1
|
Kavcı Z, Ozan M, Buzdağlı Y, Savaş A, Uçar H. Investigation of the effect of nitrate and L-arginine intake on aerobic, anaerobic performance, balance, agility, and recovery in elite taekwondo athletes. J Int Soc Sports Nutr 2025; 22:2445609. [PMID: 39714103 DOI: 10.1080/15502783.2024.2445609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Taekwondo is a complex martial art that requires speed, balance, agility, and endurance. This study aims to examine the effects of nitrate and L-arginine supplementation on acute aerobic and anaerobic performance, balance, agility, and recovery in elite taekwondo athletes. METHOD This study was conducted as a double-blind, randomized, crossover study with the participation of 15 experienced taekwondo athletes aged 19.06 ± 0.96 years and 8.93 ± 1.27 years of training experience. Participants visited the laboratory a total of nine times, including a practice session and anthropometric measurements. These visits consisted of eight experimental sessions conducted at 72-hour intervals. The experimental sessions were conducted with nitrate, L-arginine, and a combination of both supplements (NIT*L-ARG) and placebo. Nitrate supplementation was provided by homogenizing fresh spinach (837.40 mg/kg), while L-ARG was given as a single dose of 6 g in powder form three hours before exercise. RESULTS NIT*L-ARG supplementation significantly improved the anaerobic performance of athletes in Wingate peak power and peak power (w/kg) compared to placebo and in mean power compared to NIT, L-ARG, and PLA. In addition, NIT*L-ARG supplementation significantly improved blood lactate levels and agility performance immediately after Wingate and Shuttle run tests. CONCLUSION The combined intake of NIT*L-ARG was found to be effective in improving aerobic, anaerobic, and agility performances as well as fatigue levels of athletes. It was determined that taking NIT and L-ARG supplements alone contributed to the improvement of improving athletes' performance in Wingate mean power values and subsequent fatigue level compared to PLA.
Collapse
Affiliation(s)
- Zafer Kavcı
- Atatürk University, Graduate School of Winter Sports and Sport Sciences, Erzurum, Turkey
| | - Murat Ozan
- Atatürk University, Department of Physical Education and Sports, Kazım Karabekir Faculty of Education, Erzurum, Turkey
| | - Yusuf Buzdağlı
- Erzurum Technical University, Department of Coaching Education, Faculty of Sport Sciences, Erzurum, Turkey
| | - Adem Savaş
- Giresun University, Department of the Food Engineering, Giresun, Turkey
| | - Halil Uçar
- İnönü University, Department of Physical Education and Sports, Faculty of Education, Malatya, Turkey
| |
Collapse
|
2
|
Viribay A, Alcantara JMA, López I, Mielgo-Ayuso J, Castañeda-Babarro A. No evidence of improvements in energy metabolism after 1 week of nitrate and citrulline co-supplementation in elite rowers. Eur J Appl Physiol 2024:10.1007/s00421-024-05636-7. [PMID: 39382670 DOI: 10.1007/s00421-024-05636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Citrulline (CIT) and beetroot extract (BR) supplements positively impacts exercise performance in elite rowers. However, its influence on metabolic outcomes such as whole-body volumes of oxygen consumption (VO2) and carbon dioxide production (VCO2), substrate oxidation, energy expenditure (EE), and gross efficiency remains unknown. We studied the effects of 1 week of daily co-supplementation of 3.5 g BR (500 mg NO3-) plus 6 g CIT on VO2 and VCO2 kinetics, substrate utilization, EE, and gross efficiency in elite male rowers compared to a placebo and to a BR supplementation. METHODS Twenty elite rowers participated in this randomized, double-blind, placebo-controlled crossover trial completing 1 week of supplementation in each group of study: Placebo (PLAG); BRG; and BR-CITG. Efficiency (70% VO2max) and performance (incremental maximal) tests were performed, and gas-exchange data were collected via indirect calorimetry. RESULTS Analysis of covariance (ANCOVA) showed no mean between-condition differences on respiratory exchange ratio (RER), EE, and gross efficiency in the efficiency test (all P > 0.06), and in the performance test (all P > 0.28). Moreover, in both tests no interaction Time × Supplement effects were observed for VO2, VCO2, RER, EE, substrate oxidation, and, gross efficiency (all P > 0.12). CONCLUSION After 1 week, no effects on energy metabolism and substrate utilization were observed after the daily co-ingestion of BR extract plus CIT supplement, therefore longer (> 7 days) and higher doses of supplementation might be needed to influence metabolism.
Collapse
Affiliation(s)
- Aitor Viribay
- Glut4Science, Physiology, Nutrition and Sport, 01004, Vitoria-Gasteiz, Spain.
- Institute of Biomedicine (IBIOMED), University of Leon, 24071, Leon, Spain.
| | - Juan M A Alcantara
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Iker López
- , San Ignacio Auzunea Etxetaldea 5, 48200, Durango, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001, Burgos, Spain
| | - Arkaitz Castañeda-Babarro
- Health, Physical Activity, and Sports Science Laboratory, Department of Physical Activity and Sports, Faculty of Education and Sport, University of Deusto, 48007, Bizkaia, Spain
| |
Collapse
|
3
|
Sheppard AM, van de Ligt JLG, Pillai P, Crincoli CM, Faris RJ, McGhee ML, Frederick BR. Safety of dietary nitrate supplementation by calcium nitrate for finishing pigs as measured by methemoglobin and serum and tissue nitrate levels. Transl Anim Sci 2023; 8:txad135. [PMID: 38221961 PMCID: PMC10782891 DOI: 10.1093/tas/txad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024] Open
Abstract
Nitrate supplementation has been studied as a beneficial constituent of the human diet, particularly for its effects on vascular health through vasodilation. Recent studies have focused on the benefits of nitrate supplementation in animals, especially in swine. Up to 1,200 mg/kg dietary nitrate supplementation from Ca nitrate was beneficial in farrowing and lactating sows and their offspring, and up to 6,000 mg/kg supplemental nitrate showed no adverse health effects in sows or piglets. Controlled study data evaluating the safety of nitrate supplementation to growing swine of any weight class is scant. Therefore, an experiment was conducted to test the hypothesis that increased inclusion rates of dietary nitrate through the addition of Ca nitrate in diets would not influence concentrations of nitrate or nitrite in serum and tissue, nor blood hemoglobin and methemoglobin. Forty-eight individually housed pigs (initial weight 119.1 ± 5.3 kg) were randomly allotted to four dietary treatments containing 0, 500, 1,000, or 2,000 mg/kg dietary nitrate and fed experimental diets for 28 d. Growth performance was not influenced (P > 0.10) by dietary treatment. The most sensitive safety endpoint, methemoglobin, did not change (P > 0.10) with dietary nitrate exposure up to 2,000 mg/kg. Serum and tissue nitrate and nitrite levels, myoglobin, and hemoglobin were not adversely affected (P > 0.10). Total myoglobin in the loin linearly increased (P < 0.05) with greater dietary nitrate in the diet, which is correlated with the red color of meat. This work established the safety of up to 2,000 mg/kg dietary nitrate from Ca nitrate as an ingredient in food for finishing pigs.
Collapse
Affiliation(s)
| | | | | | | | - Richard J Faris
- Animal Nutrition and Health, Cargill, Inc., Wayzata, MN 55391, USA
| | - Molly L McGhee
- Animal Nutrition and Health, Cargill, Inc., Wayzata, MN 55391, USA
| | | |
Collapse
|
4
|
Gurney T, Brouner J, Spendiff O. The Efficacy of Chlorella Supplementation on Multiple Indices of Cycling Performance. J Diet Suppl 2023; 21:99-115. [PMID: 36905653 DOI: 10.1080/19390211.2023.2186557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
This study investigated the effects of chlorella supplementation on submaximal endurance, time trial performance, lactate threshold, and power indices during a repeated sprint performance test by fourteen male trained cyclists. Participants ingested 6 g/day of chlorella or placebo for 21-days in a double-blinded randomized counter-balanced cross-over design, with a fourteen-day washout period between trials. Each completed a 2-day testing period comprising a 1-hour submaximal endurance test at 55% external power output max and a 16.1 km time trial (Day-1), followed by a lactate threshold (Dmax) and repeated sprint performance tests (3 X 20 s sprints interspersed by 4-mins) (Day-2). Heart rate (b.min-1), RER, V̇O2 (ml·kg-1·min-1), lactate and glucose (mmol/L), time (secs), power output (W/kg), and hemoglobin (g/L) were compared across conditions. Following chlorella supplementation (chlorella vs. placebo for each measurement) average lactate and heart rate were significantly lower (p < 0.05) during submaximal endurance tests (1.68 ± 0.50 mmol/L vs. 1.91 ± 0.65 mmol/L & 138 ± 11b.min-1 vs. 144 ± 10b.min-1), average power and peak power (W/kg) were significantly higher during repeated sprint bouts (9.5 ± 0.7 W/kg vs. 9.0 ± 0.7 W/kg & 12.0 ± 1.2 W/kg vs. 11.4 ± 1.4 W/kg), hemoglobin significantly increased (149.1 ± 10.3 g/L) in comparison to placebo (143.4 ± 8.7 g/L) (p = 0.05). No differences existed between conditions for all oxygen consumption values, 16.1 km time trial measures and lactate threshold tests (p > 0.05). In conclusion, chlorella may pose as an additional supplement for cyclists to consider, particularly for those cyclists who want to improve their sprinting.
Collapse
Affiliation(s)
- Tom Gurney
- School of Life Sciences, Kingston University, Kingston upon Thames, England
- Division of Surgery & Interventional Science, University College London, London, England
| | - James Brouner
- School of Life Sciences, Kingston University, Kingston upon Thames, England
| | - Owen Spendiff
- School of Life Sciences, Kingston University, Kingston upon Thames, England
| |
Collapse
|
5
|
Delleli S, Ouergui I, Messaoudi H, Trabelsi K, Glenn JM, Ammar A, Chtourou H. Does Beetroot Supplementation Improve Performance in Combat Sports Athletes? A Systematic Review of Randomized Controlled Trials. Nutrients 2023; 15:398. [PMID: 36678270 PMCID: PMC9860842 DOI: 10.3390/nu15020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
While studies on dietary nitrate (NO3-) supplementation and its impact on combat sports performance are increasing, finite conclusions from currently available investigations remain unclear. Thus, the present systematic review examined the acute and chronic ergogenic effect(s) of dietary nitrate intake from beetroot on different aspects of combat sports performance. A systematic search for randomized placebo-controlled studies investigating the effects of beetroot supplementation on combat sports outcomes was performed through Scopus, PubMed/MEDLINE, Web of Science, Scielo, Sport Discus, and Cochrane Library databases up to 2 January 2023. The different terms related to beetroot and to combat sports were connected in the search strategies using the Boolean operators 'AND' and 'OR'. A total of nine studies with good methodological quality (based on the Cochrane risk of bias tool) fulfilled the inclusion criteria. Seven studies used an acute supplementation strategy, while the other two studies utilized chronic supplementation. Findings showed beetroot intake may be an effective tool to improve oxidative metabolism and muscle force production (i.e., isokinetic and isometric) in combat sports athletes. However, these effects may depend on the population, intake duration, muscle group activated, and exercise type. Future studies are required to (1) understand the effects on female athletes and (2) elucidate the impacts of dosing protocols and specific exercise modalities for enhancing combat sports performance.
