1
|
Li S, Xu J, Qian Y, Zhang R. Hydrogel in the Treatment of Traumatic Brain Injury. Biomater Res 2024; 28:0085. [PMID: 39328790 PMCID: PMC11425593 DOI: 10.34133/bmr.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The high prevalence of traumatic brain injury (TBI) poses an important global public health challenge. Current treatment modalities for TBI primarily involve pharmaceutical interventions and surgical procedures; however, the efficacy of these approaches remains limited. In the field of regenerative medicine, hydrogels have garnered significant attention and research efforts. This review provides an overview of the existing landscape and pathological manifestations of TBI, with a specific emphasis on delineating the therapeutic potential of hydrogels incorporated with various bioactive agents for TBI management. Particularly, the review delves into the utilization and efficacy of hydrogels based on extracellular matrix (ECM), stem cell-loaded, drug-loaded, self-assembled peptide structures or conductive in the context of TBI treatment. These applications are shown to yield favorable outcomes such as tissue damage mitigation, anti-inflammatory effects, attenuation of oxidative stress, anti-apoptotic properties, promotion of neurogenesis, and facilitation of angiogenesis. Lastly, a comprehensive analysis of the merits and constraints associated with hydrogel utilization in TBI treatment is presented, aiming to steer and advance future research endeavors in this domain.
Collapse
Affiliation(s)
- Shanhe Li
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Jiajun Xu
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yuqing Qian
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People' Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
2
|
Lin P, Lin C, Diao L. RBM3 Ameliorates Acute Brain Injury-induced Inflammation and Oxidative Stress by Stabilizing GAS6 mRNA Through Nrf2 Signaling Pathway. Neuroscience 2024; 547:74-87. [PMID: 38555015 DOI: 10.1016/j.neuroscience.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
RNA-binding motif protein 3 (RBM3), as a cold-inducible protein, exhibits neuroprotective function in brain disorders. This study was conducted to investigate the effects of RBM3 on acute brain injury (ABI) and its underlying mechanism. The cerebral injury (CI) rat model and oxygen-glucose deprivation (OGD) cell model were established. The neurological severity score, wire-grip score, morris water maze test, and Y-maze test were used to detect the neurological damage, vestibular motor, learning, and memory functions. Cerebral injury, apoptosis, oxidative stress, and inflammatory level were evaluated by hematoxylin-eosin and TUNEL staining and specific kits. Flow cytometry was used to analyze the apoptosis rate. The relationship between RBM3 and growth arrest specific (GAS) 6 was analyzed by RNA immunoprecipitation assay. The results indicated that RBM3 recovered of neurological function and behaviour impairment of CI rats. Additionally, RBM3 reversed the increased oxidative stress, inflammatory level, and apoptosis induced by CI and OGD. RBM3 interacted with GAS6 to activate the Nrf2 signaling pathway, thus playing neuroprotection on ABI. Besides, the results of RBM3 treatment were similar to those of mild hypothermia treatment. In summary, RBM3 exerted neuroprotection and ameliorated inflammatory levels and oxidative stress by stabilizing GAS6 mRNA through the Nrf2 signaling pathway, suggesting that RBM3 might be a potential therapeutic candidate for treating ABI.
Collapse
Affiliation(s)
- Pingqing Lin
- Department Of Emergency, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China.
| | - Chengshi Lin
- Department Of Emergency, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China
| | - Liangbiao Diao
- Department Of Nephrology, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China
| |
Collapse
|
3
|
Kong J, Fan R, Zhang Y, Jia Z, Zhang J, Pan H, Wang Q. Oxidative stress in the brain-lung crosstalk: cellular and molecular perspectives. Front Aging Neurosci 2024; 16:1389454. [PMID: 38633980 PMCID: PMC11021774 DOI: 10.3389/fnagi.2024.1389454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the body's ability to counteract their harmful effects, playing a key role in the pathogenesis of brain and lung-related diseases. This review comprehensively examines the intricate mechanisms by which oxidative stress influences cellular and molecular pathways, contributing to neurodegenerative, cardiovascular, and respiratory disorders. Emphasizing the detrimental effects on both brain and lung health, we discuss innovative diagnostic biomarkers, such as 8-hydroxy-2'-deoxyguanosine (8-OHdG), and the potential of antioxidant therapies. For these topics, we provide insights into future research directions in the field of oxidative stress treatment, including the development of personalized treatment approaches, the discovery and validation of novel biomarkers, and the development of new drug delivery systems. This review not only provides a new perspective on understanding the role of oxidative stress in brain and lung-related diseases but also offers new insights for future clinical treatments.
Collapse
Affiliation(s)
- Jianda Kong
- College of Sports Science, Qufu Normal University, Jining, China
| | - Rao Fan
- College of Sports Science, Qufu Normal University, Jining, China
| | - Yuanqi Zhang
- College of Sports Science, Qufu Normal University, Jining, China
| | - Zixuan Jia
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Jing Zhang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Huixin Pan
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
4
|
Jussen D, Saeed S, Jablonski T, Krenzlin H, Lucia K, Kraemer T, Kempski O, Czabanka M, Ringel F, Alessandri B. Influence of Blood Components on Neuroinflammation, Blood-Brain Barrier Breakdown, and Functional Damage After Acute Subdural Hematoma in Rats. Neurotrauma Rep 2024; 5:215-225. [PMID: 38463418 PMCID: PMC10924060 DOI: 10.1089/neur.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
A central component of injury development after acute subdural hematoma (ASDH) is the increased intracranial pressure and consecutive mechanical reduction of cerebral blood flow (CBF). However, the role of different blood constituents in ASDH as additional lesioning factors remains unclear. This study examines the influence of blood components on neuroinflammation, blood-brain barrier (BBB) breakdown, and functional deficits in a rat model of ASDH. We infused corpuscular (whole blood, whole blood lysate, and red cell blood) and plasmatic (blood plasma, anticoagulated blood plasma, and aqueous isotonic solution) blood components into the subdural space while CBF was monitored. Rats then underwent behavioral testing. Lesion analysis and immunohistochemistry were performed 2 days after ASDH. Inflammatory reaction was assessed using staining for ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein, interleukin-1ß, tumor necrosis factor-alpha, and membrane attack complex. Integrity of the BBB was evaluated with albumin and matrix metalloproteinase 9 (MMP9) staining. We observed a significant drop in CBF in the corpuscular group (75% ± 7.5% of baseline) with distinct post-operative deficits and larger lesion volume compared to the plasmatic group (13.6 ± 5.4 vs. 1.3 ± 0.4 mm3). Further, inflammation was significantly increased in the corpuscular group with stronger immunoreaction. After whole blood infusion, albumin and MMP9 immunoreaction were significantly increased, pointing toward a disrupted BBB. The interaction between corpuscular and plasmatic blood components seems to be a key factor in the detrimental impact of ASDH. This interaction results in neuroinflammation and BBB leakage. These findings underscore the importance of performing surgery as early as possible and also provide indications for potential pharmacological targets.
Collapse
Affiliation(s)
- Daniel Jussen
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Syamend Saeed
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Tatjana Jablonski
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Harald Krenzlin
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Kristin Lucia
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Tobias Kraemer
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Oliver Kempski
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Beat Alessandri
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
5
|
Leonard BM, Shuvaev VV, Bullock TA, Galpayage Dona KNU, Muzykantov VR, Andrews AM, Ramirez SH. Engineered Dual Antioxidant Enzyme Complexes Targeting ICAM-1 on Brain Endothelium Reduce Brain Injury-Associated Neuroinflammation. Bioengineering (Basel) 2024; 11:200. [PMID: 38534474 PMCID: PMC10968010 DOI: 10.3390/bioengineering11030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/28/2024] Open
Abstract
The neuroinflammatory cascade triggered by traumatic brain injury (TBI) represents a clinically important point for therapeutic intervention. Neuroinflammation generates oxidative stress in the form of high-energy reactive oxygen and nitrogen species, which are key mediators of TBI pathology. The role of the blood-brain barrier (BBB) is essential for proper neuronal function and is vulnerable to oxidative stress. Results herein explore the notion that attenuating oxidative stress at the vasculature after TBI may result in improved BBB integrity and neuroprotection. Utilizing amino-chemistry, a biological construct (designated "dual conjugate" for short) was generated by covalently binding two antioxidant enzymes (superoxide dismutase 1 (SOD-1) and catalase (CAT)) to antibodies specific for ICAM-1. Bioengineering of the conjugate preserved its targeting and enzymatic functions, as evaluated by real-time bioenergetic measurements (via the Seahorse-XF platform), in brain endothelial cells exposed to increasing concentrations of hydrogen peroxide or a superoxide anion donor. Results showed that the dual conjugate effectively mitigated the mitochondrial stress due to oxidative damage. Furthermore, dual conjugate administration also improved BBB and endothelial protection under oxidative insult in an in vitro model of TBI utilizing a software-controlled stretching device that induces a 20% in mechanical strain on the endothelial cells. Additionally, the dual conjugate was also effective in reducing indices of neuroinflammation in a controlled cortical impact (CCI)-TBI animal model. Thus, these studies provide proof of concept that targeted dual antioxidant biologicals may offer a means to regulate oxidative stress-associated cellular damage during neurotrauma.
