters when investigating the cognitive consequences of lesions with lesion-symptom mapping. Therefore, caution is advised with generalizing lesion-symptom results across etiologies.
Collapse
Affiliation(s)
- E E van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - A R Smits
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - E van Kessel
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M A H Raemaekers
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - E H F de Haan
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; St. Hugh's College, Oxford University, UK
| | - I M C Huenges Wajer
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands
| | - V J Ruijters
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M E P Philippens
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - N F Ramsey
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - P A J T Robe
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - T J Snijders
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M J E van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands
| |
Collapse
|
41
|
Coemans S, Keulen S, Savieri P, Tsapkini K, Engelborghs S, Chrispeels N, Vandenborre D, Paquier P, Wilssens I, Declerck M, Struys E. Executive functions in primary progressive aphasia: A meta-analysis. Cortex 2022; 157:304-322. [PMID: 36395634 PMCID: PMC11161026 DOI: 10.1016/j.cortex.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Executive functions (EFs) refer to a set of cognitive processes, specifically shifting, inhibition, updating of working memory, and are involved in the cognitive control of behavior. Conflicting results have been reported regarding impairments of EFs in Primary Progressive Aphasia (PPA). We performed a multi-level meta-analysis to confirm whether deficits of EFs exist in this population, focusing on a common EFs composite, and the components shifting, inhibition and updating separately. We included 141 studies that report on 294 EFs tasks. The overall mean weighted effect size was large (d = -1,28), indicating poorer EFs in PPA as compared to age-matched cognitively healthy controls. Differences between effect sizes of the EFs components were not significant, indicating all components are affected similarly. Overall, moderator analysis revealed that PPA variant and disease duration were significant moderators of performance, while task modality and years of education were not. The non-fluent/agrammatic PPA and the logopenic PPA variants were similarly affected, but the semantic variant was affected to a lesser extent. We discuss implications for clinical and research settings, and future research.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Perseverence Savieri
- Interfaculty Center for Data Processing and Statistics (ICDS), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Biostatistics and Medical Informatics (BISI) Research Group, Department of Public Health, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastiaan Engelborghs
- Neuroprotection & Neuromodulation, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium; Department of Biomedical Sciences, Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Nini Chrispeels
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Dorien Vandenborre
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium; Department of Translational Neurosciences (TNW), Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Ineke Wilssens
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Mathieu Declerck
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
42
|
Zhou Z, Hui ES, Kranz GS, Chang JR, de Luca K, Pinto SM, Chan WW, Yau SY, Chau BK, Samartzis D, Jensen MP, Wong AYL. Potential mechanisms underlying the accelerated cognitive decline in people with chronic low back pain: A scoping review. Ageing Res Rev 2022; 82:101767. [PMID: 36280211 DOI: 10.1016/j.arr.2022.101767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
A growing body of evidence has shown that people with chronic low back pain (CLBP) demonstrate significantly greater declines in multiple cognitive domains than people who do not have CLBP. Given the high prevalence of CLBP in the ever-growing aging population that may be more vulnerable to cognitive decline, it is important to understand the mechanisms underlying the accelerated cognitive decline observed in this population, so that proper preventive or treatment approaches can be developed and implemented. The current scoping review summarizes what is known regarding the potential mechanisms underlying suboptimal cognitive performance and cognitive decline in people with CLBP and discusses future research directions. Five potential mechanisms were identified based on the findings from 34 included studies: (1) altered activity in the cortex and neural networks; (2) grey matter atrophy; (3) microglial activation and neuroinflammation; (4) comorbidities associated with CLBP; and (5) gut microbiota dysbiosis. Future studies should deepen the understanding of mechanisms underlying this association so that proper prevention and treatment strategies can be developed.