Collapse
Affiliation(s)
- Slaheddine Delleli
- Research Unit, Physical Activity, Sport and Health, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Ibrahim Ouergui
- Research Unit: Sport Sciences, Health and Movement, UR22JS01, University of Jendouba, Kef 7100, Tunisia
- High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef 7100, Tunisia
| | - Hamdi Messaoudi
- Research Unit, Physical Activity, Sport and Health, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
- Research Laboratory: Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax 3000, Tunisia
| | - Jordan M. Glenn
- Department of Health, Exercise Science Research Center Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Achraf Ammar
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, 55122 Mainz, Germany
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), UPL, Paris Nanterre University, 92000 Nanterre, France
| | - Hamdi Chtourou
- Research Unit, Physical Activity, Sport and Health, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| |
Collapse
|
6
|
Sahinovic A, Irwin C, Doohan PT, Kevin RC, Cox AJ, Lau NS, Desbrow B, Johnson NA, Sabag A, Hislop M, Haber PS, McGregor IS, McCartney D. Effects of Cannabidiol on Exercise Physiology and Bioenergetics: A Randomised Controlled Pilot Trial. SPORTS MEDICINE - OPEN 2022; 8:27. [PMID: 35235092 PMCID: PMC8891421 DOI: 10.1186/s40798-022-00417-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022]
Abstract
Background Cannabidiol (CBD) has demonstrated anti-inflammatory, analgesic, anxiolytic and neuroprotective effects that have the potential to benefit athletes. This pilot study investigated the effects of acute, oral CBD treatment on physiological and psychological responses to aerobic exercise to determine its practical utility within the sporting context. Methods On two occasions, nine endurance-trained males (mean ± SD V̇O2max: 57.4 ± 4.0 mL·min−1·kg−1) ran for 60 min at a fixed intensity (70% V̇O2max) (RUN 1) before completing an incremental run to exhaustion (RUN 2). Participants received CBD (300 mg; oral) or placebo 1.5 h before exercise in a randomised, double-blind design. Respiratory gases (V̇O2), respiratory exchange ratio (RER), heart rate (HR), blood glucose (BG) and lactate (BL) concentrations, and ratings of perceived exertion (RPE) and pleasure–displeasure were measured at three timepoints (T1–3) during RUN 1. V̇O2max, RERmax, HRmax and time to exhaustion (TTE) were recorded during RUN 2. Venous blood was drawn at Baseline, Pre- and Post-RUN 1, Post-RUN 2 and 1 h Post-RUN 2. Data were synthesised using Cohen’s dz effect sizes and 85% confidence intervals (CIs). Effects were considered worthy of further investigation if the 85% CI included ± 0.5 but not zero. Results CBD appeared to increase V̇O2 (T2: + 38 ± 48 mL·min−1, dz: 0.25–1.35), ratings of pleasure (T1: + 0.7 ± 0.9, dz: 0.22–1.32; T2: + 0.8 ± 1.1, dz: 0.17–1.25) and BL (T2: + 3.3 ± 6.4 mmol·L−1, dz: > 0.00–1.03) during RUN 1 compared to placebo. No differences in HR, RPE, BG or RER were observed between treatments. CBD appeared to increase V̇O2max (+ 119 ± 206 mL·min−1, dz: 0.06–1.10) and RERmax (+ 0.04 ± 0.05 dz: 0.24–1.34) during RUN 2 compared to placebo. No differences in TTE or HRmax were observed between treatments. Exercise increased serum interleukin (IL)-6, IL-1β, tumour necrosis factor-α, lipopolysaccharide and myoglobin concentrations (i.e. Baseline vs. Post-RUN 1, Post-RUN 2 and/or 1-h Post-RUN 2, p’s < 0.05). However, the changes were small, making it difficult to reliably evaluate the effect of CBD, where an effect appeared to be present. Plasma concentrations of the endogenous cannabinoid, anandamide (AEA), increased Post-RUN 1 and Post-RUN 2, relative to Baseline and Pre-RUN 1 (p’s < 0.05). CBD appeared to reduce AEA concentrations Post-RUN 2, compared to placebo (− 0.95 ± 0.64 pmol·mL−1, dz: − 2.19, − 0.79). Conclusion CBD appears to alter some key physiological and psychological responses to aerobic exercise without impairing performance. Larger studies are required to confirm and better understand these preliminary findings. Trial Registration This investigation was approved by the Sydney Local Health District’s Human Research Ethics Committee (2020/ETH00226) and registered with the Australia and New Zealand Clinical Trials Registry (ACTRN12620000941965). Supplementary Information The online version contains supplementary material available at 10.1186/s40798-022-00417-y.
Collapse
|
7
|
López-Samanes Á, Ramos-Álvarez JJ, Miguel-Tobal F, Gaos S, Jodra P, Arranz-Muñoz R, Domínguez R, Montoya JJ. Influence of Beetroot Juice Ingestion on Neuromuscular Performance on Semi-Professional Female Rugby Players: A Randomized, Double-Blind, Placebo-Controlled Study. Foods 2022; 11:foods11223614. [PMID: 36429210 PMCID: PMC9689822 DOI: 10.3390/foods11223614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Beetroot juice (BRJ) is considered an ergogenic aid with good to strong evidence for improving human performance in sport modalities with similar demands to rugby. However, most of the studies were realized in male athletes with limited evidence in female athletes. Thus, the aim of this study was to explore the acute ingestion of BRJ in female rugby players. METHODS Fourteen semi-professional female rugby players (25.0 ± 3.7 years) belonging to a team from the First Spanish Female Rugby Division participated in this study. Participants were randomly divided into two groups that realized a neuromuscular battery after BRJ (140mL, 12.8 mmol NO3-) or placebo (PLAC, 140 mL, 0.08 mmol NO3-) ingestion on two different days separated by one week between protocols. The neuromuscular test battery consisted of a countermovement jump (CMJ), isometric handgrip strength (i.e., dominant), 10-m and 30-m sprint, agility t-test and Bronco test. Afterwards, participants reported a rate of perception scale (6-20 points) and side effects questionnaire associated with BRJ or PLAC ingestion. RESULTS Statistically significant improvements were observed in CMJ (7.7%; p = 0.029; ES = 0.62), while no differences were reported in dominant isometric handgrip strength (-1.7%; p = 0.274; ES = -0.20); 10-m and 30-m sprint (0.5-0.8%; p = 0.441-0.588; ES = 0.03-0.18); modified agility t-test (-0.6%; p = 0.503; ES = -0.12) and Bronco test (1.94%; p = 0.459; ES = 0.16). CONCLUSIONS BRJ ingestion could improve neuromuscular performance in the CMJ test, while no differences in sprint (10-m and 30-m sprint test), agility, isometric handgrip strength and endurance performance (i.e., Bronco test) were reported.
Collapse
Affiliation(s)
- Álvaro López-Samanes
- Exercise Physiology Group, Faculty of Health Sciences, School of Physiotherapy, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Juan José Ramos-Álvarez
- Faculty of Medicine, School of Sport Medicine, Madrid Complutense University, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-947-088
| | - Francisco Miguel-Tobal
- Faculty of Medicine, School of Sport Medicine, Madrid Complutense University, 28040 Madrid, Spain
| | - Sofía Gaos
- Exercise Physiology Group, Faculty of Health Sciences, School of Physiotherapy, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Pablo Jodra
- Faculty of Education Sciences, University of Alcalá, 19001 Alcala de Henares, Spain
| | - Raquel Arranz-Muñoz
- Faculty of Medicine, School of Sport Medicine, Madrid Complutense University, 28040 Madrid, Spain
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| | - Juan José Montoya
- Faculty of Medicine, School of Sport Medicine, Madrid Complutense University, 28040 Madrid, Spain
| |
Collapse
|
8
|
Shannon OM, Allen JD, Bescos R, Burke L, Clifford T, Easton C, Gonzalez JT, Jones AM, Jonvik KL, Larsen FJ, Peeling P, Piknova B, Siervo M, Vanhatalo A, McGawley K, Porcelli S. Dietary Inorganic Nitrate as an Ergogenic Aid: An Expert Consensus Derived via the Modified Delphi Technique. Sports Med 2022; 52:2537-2558. [PMID: 35604567 PMCID: PMC9474378 DOI: 10.1007/s40279-022-01701-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Dietary inorganic nitrate is a popular nutritional supplement, which increases nitric oxide bioavailability and may improve exercise performance. Despite over a decade of research into the effects of dietary nitrate supplementation during exercise there is currently no expert consensus on how, when and for whom this compound could be recommended as an ergogenic aid. Moreover, there is no consensus on the safe administration of dietary nitrate as an ergogenic aid. This study aimed to address these research gaps. METHODS The modified Delphi technique was used to establish the views of 12 expert panel members on the use of dietary nitrate as an ergogenic aid. Over three iterative rounds (two via questionnaire and one via videoconferencing), the expert panel members voted on 222 statements relating to dietary nitrate as an ergogenic aid. Consensus was reached when > 80% of the panel provided the same answer (i.e. yes or no). Statements for which > 80% of the panel cast a vote of insufficient evidence were categorised as such and removed from further voting. These statements were subsequently used to identify directions for future research. RESULTS The 12 panel members contributed to voting in all three rounds. A total of 39 statements (17.6%) reached consensus across the three rounds (20 yes, 19 no). In round one, 21 statements reached consensus (11 yes, 10 no). In round two, seven further statements reached consensus (4 yes, 3 no). In round three, an additional 11 statements reached consensus (5 yes, 6 no). The panel agreed that there was insufficient evidence for 134 (60.4%) of the statements, and were unable to agree on the outcome of the remaining statements. CONCLUSIONS This study provides information on the current expert consensus on dietary nitrate, which may be of value to athletes, coaches, practitioners and researchers. The effects of dietary nitrate appear to be diminished in individuals with a higher aerobic fitness (peak oxygen consumption [V̇O2peak] > 60 ml/kg/min), and therefore, aerobic fitness should be taken into account when considering use of dietary nitrate as an ergogenic aid. It is recommended that athletes looking to benefit from dietary nitrate supplementation should consume 8-16 mmol nitrate acutely or 4-16 mmol/day nitrate chronically (with the final dose ingested 2-4 h pre-exercise) to maximise ergogenic effects, taking into consideration that, from a safety perspective, athletes may be best advised to increase their intake of nitrate via vegetables and vegetable juices. Acute nitrate supplementation up to ~ 16 mmol is believed to be safe, although the safety of chronic nitrate supplementation requires further investigation. The expert panel agreed that there was insufficient evidence for most of the appraised statements, highlighting the need for future research in this area.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| | - Jason D Allen
- Department of Kinesiology, School of Education and Human Development and Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Raul Bescos
- School of Health Professions, Faculty of Health, Plymouth Institute of Health and Care Research (PIHR), University of Plymouth, Plymouth, UK
| | - Louise Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Sciences, University of the West of Scotland, Blantyre, UK
| | - Javier T Gonzalez
- Department for Health, University of Bath, Bath, UK
- Centre for Nutrition and Exercise Metabolism, University of Bath, Bath, UK
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, UK
| | - Kristin L Jonvik
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Filip J Larsen
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia
| | | | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, UK
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Wynne AG, Affourtit C. Nitrite lowers the oxygen cost of ATP supply in cultured skeletal muscle cells by stimulating the rate of glycolytic ATP synthesis. PLoS One 2022; 17:e0266905. [PMID: 35939418 PMCID: PMC9359526 DOI: 10.1371/journal.pone.0266905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary nitrate lowers the oxygen cost of human exercise. This effect has been suggested to result from stimulation of coupling efficiency of skeletal muscle oxidative phosphorylation by reduced nitrate derivatives. In this paper, we report the acute effects of sodium nitrite on the bioenergetic behaviour of cultured rat (L6) myocytes. At odds with improved efficiency of mitochondrial ATP synthesis, extracellular flux analysis reveals that a ½-hour exposure to NaNO2 (0.1–5 μM) does not affect mitochondrial coupling efficiency in static myoblasts or in spontaneously contracting myotubes. Unexpectedly, NaNO2 stimulates the rate of glycolytic ATP production in both myoblasts and myotubes. Increased ATP supply through glycolysis does not emerge at the expense of oxidative phosphorylation, which means that NaNO2 acutely increases the rate of overall myocellular ATP synthesis, significantly so in myoblasts and tending towards significance in contractile myotubes. Notably, NaNO2 exposure shifts myocytes to a more glycolytic bioenergetic phenotype. Mitochondrial oxygen consumption does not decrease after NaNO2 exposure, and non-mitochondrial respiration tends to drop. When total ATP synthesis rates are expressed in relation to total cellular oxygen consumption rates, it thus transpires that NaNO2 lowers the oxygen cost of ATP supply in cultured L6 myocytes.