Collapse
Affiliation(s)
- Brian M. Leonard
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (B.M.L.); (T.A.B.); (A.M.A.)
| | - Vladimir V. Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (V.V.S.); (V.R.M.)
| | - Trent A. Bullock
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (B.M.L.); (T.A.B.); (A.M.A.)
| | - Kalpani N. Udeni Galpayage Dona
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (V.V.S.); (V.R.M.)
| | - Allison M. Andrews
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (B.M.L.); (T.A.B.); (A.M.A.)
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Servio H. Ramirez
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (B.M.L.); (T.A.B.); (A.M.A.)
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Shriner’s Hospital for Children, Philadelphia, PA 19312, USA
| |
Collapse
|
6
|
Jones TB, Mackey T, Juba AN, Amin K, Atyam A, McDole M, Yancy J, Thomas TC, Buhlman LM. Mild traumatic brain injury in Drosophila melanogaster alters reactive oxygen and nitrogen species in a sex-dependent manner. Exp Neurol 2024; 372:114621. [PMID: 38029809 PMCID: PMC10872660 DOI: 10.1016/j.expneurol.2023.114621] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Traumatic brain injury (TBI) is an outside force causing a modification in brain function and/or structural brain pathology that upregulates brain inducible nitric oxide synthase (iNOS), instigating increased levels of nitric oxide activity which is implicated in secondary pathology leading to behavioral deficits (Hall et al., 2012; Garry et al., 2015; Kozlov et al., 2017). In mammals, TBI-induced NO production activates an immune response and potentiates metabolic crisis through mitochondrial dysfunction coupled with vascular dysregulation; however, the direct influence on pathology is complicated by the activation of numerous secondary cascades and activation of other reactive oxygen species. Drosophila TBI models have demonstrated key features of mammalian TBI, including temporary incapacitation, disorientation, motor deficits, activation of innate immunity (inflammation), and autophagy responses observed immediately after injury (Katzenberger et al., 2013; Barekat et al., 2016; Simon et al., 2017; Anderson et al., 2018; Buhlman et al., 2021b). We hypothesized that acute behavioral phenotypes would be associated with deficits in climbing behavior and increased oxidative stress. Because flies lack mammalian-like cardiovascular and adaptive immune systems, we were able to make our observations in the absence of vascular disruption and adaptive immune system interference in a system where highly targeted interventions can be rapidly evaluated. To demonstrate the induction of injury, ten-day-old transgenic flies received an injury of increasing angles from a modified high impact trauma (HIT) device where angle-dependent increases occurred for acute neurological behavior assessments and twenty-four-hour mortality, and survival was significantly decreased. Injury caused sex-dependent effects on climbing activity and measures of oxidative stress. Specifically, after a single 60-degree HIT, female flies exhibited significant impairments in climbing activity beyond that observed in male flies. We also found that several measures of oxidative stress, including Drosophila NOS (dNOS) expression, protein nitration, and hydrogen peroxide production were significantly decreased in female flies. Interestingly, protein nitration was also decreased in males, but surpassed sham levels with a more severe injury. We also observed decreased autophagy demand in vulnerable dopaminergic neurons in female, but not male flies. In addition, mitophagy initiation was decreased in females. Collectively, our data suggest that TBI in flies induces acute behavioral phenotypes and climbing deficits that are analogous to mammalian TBI. We also observed that various indices of oxidative stress, including dNOS expression, protein tyrosine nitration, and hydrogen peroxide levels, as well as basal levels of autophagy, are altered in response to injury, an effect that is more pronounced in female flies.
Collapse
Affiliation(s)
- T Bucky Jones
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA; Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Tracy Mackey
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Amber N Juba
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Kush Amin
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Amruth Atyam
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Madison McDole
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Jarod Yancy
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Phoenix VA Health Care System, Phoenix, AZ, USA.
| | - Lori M Buhlman
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
7
|
Huang YN, Greig NH, Huang PS, Chiang YH, Hoffer A, Yang CH, Tweedie D, Chen Y, Ou JC, Wang JY. Pomalidomide Improves Motor Behavioral Deficits and Protects Cerebral Cortex and Striatum Against Neurodegeneration Through a Reduction of Oxidative/Nitrosative Damages and Neuroinflammation After Traumatic Brain Injury. Cell Transplant 2024; 33:9636897241237049. [PMID: 38483119 PMCID: PMC10943757 DOI: 10.1177/09636897241237049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/18/2024] Open
Abstract
Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.
Collapse
Affiliation(s)
- Ya-Ni Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan City
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Pen-Sen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Neuroscience Research Center, Taipei Medical University, Taipei
| | - Alan Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chih-Hao Yang
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ying Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei
| | - Ju-Chi Ou
- Neuroscience Research Center, Taipei Medical University, Taipei
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Neuroscience Research Center, Taipei Medical University, Taipei
| |
Collapse
|
8
|
Musyaju S, Modi HR, Flerlage WJ, Scultetus AH, Shear DA, Pandya JD. Revert total protein normalization method offers a reliable loading control for mitochondrial samples following TBI. Anal Biochem 2023; 680:115301. [PMID: 37673410 DOI: 10.1016/j.ab.2023.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Owing to evidence that mitochondrial dysfunction plays a dominant role in the traumatic brain injury (TBI) pathophysiology, the Western blot (WB) based immunoblotting method is widely employed to identify changes in the mitochondrial protein expressions after neurotrauma. In WB method, the housekeeping proteins (HKPs) expression is routinely used as an internal control for sample normalization. However, the traditionally employed HKPs can be susceptible to complex cascades of TBI pathogenesis, leading to their inconsistent expression. Remarkably, our data illustrated here that mitochondrial HKPs, including Voltage-dependent anion channels (VDAC), Complex-IV, Cytochrome C and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) yielded altered expressions following penetrating TBI (PTBI) as compared to Sham. Therefore, our goal was to identify more precise normalization procedure in WB. Adult male Sprague Dawley rats (N = 6 rats/group) were used to perform PTBI, and the novel REVERT Total Protein (RTP) method was used to quantify mitochondrial protein load consistency between samples at 6 h and 24 h post-injury. Notably, the RTP method displayed superior protein normalization compared to HKPs method with higher sensitivity at both time-points between experimental groups. Our data favors application of RTP based normalization to accurately quantify protein expression where inconsistent HKPs may be evident in neuroscience research.
Collapse
Affiliation(s)
- Sudeep Musyaju
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - William J Flerlage
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Jignesh D Pandya
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
9
|
Gowthami N, Pursotham N, Dey G, Ghose V, Sathe G, Pruthi N, Shukla D, Gayathri N, Santhoshkumar R, Padmanabhan B, Chandramohan V, Mahadevan A, Srinivas Bharath MM. Neuroanatomical zones of human traumatic brain injury reveal significant differences in protein profile and protein oxidation: Implications for secondary injury events. J Neurochem 2023; 167:218-247. [PMID: 37694499 DOI: 10.1111/jnc.15953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.