Collapse
Affiliation(s)
- Zhixing Zhou
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Edward S Hui
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; The State Key Laboratory of Brain and Cognitive Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Jeremy R Chang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Katie de Luca
- School of Health, Medical and Applied Sciences, CQ University, Brisbane, Australia
| | - Sabina M Pinto
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Winnie Wy Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Bolton Kh Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Centre, Chicago, IL, USA
| | - Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China.
| |
Collapse
|
43
|
Chen J, Ge A, Zhou Y, Ma Y, Zhong S, Chen C, Shi W, Ding J, Wang X. White matter integrity mediates the associations between white matter hyperintensities and cognitive function in patients with silent cerebrovascular diseases. CNS Neurosci Ther 2022; 29:412-428. [PMID: 36415139 PMCID: PMC9804066 DOI: 10.1111/cns.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To evaluate the relationships between cognitive function and white matter hyperintensity volume (WMHV) in patients with silent cerebrovascular disease and to investigate whether white matter integrity or brain atrophy play a role in this association. METHODS Automated Fiber Quantification and Voxel- based morphometry were used to track and identify the integrity of 20 well-defined white matter tracts and to measure the gray matter volume (GMV). A linear regression model was applied for examining the associations between cognitive function and WMHV and mediation analysis was used to identify the roles of white matter integrity or GMV in the influence of WMHV on cognitive function. RESULTS Two hundred and thirty-six individuals were included for analysis. Executive function was linearly associated with fractional anisotropy (FA) of the right interior frontal occipital fasciculus (IFOF) (β = 0.193; 95% CI, 0.126 to 1.218) and with WMHV (β = -0.188; 95% CI, -0.372 to -0.037). Information processing speed was linearly associated with WMHV (β = -0.357; 95% CI, -0.643 to -0.245), FA of the right anterior thalamic radiation (ATR) (β = 0.207; 95% CI, 0.116 to 0.920), and FA of the left superior longitudinal fasciculus (SLF) (β = 0.177; 95% CI, 0.103 to 1.315). The relationship between WMHV and executive function was mediated by FA of the right IFOF (effect size = -0.045, 95% CI, -0.015 to -0.092). Parallel mediation analysis showed that the association between WMHV and information processing speed was mediated by FA of the right ATR (effect size = -0.099, 95% CI, -0.198 to -0.038) and FA of the left SLF (effect size = -0.038, 95% CI, -0.080 to -0.003). CONCLUSION These findings suggest a mechanism by which WMH affects executive function and information processing speed by impairing white matter integrity. This may be helpful in providing a theoretical basis for rehabilitation strategies of cognitive function in patients with silent cerebrovascular diseases.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Anyan Ge
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Ying Zhou
- Department of Neurology, XiaMen Branch, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shaoping Zhong
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Caizhong Chen
- Department of Radiology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Weibin Shi
- Health Examination Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jing Ding
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xin Wang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina,Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
44
|
Saloner R, Sun-Suslow N, Morgan EE, Lobo J, Cherner M, Ellis RJ, Heaton RK, Grant I, Letendre SL, Iudicello JE. Plasma biomarkers of vascular dysfunction uniquely relate to a vascular-risk profile of neurocognitive deficits in virally-suppressed adults with HIV. Brain Behav Immun Health 2022; 26:100560. [DOI: 10.1016/j.bbih.2022.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
|
45
|
Design and Verbal Fluency in Alzheimer's Disease and Frontotemporal Dementia: Clinical and Metabolic Correlates. J Int Neuropsychol Soc 2022; 28:947-962. [PMID: 34569460 DOI: 10.1017/s1355617721001144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cognitive processes underlying verbal and design fluency, and their neural correlates in patients with Alzheimer's disease (AD) and behavioural variant Frontotemporal Dementia (bvFTD) remain unclear. We hypothesised that verbal and design fluency may be associated with distinct neuropsychological processes in AD and FTD, showing different patterns of impairment and neural basis. METHODS We enrolled 142 participants including patients with AD (n = 80, mean age = 74.71), bvFTD (n = 34, mean age = 68.18), and healthy controls (HCs) (n = 28, mean age = 71.14), that underwent cognitive assessment and 18F-fluorodeoxyglucose positron emission tomography imaging. RESULTS Semantic and phonemic fluency showed the largest effect sizes between groups, showing lower scores in bvFTD than AD and HCs, and lower scores in AD than HC. Both AD and bvFTD showed a lower number of unique designs in design fluency in comparison to HC. Semantic fluency was correlated with left frontotemporal lobe in AD, and with left frontal, caudate, and thalamus in bvFTD. Percentage of unique designs in design fluency was associated with the metabolism of the bilateral fronto-temporo-parietal cortex in AD, and the bilateral frontal cortex with right predominance in bvFTD. Repetitions in AD were correlated with bilateral frontal, temporal, and parietal lobes, and with left prefrontal cortex in bvFTD. CONCLUSIONS Our findings demonstrate differential underlying cognitive processes in verbal and design fluency in AD and bvFTD. While memory and executive functioning associated with fronto-temporo-parietal regions were key in AD, attention and executive functions correlated with the frontal cortex and played a more significant role in bvFTD during fluency tasks.