Collapse
Affiliation(s)
- Anthony G. Wynne
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Charles Affourtit
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Acute Beetroot Juice Supplementation Enhances Intermittent Running Performance but Does Not Reduce Oxygen Cost of Exercise among Recreational Adults. Nutrients 2022; 14:nu14142839. [PMID: 35889796 PMCID: PMC9319752 DOI: 10.3390/nu14142839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
Nitrate (NO3−) supplementation has been reported to enhance intermittent exercise performance; however, its impact on oxygen (O2) cost during intermittent running exercise is unclear. The aim of this study was to assess if acute NO3− supplementation would elicit performance benefits in recreationally active individuals during the Yo−Yo intermittent recovery level 1 (Yo-Yo IR1) test, with its potential benefit on O2 consumption (VO2), in a double-blind, randomized, crossover study, 12 recreational males consumed NO3−-rich (NIT; ~12.8 mmol), and NO3−-depleted (PLA; 0.04 mmol) concentrated beetroot juice 3 h before completing the Yo-Yo IR1 test. VO2 was measured at 160, 280 and 440 m (sub-maximal) and when the test was terminated (peak). Performance in the Yo−Yo IR1 was greater with NIT (990 ± 442.25 m) compared to PLA (870 ± 357.4 m, p = 0.007). The VO2 was not significantly different at 160 m (1.92 ± 0.99 vs. 2.1 ± 0.88 L·min−1), 280 m (2.62 ± 0.94 vs. 2.83 ± 0.94 L·min−1), 440 m (3.26 ± 1.04 vs. 3.46 ± 0.98 L·min−1) and peak (4.71 ± 1.01 vs. 4.92 ± 1.17 L·min−1) between NIT and PLA trials (all p > 0.05). The present study has indicated that acute supplementation of NO3− enhanced intermittent running performance but had no effect on VO2 during the Yo−Yo IR1 test in recreational young adults.
Collapse
|
11
|
Jurado-Castro JM, Campos-Perez J, Ranchal-Sanchez A, Durán-López N, Domínguez R. Acute Effects of Beetroot Juice Supplements on Lower-Body Strength in Female Athletes: Double-Blind Crossover Randomized Trial. Sports Health 2022; 14:812-821. [PMID: 35603411 DOI: 10.1177/19417381221083590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Beetroot juice (BRJ) is used as an ergogenic aid, but no previous study has analyzed the effect this supplement has on the production of explosive force and muscular endurance in physically active women. HYPOTHESIS BRJ improves explosive force and muscular endurance in the lower limbs of physically active women. STUDY DESIGN Randomized double-blind crossover study. LEVEL OF EVIDENCE Level 3. METHODS Fourteen physically active women performed a countermovement jump (CMJ) test, a back squat test for assessing velocity and power at 50% and 75% of one-repetition maximum (1RM), and the number of repetitions on a muscular endurance test consisting of 3 sets at 75% of 1RM in a resistance training protocol comprising 3 exercises (back squat, leg press, and leg extension). The participants performed the test in 2 sessions, 150 minutes after ingesting 70 mL of either BRJ (400 mg of nitrate) or a placebo (PLA). RESULTS A greater maximum height was achieved in the CMJ after consuming BRJ compared with a PLA (P = 0.04; effect size (ES) = 0.34). After a BRJ supplement at 50% 1RM, a higher mean velocity [+6.7%; P = 0.03; (ES) = 0.39 (-0.40 to 1.17)], peak velocity (+6%; P = 0.04; ES = 0.39 [-0.40 to 1.17]), mean power (+7.3%; P = 0.02; ES = 0.30 [-0.48 to 1.08]) and peak power (+6%; P = 0.04; ES = 0.20 [-0.59 to 0.98]) were attained in the back squat test. In the muscular endurance test, BRJ increased performance compared with the PLA (P < 0.00; ηp2 = 0.651). CONCLUSION BRJ supplements exert an ergogenic effect on the ability to produce explosive force and muscular endurance in the lower limbs in physically active women. CLINICAL RELEVANCE If physically active women took a BRJ supplement 120 minutes before resistance training their performance could be enhanced.
Collapse
Affiliation(s)
- Jose Manuel Jurado-Castro
- Metabolism and Investigation Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain.,Escuela Universitaria de Osuna (Centro Adscrito a la Universidad de Sevilla), Osuna, Spain
| | - Julian Campos-Perez
- Department of Food Science and Technology, Rabanales University Campus, University of Cordoba, Córdoba, Spain
| | - Antonio Ranchal-Sanchez
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, University of Cordoba, Spain
| | - Natalia Durán-López
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Sevilla, Spain.,Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras, Brazil
| |
Collapse
|
12
|
Silva KVC, Costa BD, Gomes AC, Saunders B, Mota JF. Factors that Moderate the Effect of Nitrate Ingestion on Exercise Performance in Adults: A Systematic Review with Meta-Analyses and Meta-Regressions. Adv Nutr 2022; 13:1866-1881. [PMID: 35580578 PMCID: PMC9526841 DOI: 10.1093/advances/nmac054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
To identify how variables such as exercise condition, supplementation strategy, participant characteristics and demographics, and practices that control oral microbiota diversity could modify the effect of inorganic nitrate ingestion (as nitrate salt supplements, beetroot juice, and nitrate-rich vegetables) on exercise performance, we conducted a systematic review with meta-analysis. Studies were identified in PubMed, Embase, and Cochrane databases. Eligibility criteria included randomized controlled trials assessing the effect of inorganic nitrate on exercise performance in healthy adults. To assess the variation in effect size, we used meta-regression models for continuous variables and subgroup analysis for categorical variables. A total of 123 studies were included in this meta-analysis, comprising 1705 participants. Nitrate was effective for improving exercise performance (standardized mean difference [SMD]: 0.101; 95% CI: 0.051, 0.151, P <0.001, I2 = 0%), although nitrate salts supplementation was not as effective (P = 0.629) as ingestion via beetroot juice (P <0.001) or a high-nitrate diet (P = 0.005). Practices that control oral microbiota diversity influenced the nitrate effect, with practices harmful to oral bacteria decreasing the ergogenic effect of nitrate. The ingestion of nitrate was most effective for exercise lasting between 2 and 10 min (P <0.001). An inverse dose-response relation between the fraction of inspired oxygen and the effect size (coefficient: -0.045, 95% CI: -0.085, -0.005, P = 0.028) suggests that nitrate was more effective in increasingly hypoxic conditions. There was a dose-response relation for acute administration (P = 0.049). The most effective acute dose was between 5 and 14.9 mmol provided ≥150 min prior to exercise (P <0.001). An inverse dose-response for protocols ≥2 d was observed (P = 0.025), with the optimal dose between 5 and 9.9 mmol·d-1 (P <0.001). Nitrate, via beetroot juice or a high-nitrate diet, improved exercise performance, in particular, in sessions lasting between 2 and 10 min. Ingestion of 5-14.9 mmol⋅d-1 taken ≥150 min prior to exercise appears optimal for performance gains and athletes should be aware that practices controlling oral microbiota diversity may decrease the effect of nitrate.
Collapse
Affiliation(s)
| | - Breno Duarte Costa
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Aline Corado Gomes
- Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Goiás, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Gurney T, Spendiff O. Algae Supplementation for Exercise Performance: Current Perspectives and Future Directions for Spirulina and Chlorella. Front Nutr 2022; 9:865741. [PMID: 35321288 PMCID: PMC8937016 DOI: 10.3389/fnut.2022.865741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Nutritional clinical trials have reported algae such as spirulina and chlorella to have the capability to improve cardiovascular risk factors, anemia, immune function, and arterial stiffness. With positive results being reported in clinical trials, researchers are investigating the potential for algae as an ergogenic aid for athletes. Initial studies found spirulina and chlorella supplementation to increase peak oxygen uptake and time to exhaustion, with the mechanistic focus on the antioxidant capabilities of both algae. However, a number of oxidative stress biomarkers reported in these studies are now considered to lack robustness and have consequently provided equivocal results. Considering the nutrient complexity and density of these commonly found edible algae, there is a need for research to widen the scope of investigation. Most recently algae supplementation has demonstrated ergogenic potential during submaximal and repeated sprint cycling, yet a confirmed primary mechanism behind these improvements is still unclear. In this paper we discuss current algae supplementation studies and purported effects on performance, critically examine the antioxidant and ergogenic differing perspectives, and outline future directions.
Collapse
Affiliation(s)
- Tom Gurney
- *Correspondence: Tom Gurney, ; orcid.org/0000-0002-2490-2960
| | | |
Collapse
|
14
|
Tan R, Cano L, Lago-Rodríguez Á, Domínguez R. The Effects of Dietary Nitrate Supplementation on Explosive Exercise Performance: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020762. [PMID: 35055584 PMCID: PMC8775572 DOI: 10.3390/ijerph19020762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Dietary nitrate supplementation is evidenced to induce physiological effects on skeletal muscle function in fast-twitch muscle fibers and may enhance high-intensity exercise performance. An important component of sport-specific skills is the ability to perform explosive movements; however, it is unclear if nitrate supplementation can impact explosive efforts. We examined the existing evidence to determine whether nitrate supplementation improves explosive efforts lasting ≤ 6 s. PubMed, Scopus and Directory of Open Access Journals (DOAJ) were searched for articles using the following search strategy: (nitrate OR nitrite OR beetroot) AND (supplement OR supplementation) AND (explosive OR power OR high intensity OR high-intensity OR sprint* OR “athletic performance”). Out of 810 studies, 18 were eligible according to inclusion criteria. Results showed that 4 of the 10 sprint-type studies observed improved sprint time, power output, and total work in cycling or running, whereas 4 of the 10 resistance-based exercise studies observed improvements to power and velocity of free-weight bench press as well as isokinetic knee extension and flexion at certain angular velocities. These results suggest that nitrate potentially improves explosive exercise performance, but further work is required to clarify the factors influencing the efficacy of nitrate in different exercise modalities.
Collapse
Affiliation(s)
- Rachel Tan
- Faculty of Sports Medicine, Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA;
| | - Leire Cano
- Independent Researcher, 48991 Getxo, Spain;
| | - Ángel Lago-Rodríguez
- Movement, Brain and Health Group, Center of Higher Education Alberta Giménez, 07013 Palma de Mallorca, Spain
- Correspondence: ; Tel.: +34-680-330-105
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento, Universidad de Sevilla, 41013 Sevilla, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| |
Collapse
|
15
|
Wouters EFM. Nutritional Status and Body Composition in Patients Suffering From Chronic Respiratory Diseases and Its Correlation With Pulmonary Rehabilitation. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:725534. [PMID: 36188872 PMCID: PMC9397774 DOI: 10.3389/fresc.2021.725534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022]
Abstract
As part of an individualized intervention to improve the physical, emotional, and social functioning of patients with chronic respiratory diseases in general and chronic obstructive pulmonary disease in particular, awareness of the presence and consequences of changes in body composition increased enormously during the last decades, and nutritional intervention is considered as an essential component in the comprehensive approach of these patients. This review describes the prevalence and the clinical impact of body composition changes and also provides an update of current intervention strategies. It is argued that body composition, preferentially a three-component evaluation of fat, lean, and bone mass, must become part of a thorough assessment of every patient, admitted for pulmonary rehabilitation.