Collapse
Affiliation(s)
- Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nithya Pursotham
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gourav Dey
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Vivek Ghose
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Gajanan Sathe
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology (SIT), Tumakuru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Sjöqvist PO, Wiklund L, Sharma HS. Nanodelivery of histamine H3 receptor inverse agonist BF-2649 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:37-77. [PMID: 37833018 DOI: 10.1016/bs.irn.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Military personnel are often victims of spinal cord injury resulting in lifetime disability and decrease in quality of life. However, no suitable therapeutic measures are still available to restore functional disability or arresting the pathophysiological progression of disease in victims for leading a better quality of life. Thus, further research in spinal cord injury using novel strategies or combination of available neuroprotective drugs is urgently needed for superior neuroprotection. In this regard, our laboratory is engaged in developing TiO2 nanowired delivery of drugs, antibodies and enzymes in combination to attenuate spinal cord injury induced pathophysiology and functional disability in experimental rodent model. Previous observations show that histamine antagonists or antioxidant compounds when given alone in spinal cord injury are able to induce neuroprotection for short periods after trauma. In this investigation we used a combination of histaminergic drugs with antioxidant compound H-290/51 using their nanowired delivery for neuroprotection in spinal cord injury of longer duration. Our observations show that a combination of H3 receptor inverse agonist BF-2549 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. These observations suggests that histamine receptors are involved in the pathophysiology of spinal cord injury and induce superior neuroprotection in combination with an inhibitor of lipid peroxidation H-290/51, not reported earlier. The possible mechanisms and significance of our findings in relation to future clinical approaches in spinal cord injury is discussed.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Per-Ove Sjöqvist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
11
|
Abbasloo E, Khaksari M, Sanjari M, Kobeissy F, Thomas TC. Carvacrol decreases blood-brain barrier permeability post-diffuse traumatic brain injury in rats. Sci Rep 2023; 13:14546. [PMID: 37666857 PMCID: PMC10477335 DOI: 10.1038/s41598-023-40915-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Previously, we showed that Satureja Khuzestanica Jamzad essential oil (SKEO) and its major component, carvacrol (CAR), 5-isopropyl-2-methylphenol, has anti-inflammatory, anti-apoptotic, and anti-edematous properties after experimental traumatic brain injury (TBI) in rats. CAR, predominantly found in Lamiaceae family (Satureja and Oregano), is lipophilic, allowing diffusion across the blood-brain barrier (BBB). These experiments test the hypothesis that acute treatment with CAR after TBI can attenuate oxidative stress and BBB permeability associated with CAR's anti-edematous traits. Rats were divided into six groups and injured using Marmarou weight drop: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg) and CAR200-naive treated rats. Intraperitoneal injection of vehicle or CAR was administered thirty minutes after TBI induction. 24 h post-injury, brain edema, BBB permeability, BBB-related protein levels, and oxidative capacity were measured. Data showed CAR 200 mg/kg treatment decreased brain edema and prevented BBB permeability. CAR200 decreased malondialdehyde (MDA) and reactive oxygen species (ROS) and increased superoxide dismutase (SOD) and total antioxidative capacity (T-AOC), indicating the mechanism of BBB protection is, in part, through antioxidant activity. Also, CAR 200 mg/kg treatment suppressed matrix metalloproteinase-9 (MMP-9) expression and increased ZO-1, occludin, and claudin-5 levels. These data indicate that CAR can promote antioxidant activity and decrease post-injury BBB permeability, further supporting CAR as a potential early therapeutic intervention that is inexpensive and more readily available worldwide. However, more experiments are required to determine CAR's long-term impact on TBI pathophysiology.
Collapse
Affiliation(s)
- Elham Abbasloo
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran.
| | - Mohammad Khaksari
- Institute of Neuropharmacology, Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Sanjari
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Theresa Currier Thomas
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, USA
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, USA
| |
Collapse
|
12
|
Liang S, Ti Y, Li X, Zhou W. The Protective Role and Mechanism of Mild Therapeutic Hypothermia Protection on Brain Cells. Neuropsychiatr Dis Treat 2023; 19:1625-1631. [PMID: 37484118 PMCID: PMC10361083 DOI: 10.2147/ndt.s412227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Background Moderate therapeutic hypothermia is protective against several cellular stressors. However, the mechanisms behind this protection are not entirely known. In the current investigation, we investigated that therapeutic hypothermia at 33°C administered following peroxide-induced oxidative stress might protect human oligodendroglioma cells using an in vitro model. Methods and Results Tert-butyl peroxide treatment for one hour significantly increased cell apoptosis and suppressed cell viability. In the range of 50-1000 M tert-butyl peroxide, this cell death was dose-dependent. MTT assay and cell apoptosis assay were applied to analyze cell viability/death at 24 hours after peroxide-induced stress. Therapeutic hypothermia at 33°C delivered for two hours after peroxide exposure significantly increased cell viability and suppressed cell death. Even 15 minutes after peroxide washout when delayed hypothermia was used, this protection was still apparent. Three FDA-approved antioxidants (Tempol, EUK134, and Edaravone at 100 M) were added immediately after tert-butyl peroxide, followed by hypothermia treatment. These three antioxidants greatly increased cell viability and cell apoptosis. RT-qPCR was applied to determine the effects of hypothermia treatment on the expression of caspase-3 and -8 as well as tumor necrosis factor-alpha (TNF-α). Therapeutic hypothermia significantly downregulated these three factors. Conclusion Overall, these findings confirmed that hypothermia and antioxidants quenching reactive oxygen species may lower mitochondrial oxidative stress and/or apoptotic pathways. Further investigation are needed to investigate the role of hypothermia in other cell models.
Collapse
Affiliation(s)
- Suixin Liang
- Department of CICU, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| | - Yunxing Ti
- Department of Cardiothoracic Surgery, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| | - Xiuhong Li
- Department of CICU, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| | - Wenjia Zhou
- Department of CICU, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| |
Collapse
|
13
|
Kuru Bektaşoğlu P, Koyuncuoğlu T, Özaydın D, Kandemir C, Akakın D, Yüksel M, Gürer B, Çelikoğlu E, Yeğen BÇ. Antioxidant and neuroprotective effects of dexpanthenol in rats induced with traumatic brain injury. Injury 2023; 54:1065-1070. [PMID: 36841697 DOI: 10.1016/j.injury.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
Trauma-induced primary damage is followed by secondary damage, exacerbating traumatic brain injury (TBI). Dexpanthenol has been shown to protect tissues against oxidative damage in various inflammation models. This study aimed to investigate possible antioxidant and neuroprotective effects of dexpanthenol in TBI. Wistar albino male rats were randomly assigned to control (n = 16), trauma (n = 16) and dexpanthenol (500 mg/kg; n = 14) groups. TBI was induced under anesthesia by dropping a 300 g weight from 70-cm height onto the skulls of the rats. Twenty-four hours after the trauma, the rats were decapitated and myeloperoxidase (MPO) levels, luminol- and lucigenin-enhanced chemiluminescence (CL), malondialdehyde (MDA) levels, superoxide dismutase (SOD) levels, and catalase (CAT) and caspase-3 activities were measured in brain tissues. Following transcardiac paraformaldehyde perfusion, histopathological damage was graded on hematoxylin-eosin-stained brain tissues. In the trauma group, MPO level, caspase-3 activity and luminol-lucigenin CL levels were elevated (p < 0.05-0.001) when compared to controls; meanwhile in the dexpanthenol group these increases were not seen (p < 0.05-0.001) and MDA levels were decreased (p < 0.05). Decreased SOD and CAT activities (p < 0.01) in the vehicle-treated TBI group were increased above control levels in the dexpanthenol group (p < 0.05-0.001). in the dexpanthenol group there was relatively less neuronal damage observed microscopically in the cortices after TBI. Dexpanthenol reduced oxidative damage, suppressed apoptosis by stimulating antioxidant systems and alleviated brain damage caused by TBI. Further experimental and clinical investigations are needed to confirm that dexpanthenol can be administered in the early stages of TBI.