Collapse
|
46
|
Yuan Y, Li X, Liu W. Dance activity interventions targeting cognitive functioning in older adults with mild cognitive impairment: A meta-analysis. Front Psychol 2022; 13:966675. [PMID: 36237681 PMCID: PMC9553227 DOI: 10.3389/fpsyg.2022.966675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To comprehensively determine the effect of dance activities on the cognitive functions and its sub-domains of older adults with mild cognitive impairment (MCI). Methods We obtained data from PubMed, Web of Science, EBSCO, China national knowledge infrastructure, Wanfang data, and VIP databases from 2017/01/01 to 2022/03/01. We included trials of older adults with MCI that underwent dance activity intervention and fulfilled the inclusion criteria. Two researchers independently assessed the quality of the study using the Cochrane risk of the bias assessment tool. Meta-analysis was performed when data were available, with further subgroup analysis, using Review Manager 5.4, and sensitivity analysis was performed using Stata software 15.1. Results Search terms yielded 183 articles, of which 12 fulfilled the inclusion criteria. This included 7 high-quality studies and 5 medium-quality studies. A total of 820 older adults were analyzed. Results showed that dance activity had beneficial effects for global cognition [SMDMMSE = 0.65, 95% CIMMSE (0.20, 1.09), p MMSE = 0.004; SMDMoCA = 0.87, 95% CIMoCA (0.44, 1.29), p MoCA < 0.0001], memory [SMD = 0.61, 95% CI (0.35, 0.88), p < 0.00001], visuospatial function [SMD = -0.39, 95% CI (-0.60, -0.19), p = 0.0002], cognitive flexibility [SMD = -0.31, 95% CI (-0.52, -0.11), p = 0.003], attention [SMD = 0.34, 95% CI (0.07, 0.61), p = 0.01], and balance [SMD = 1.25, 95% CI (0.06, 2.44), p = 0.04]. Further subgroup analysis showed that open-skill dance activity (OSDA) was more effective in promoting global cognition in older adults with MCI than closed-skill dance activity (CSDA) because of the different stimulation provided by the two types of dance activities in the brain regions of the older adults (p = 0.0002). It could be speculated that dance activity improved cognitive function mainly by affecting the microstructure and function of the cingulate tract, hippocampus, cardiovascular function, and other brain areas of older adults with MCI. Conclusion Dance activities can significantly improve global cognition, memory, visuospatial function, cognitive flexibility, attention, and balance in older adults with MCI. However, more trials with rigorous study designs are necessary to provide more concrete evidence in the future.