Collapse
Affiliation(s)
- Emiel F. M. Wouters
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, Netherlands
- *Correspondence: Emiel F. M. Wouters
| |
Collapse
|
16
|
Akan S, Tuna Gunes N, Erkan M. Red beetroot: Health benefits, production techniques, and quality maintaining for food industry. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Selen Akan
- Faculty of Agriculture Department of Horticulture Ankara University Ankara Turkey
| | - Nurdan Tuna Gunes
- Faculty of Agriculture Department of Horticulture Ankara University Ankara Turkey
| | - Mustafa Erkan
- Faculty of Agriculture Department of Horticulture Akdeniz University Antalya Turkey
| |
Collapse
|
17
|
Nyberg M, Christensen PM, Blackwell JR, Hostrup M, Jones AM, Bangsbo J. Nitrate-rich beetroot juice ingestion reduces skeletal muscle O 2 uptake and blood flow during exercise in sedentary men. J Physiol 2021; 599:5203-5214. [PMID: 34587650 DOI: 10.1113/jp281995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary nitrate supplementation has been shown to reduce pulmonary O2 uptake during submaximal exercise and enhance exercise performance. However, the effects of nitrate supplementation on local metabolic and haemodynamic regulation in contracting human skeletal muscle remain unclear. To address this, eight healthy young male sedentary subjects were assigned in a randomized, double-blind, crossover design to receive nitrate-rich beetroot juice (NO3, 9 mmol) and placebo (PLA) 2.5 h prior to the completion of a double-step knee-extensor exercise protocol that included a transition from unloaded to moderate-intensity exercise (MOD) followed immediately by a transition to intense exercise (HIGH). Compared with PLA, NO3 increased plasma levels of nitrate and nitrite. During MOD, leg V ̇ O 2 and leg blood flow (LBF) were reduced to a similar extent (∼9%-15%) in NO3. During HIGH, leg V ̇ O 2 was reduced by ∼6%-10% and LBF by ∼5%-9% (did not reach significance) in NO3. Leg V ̇ O 2 kinetics was markedly faster in the transition from passive to MOD compared with the transition from MOD to HIGH both in NO3 and PLA with no difference between PLA and NO3. In NO3, a reduction in nitrate and nitrite concentration was detected between arterial and venous samples. No difference in the time to exhaustion was observed between conditions. In conclusion, elevation of plasma nitrate and nitrate reduces leg skeletal muscle V ̇ O 2 and blood flow during exercise. However, nitrate supplementation does not enhance muscle V ̇ O 2 kinetics during exercise, nor does it improve time to exhaustion when exercising with a small muscle mass. KEY POINTS: Dietary nitrate supplementation has been shown to reduce systemic O2 uptake during exercise and improve exercise performance. The effects of nitrate supplementation on local metabolism and blood flow regulation in contracting human skeletal muscle remain unclear. By using leg exercise engaging a small muscle mass, we show that O2 uptake and blood flow are similarly reduced in contracting skeletal muscle of humans during exercise. Despite slower V ̇ O 2 kinetics in the transition from moderate to intense exercise, no effects of nitrate supplementation were observed for V ̇ O 2 kinetics and time to exhaustion. Nitrate and nitrite concentrations are reduced across the exercising leg, suggesting that these ions are extracted from the arterial blood by contracting skeletal muscle.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Christensen
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark.,Team Danmark (Danish Elite Sports Organization), Copenhagen, Denmark
| | - Jamie R Blackwell
- Department of Sport and Health Sciences, University of Exeter St Luke's Campus, Exeter, UK
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter St Luke's Campus, Exeter, UK
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Macuh M, Knap B. Effects of Nitrate Supplementation on Exercise Performance in Humans: A Narrative Review. Nutrients 2021; 13:3183. [PMID: 34579061 PMCID: PMC8465461 DOI: 10.3390/nu13093183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Nitrates have become increasingly popular for their potential role as an ergogenic aid. The purpose of this article was to review the current scientific evidence of nitrate supplementation on human performance. The current recommendation of nitrate supplementation is discussed, as well as possible health complications associated with nitrate intake for athletes, and dietary strategies of covering nitrate needs through sufficient intake of nitrate-rich foods alone are presented. Pubmed, Scopus, and Web of Science were searched for articles on the effects of nitrate supplementation in humans. Nitrates are an effective ergogenic aid when taken acutely or chronically in the range of ~5-16.8 mmol (~300-1041 mg) 2-3 h before exercise and primarily in the case of exercise duration of ~10-17 min in less trained individuals (VO2max < 65 mL/kg/min). Nitrate needs are most likely meet by ingesting approximately 250-500 g of leafy and root vegetables per day; however, dietary supplements might represent a more convenient and accurate way of covering an athlete's nitrate needs. Athletes should refrain from mouthwash usage when nitrate supplementation benefits are desired. Future research should focus on the potential beneficial effects of nitrate supplementation on brain function, possible negative impacts of chronic nitrate supplementation through different nitrate sources, and the effectiveness of nitrate supplementation on strength and high-intensity intermittent exercise.
Collapse
Affiliation(s)
- Matjaž Macuh
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana; Jamnikarjeva 10, 1000 Ljubljana, Slovenia
| | - Bojan Knap
- Department of Nephrology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Burke LM, Hall R, Heikura IA, Ross ML, Tee N, Kent GL, Whitfield J, Forbes SF, Sharma AP, Jones AM, Peeling P, Blackwell JR, Mujika I, Mackay K, Kozior M, Vallance B, McKay AKA. Neither Beetroot Juice Supplementation nor Increased Carbohydrate Oxidation Enhance Economy of Prolonged Exercise in Elite Race Walkers. Nutrients 2021; 13:nu13082767. [PMID: 34444928 PMCID: PMC8398364 DOI: 10.3390/nu13082767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
Given the importance of exercise economy to endurance performance, we implemented two strategies purported to reduce the oxygen cost of exercise within a 4 week training camp in 21 elite male race walkers. Fourteen athletes undertook a crossover investigation with beetroot juice (BRJ) or placebo (PLA) [2 d preload, 2 h pre-exercise + 35 min during exercise] during a 26 km race walking at speeds simulating competitive events. Separately, 19 athletes undertook a parallel group investigation of a multi-pronged strategy (MAX; n = 9) involving chronic (2 w high carbohydrate [CHO] diet + gut training) and acute (CHO loading + 90 g/h CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON; n = 10). There were no differences between BRJ and PLA trials for rates of CHO (p = 0.203) or fat (p = 0.818) oxidation or oxygen consumption (p = 0.090). Compared with CON, MAX was associated with higher rates of CHO oxidation during exercise, with increased exogenous CHO use (CON; peak = ~0.45 g/min; MAX: peak = ~1.45 g/min, p < 0.001). High rates of exogenous CHO use were achieved prior to gut training, without further improvement, suggesting that elite athletes already optimise intestinal CHO absorption via habitual practices. No differences in exercise economy were detected despite small differences in substrate use. Future studies should investigate the impact of these strategies on sub-elite athletes’ economy as well as the performance effects in elite groups.
Collapse
Affiliation(s)
- Louise M. Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- Correspondence: ; Tel.: +61-422-635-869
| | - Rebecca Hall
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Ida A. Heikura
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Megan L. Ross
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Nicolin Tee
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Georgina L. Kent
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
| | - Sara F. Forbes
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- UniSA Online, University of South Australia, Adelaide, SA 5000, Australia
| | - Avish P. Sharma
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- Triathlon Australia, Burleigh Heads, Gold Coast, QLD 4220, Australia
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (A.M.J.); (J.R.B.)
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA 6009, Australia;
- West Australian Institute of Sport, Mt Claremont, Nedlands, WA 6010, Australia
| | - Jamie R. Blackwell
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (A.M.J.); (J.R.B.)
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Basque Country, Spain;
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile;
| | - Karen Mackay
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile;
- School of Exercise & Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Marta Kozior
- Department of Physical Education & Sport Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Brent Vallance
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Athletics Australia, South Melbourne, Melbourne, VIC 3205, Australia
| | - Alannah K. A. McKay
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA 6009, Australia;
- West Australian Institute of Sport, Mt Claremont, Nedlands, WA 6010, Australia
| |
Collapse
|
20
|
Senefeld JW, Wiggins CC, Regimbal RJ, Dominelli PB, Baker SE, Joyner MJ. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2021; 52:2250-2261. [PMID: 32936597 PMCID: PMC7494956 DOI: 10.1249/mss.0000000000002363] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental digital content is available in the text. Although over 100 studies and reviews have examined the ergogenic effects of dietary nitrate (NO3−) supplementation in young, healthy men and women, it is unclear if participant and environmental factors modulate the well-described ergogenic effects—particularly relevant factors include biological sex, aerobic fitness, and fraction of inspired oxygen (FiO2) during exercise. To address this limitation, the literature was systematically reviewed for randomized, crossover, placebo-controlled studies reporting exercise performance outcome metrics with NO3− supplementation in young, healthy adults. Of the 2033 articles identified, 80 were eligible for inclusion in the meta-analysis. Random-effects meta-analysis demonstrated that exercise performance improved with NO3− supplementation compared with placebo (d = 0.174; 95% confidence interval (CI), 0.120–0.229; P < 0.001). Subgroup analyses conducted on biological sex, aerobic fitness, and FiO2 demonstrated that the ergogenic effect of NO3− supplementation was as follows: 1) not observed in studies with only women (n = 6; d = 0.116; 95% CI, −0.126 to 0.358; P = 0.347), 2) not observed in well-trained endurance athletes (≥65 mL·kg−1·min−1; n = 26; d = 0.021; 95% CI, −0.103 to 0.144; P = 0.745), and 3) not modulated by FiO2 (hypoxia vs normoxia). Together, the meta-analyses demonstrated a clear ergogenic effect of NO3− supplementation in recreationally active, young, healthy men across different exercise paradigms and NO3− supplementation parameters; however, the effect size of NO3− supplementation was objectively small (d = 0.174). NO3− supplementation has more limited utility as an ergogenic aid in participants with excellent aerobic fitness that have optimized other training parameters. Mechanistic research and studies incorporating a wide variety of subjects (e.g., women) are needed to advance the study of NO3− supplementation; however, additional descriptive studies of young, healthy men may have limited utility.
Collapse
Affiliation(s)
- Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Riley J Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | | | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
21
|
Vanhatalo A, L'Heureux JE, Kelly J, Blackwell JR, Wylie LJ, Fulford J, Winyard PG, Williams DW, van der Giezen M, Jones AM. Network analysis of nitrate-sensitive oral microbiome reveals interactions with cognitive function and cardiovascular health across dietary interventions. Redox Biol 2021; 41:101933. [PMID: 33721836 PMCID: PMC7970425 DOI: 10.1016/j.redox.2021.101933] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Many oral bacteria reduce inorganic nitrate, a natural part of a vegetable-rich diet, into nitrite that acts as a precursor to nitric oxide, a regulator of vascular tone and neurotransmission. Aging is hallmarked by reduced nitric oxide production with associated detriments to cardiovascular and cognitive function. This study applied a systems-level bacterial co-occurrence network analysis across 10-day dietary nitrate and placebo interventions to test the stability of relationships between physiological and cognitive traits and clusters of co-occurring oral bacteria in older people. Relative abundances of Proteobacteria increased, while Bacteroidetes, Firmicutes and Fusobacteria decreased after nitrate supplementation. Two distinct microbiome modules of co-occurring bacteria, that were sensitive to nitrate supplementation, showed stable relationships with cardiovascular (Rothia-Streptococcus) and cognitive (Neisseria-Haemophilus) indices of health across both dietary conditions. A microbiome module (Prevotella-Veillonella) that has been associated with pro-inflammatory metabolism was diminished after nitrate supplementation, including a decrease in relative abundance of pathogenic Clostridium difficile. These nitrate-sensitive oral microbiome modules are proposed as potential pre- and probiotic targets to ameliorate age-induced impairments in cardiovascular and cognitive health.