Collapse
Affiliation(s)
| | - Türkan Koyuncuoğlu
- Biruni University Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Dilan Özaydın
- University of Health Sciences, Kartal Dr. Lutfi Kırdar Education and Research Hospital, Department of Neurosurgery, Istanbul, Turkey
| | - Cansu Kandemir
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Dilek Akakın
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Meral Yüksel
- Marmara University Vocational School of Health-Related Services, Department of Medical Laboratory, Istanbul, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Erhan Çelikoğlu
- University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Istanbul, Turkey
| |
Collapse
|
14
|
Wu C, Zou P, Feng S, Zhu L, Li F, Liu TCY, Duan R, Yang L. Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain Disorders. Mol Neurobiol 2023; 60:1749-1765. [PMID: 36567361 DOI: 10.1007/s12035-022-03175-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
Oxidative stress and neuroinflammation are the main physiopathological changes involved in the initiation and progression of various neurodegenerative disorders or brain injuries. Since the landmark finding reported in 2007 found that hydrogen reduced the levels of peroxynitrite anions and hydroxyl free radicals in ischemic stroke, molecular hydrogen's antioxidative and anti-inflammatory effects have aroused widespread interest. Due to its excellent antioxidant and anti-inflammatory properties, hydrogen therapy via different routes of administration exhibits great therapeutic potential for a wide range of brain disorders, including Alzheimer's disease, neonatal hypoxic-ischemic encephalopathy, depression, anxiety, traumatic brain injury, ischemic stroke, Parkinson's disease, and multiple sclerosis. This paper reviews the routes for hydrogen administration, the effects of hydrogen on the previously mentioned brain disorders, and the primary mechanism underlying hydrogen's neuroprotection. Finally, we discuss hydrogen therapy's remaining issues and challenges in brain disorders. We conclude that understanding the exact molecular target, finding novel routes, and determining the optimal dosage for hydrogen administration is critical for future studies and applications.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Fanghui Li
- School of Sports Science, Nanjing Normal University, Nanjing, 210046, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Pandya JD, Musyaju S, Modi HR, Cao Y, Flerlage WJ, Huynh L, Kociuba B, Visavadiya NP, Kobeissy F, Wang K, Gilsdorf JS, Scultetus AH, Shear DA. Comprehensive evaluation of mitochondrial redox profile, calcium dynamics, membrane integrity and apoptosis markers in a preclinical model of severe penetrating traumatic brain injury. Free Radic Biol Med 2023; 198:44-58. [PMID: 36758906 DOI: 10.1016/j.freeradbiomed.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Traumatic Brain Injury (TBI) is caused by the external physical assaults damages the brain. It is a heterogeneous disorder that remains a leading cause of death and disability in the military and civilian population of the United States. Preclinical investigations of mitochondrial responses in TBI have ascertained that mitochondrial dysfunction is an acute indicator of cellular damage and plays a pivotal role in long-term injury progression through cellular excitotoxicity. The current study was designed to provide an in-depth evaluation of mitochondrial endpoints with respect to redox and calcium homeostasis, and cell death responses following penetrating TBI (PTBI). To evaluate these pathological cascades, anesthetized adult male rats (N = 6/group) were subjected to either 10% unilateral PTBI or Sham craniectomy. Animals were euthanized at 24 h post-PTBI, and purified mitochondrial fractions were isolated from the brain injury core and perilesional areas. Overall, increased reactive oxygen and nitrogen species (ROS/RNS) production, and elevated oxidative stress markers such as 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and protein carbonyls (PC) were observed in the PTBI group compared to Sham. Mitochondrial antioxidants such as glutathione, peroxiredoxin (PRX-3), thioredoxin (TRX), nicotinamide adenine dinucleotide phosphate (NADPH), superoxide dismutase (SOD), and catalase (CAT) levels were significantly decreased after PTBI. Likewise, PTBI mitochondria displayed significant loss of Ca2+ homeostasis, early opening of mitochondrial permeability transition pore (mPTP), and increased mitochondrial swelling. Both, outer and inner mitochondrial membrane integrity markers, such as voltage-dependent anion channels (VDAC) and cytochrome c (Cyt C) expression were significantly decreased following PTBI. The apoptotic cell death was evidenced by significantly decreased B-cell lymphoma-2 (Bcl-2) and increased glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression after PTBI. Collectively, current results highlight the comprehensive picture of mitochondria-centric acute pathophysiological responses following PTBI, which may be utilized as novel prognostic indicators of disease progression and theragnostic indicators for evaluating neuroprotection therapeutics following TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Ying Cao
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - William J Flerlage
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Linda Huynh
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Brittany Kociuba
- Veterinary Services Program, Department of Pathology, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Kevin Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| |
Collapse
|
16
|
Hu H, Chen X, Zhao K, Zheng W, Gao C. Recent Advances in Biomaterials-Based Therapies for Alleviation and Regeneration of Traumatic Brain Injury. Macromol Biosci 2023; 23:e2200577. [PMID: 36758541 DOI: 10.1002/mabi.202200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Traumatic brain injury (TBI), a major public health problem accompanied with numerous complications, usually leads to serve disability and huge financial burden. The adverse and unfavorable pathological environment triggers a series of secondary injuries, resulting in serious loss of nerve function and huge obstacle of endogenous nerve regeneration. With the advances in adaptive tissue regeneration biomaterials, regulation of detrimental microenvironment to reduce the secondary injury and to promote the neurogenesis becomes possible. The adaptive biomaterials could respond and regulate biochemical, cellular, and physiological events in the secondary injury, including excitotoxicity, oxidative stress, and neuroinflammation, to rebuild circumstances suitable for regeneration. In this review, the development of pathology after TBI is discussed, followed by the introduction of adaptive biomaterials based on various pathological characteristics. The adaptive biomaterials carried with neurotrophic factors and stem cells for TBI treatment are then summarized. Finally, the current drawbacks and future perspective of biomaterials for TBI treatment are suggested.
Collapse
Affiliation(s)
- Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiping Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kefei Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| |
Collapse
|
17
|
Meng Y, Yu S, Zhao F, Liu Y, Wang Y, Fan S, Su Y, Lu M, Wang H. Astragaloside IV Alleviates Brain Injury Induced by Hypoxia via the Calpain-1 Signaling Pathway. Neural Plast 2022; 2022:6509981. [PMID: 36510594 PMCID: PMC9741538 DOI: 10.1155/2022/6509981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 12/04/2022] Open
Abstract
Long-term hypoxia can induce oxidative stress and apoptosis in hippocampal neurons that can lead to brain injury diseases. Astragaloside IV (AS-IV) is widely used in the antiapoptotic therapy of brain injury diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of AS-IV on hypoxia-induced oxidative stress and apoptosis in hippocampal neurons and explored its possible mechanism. In vivo, mice were placed in a hypoxic circulatory device containing 10% O2 and gavaged with AS-IV (60 and 120 mg/kg/d) for 4 weeks. In vitro, mouse hippocampal neuronal cells (HT22) were treated with hypoxia (1% O2) for 24 hours in the presence or absence of AS-IV, MDL-28170 (calpain-1 inhibitor), or YC-1 (HIF-1α inhibitor). The protective effect of AS-IV on brain injury was further explored by examining calpain-1 knockout mice. The results showed that hypoxia induced damage to hippocampal neurons, impaired spatial learning and memory abilities, and increased oxidative stress and apoptosis. Treatment with AS-IV or calpain-1 knockout improved the damage to hippocampal neurons and spatial learning and memory, attenuated oxidative stress and inhibited cell apoptosis. These changes were verified in HT22 cells. Overexpression of calpain-1 abolished the improvement of AS-IV on apoptosis and oxidative stress. In addition, the effects of AS-IV were accompanied by decreased calpain-1 and HIF-1α expression, and YC-1 showed a similar effect as AS-IV on calpain-1 and caspase-3 expression. In conclusion, this study demonstrates that AS-IV can downregulate the calpain-1/HIF-1α/caspase-3 pathway and inhibit oxidative stress and apoptosis of hippocampal neurons induced by hypoxia, which provides new ideas for studying the antiapoptotic activity of AS-IV.
Collapse
Affiliation(s)
- Yan Meng
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Shengxue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou 121000, China
| | - Fang Zhao
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Yu Liu
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Wang
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Siqi Fan
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Yuhong Su
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China
| | - Meili Lu
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| | - Hongxin Wang
- Department of Liaoning Key Laboratory of Cardiovascular and Cerebrovascular Drugs, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
18
|
Tapias V, Moschonas EH, Bondi CO, Vozzella VJ, Cooper IN, Cheng JP, Lajud N, Kline AE. Environmental enrichment improves traumatic brain injury-induced behavioral phenotype and associated neurodegenerative process. Exp Neurol 2022; 357:114204. [PMID: 35973617 DOI: 10.1016/j.expneurol.2022.114204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) causes persistent cognitive impairment and neurodegeneration. Environmental enrichment (EE) refers to a housing condition that promotes sensory and social stimulation and improves cognition and motor performance but the underlying mechanisms responsible for such beneficial effects are not well defined. In this study, anesthetized adult rats received either a moderate-to-severe controlled cortical impact (CCI) or sham surgery and then were housed in either EE or standard conditions. The results showed a significant increase in protein nitration and oxidation of lipids, impaired cognition and motor performance, and augmented N-methyl-d-aspartate receptor subtype-1 (NMDAR1) levels. However, EE initiated 24 h after CCI resulted in reduced oxidative insult and microglial activation and significant improvement in beam-balance/walk performance and both spatial learning and memory. We hypothesize that following TBI there is an upstream activation of NMDAR that promotes oxidative insult and an inflammatory response, thereby resulting in impaired behavioral functioning but EE may exert a neuroprotective effect via sustained downregulation of NMDAR1.