Collapse
Affiliation(s)
| | - Xiaofen Li
- School of Art, Beijing Sport University, Beijing, China
| | | |
Collapse
|
47
|
Seer C, Adab HZ, Sidlauskaite J, Dhollander T, Chalavi S, Gooijers J, Sunaert S, Swinnen SP. Bridging cognition and action: executive functioning mediates the relationship between white matter fiber density and complex motor abilities in older adults. Aging (Albany NY) 2022; 14:7263-7281. [PMID: 35997651 PMCID: PMC9550248 DOI: 10.18632/aging.204237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Aging may be associated with motor decline that is attributed to deteriorating white matter microstructure of the corpus callosum (CC), among other brain-related factors. Similar to motor functioning, executive functioning (EF) typically declines during aging, with age-associated changes in EF likewise being linked to altered white matter connectivity in the CC. Given that both motor and executive functions rely on white matter connectivity via the CC, and that bimanual control is thought to rely on EF, the question arises whether EF can at least party account for the proposed link between CC-connectivity and motor control in older adults. To address this, diffusion magnetic resonance imaging data were obtained from 84 older adults. A fiber-specific approach was used to obtain fiber density (FD), fiber cross-section (FC), and a combination of both metrics in eight transcallosal white matter tracts. Motor control was assessed using a bimanual coordination task. EF was determined by a domain-general latent EF-factor extracted from multiple EF tasks, based on a comprehensive test battery. FD of transcallosal prefrontal fibers was associated with cognitive and motor performance. EF partly accounted for the relationship between FD of prefrontal transcallosal pathways and motor control. Our results underscore the multidimensional interrelations between callosal white matter connectivity (especially in prefrontal brain regions), EF across multiple domains, and motor control in the older population. They also highlight the importance of considering EF when investigating brain-motor behavior associations in older adults.
Collapse
Affiliation(s)
- Caroline Seer
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Justina Sidlauskaite
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | | | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven and University Hospital Leuven (UZ Leuven), Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Klaus F, Nguyen TT, Thomas ML, Liou SC, Soontornniyomkij B, Mitchell K, Daly R, Sutherland AN, Jeste DV, Eyler LT. Peripheral inflammation levels associated with degree of advanced brain aging in schizophrenia. Front Psychiatry 2022; 13:966439. [PMID: 36032250 PMCID: PMC9412908 DOI: 10.3389/fpsyt.2022.966439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Brain structural abnormalities have been demonstrated in schizophrenia (SZ); these resemble those seen in typical aging, but are seen at younger ages. Furthermore, SZ is associated with accelerated global brain aging, as measured by brain structure-based brain predicted age difference (Brain-PAD). High heterogeneity exists in the degree of brain abnormalities in SZ, and individual differences may be related to levels of peripheral inflammation and may relate to cognitive deficits and negative symptoms. The goal of our study was to investigate the relationship between brain aging, peripheral inflammation, and symptoms of SZ. We hypothesized older brain-PAD in SZ vs. healthy comparison (HC) participants, as well as positive relationships of brain-PAD with peripheral inflammation markers and symptoms in SZ. We analyzed data from two cross-sectional studies in SZ (n = 26; M/F: 21/5) and HC (n = 28; 20/8) (22-64 years). Brain-PAD was calculated using a previously validated Gaussian process regression model applied to raw T1-weighted MRI data. Plasma levels of inflammatory biomarkers (CRP, Eotaxin, Fractalkine, IP10, IL6, IL10, ICAM1, IFNγ, MCP1, MIP1β, SAA, TNFα, VEGF, VCAM1) and cognitive and negative symptoms were assessed. We observed a higher brain-PAD in SZ vs. HC, and advanced brain age relative to chronological age was related to higher peripheral levels of TNFα in the overall group and in the SZ group; other inflammatory markers were not related to brain-PAD. Within the SZ group, we observed no association between cognitive or negative symptoms and brain-PAD. These results support our hypothesis of advanced brain aging in SZ. Furthermore, our findings on the relationship of the pro-inflammatory cytokine TNFα with higher brain-PAD of SZ are relevant to explain heterogeneity of brain ages in SZ, but we did not find strong evidence for cognitive or negative symptom relationships with brain-PAD.