Collapse
Affiliation(s)
- Anni Vanhatalo
- College of Life and Environmental Sciences, University of Exeter, UK.
| | | | - James Kelly
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Jamie R Blackwell
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Lee J Wylie
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Jonathan Fulford
- NIHR Exeter Clinical Research Facility, University of Exeter, UK
| | - Paul G Winyard
- College of Medicine and Health, University of Exeter, UK
| | | | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Norway
| | - Andrew M Jones
- College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
22
|
Porcelli S, Rasica L, Ferguson BS, Kavazis AN, McDonald J, Hogan MC, Grassi B, Gladden LB. Effect of acute nitrite infusion on contractile economy and metabolism in isolated skeletal muscle in situ during hypoxia. J Physiol 2021; 598:2371-2384. [PMID: 32537774 DOI: 10.1113/jp279789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Increased plasma nitrite concentrations may have beneficial effects on skeletal muscle function. The physiological basis explaining these observations has not been clearly defined and it may involve positive effects on muscle contraction force, microvascular O2 delivery and skeletal muscle oxidative metabolism. In the isolated canine gastrocnemius model, we evaluated the effects of acute nitrite infusion on muscle force and skeletal muscle oxidative metabolism. Under hypoxic conditions, but in the presence of normal convective O2 delivery, an elevated plasma nitrite concentration affects neither muscle force, nor muscle contractile economy. In accordance with previous results suggesting limited or no effects of nitrate/nitrite administrations in highly oxidative and highly perfused muscle, our data suggest that neither mitochondrial respiration, nor muscle force generation are affected by acute increased concentrations of NO precursors in hypoxia. ABSTRACT Contrasting findings have been reported concerning the effects of augmented nitric oxide (NO) on skeletal muscle force production and oxygen consumption ( V ̇ O 2 ). The present study examined skeletal muscle mitochondrial respiration and contractile economy in an isolated muscle preparation during hypoxia (but normal convective O2 delivery) with nitrite infusion. Isolated canine gastrocnemius muscles in situ (n = 8) were studied during 3 min of electrically stimulated isometric tetanic contractions corresponding to ∼35% of V ̇ O 2 peak . During contractions, sodium nitrite (NITRITE) or sodium chloride (SALINE) was infused into the popliteal artery. V ̇ O 2 was calculated from the Fick principle. Experiments were carried out in hypoxia ( F I O 2 = 0.12), whereas convective O2 delivery was maintained at normal levels under both conditions by pump-driven blood flow ( Q ̇ ). Muscle biopsies were taken and mitochondrial respiration was evaluated by respirometry. Nitrite infusion significantly increased both nitrite and nitrate concentrations in plasma. No differences in force were observed between conditions. V ̇ O 2 was not significantly different between NITRITE (6.1 ± 1.8 mL 100 g-1 min-1 ) and SALINE (6.2 ± 1.8 mL 100 g-1 min-1 ), even after being 'normalized' per unit of developed force (muscle contractile economy). No differences between conditions were found for maximal ADP-stimulated mitochondrial respiration (both for complex I and complex II), leak respiration and oxidative phosphorylation coupling. In conclusion, in the absence of changes in convective O2 delivery, muscle force, muscle contractile economy and mitochondrial respiration were not affected by acute infusion of nitrite. The previously reported positive effects of elevated plasma nitrite concentrations are presumably mediated by the increased microvascular O2 availability.
Collapse
Affiliation(s)
- Simone Porcelli
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Letizia Rasica
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | - James McDonald
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Michael C Hogan
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
23
|
Jones AM, Vanhatalo A, Seals DR, Rossman MJ, Piknova B, Jonvik KL. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Med Sci Sports Exerc 2021; 53:280-294. [PMID: 32735111 DOI: 10.1249/mss.0000000000002470] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule that plays an important role in myriad physiological processes, including the regulation of vascular tone, neurotransmission, mitochondrial respiration, and skeletal muscle contractile function. NO may be produced via the canonical NO synthase-catalyzed oxidation of l-arginine and also by the sequential reduction of nitrate to nitrite and then NO. The body's nitrate stores can be augmented by the ingestion of nitrate-rich foods (primarily green leafy vegetables). NO bioavailability is greatly enhanced by the activity of bacteria residing in the mouth, which reduce nitrate to nitrite, thereby increasing the concentration of circulating nitrite, which can be reduced further to NO in regions of low oxygen availability. Recent investigations have focused on promoting this nitrate-nitrite-NO pathway to positively affect indices of cardiovascular health and exercise tolerance. It has been reported that dietary nitrate supplementation with beetroot juice lowers blood pressure in hypertensive patients, and sodium nitrite supplementation improves vascular endothelial function and reduces the stiffening of large elastic arteries in older humans. Nitrate supplementation has also been shown to enhance skeletal muscle function and to improve exercise performance in some circumstances. Recently, it has been established that nitrate concentration in skeletal muscle is much higher than that in blood and that muscle nitrate stores are exquisitely sensitive to dietary nitrate supplementation and deprivation. In this review, we consider the possibility that nitrate represents an essential storage form of NO and discuss the integrated function of the oral microbiome, circulation, and skeletal muscle in nitrate-nitrite-NO metabolism, as well as the practical relevance for health and performance.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
24
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
25
|
Engan H, Patrician A, Lodin-Sundström A, Johansson H, Melin M, Schagatay E. Spleen contraction and Hb elevation after dietary nitrate intake. J Appl Physiol (1985) 2020; 129:1324-1329. [PMID: 33031018 DOI: 10.1152/japplphysiol.00236.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ingestion of dietary nitrate ([Formula: see text]) is associated with improved exercise tolerance and reduced oxygen (O2) cost of exercise, ascribed to enhanced mitochondrial efficiency, muscle contractile function, or other factors. Nitrate ingestion has also been found to attenuate the reduction in arterial oxygen saturation ([Formula: see text]) during apnea and to prolong apneic duration. The spleen serves as a dynamic blood pool expelling erythrocytes into the circulation during apnea, and [Formula: see text] and nitric oxide donors may induce vasoactive effects in the mesenteric and splanchnic circulation. Our aim was to investigate the effect of ingestion of concentrated organic [Formula: see text]-rich beetroot juice (BR) on spleen volume and spleen contraction during apnea, and the resulting hemoglobin (Hb) concentration. Eight volunteers performed two apneas of submaximal and maximal duration during prone rest ∼2.5 h after ingesting 70 mL of BR (∼5 mmol [Formula: see text]) or placebo (PL; ∼0.003 mmol [Formula: see text]), on separate days in weighted order. Heart rate and [Formula: see text] were monitored continuously and spleen diameters were measured every minute for triaxial volume calculation. Capillary Hb samples were collected at baseline and after the maximal apnea. Baseline spleen volume was reduced by 66 mL after BR ingestion (22.9%; P = 0.026) and Hb was elevated (+3.0%; P = 0.015). During apneas, spleen contraction and Hb increase were similar between BR and PL conditions (NS). The study shows that dietary [Formula: see text]reduces spleen volume at rest, resulting in increased Hb. This spleen-induced Hb elevation following [Formula: see text] ingestions represents a novel mechanism that could enhance performance in conditions involving exercise, apnea, and hypoxia.NEW & NOTEWORTHY This is the first study to examine changes of spleen volume and circulating Hb following dietary [Formula: see text] supplementation. After dietary [Formula: see text] ingestion, the spleen volume at rest was reduced and Hb was elevated. The spleen contains a dynamic red blood cell reservoir, which can be mobilized and facilitate oxygen transport during various types of physiological stress. This study has revealed an additional, previously unexplored mechanism possibly contributing to the ergogenic effects of dietary [Formula: see text].
Collapse
Affiliation(s)
- Harald Engan
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Unicare Rehabilitation Norway, Oslo, Norway
| | - Alexander Patrician
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Centre for Heart, Lung & Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Angelica Lodin-Sundström
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Department of Nursing Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Hampus Johansson
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Maja Melin
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Erika Schagatay
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
26
|
dos S. Baião D, da Silva DVT, Paschoalin VMF. Beetroot, a Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants (Basel) 2020; 9:E960. [PMID: 33049969 PMCID: PMC7600128 DOI: 10.3390/antiox9100960] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The cardioprotective effects of dietary nitrate from beetroot in healthy and hypertensive individuals are undeniable and irrefutable. Nitrate and nitrate-derived nitrite are precursors for nitric oxide synthesis exhibiting an effect on cardiomyocytes and myocardial ischemia/reperfusion, improving endothelial function, reducing arterial stiffness and stimulating smooth muscle relaxation, decreasing systolic and diastolic blood pressures. Beetroot phytochemicals like betanin, saponins, polyphenols, and organic acids can resist simulated gastrointestinal digestion, raising the hypothesis that the cardioprotective effects of beetroots result from the combination of nitrate/nitrite and bioactive compounds that limit the generation of reactive oxygen species and modulate gene expression. Nitrate and phytochemical concentrations can be adjusted in beet formulations to fulfill requirements for acute or long-term supplementations, enhancing patient adherence to beet intervention. Based on in vitro, in vivo, and clinical trials, beet nitrate and its bioactive phytochemicals are promising as a novel supportive therapy to ameliorate cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Vania M. F. Paschoalin
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (D.V.T.d.S.)
| |
Collapse
|
27
|
Carter SJ, Gruber AH, Raglin JS, Baranauskas MN, Coggan AR. Potential health effects of dietary nitrate supplementation in aging and chronic degenerative disease. Med Hypotheses 2020; 141:109732. [PMID: 32294579 PMCID: PMC7313402 DOI: 10.1016/j.mehy.2020.109732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022]
Abstract
In the United States, latest projections indicate the number of adults 65 years of age and older is expected to double by 2050. Given that increased oxidative stress is a hallmark of aging, it is understandable that waning nitric oxide and chronic degenerative disease arise in tandem. To this end, translational evidence-based strategies are needed to mitigate the impending toll on personal and public health. Dietary nitrate supplementation, particularly in the form of beetroot juice, is an active area of inquiry that has gained considerable attention in recent years. Compelling evidence has revealed beetroot juice can elicit potent physiological responses that may offer associated health benefits for multiple clinical disorders including hypertension, dementia, and sarcopenia. Even in the absence of overt disease, age-related impairments in cardiovascular and skeletal muscle function may uniquely benefit from beetroot juice supplementation as evidence has shown blood pressure lowering effects and improved muscle function/contractility - presumably from increased nitric oxide bioavailability. This, in turn, presents a practical opportunity for susceptible populations to support ease of movement and exercise tolerance, both of which may promote free-living physical activity. A theoretical rationale details the potential health effects of dietary nitrate supplementation, wherein a working framework hypothesizes beetroot juice consumption prior to structured exercise training may offer synergistic benefits to aid healthy aging and independent-living among older adults.