Collapse
Affiliation(s)
- Victor Tapias
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA; Excellence Unit of the Institute of Genetics and Molecular Biology (IBGM) - Consejo Superior de Investigaciones Científicas, Valladolid 47003, Spain; Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, Valladolid 47003, Spain.
| | - Eleni H Moschonas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent J Vozzella
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iya N Cooper
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Naima Lajud
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Fesharaki-Zadeh A. Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms232113000. [PMID: 36361792 PMCID: PMC9657447 DOI: 10.3390/ijms232113000] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic Brain Injury (TBI) remains a major cause of disability worldwide. It involves a complex neurometabolic cascade, including oxidative stress. The products of this manuscript is examining the underlying pathophysiological mechanism, including reactive oxygen species (ROS) and reactive nitrogen species (RNS). This process in turn leads to secondary injury cascade, which includes lipid peroxidation products. These reactions ultimately play a key role in chronic inflammation and synaptic dysfunction in a synergistic fashion. Although there are no FDA approved antioxidant therapy for TBI, there is a number of antioxidant therapies that have been tested and include free radical scavengers, activators of antioxidant systems, inhibitors of free radical generating enzymes, and antioxidant enzymes. Antioxidant therapies have led to cognitive and functional recovery post TBI, and they offer a promising treatment option for patients recovering from TBI. Current major challenges in treatment of TBI symptoms include heterogenous nature of injury, as well as access to timely treatment post injury. The inherent benefits of antioxidant therapies include minimally reported side effects, and relative ease of use in the clinical setting. The current review also provides a highlight of the more studied anti-oxidant regimen with applicability for TBI treatment with potential use in the real clinical setting.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Yale School of Medicine, Department of Neurology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
20
|
Park GJ, Ro YS, Yoon H, Lee SGW, Jung E, Moon SB, Kim SC, Shin SD. Serum vitamin E level and functional prognosis after traumatic brain injury with intracranial injury: A multicenter prospective study. Front Neurol 2022; 13:1008717. [PMID: 36341128 PMCID: PMC9627300 DOI: 10.3389/fneur.2022.1008717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major public health problem with high mortality and disability. Vitamin E, one of the antioxidants for treatment of TBI, has not been sufficiently evaluated for predicting prognosis of TBI. This study aimed to evaluate the prognostic value of vitamin E on functional outcomes of TBI patients with intracranial injury. Methods A multi-center prospective cohort study was conducted in five university hospitals between 2018 and 2020. Adult TBI patients who visited the emergency department (ED) with intracranial hemorrhage or diffuse axonal injury confirmed by radiological examination were eligible. Serum vitamin E levels (mg/dL) were categorized into 4 groups: low (0.0–5.4), low-normal (5.5–10.9), high-normal (11.0–16.9), and high (17.0–). Study outcomes were set as 1- and 6-month disability (Glasgow outcome scale (GOS) 1–4). Multilevel logistic regression analysis was conducted to calculate the adjusted odds ratios (AORs) of vitamin E for related outcomes. Results Among 550 eligible TBI patients with intracranial injury, the median (IQR) of serum vitamin E was 10.0 (8.0–12.3) mg/dL; 204/550 (37.1%) had 1-month disability and 197/544 (36.1%) had 6-month disability of GOS 1–4. Compared with the high-normal group, the odds of 1-month disability and 6-month disability increased in the low and low-normal group (AORs (95% CIs): 3.66 (1.62–8.27) and 2.60 (1.15–5.85) for the low group and 1.63 (1.08–2.48) and 1.60 (1.04–2.43) for the low-normal group, respectively). Conclusion Low serum vitamin E level was associated with poor prognosis at 1 and 6 months after TBI with intracranial injury.
Collapse
Affiliation(s)
- Gwan Jin Park
- Department of Emergency Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Young Sun Ro
- Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Young Sun Ro
| | - Hanna Yoon
- Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Stephen Gyung Won Lee
- Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Eujene Jung
- Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Sung Bae Moon
- Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Emergency Medicine, School of Medicine Kyungpook National University and Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sang Chul Kim
- Department of Emergency Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Sang Do Shin
- Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
21
|
Djoudi A, Molina-Peña R, Ferreira N, Ottonelli I, Tosi G, Garcion E, Boury F. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. Int J Mol Sci 2022; 23:12174. [PMID: 36293030 PMCID: PMC9602826 DOI: 10.3390/ijms232012174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.
Collapse
Affiliation(s)
- Amel Djoudi
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Rodolfo Molina-Peña
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Natalia Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| |
Collapse
|
22
|
Bulama I, Nasiru S, Bello A, Abbas AY, Nasiru JI, Saidu Y, Chiroma MS, Mohd Moklas MA, Mat Taib CN, Waziri A, Suleman BL. Antioxidant-based neuroprotective effect of dimethylsulfoxide against induced traumatic brain injury in a rats model. Front Pharmacol 2022; 13:998179. [PMID: 36353489 PMCID: PMC9638698 DOI: 10.3389/fphar.2022.998179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 08/03/2023] Open
Abstract
Traumatic brain injury (TBI) has been the result of neurological deficit and oxidative stress. This study evaluated the antioxidative neuroprotective property and learning and memory-enhancing effects of dimethyl sulfoxide (DMSO) in a rat model after the induction of TBI. 21 albino rats with 7 rats per group were used in this study. Group I was induced with TBI and treated with DMSO at 67.5 mg/kg orally once daily which started 30 min after the induction of TBI and lasted 21 days. Group II was induced with TBI but not treated while Group III was neither induced with TBI nor treated. Assessment of behavioral function (Learning and memory, anxiety and motor function), the level of an antioxidant enzymes and their gene expression (superoxide dismutase, catalase, glutathione peroxidase), the biomarkers of oxidative stress (malondialdehyde) and S100B levels as well as brain tissues histological studies were conducted. Administration of DMSO to rats with induced TBI has improved learning and memory, locomotor function and decreased anxiety in Group I compared to Group II. Moreover, the level of S100B was significantly (p < 0.05) lower in Group I compared to Group II. Treatment with DMSO also decreased lipid peroxidation significantly (p < 0.05) compared to Group II. There exists a significant (p < 0.05) increase in CAT, SOD, and GPX activities in Group I compared to Group II. Therefore, DMSO has demonstrated a potential antioxidative neuroprotective effect through its ability to increase the level of antioxidant enzymes which they quench and inhibit the formation of ROS, thereby improving cognitive functions.
Collapse
Affiliation(s)
- Ibrahim Bulama
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Suleiman Nasiru
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Usman Danfodiyo University, Sokoto, Nigeria
| | - Abubakar Bello
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Abdullahi Yahaya Abbas
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| | - Jinjiri Ismail Nasiru
- Department of Surgery, Faculty of Clinical Sciences, Usman Danfodiyo University Teaching Hospital, Sokoto, Nigeria
| | - Yusuf Saidu
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| | - Musa Samaila Chiroma
- Department of Human Anatomy, Faculty of Basic Clinical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ali Waziri
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Bilbis Lawal Suleman
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
23
|
Huang Z, Wang J, Li C, Zheng W, He J, Wu Z, Tang J. Application of natural antioxidants from traditional Chinese medicine in the treatment of spinal cord injury. Front Pharmacol 2022; 13:976757. [PMID: 36278149 PMCID: PMC9579378 DOI: 10.3389/fphar.2022.976757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating central nervous system disease, caused by physical traumas. With the characteristic of high disability rate, catastrophic dysfunction, and enormous burden on the patient’s family, SCI has become a tough neurological problem without efficient treatments. Contemporarily, the pathophysiology of SCI comprises complicated and underlying mechanisms, in which oxidative stress (OS) may play a critical role in contributing to a cascade of secondary injuries. OS substantively leads to ion imbalance, lipid peroxidation, inflammatory cell infiltration, mitochondrial disorder, and neuronal dysfunction. Hence, seeking the therapeutic intervention of alleviating OS and appropriate antioxidants is an essential clinical strategy. Previous studies have reported that traditional Chinese medicine (TCM) has antioxidant, anti-inflammatory, antiapoptotic and neuroprotective effects on alleviating SCI. Notably, the antioxidant effects of some metabolites and compounds of TCM have obtained numerous verifications, suggesting a potential therapeutic strategy for SCI. This review aims at investigating the mechanisms of OS in SCI and highlighting some TCM with antioxidant capacity used in the treatment of SCI.