Collapse
Affiliation(s)
- Federica Klaus
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Tanya T. Nguyen
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Michael L. Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| | - Sharon C. Liou
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | | | - Kyle Mitchell
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Rebecca Daly
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA, United States
| | - Ashley N. Sutherland
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Dilip V. Jeste
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Lisa T. Eyler
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| |
Collapse
|
49
|
Kang K, Orlandi S, Lorenzen N, Chau T, Thaut MH. Does music induce interbrain synchronization between a non-speaking youth with cerebral palsy (CP), a parent, and a neurologic music therapist? A brief report. Dev Neurorehabil 2022; 25:426-432. [PMID: 35341463 DOI: 10.1080/17518423.2022.2051628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Shared emotional experiences during musical activities among musicians can be coupled with brainwave synchronization. For non-speaking individuals with CP, verbal communication may be limited in expressing mutual empathy. Therefore, this case study explored interbrain synchronization among a non-speaking CP (female, 18 yrs), her parent, and a music therapist by measuring their brainwaves simultaneously during four music and four storytelling sessions. In only the youth-parent dyad, we observed a significantly higher level of interbrain synchronization during music rather than story-telling condition. However, in both the youth-parent and youth-therapist dyad, regardless of condition type, significant interbrain synchronization emerged in frontal and temporal lobes in the low-frequency bands, which are associated with socio-emotional responses. Although interbrain synchronization may have been induced by multiple factors (e.g., external stimuli, shared empathetic experiences, and internal physiological rhythms), the music activity setting deserves further study as a potential facilitator of neurophysiological synchrony between youth with CP and caregivers/healthcare providers.
Collapse
Affiliation(s)
- Kyurim Kang
- Music and Health Science Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada.,Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Center for Music and Medicine, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Silvia Orlandi
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi"- DEI, University of Bologna, Bologna, Italy
| | - Nicole Lorenzen
- School of Engineering, University of Guelph, Guelph, ON, Canada
| | - Tom Chau
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael H Thaut
- Music and Health Science Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada.,Faculty of Medicine, Institute of Medical Science and Rehabilitation Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Falck RS, Hsu CL, Silva NCBS, Li LC, Best JR, Liu-Ambrose T. The independent associations of physical activity and sleep with neural activity during an inhibitory task: cross-sectional results from the MONITOR-OA study. J Sleep Res 2022; 31:e13692. [PMID: 35821379 DOI: 10.1111/jsr.13692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
Sleep and physical activity (PA) are important for the maintenance of executive functions. Whether these lifestyle factors independently contribute to associated neural correlates of executive functions is unknown. We therefore investigated the independent associations of PA and sleep with neural activity during executive performance using task-based functional magnetic resonance imaging (fMRI). Baseline data from a subset of participants (n = 29) enrolled in a randomised trial were used for this cross-sectional analysis. We measured PA, sleep duration and efficiency for 7 days using the SenseWear Mini and examined neural activity underlying response inhibition using the Go/NoGo executive performance task. Brain activation patterns during the NoGo condition were contrasted to activation patterns during the Go condition (i.e., NoGo-Go). We constructed two separate models (controlling for age, sex, and education) to examine the independent associations of (i) PA and sleep duration; and (ii) PA and sleep efficiency with brain activation. Significant clusters were corrected for multiple comparisons (p < 0.05) to determine region-specific activation patterns. The mean (SD) participant age was 61 (9) years, and 79% were female. PA was independently associated with greater task-related blood-oxygen-level dependent (BOLD) signal activity in the left cingulate gyrus; longer sleep duration was independently associated with greater BOLD signal activity in the left putamen. Higher sleep efficiency was independently associated with increased BOLD signal activity in the left hippocampus. PA, sleep duration, and efficiency are each independently associated with greater neural activity underlying response inhibition, which further illustrates that PA and sleep are each uniquely important for brain health.
Collapse
Affiliation(s)
- Ryan Stanley Falck
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Chun Liang Hsu
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Narlon Cassio Boa Sorte Silva
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Linda C Li
- Arthritis Research Canada, University of British Columbia, Vancouver, British Columbia, Canada
| | - John R Best
- Gerontology Research Centre, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|