Collapse
Affiliation(s)
- Stephen J Carter
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA.
| | - Allison H Gruber
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - John S Raglin
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Marissa N Baranauskas
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Rojas-Valverde D, Montoya-Rodríguez J, Azofeifa-Mora C, Sanchez-Urena B. Effectiveness of beetroot juice derived nitrates supplementation on fatigue resistance during repeated-sprints: a systematic review. Crit Rev Food Sci Nutr 2020; 61:3395-3406. [PMID: 32715742 DOI: 10.1080/10408398.2020.1798351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent decades, the search for non-doping substances that enhance sports performance has increased. Ergogenic aids such as beetroot juice (BRJ) and BRJ rich in nitrates (NO3-) are widely used to cause physiological benefits that may lead to physical improvements. Therefore, the purpose of this systematic review was to explore the knowledge reported to date on the NO3- derived from BRJ intake effect on fatigue resistance during repeated sprints. A digital search was conducted following systematic review guidelines, and 18 studies met inclusion criteria from a total of 209 articles. In a third of the selected studies, the consumption of beet juice rich in NO3- contributes to an increase in nitrites in plasma that led to the rise in peak power, mean power, number of sprint repetitions, total work and time to task failure, and causes a decrease in fatigue index and sprints times. Some different dose has been proposed for both chronic and acute protocols. It seems that a chronic intake of ∼5-6 mmol of NO3- in 70 ml of BRJ, twice a day, for a minimum of 3-6 days could lead to a fatigue resistance improvement during repeated sprints. Besides, acute intake of NO3- 2.5-3 h before physical exertion or a dose of 250 ml/d to 500 ml/d of BRJ could lead to similar effective results. This systematic review presents some improvements (1.2-5.38%) in fatigue resistance during repeated sprints when consuming BRJ derived NO3-. The in-field practical meaning of these results should be explored.
Collapse
Affiliation(s)
- Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia, Costa Rica.,Grupo de Avances en el Entrenamiento Deportivo y Acondicionamiento Físico (GAEDAF), Facultad Ciencias del Deporte), Universidad de Extremadura, Caceres, Spain
| | - Jaqueline Montoya-Rodríguez
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), National University of Costa Rica, Heredia, Costa Rica
| | - Christian Azofeifa-Mora
- Programa de Ciencias del Ejercicio y la Salud (PROCESA), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), National University of Costa Rica, Heredia, Costa Rica
| | - Braulio Sanchez-Urena
- Programa de Ciencias del Ejercicio y la Salud (PROCESA), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), National University of Costa Rica, Heredia, Costa Rica
| |
Collapse
|
29
|
Cocksedge SP, Breese BC, Morgan PT, Nogueira L, Thompson C, Wylie LJ, Jones AM, Bailey SJ. Influence of muscle oxygenation and nitrate-rich beetroot juice supplementation on O 2 uptake kinetics and exercise tolerance. Nitric Oxide 2020; 99:25-33. [PMID: 32272260 DOI: 10.1016/j.niox.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/25/2022]
Abstract
We tested the hypothesis that acute supplementation with nitrate (NO3-)-rich beetroot juice (BR) would improve quadriceps muscle oxygenation, pulmonary oxygen uptake (V˙O2) kinetics and exercise tolerance (Tlim) in normoxia and that these improvements would be augmented in hypoxia and attenuated in hyperoxia. In a randomised, double-blind, cross-over study, ten healthy males completed two-step cycle tests to Tlim following acute consumption of 210 mL BR (18.6 mmol NO3-) or NO3--depleted beetroot juice placebo (PL; 0.12 mmol NO3-). These tests were completed in normobaric normoxia [fraction of inspired oxygen (FIO2): 21%], hypoxia (FIO2: 15%) and hyperoxia (FIO2: 40%). Pulmonary V˙O2 and quadriceps tissue oxygenation index (TOI), derived from multi-channel near-infrared spectroscopy, were measured during all trials. Plasma [nitrite] was higher in all BR compared to all PL trials (P < 0.05). Quadriceps TOI was higher in normoxia compared to hypoxia (P < 0.05) and higher in hyperoxia compared to hypoxia and normoxia (P < 0.05). Tlim was improved after BR compared to PL ingestion in the hypoxic trials (250 ± 44 vs. 231 ± 41 s; P = 0.006; d = 1.13), with the magnitude of improvement being negatively correlated with quadriceps TOI at Tlim (r = -0.78; P < 0.05). Tlim was not improved following BR ingestion in normoxia (BR: 364 ± 98 vs. PL: 344 ± 78 s; P = 0.087, d = 0.61) or hyperoxia (BR: 492 ± 212 vs. PL: 472 ± 196 s; P = 0.273, d = 0.37). BR ingestion increased peak V˙O2 in hypoxia (P < 0.05), but not normoxia or hyperoxia (P > 0.05). These findings indicate that BR supplementation is more likely to improve Tlim and peak V˙O2 in situations when skeletal muscle is more hypoxic.
Collapse
Affiliation(s)
- Stuart P Cocksedge
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK; School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, UK
| | - Brynmor C Breese
- School of Biological and Biomedical Sciences, Portland Square Building, Plymouth University, Drake Circus, Plymouth, UK
| | - Paul T Morgan
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Leonardo Nogueira
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, CA, USA; Instituto de Bioquímica Médica Leopoldo de Meis (Medical Biochemistry Institute Leopoldo de Meis), Federal University of Rio de Janeiro, RJ, Brazil
| | - Christopher Thompson
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Stephen J Bailey
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK; School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, UK.
| |
Collapse
|
30
|
Carriker CR, Harrison CD, Bockover EJ, Ratcliffe BJ, Crowe S, Morales-Acuna F, Gurovich AN. Acute dietary nitrate does not reduce resting metabolic rate or oxidative stress marker 8-isoprostane in healthy males and females. Int J Food Sci Nutr 2019; 70:887-893. [DOI: 10.1080/09637486.2019.1580683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Colin R. Carriker
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Caleb D. Harrison
- Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| | - Evan J. Bockover
- Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| | - Brycen J. Ratcliffe
- Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| | - Sierra Crowe
- Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| | | | - Alvaro N. Gurovich
- Department of Rehabilitation Sciences, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
31
|
Influence of Equimolar Doses of Beetroot Juice and Sodium Nitrate on Time Trial Performance in Handcycling. Nutrients 2019; 11:nu11071642. [PMID: 31323779 PMCID: PMC6683039 DOI: 10.3390/nu11071642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the influence of a single dose of either beetroot juice (BR) or sodium nitrate (NIT) on performance in a 10 km handcycling time trial (TT) in able-bodied individuals and paracyclists. In total, 14 able-bodied individuals [mean ± SD; age: 28 ± 7 years, height: 183 ± 5 cm, body mass (BM): 82 ± 9 kg, peak oxygen consumption (VO2peak): 33.9 ± 4.2 mL/min/kg] and eight paracyclists (age: 40 ± 11 years, height: 176 ± 9cm, BM: 65 ± 9 kg, VO2peak: 38.6 ± 10.5 mL/min/kg) participated in the study. All participants had to perform three TT on different days, receiving either 6 mmol nitrate as BR or NIT or water as a placebo. Time-to-complete the TT, power output (PO), as well as oxygen uptake (VO2) were measured. No significant differences in time-to-complete the TT were found between the three interventions in able-bodied individuals (p = 0.80) or in paracyclists (p = 0.61). Furthermore, VO2 was not significantly changed after the ingestion of BR or NIT in either group (p < 0.05). The PO to VO2 ratio was significantly higher in some kilometers of the TT in able-bodied individuals (p < 0.05). The ingestion of BR or NIT did not increase handcycling performance in able-bodied individuals or in paracyclists.
Collapse
|
32
|
Abstract
Nitric oxide (NO) plays a plethora of important roles in the human body. Insufficient production of NO (for example, during older age and in various disease conditions) can adversely impact health and physical performance. In addition to its endogenous production through the oxidation of l-arginine, NO can be formed nonenzymatically via the reduction of nitrate and nitrite, and the storage of these anions can be augmented by the consumption of nitrate-rich foodstuffs such as green leafy vegetables. Recent studies indicate that dietary nitrate supplementation, administered most commonly in the form of beetroot juice, can ( a) improve muscle efficiency by reducing the O2 cost of submaximal exercise and thereby improve endurance exercise performance and ( b) enhance skeletal muscle contractile function and thereby improve muscle power and sprint exercise performance. This review describes the physiological mechanisms potentially responsible for these effects, outlines the circumstances in which ergogenic effects are most likely to be evident, and discusses the effects of dietary nitrate supplementation on physical performance in a range of human populations.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Christopher Thompson
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Lee J Wylie
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| |
Collapse
|
33
|
Poole DC. Edward F. Adolph Distinguished Lecture. Contemporary model of muscle microcirculation: gateway to function and dysfunction. J Appl Physiol (1985) 2019; 127:1012-1033. [PMID: 31095460 DOI: 10.1152/japplphysiol.00013.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review strikes at the very heart of how the microcirculation functions to facilitate blood-tissue oxygen, substrate, and metabolite fluxes in skeletal muscle. Contemporary evidence, marshalled from animals and humans using the latest techniques, challenges iconic perspectives that have changed little over the past century. Those perspectives include the following: the presence of contractile or collapsible capillaries in muscle, unitary control by precapillary sphincters, capillary recruitment at the onset of contractions, and the notion of capillary-to-mitochondrial diffusion distances as limiting O2 delivery. Today a wealth of physiological, morphological, and intravital microscopy evidence presents a completely different picture of microcirculatory control. Specifically, capillary red blood cell (RBC) and plasma flux is controlled primarily at the arteriolar level with most capillaries, in healthy muscle, supporting at least some flow at rest. In healthy skeletal muscle, this permits substrate access (whether carried in RBCs or plasma) to a prodigious total capillary surface area. Pathologies such as heart failure or diabetes decrease access to that exchange surface by reducing the proportion of flowing capillaries at rest and during exercise. Capillary morphology and function vary disparately among tissues. The contemporary model of capillary function explains how, following the onset of exercise, muscle O2 uptake kinetics can be extremely fast in health but slowed in heart failure and diabetes impairing contractile function and exercise tolerance. It is argued that adoption of this model is fundamental for understanding microvascular function and dysfunction and, as such, to the design and evaluation of effective therapeutic strategies to improve exercise tolerance and decrease morbidity and mortality in disease.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
34
|
Pawlak-Chaouch M, Boissière J, Munyaneza D, Gamelin FX, Cuvelier G, Berthoin S, Aucouturier J. Beetroot Juice Does Not Enhance Supramaximal Intermittent Exercise Performance in Elite Endurance Athletes. J Am Coll Nutr 2019; 38:729-738. [DOI: 10.1080/07315724.2019.1601601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mehdi Pawlak-Chaouch
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| | - Julien Boissière
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| | - Désiré Munyaneza
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| | - François-Xavier Gamelin
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| | - Grégory Cuvelier
- Laboratory of Exercise and Movement, Provincial School of Hainaut (HEPH)-Condorcet, Tournai, Belgium
| | - Serge Berthoin
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| | - Julien Aucouturier
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| |
Collapse
|
35
|
Lower limb ischemic preconditioning combined with dietary nitrate supplementation does not influence time-trial performance in well-trained cyclists. J Sci Med Sport 2019; 22:852-857. [PMID: 30745097 DOI: 10.1016/j.jsams.2019.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Dietary nitrate (NO3-) supplementation and ischaemic preconditioning (IPC) can independently improve exercise performance. The purpose of this study was to explore whether NO3- supplementation, ingested prior to an IPC protocol, could synergistically enhance parameters of exercise. DESIGN Double-blind randomized crossover trial. METHODS Ten competitive male cyclists (age 34±6years, body mass 78.9±4.9kg, V⋅O2peak 55±4 mLkgmin-1) completed an incremental exercise test followed by three cycling trials comprising a square-wave submaximal component and a 16.1km time-trial. Oxygen uptake (V⋅O2) and muscle oxygenation kinetics were measured throughout. The baseline (BASE) trial was conducted without any dietary intervention or IPC. In the remaining two trials, participants received 3×5min bouts of lower limb bilateral IPC prior to exercise. Participants ingested NO3--rich gel (NIT+IPC) 90min prior to testing in one trial and a low NO3- placebo in the other (PLA+IPC). Plasma NO3- and nitrite (NO2-) were measured immediately before and after application of IPC. RESULTS Plasma [NO3-] and [NO2-] were higher before and after IPC in NIT+IPC compared to BASE (P<0.001) but did not differ between BASE and PLA+IPC. There were no differences in V⋅O2 kinetics or muscle oxygenation parameters between trials (all P>0.4). Performance in the time-trial was similar between trials (BASE 1343±72s, PLA+IPC 1350±75s, NIT+IPC 1346±83s, P=0.98). CONCLUSIONS Pre-exercise IPC did not improve sub-maximal exercise or performance measures, either alone or in combination with dietary NO3- supplementation.