Collapse
Affiliation(s)
- Zhihua Huang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Jingyi Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chun Li
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Weihong Zheng
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Junyuan He
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Ziguang Wu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Jianbang Tang
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
- *Correspondence: Jianbang Tang,
| |
Collapse
|
24
|
Davis CK, Bathula S, Hsu M, Morris-Blanco KC, Chokkalla AK, Jeong S, Choi J, Subramanian S, Park JS, Fabry Z, Vemuganti R. An Antioxidant and Anti-ER Stress Combo Therapy Decreases Inflammation, Secondary Brain Damage and Promotes Neurological Recovery following Traumatic Brain Injury in Mice. J Neurosci 2022; 42:6810-6821. [PMID: 35882557 PMCID: PMC9436019 DOI: 10.1523/jneurosci.0212-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The complex pathophysiology of post-traumatic brain damage might need a polypharmacological strategy with a combination of drugs that target multiple, synergistic mechanisms. We currently tested a combination of apocynin (curtails formation of reactive oxygen species), tert-butylhydroquinone (promotes disposal of reactive oxygen species), and salubrinal (prevents endoplasmic reticulum stress) following a moderate traumatic brain injury (TBI) induced by controlled cortical impact in adult mice. Adult mice of both sexes treated with the above tri-combo showed alleviated motor and cognitive deficits, attenuated secondary lesion volume, and decreased oxidative DNA damage. Concomitantly, tri-combo treatment regulated post-TBI inflammatory response by decreasing the infiltration of T cells and neutrophils and activation of microglia in both sexes. Interestingly, sexual dimorphism was seen in the case of TBI-induced microgliosis and infiltration of macrophages in the tri-combo-treated mice. Moreover, the tri-combo treatment prevented TBI-induced white matter volume loss in both sexes. The beneficial effects of tri-combo treatment were long-lasting and were also seen in aged mice. Thus, the present study supports the tri-combo treatment to curtail oxidative stress and endoplasmic reticulum stress concomitantly as a therapeutic strategy to improve TBI outcomes.SIGNIFICANCE STATEMENT Of the several mechanisms that contribute to TBI pathophysiology, oxidative stress, endoplasmic reticulum stress, and inflammation play a major role. The present study shows the therapeutic potential of a combination of apocynin, tert-butylhydroquinone, and salubrinal to prevent oxidative stress and endoplasmic reticulum stress and the interrelated inflammatory response in mice subjected to TBI. The beneficial effects of the tri-combo include alleviation of TBI-induced motor and cognitive deficits and lesion volume. The neuroprotective effects of the tri-combo are also linked to its ability to prevent TBI-induced white matter damage. Importantly, neuroprotection by the tri-combo treatment was observed to be not dependent on sex or age. Our data demonstrate that a polypharmacological strategy is efficacious after TBI.
Collapse
Affiliation(s)
| | | | - Martin Hsu
- Department of Pathology and Laboratory Medicine
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
| | | | - Anil K Chokkalla
- Department of Neurological Surgery
- Cellular and Molecular Pathology Graduate Program
| | - Soomin Jeong
- Department of Neurological Surgery
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
| | | | | | | | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine
- Cellular and Molecular Pathology Graduate Program
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
| | - Raghu Vemuganti
- Department of Neurological Surgery
- Cellular and Molecular Pathology Graduate Program
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
- William S. Middleton Veterans Administration Hospital, Madison, Wisconsin 53705
| |
Collapse
|
25
|
Li Q, Feng R, Chang Z, Liu X, Tang H, Bai Q. Hybrid biomimetic assembly enzymes based on ZIF-8 as “intracellular scavenger” mitigating neuronal damage caused by oxidative stress. Front Bioeng Biotechnol 2022; 10:991949. [PMID: 36118586 PMCID: PMC9471668 DOI: 10.3389/fbioe.2022.991949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Superoxide dismutase (SOD) was immobilized in zeolite imidazolate framework-8 (ZIF-8) through biomimetic mineralization method, namely SOD@ZIF-8, which was then used in the treatment of nerve damage by eliminating reactive oxygen species (ROS). A series of chemical characterization and enzymatic activity researches revealed that SOD was successfully embedded into ZIF-8 without apparent influence on the antioxidant activity of SOD. Cell level experiments showed that SOD@ZIF-8 could be effectively endocytosed by cells. The activity of SOD@ZIF-8 in scavenging ROS played a critical role in protecting SHSY-5Y cells from MPP+-induced cell model and relieving cell apoptosis, indicating that SOD@ZIF-8 could effectively rescue ROS-mediated neurological disorders though removing excessive ROS produced in vitro.
Collapse
Affiliation(s)
- Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixia Feng
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Chang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Liu
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaojun Liu, ; Hao Tang, ; Qian Bai,
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- *Correspondence: Xiaojun Liu, ; Hao Tang, ; Qian Bai,
| | - Qian Bai
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaojun Liu, ; Hao Tang, ; Qian Bai,
| |
Collapse
|
26
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Mesenchymal Stem Cell Therapy: A Potential Treatment Targeting Pathological Manifestations of Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4645021. [PMID: 35757508 PMCID: PMC9217616 DOI: 10.1155/2022/4645021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
Abstract
Traumatic brain injury (TBI) makes up a large proportion of acute brain injuries and is a major cause of disability globally. Its complicated etiology and pathogenesis mainly include primary injury and secondary injury over time, which can cause cognitive deficits, physical disabilities, mood changes, and impaired verbal communication. Recently, mesenchymal stromal cell- (MSC-) based therapy has shown significant therapeutic potential to target TBI-induced pathological processes, such as oxidative stress, neuroinflammation, apoptosis, and mitochondrial dysfunction. In this review, we discuss the main pathological processes of TBI and summarize the underlying mechanisms of MSC-based TBI treatment. We also discuss research progress in the field of MSC therapy in TBI as well as major shortcomings and the great potential shown.
Collapse
|
28
|
Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms23116086. [PMID: 35682768 PMCID: PMC9181489 DOI: 10.3390/ijms23116086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) signifies a major cause of death and disability. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Astrocytes and microglia, cells of the CNS, are considered the key players in initiating an inflammatory response after injury. Several evidence suggests that activation of astrocytes/microglia and ROS/LPO have the potential to cause more harmful effects in the pathological processes following traumatic brain injury (TBI). Previous studies have established that lupeol provides neuroprotection through modulation of inflammation, oxidative stress, and apoptosis in Aβ and LPS model and neurodegenerative disease. However, the effects of lupeol on apoptosis caused by inflammation and oxidative stress in TBI have not yet been investigated. Therefore, we explored the role of Lupeol on antiapoptosis, anti-inflammatory, and antioxidative stress and its potential mechanism following TBI. In these experiments, adult male mice were randomly divided into four groups: control, TBI, TBI+ Lupeol, and Sham group. Western blotting, immunofluorescence staining, and ROS/LPO assays were performed to investigate the role of lupeol against neuroinflammation, oxidative stress, and apoptosis. Lupeol treatment reversed TBI-induced behavioral and memory disturbances. Lupeol attenuated TBI-induced generation of reactive oxygen species/lipid per oxidation (ROS/LPO) and improved the antioxidant protein level, such as nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1) in the mouse brain. Similarly, our results indicated that lupeol treatment inhibited glial cell activation, p-NF-κB, and downstream signaling molecules, such as TNF-α, COX-2, and IL-1β, in the mouse cortex and hippocampus. Moreover, lupeol treatment also inhibited mitochondrial apoptotic signaling molecules, such as caspase-3, Bax, cytochrome-C, and reversed deregulated Bcl2 in TBI-treated mice. Overall, our study demonstrated that lupeol inhibits the activation of astrocytes/microglia and ROS/LPO that lead to oxidative stress, neuroinflammation, and apoptosis followed by TBI.
Collapse
|
29
|
Hiskens MI. Targets of neuroprotection and review of pharmacological interventions in traumatic brain injury. J Pharmacol Exp Ther 2022; 382:149-166. [DOI: 10.1124/jpet.121.001023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
|
30
|
Zhang J, Wang M, Zhao Y, Zhang Y, Gao Y, Zhang X, Yang G. Alpha-lipoic acid improved motor function in MPTP-induced Parkinsonian mice by reducing neuroinflammation in the nigral and spinal cord. Neurosci Lett 2022; 781:136669. [PMID: 35490905 DOI: 10.1016/j.neulet.2022.136669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative movement disorder, resulting in dopaminergic (DA) neuronal loss in the substantia nigra (SN) and injury of extranigral spinal cord neurons. This study was to investigate the effect of α-lipoic acid (ALA) on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) induced neuroinflammation in the substantia nigra and spinal cord as well as motor function of the mice with PD. After MPTP induced mouse model with PD, the effect of ALA on motor defects was evaluated by measurement of fore and hind limb step length and suspension test. The effects of ALA on microglia in the SN and spinal cord of MPTP-induced Parkinsonian mice were detected by immunofluorescence. The effect of ALA on the protein level nuclear factor-κB (NF-κB) in MPTP-induced mice with PD were examined by Western blot. RT-qPCR was used to detect the effect of ALA on gene expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) in the SN and spinal cord of MPTP-induced mice. The behavioral results showed that ALA treatment significantly increased the step length and suspension time of MPTP-induced mice (P < 0.05). Immunofluorescence results showed that ALA significantly reduced MPTP-induced activation of microglia both in the SN and spinal cord (P < 0.05). Western blot and RT-qPCR showed that ALA significantly reduced the expression of NF-κB, TNF-α and iNOS in the nigra and spinal cord (P < 0.05). ALA can play a neuroprotective role through alleviating the activation of microglia, reducing neuroinflammation in the nigra and extranigra of mice induced by MPTP and therefore improving their motor dysfunction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China
| | - Meng Wang
- Department of Epilepsy Specialty in Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China
| | - Yuan Zhao
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China
| | - Yidan Zhang
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China
| | - Ya Gao
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China
| | - Xiangjian Zhang
- Department of Epilepsy Specialty in Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China.