Collapse
|
36
|
The effect of acute and 7-days dietary nitrate on mechanical efficiency, exercise performance and cardiac biomarkers in patients with chronic obstructive pulmonary disease. Clin Nutr 2018; 37:1852-1861. [DOI: 10.1016/j.clnu.2017.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 11/17/2022]
|
37
|
Shannon OM, McGawley K, Nybäck L, Duckworth L, Barlow MJ, Woods D, Siervo M, O'Hara JP. "Beet-ing" the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude. Sports Med 2018; 47:2155-2169. [PMID: 28577258 PMCID: PMC5633647 DOI: 10.1007/s40279-017-0744-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea level. Recently, dietary nitrate (NO3−) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3− supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3− supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/performance. Conversely, current evidence suggests that NO3− supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3− at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3− supplementation. No effects of NO3− supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided.
Collapse
Affiliation(s)
- Oliver Michael Shannon
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Linn Nybäck
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Lauren Duckworth
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Matthew John Barlow
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - David Woods
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Defence Medical Services, Royal Centre for Defence Medicine, Birmingham, B152TH, UK
| | - Mario Siervo
- Institute of Cellular Medicine, University of Newcastle, Newcastle upon Tyne, NE45PL, UK
| | - John Paul O'Hara
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| |
Collapse
|
38
|
Coggan AR, Peterson LR. Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle. Exerc Sport Sci Rev 2018; 46:254-261. [PMID: 30001275 PMCID: PMC6138552 DOI: 10.1249/jes.0000000000000167] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We review recent studies of the effects of dietary nitrate on human muscle contractile function and discuss possible underlying mechanisms. Dietary nitrate, a source of nitric oxide (NO), improves the contractile properties of human muscle. We present the hypothesis that this is due to nitrosylation of the ryanodine receptor and increased NO signaling via the soluble guanyl cyclase-cyclic guanosine monophosphate-protein kinase G pathway, which together increase the free intracellular Ca2+ concentration along with the Ca2+ sensitivity of the myofilaments themselves.
Collapse
Affiliation(s)
- Andrew R Coggan
- Departments of Kinesiology and.,Cellular and Integrative Physiology, Indiana University Purdue University Indianapolis, Indianapolis, IN
| | - Linda R Peterson
- Medicine and.,Radiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
39
|
The Effect of a Dietary Nitrate Supplementation in the Form of a Single Shot of Beetroot Juice on Static and Dynamic Apnea Performance. Int J Sport Nutr Exerc Metab 2018; 28:497-501. [DOI: 10.1123/ijsnem.2017-0300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction: The purpose of the present study was to assess the effects of acute nitrate ()-rich beetroot juice (BRJ) supplementation on peripheral oxygen saturation (SpO2), heart rate (HR), and pulmonary gas exchange during submaximal static and dynamic apnea. Methods: Nine (six males and three females) trained apneists (age: 39.6 ± 8.2 years, stature: 170.4 ± 11.5 cm, and body mass: 72.0 ± 11.5 kg) performed three submaximal static apneas at 60%, 70%, and 80% of the participant’s current reported personal best time, followed by three submaximal (∼75% or personal best distance) dynamic apneas following the consumption of either a 70-ml concentrated BRJ (7.7 mmol ) or a -depleted placebo (PLA; 0.1 mmol ) in double-blind randomized manner. HR and SpO2 were measured via fingertip pulse oximetry at the nadir, and online gas analysis was used to assess pulmonary oxygen uptake () during recovery following breath-holds. Results: There were no differences (p < .05) among conditions for HR (PLA = 59 ± 11 bpm and BRJ = 61 ± 12 bpm), SpO2 (PLA = 83% ± 14% and BRJ = 84% ±9%), or (PLA = 1.00 ± 0.22 L/min and BRJ = 0.97 ± 0.27 L/min). Conclusion: The consumption of 7.7 mmol of beetroot juice supplementation prior to a series of submaximal static and dynamic apneas did not induce a significant change in SpO2, HR, and when compared with placebo. Therefore, there is no apparent physiological response that may benefit free divers as a result of the supplementation.
Collapse
|
40
|
Influence of dietary nitrate supplementation on lung function and exercise gas exchange in COPD patients. Nitric Oxide 2018; 76:53-61. [PMID: 29549005 DOI: 10.1016/j.niox.2018.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND During exercise as pulmonary blood flow rises, pulmonary capillary blood volume increases and gas exchange surface area expands through distention and recruitment. We have previously demonstrated that pulmonary capillary recruitment is limited in COPD patients with poorer exercise tolerance. Hypoxia and endothelial dysfunction lead to pulmonary vascular dysregulation possibly in part related to nitric oxide related pathways. PURPOSE To determine if increasing dietary nitrate might influence lung surface area for gas exchange and subsequently impact exercise performance. METHODS Subjects had stable, medically treated COPD (n = 25), gave informed consent, filled out the St George Respiratory Questionnaire (SGRQ), had a baseline blood draw for Hgb, performed spirometry, and had exhaled nitric oxide (exNO) measured. Then they performed the intra-breath (IB) technique for lung diffusing capacity for carbon monoxide (DLCO) as well as pulmonary blood flow (Qc). Subsequently they completed a progressive semi-recumbent cycle ergometry test to exhaustion with measures of oxygen saturation (SpO2) and expired gases along with DLCO and Qc measured during the 1st work load only. Subjects were randomized to nitrate supplement group (beetroot juice) or placebo group (black currant juice) for 8 days and returned for repeat of the above protocol. RESULTS Exhaled nitric oxide levels rose >200% in the nitrate group (p < 0.05) with minimal change in placebo group. The SGRQ suggested a small fall in perceived symptom limitation in the nitrate group, but no measure of resting pulmonary function differed post nitrate supplementation. With exercise, there was no influence of nitrate supplementation on peak VO2 or other measures of respiratory gas exchange. There was a tendency for the exercise DLCO to increase slightly in the nitrate group with a trend towards a rise in the DLCO/Qc relationship (p = 0.08) but not in the placebo group. The only other significant finding was a fall in the exercise blood pressure in the nitrate group, but not placebo group (p < 0.05). CONCLUSION Despite evidence of a rise in exhaled nitric oxide levels with nitrate supplementation, there was minimal evidence for improvement in exercise performance or pulmonary gas exchange surface area in a stable medically treated COPD population.
Collapse
|
41
|
Patrician A, Engan H, Lundsten D, Grote L, Vigetun-Haughey H, Schagatay E. The Effect of Dietary Nitrate on Nocturnal Sleep-Disordered Breathing and Arterial Oxygen Desaturation at High Altitude. High Alt Med Biol 2018; 19:21-27. [DOI: 10.1089/ham.2017.0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alexander Patrician
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Harald Engan
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- LHL Klinikkene Röros, Norwegian Heart and Lung Patient Organization, Oslo, Norway
| | - David Lundsten
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Ludger Grote
- Pulmonary Medicine, Sleep Disorders Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Erika Schagatay
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
42
|
Chirinos JA. The Nitrate-Nitrite-NO Pathway as a Novel Therapeutic Target in Heart Failure with Reduced Ejection Fraction. J Card Fail 2018; 24:74-77. [DOI: 10.1016/j.cardfail.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 11/26/2022]
|
43
|
Domínguez R, Maté-Muñoz JL, Cuenca E, García-Fernández P, Mata-Ordoñez F, Lozano-Estevan MC, Veiga-Herreros P, da Silva SF, Garnacho-Castaño MV. Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. J Int Soc Sports Nutr 2018; 15:2. [PMID: 29311764 PMCID: PMC5756374 DOI: 10.1186/s12970-017-0204-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Beetroot juice contains high levels of inorganic nitrate (NO3-) and its intake has proved effective at increasing blood nitric oxide (NO) concentrations. Given the effects of NO in promoting vasodilation and blood flow with beneficial impacts on muscle contraction, several studies have detected an ergogenic effect of beetroot juice supplementation on exercise efforts with high oxidative energy metabolism demands. However, only a scarce yet growing number of investigations have sought to assess the effects of this supplement on performance at high-intensity exercise. Here we review the few studies that have addressed this issue. The databases Dialnet, Elsevier, Medline, Pubmed and Web of Science were searched for articles in English, Portuguese and Spanish published from 2010 to March 31 to 2017 using the keywords: beet or beetroot or nitrate or nitrite and supplement or supplementation or nutrition or "sport nutrition" and exercise or sport or "physical activity" or effort or athlete. Nine articles fulfilling the inclusion criteria were identified. Results indicate that beetroot juice given as a single dose or over a few days may improve performance at intermittent, high-intensity efforts with short rest periods. The improvements observed were attributed to faster phosphocreatine resynthesis which could delay its depletion during repetitive exercise efforts. In addition, beetroot juice supplementation could improve muscle power output via a mechanism involving a faster muscle shortening velocity. The findings of some studies also suggested improved indicators of muscular fatigue, though the mechanism involved in this effect remains unclear.
Collapse
Affiliation(s)
- Raúl Domínguez
- Physical Activity and Sport Sciences, College of Health Sciences, Alfonso X El Sabio University, Madrid, Spain
| | - José Luis Maté-Muñoz
- Physical Activity and Sport Sciences, College of Health Sciences, Alfonso X El Sabio University, Madrid, Spain
| | - Eduardo Cuenca
- TecnoCampus. GRI-AFIRS, School of Health Sciences, Pompeu Fabra University, Mataró, Barcelona, Spain
| | - Pablo García-Fernández
- Physical Activity and Sport Sciences, College of Health Sciences, Alfonso X El Sabio University, Madrid, Spain
| | | | - María Carmen Lozano-Estevan
- Physical Activity and Sport Sciences, College of Health Sciences, Alfonso X El Sabio University, Madrid, Spain
| | - Pablo Veiga-Herreros
- Physical Activity and Sport Sciences, College of Health Sciences, Alfonso X El Sabio University, Madrid, Spain
| | - Sandro Fernandes da Silva
- Physical Activity and Sport Sciences, Physical Education Departament, University of Lavras, Lavras, Brazil
| | | |
Collapse
|
44
|
Changes in body posture alter plasma nitrite but not nitrate concentration in humans. Nitric Oxide 2018; 72:59-65. [DOI: 10.1016/j.niox.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/01/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022]
|
45
|
Tsikas D, Schwedhelm KS, Surdacki A, Giustarini D, Rossi R, Kukoc-Modun L, Kedia G, Ückert S. S-Nitroso- N-acetyl-L-cysteine ethyl ester (SNACET) and N-acetyl-L-cysteine ethyl ester (NACET)-Cysteine-based drug candidates with unique pharmacological profiles for oral use as NO, H 2S and GSH suppliers and as antioxidants: Results and overview. J Pharm Anal 2017; 8:1-9. [PMID: 29568662 PMCID: PMC5859134 DOI: 10.1016/j.jpha.2017.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022] Open
Abstract
S-Nitrosothiols or thionitrites with the general formula RSNO are formally composed of the nitrosyl cation (NO+) and a thiolate (RS−), the base of the corresponding acids RSH. The smallest S-nitrosothiol is HSNO and derives from hydrogen sulfide (HSH, H2S). The most common physiological S-nitrosothiols are derived from the amino acid L-cysteine (CysSH). Thus, the simplest S-nitrosothiol is S-nitroso-L-cysteine (CysSNO). CysSNO is a spontaneous potent donor of nitric oxide (NO) which activates soluble guanylyl cyclase to form cyclic guanosine monophosphate (cGMP). This activation is associated with multiple biological actions that include relaxation of smooth muscle cells and inhibition of platelet aggregation. Like NO, CysSNO is a short-lived species and occurs physiologically at concentrations around 1 nM in human blood. CysSNO can be formed from CysSH and higher oxides of NO including nitrous acid (HONO) and its anhydride (N2O3). The most characteristic feature of RSNO is the S-transnitrosation reaction by which the NO+ group is reversibly transferred to another thiolate. By this way numerous RSNO can be formed such as the low-molecular-mass S-nitroso-N-acetyl-L-cysteine (SNAC) and S-nitroso-glutathione (GSNO), and the high-molecular-mass S-nitrosol-L-cysteine hemoglobin (HbCysSNO) present in erythrocytes and S-nitrosol-L-cysteine albumin (AlbCysSNO) present in plasma at concentrations of the order of 200 nM. All above mentioned RSNO exert NO-related biological activity, but they must be administered intravenously. This important drawback can be overcome by lipophilic charge-free RSNO. Thus, we prepared the ethyl ester of SNAC, the S-nitroso-N-acetyl-L-cysteine ethyl ester (SNACET), from synthetic N-acetyl-L-cysteine ethyl ester (NACET). Both NACET and SNACET have improved pharmacological features over N-acetyl-L-cysteine (NAC) and S-nitroso-N-acetyl-L-cysteine (SNAC), respectively, including higher oral bioavailability. SNACET exerts NO-related activities which can be utilized in the urogenital tract and in the cardiovascular system. NACET, with high oral bioavailability, is a strong antioxidant and abundant precursor of GSH, unlike its free acid N-acetyl-L-cysteine (NAC). Here, we review the chemical and pharmacological properties of SNACET and NACET as well as their analytical chemistry. We also report new results from the ingestion of S-[15N]nitroso-N-acetyl-L-cysteine ethyl ester (S15NACET) demonstrating the favorable pharmacological profile of SNACET.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany
| | - Kathrin S Schwedhelm
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany
| | - Andrzej Surdacki
- Second Department of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Daniela Giustarini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, 53100 Siena, Italy
| | - Lea Kukoc-Modun
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia
| | - George Kedia
- Department of Urology and Urological Oncology, Hannover Medical School, 30623 Hannover, Germany
| | - Stefan Ückert
- Department of Urology and Urological Oncology, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Early interventional trials reported improvements in cardiac and exercise outcomes with inorganic nitrate ingestion. The current review aims to provide a brief update of recent evidence regarding ergogenic and cardiovascular effects of dietary nitrate and practical recommendations. RECENT FINDINGS Recent evidence has been inconsistent and questions remain regarding effective dose, duration, and source of nitrate and cohorts likely to benefit. Dietary nitrate may be most relevant to those with vascular/metabolic impairments, those engaging in short-term, intense exercise, deconditioned individuals, and those with a low dietary nitrate intake. SUMMARY The evidence for cardiovascular/exercise benefit is plausible but inconsistent. However, dietary nitrate, in contrast to pharmacological nitrate, has a high benefit-risk ratio. Although nitrate supplementation has grown in popularity, it is suggested that increased green vegetables consumption may provide similar/superior benefits to nitrate supplementation in a cheaper, safer, and potentially tastier context.
Collapse
Affiliation(s)
- Conor P Kerley
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Avenue, N.W. Ste. 400, Washington, District of Columbia, USA
| |
Collapse
|
47
|
Coggan AR, Broadstreet SR, Mahmood K, Mikhalkova D, Madigan M, Bole I, Park S, Leibowitz JL, Kadkhodayan A, Thomas DP, Thies D, Peterson LR. Dietary Nitrate Increases VO 2peak and Performance but Does Not Alter Ventilation or Efficiency in Patients With Heart Failure With Reduced Ejection Fraction. J Card Fail 2017; 24:65-73. [PMID: 28916479 DOI: 10.1016/j.cardfail.2017.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients with heart failure with reduced ejection fraction (HFrEF) exhibit lower efficiency, dyspnea, and diminished peak oxygen uptake (VO2peak) during exercise. Dietary nitrate (NO3-), a source of nitric oxide (NO), has improved these measures in some studies of other populations. We determined the effects of acute NO3- ingestion on exercise responses in 8 patients with HFrEF using a randomized, double-blind, placebo-controlled, crossover design. METHODS AND RESULTS Plasma NO3-, nitrite (NO2-), and breath NO were measured at multiple time points and respiratory gas exchange was determined during exercise after ingestion of beetroot juice containing or devoid of 11.2 mmol of NO3-. NO3- intake increased (P < .05-0.001) plasma NO3- and NO2- and breath NO by 1469 ± 245%, 105 ± 34%, and 60 ± 18%, respectively. Efficiency and ventilation during exercise were unchanged. However, NO3- ingestion increased (P < .05) VO2peak by 8 ± 2% (ie, from 21.4 ± 2.1 to 23.0 ± 2.3 mL.min-1.kg-1). Time to fatigue improved (P < .05) by 7 ± 3 % (ie, from 582 ± 84 to 612 ± 81 seconds). CONCLUSIONS Acute dietary NO3- intake increases VO2peak and performance in patients with HFrEF. These data, in conjunction with our recent data demonstrating that dietary NO3- also improves muscle contractile function, suggest that dietary NO3- supplementation may be a valuable means of enhancing exercise capacity in this population.
Collapse
Affiliation(s)
- Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana; Department of Cellular and Integrative Physiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana; Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.
| | - Seth R Broadstreet
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Kiran Mahmood
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deana Mikhalkova
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michael Madigan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Indra Bole
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Soo Park
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua L Leibowitz
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ana Kadkhodayan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deepak P Thomas
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Dakkota Thies
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Linda R Peterson
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
48
|
Shannon OM, Duckworth L, Barlow MJ, Deighton K, Matu J, Williams EL, Woods D, Xie L, Stephan BCM, Siervo M, O'Hara JP. Effects of Dietary Nitrate Supplementation on Physiological Responses, Cognitive Function, and Exercise Performance at Moderate and Very-High Simulated Altitude. Front Physiol 2017. [PMID: 28649204 PMCID: PMC5465306 DOI: 10.3389/fphys.2017.00401] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose: Nitric oxide (NO) bioavailability is reduced during acute altitude exposure, contributing toward the decline in physiological and cognitive function in this environment. This study evaluated the effects of nitrate (NO3−) supplementation on NO bioavailability, physiological and cognitive function, and exercise performance at moderate and very-high simulated altitude. Methods:Ten males (mean (SD): V˙O2max: 60.9 (10.1) ml·kg−1·min−1) rested and performed exercise twice at moderate (~14.0% O2; ~3,000 m) and twice at very-high (~11.7% O2; ~4,300 m) simulated altitude. Participants ingested either 140 ml concentrated NO3−-rich (BRJ; ~12.5 mmol NO3−) or NO3−-deplete (PLA; 0.01 mmol NO3−) beetroot juice 2 h before each trial. Participants rested for 45 min in normobaric hypoxia prior to completing an exercise task. Exercise comprised a 45 min walk at 30% V˙O2max and a 3 km time-trial (TT), both conducted on a treadmill at a 10% gradient whilst carrying a 10 kg backpack to simulate altitude hiking. Plasma nitrite concentration ([NO2−]), peripheral oxygen saturation (SpO2), pulmonary oxygen uptake (V˙O2), muscle and cerebral oxygenation, and cognitive function were measured throughout. Results: Pre-exercise plasma [NO2−] was significantly elevated in BRJ compared with PLA (p = 0.001). Pulmonary V˙O2 was reduced (p = 0.020), and SpO2 was elevated (p = 0.005) during steady-state exercise in BRJ compared with PLA, with similar effects at both altitudes. BRJ supplementation enhanced 3 km TT performance relative to PLA by 3.8% [1,653.9 (261.3) vs. 1718.7 (213.0) s] and 4.2% [1,809.8 (262.0) vs. 1,889.1 (203.9) s] at 3,000 and 4,300 m, respectively (p = 0.019). Oxygenation of the gastrocnemius was elevated during the TT consequent to BRJ (p = 0.011). The number of false alarms during the Rapid Visual Information Processing Task tended to be lower with BRJ compared with PLA prior to altitude exposure (p = 0.056). Performance in all other cognitive tasks did not differ significantly between BRJ and PLA at any measurement point (p ≥ 0.141). Conclusion: This study suggests that BRJ improves physiological function and exercise performance, but not cognitive function, at simulated moderate and very-high altitude.
Collapse
Affiliation(s)
- Oliver M Shannon
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Lauren Duckworth
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Matthew J Barlow
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Kevin Deighton
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Jamie Matu
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Emily L Williams
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - David Woods
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom.,Defence Medical Services, Royal Centre for Defence MedicineBirmingham, United Kingdom
| | - Long Xie
- Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Blossom C M Stephan
- Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Mario Siervo
- Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - John P O'Hara
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| |
Collapse
|
49
|
Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med 2017; 105:48-67. [PMID: 27989792 PMCID: PMC5401802 DOI: 10.1016/j.freeradbiomed.2016.12.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors.
Collapse
Affiliation(s)
- Carl D Koch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA
| | - Bruce A Freeman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
50
|
Dietary nitrate supplementation enhances short but not longer duration running time-trial performance. Eur J Appl Physiol 2017; 117:775-785. [PMID: 28251402 DOI: 10.1007/s00421-017-3580-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/19/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE This study evaluated the effects of dietary nitrate (NO3-) supplementation on physiological functioning and exercise performance in trained runners/triathletes conducting short and longer-distance treadmill running time-trials (TT). METHOD Eight trained male runners or triathletes completed four exercise performance tests comprising a 10 min warm up followed by either a 1500 or 10,000 m treadmill TT. Exercise performance tests were preceded 3 h before the exercise by supplementation with either 140 ml concentrated nitrate-rich (~12.5 mmol nitrate) (BRJ) or nitrate-deplete (~0.01 mmol nitrate) (PLA) beetroot juice. RESULTS BRJ supplementation significantly elevated plasma [NO2-] (P < 0.05). Resting blood pressure and exercise [Formula: see text] were not significantly different between BRJ and PLA (P > 0.05). However, post-exercise blood [lactate] was significantly greater in BRJ following the 1500 m TT (6.6 ± 1.2 vs. 6.1 ± 1.5 mM; P < 0.05), but not significantly different between conditions in the 10,000 m TT (P > 0.05). Performance in the 1500 m TT was significantly faster in BRJ vs. PLA (319.6 ± 36.2 vs. 325.7 ± 38.8 s; P < 0.05). Conversely, there was no significant difference in 10,000 m TT performance between conditions (2643.1 ± 324. 1 vs. 2649.9 ± 319.8 s, P > 0.05). CONCLUSION Acute BRJ supplementation significantly enhanced 1500 m, but not 10,000 m TT performance. These findings suggest that BRJ might be ergogenic during shorter distance TTs which allow for a high work rate, but not during longer distance TTs, completed at a lower work rate.
Collapse
|