| | - Guofeng Yang
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China.
| |
Collapse
|
31
|
Targeting Nrf2-Mediated Oxidative Stress Response in Traumatic Brain Injury: Therapeutic Perspectives of Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1015791. [PMID: 35419162 PMCID: PMC9001080 DOI: 10.1155/2022/1015791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI), known as mechanical damage to the brain, impairs the normal function of the brain seriously. Its clinical symptoms manifest as behavioral impairment, cognitive decline, communication difficulties, etc. The pathophysiological mechanisms of TBI are complex and involve inflammatory response, oxidative stress, mitochondrial dysfunction, blood-brain barrier (BBB) disruption, and so on. Among them, oxidative stress, one of the important mechanisms, occurs at the beginning and accompanies the whole process of TBI. Most importantly, excessive oxidative stress causes BBB disruption and brings injury to lipids, proteins, and DNA, leading to the generation of lipid peroxidation, damage of nuclear and mitochondrial DNA, neuronal apoptosis, and neuroinflammatory response. Transcription factor NF-E2 related factor 2 (Nrf2), a basic leucine zipper protein, plays an important role in the regulation of antioxidant proteins, such as oxygenase-1(HO-1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), and glutathione peroxidase (GPx), to protect against oxidative stress, neuroinflammation, and neuronal apoptosis. Recently, emerging evidence indicated the knockout (KO) of Nrf2 aggravates the pathology of TBI, while the treatment of Nrf2 activators inhibits neuronal apoptosis and neuroinflammatory responses via reducing oxidative damage. Phytochemicals from fruits, vegetables, grains, and other medical herbs have been demonstrated to activate the Nrf2 signaling pathway and exert neuroprotective effects in TBI. In this review, we emphasized the contributive role of oxidative stress in the pathology of TBI and the protective mechanism of the Nrf2-mediated oxidative stress response for the treatment of TBI. In addition, we summarized the research advances of phytochemicals, including polyphenols, terpenoids, natural pigments, and otherwise, in the activation of Nrf2 signaling and their potential therapies for TBI. Although there is still limited clinical application evidence for these natural Nrf2 activators, we believe that the combinational use of phytochemicals such as Nrf2 activators with gene and stem cell therapy will be a promising therapeutic strategy for TBI in the future.
Collapse
|
32
|
Neuroprotective strategies for acute ischemic stroke: Targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
33
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
34
|
Calpain Inhibitors as Potential Therapeutic Modulators in Neurodegenerative Diseases. Neurochem Res 2022; 47:1125-1149. [PMID: 34982393 DOI: 10.1007/s11064-021-03521-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
It is considered a significant challenge to understand the neuronal cell death mechanisms with a suitable cure for neurodegenerative disorders in the coming years. Calpains are one of the best-considered "cysteine proteases activated" in brain disorders. Calpain is an important marker and mediator in the pathophysiology of neurodegeneration. Calpain activation being the essential neurodegenerative factor causing apoptotic machinery activation, it is crucial to develop reliable and effective approaches to prevent calpain-mediated apoptosis in degenerating neurons. It has been recently seen that the "inhibition of calpain activation" has appeared as a possible therapeutic target for managing neurodegenerative diseases. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was conducted. The present article reviews the basic pathobiology and role of selective calpain inhibitors used in various neurodegenerative diseases as a therapeutic target.
Collapse
|
35
|
Li W, Cao F, Takase H, Arai K, Lo EH, Lok J. Blood-Brain Barrier Mechanisms in Stroke and Trauma. Handb Exp Pharmacol 2022; 273:267-293. [PMID: 33580391 DOI: 10.1007/164_2020_426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Cao
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Josephine Lok
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
37
|
Babaee A, Vaghefi SHE, Dehghani Soltani S, Asadi Shekaari M, Shahrokhi N, Basiri M. Hippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats. Basic Clin Neurosci 2021; 12:177-186. [PMID: 34925714 PMCID: PMC8672670 DOI: 10.32598/bcn.12.2.986.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal death in several models of central nervous system injury. This study aimed to investigate the effect of melatonin on astrocyte activation induced by Traumatic Brain Injury (TBI) in rat hippocampus and dentate gyrus. Methods: Animals were randomly divided into 5 groups; Sham group, TBI group, vehicle group, and melatonin-treated TBI groups (TBI+Mel5, TBI+Mel20). Immunohistochemical method (GFAP marker) and TUNEL assay were used to evaluate astrocyte reactivity and neuronal death, respectively. Results: The results demonstrated that the astrocyte number was reduced significantly in melatonin-treated groups compared to the vehicle group. Additionally, based on TUNEL results, melatonin administration noticeably reduced the number of apoptotic neurons in the rat hippocampus and dentate gyrus. Conclusion: In general, our findings suggest that melatonin treatment after brain injury reduces astrocyte reactivity as well as neuronal cell apoptosis in rat hippocampus and dentate gyrus.
Collapse
Affiliation(s)
- Abdolreza Babaee
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Samereh Dehghani Soltani
- Department of Anatomy, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Majid Asadi Shekaari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
38
|
Antioxidant therapies in traumatic brain injury. Neurochem Int 2021; 152:105255. [PMID: 34915062 DOI: 10.1016/j.neuint.2021.105255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress plays a crucial role in traumatic brain injury (TBI) pathogenesis. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) formed in excess after TBI synergistically contribute to secondary brain damage together with lipid peroxidation products (reactive aldehydes) and inflammatory mediators. Furthermore, oxidative stress, endoplasmic reticulum stress and inflammation potentiate each other. Following TBI, excessive oxidative stress overloads the endogenous cellular antioxidant system leading to cell death. To combat oxidative stress, several antioxidant therapies were tested in preclinical animal models of TBI. These include free radical scavengers, activators of antioxidant systems, Inhibitors of free radical generating enzymes and antioxidant enzymes. Many of these therapies showed promising outcomes including reduced edema, blood-brain barrier (BBB) protection, smaller contusion volume, and less inflammation. In addition, many antioxidant therapies also promoted better sensory, motor, and cognitive functional recovery after TBI. Overall, preventing oxidative stress is a viable therapeutic option to minimize the secondary damage and to improve the quality of life after TBI.
Collapse
|
39
|
Possible involvement of female sex steroid hormones in intracellular signal transduction mediated by cytokines following traumatic brain injury. Brain Res Bull 2021; 178:108-119. [PMID: 34838851 DOI: 10.1016/j.brainresbull.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The aim of this study was to determine the anti-inflammatory effect of female sex hormones on the level of intracellular molecules of cytokine signaling pathway after diffuse traumatic brain injury (TBI) in ovariectomized rats. METHODS Female rats were divided into 10 groups: control, sham, TBI, Vehicle (oil), Vehicle E1 (33.3 µg/kg), E2 (1 mg / kg), P1 (1.7 mg/kg), P2 (8 mg / kg), E2 + P1. All drugs were injected 0.5 h after TBI. Brain edema and the brain levels of P-STAT-3, NFκB-P52, NFκB-P65, P-IκB, and SOCS-3 by immunohistochemistry measured at 24 h after TBI. RESULTS Increased brain edema after TBI was inhibited by different doses of estrogen, progesterone (P < 0.001), and E2 + P1 (P < 0.05). The brain levels of P-STAT-3, NFκB-P52, NFκB-P65, and p-IκBα that increased after TBI was decreased only by E2 (P < 0.05). E2 and E2 + P1 have increased the SOCS-3 level after TBI (P < 0.05). Also, there was a difference between the E2 with E1 and two progesterone doses (P < 0.05). So that in all cases, the effects of E2 were more significant than the other groups. The target cells for these effects of E2 were microglia and astrocytes. CONCLUSION The results indicate that one of the probable mechanism(s) of estrogen anti-inflammatory effect after TBI is either reduction of p-STAT-3, NFκB-P52, p-NFκB-P65, and p-IκBα or increase in SOCS-3 molecules involved in the signaling pathway of inflammatory cytokines.
Collapse
|
40
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
41
|
Rohland P, Schreyer K, Burges R, Fritz N, Hager MD, Schubert US. Liquid Chromatography Analysis of Reactive Oxoammonium Cations. Chromatographia 2021. [DOI: 10.1007/s10337-021-04084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThis study presents the first liquid chromatography method for the quantitative and qualitative analysis of highly reactive oxoammonium cations based on a simple derivatization reaction. Rapid 1,2-electrophilic addition reactions with olefins were used to transform these reactive species into analyzable derivates. Three model substances were chosen to represent each of the main application fields of oxoammonium cations and to demonstrate the versatility of the method. The measuring protocol was validated according to the ICH and USP guidelines. The method revealed an excellent linearity (R2 = 0.9980–0.9990) with a low limit of detection (0.16–0.14 mmol L−1) and a low limit of quantification (0.55–0.43 mmol L−1). The protocol was finally used to determine the oxoammonium cations in the presence of their corresponding radical, showing a robustness against impurity concentration of up to approx. 30%.
Collapse
|
42
|
Pandya JD, Leung LY, Hwang HM, Yang X, Deng-Bryant Y, Shear DA. Time-Course Evaluation of Brain Regional Mitochondrial Bioenergetics in a Pre-Clinical Model of Severe Penetrating Traumatic Brain Injury. J Neurotrauma 2021; 38:2323-2334. [PMID: 33544034 DOI: 10.1089/neu.2020.7379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial dysfunction is a pivotal target for neuroprotection strategies for traumatic brain injury (TBI). However, comprehensive time-course evaluations of mitochondrial dysfunction are lacking in the pre-clinical penetrating TBI (PTBI) model. The current study was designed to characterize temporal responses of mitochondrial dysfunction from 30 min to 2 weeks post-injury after PTBI. Anesthetized adult male rats were subjected to either PTBI or sham craniectomy (n = 6 animals per group × 7 time points). Animals were euthanized at 30 min, 3 h, 6 h, 24 h, 3 days, 7 days, and 14 days post-PTBI, and mitochondria were isolated from the ipsilateral hemisphere of brain regions near the injury core (i.e., frontal cortex [FC] and striatum [ST]) and a more distant region from the injury core (i.e., hippocampus [HIP]). Mitochondrial bioenergetics parameters were measured in real time using the high-throughput procedures of the Seahorse Flux Analyzer (Agilent Technologies, Santa Clara, CA). The post-injury time course of FC + ST showed a biphasic mitochondrial bioenergetics dysfunction response, indicative of reduced adenosine triphosphate synthesis rate and maximal respiratory capacity after PTBI. An initial phase of energy crisis was detected at 30 min (-42%; p < 0.05 vs. sham), which resolved to baseline levels between 3 and 6 h (non-significant vs. sham). This was followed by a second and more robust phase of bioenergetics dysregulation detected at 24 h that remained unresolved out to 14 days post-injury (-55% to -90%; p < 0.05 vs. sham). In contrast, HIP mitochondria showed a delayed onset of mitochondrial dysfunction at 7 days (-74%; p < 0.05 vs. sham) that remained evident out to 14 days (-51%; p < 0.05 vs. sham) post-PTBI. Collectively, PTBI-induced mitochondrial dysfunction responses were time and region specific, evident differentially at the injury core and distant region of PTBI. The current results provide the basis that mitochondrial dysfunction may be targeted differentially based on region specificity post-PTBI. Even more important, these results suggest that therapeutic interventions targeting mitochondrial dysfunction may require extended dosing regimens to achieve clinical efficacy after TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Lai Yee Leung
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Science (USUHS), Bethesda, Maryland, USA
| | - Hye M Hwang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Xiaofang Yang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Ying Deng-Bryant
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| |
Collapse
|
43
|
Schröter A, Mahler HC, Sayed NB, Koulov AV, Huwyler J, Jahn M. 4-Hydroxynonenal - A Toxic Leachable from Clinically Used Administration Materials. J Pharm Sci 2021; 110:3268-3275. [PMID: 34090902 DOI: 10.1016/j.xphs.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The migration of chemicals from processing materials into biopharmaceuticals can lead to various problems. Leachables from administration materials, with no possibility of further clearance, are of particular concern. Released chemicals can be toxic or react with formulation components, thereby impacting product safety. Therapeutic proteins, which are susceptible to chemical modifications, have highest risk to be affected. AIM The aim of this study was to identify a previously unknown leachable compound from clinical administration sets, which was present above the applied generic safety threshold. METHODS Extracts of commonly used clinical administration sets were analyzed using a recently established specific assay allowing the identification and quantification of the α,β-unsaturated aldehyde 4-hydroxynonenal (HNE) in a drug product surrogate solution. HNE was quantified after derivatization with 2,4-dinitrophenylhydrazine (DNPH) and liquid extraction of the formed hydrazone by LC-MRM analysis. RESULTS Potentially genotoxic HNE was a leachable compound from all tested administration sets, in parts exceeding safety thresholds for genotoxicants. The HNE-releasing polymer was identified as PVC. CONCLUSION Clinical administration sets should be, like manufacturing materials and container closure systems, in the focus of routine leachables studies. Manufacturers of clinical administration sets should show responsibility to avoid the presence of safety concerning chemicals, like HNE.
Collapse
Affiliation(s)
- Ariane Schröter
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, 4057 Basel, Switzerland; Division of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany; Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Hanns-Christian Mahler
- Division of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nadia Ben Sayed
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, 4057 Basel, Switzerland
| | - Atanas V Koulov
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, 4057 Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, 4057 Basel, Switzerland.
| |
Collapse
|
44
|
Shakkour Z, Issa H, Ismail H, Ashekyan O, Habashy KJ, Nasrallah L, Jourdi H, Hamade E, Mondello S, Sabra M, Zibara K, Kobeissy F. Drug Repurposing: Promises of Edaravone Target Drug in Traumatic Brain Injury. Curr Med Chem 2021; 28:2369-2391. [PMID: 32787753 DOI: 10.2174/0929867327666200812221022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Edaravone is a potent free-radical scavenger that has been in the market for more than 30 years. It was originally developed in Japan to treat strokes and has been used there since 2001. Aside from its anti-oxidative effects, edaravone demonstrated beneficial effects on proinflammatory responses, nitric oxide production, and apoptotic cell death. Interestingly, edaravone has shown neuroprotective effects in several animal models of diseases other than stroke. In particular, edaravone administration was found to be effective in halting amyotrophic lateral sclerosis (ALS) progression during the early stages. Accordingly, after its success in Phase III clinical studies, edaravone has been approved by the FDA as a treatment for ALS patients. Considering its promises in neurological disorders and its safety in patients, edaravone is a drug of interest that can be repurposed for traumatic brain injury (TBI) treatment. Drug repurposing is a novel approach in drug development that identifies drugs for purposes other than their original indication. This review presents the biochemical properties of edaravone along with its effects on several neurological disorders in the hope that it can be adopted for treating TBI patients.
Collapse
Affiliation(s)
- Zaynab Shakkour
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Hawraa Issa
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Helene Ismail
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Ohanes Ashekyan
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Karl John Habashy
- Faculty of Medicine, American, University of Beirut, Beirut, Lebanon
| | - Leila Nasrallah
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Hussam Jourdi
- Biology & Environmental Sciences Division at University of Balamand, Souk El Gharb, Aley, Lebanon
| | - Eva Hamade
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mirna Sabra
- Faculty of Medicine, Lebanese University, Neuroscience Research Center (NRC), Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Firas Kobeissy
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| |
Collapse
|
45
|
Huang TC, Luo L, Jiang SH, Chen C, He HY, Liang CF, Li WS, Wang H, Zhu L, Wang K, Guo Y. Targeting integrated stress response regulates microglial M1/M2 polarization and attenuates neuroinflammation following surgical brain injury in rat. Cell Signal 2021; 85:110048. [PMID: 34015470 DOI: 10.1016/j.cellsig.2021.110048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/01/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022]
Abstract
Integrated stress response (ISR) contributes to various neuropathological processes and acting as a therapy target in CNS injuries. However, the fundamental role of ISR in regulating microglial polarization remains largely unknown. Currently no proper pharmacological approaches to reverse microglia-driven neuroinflammation in surgical brain injury (SBI) have been reported. Here we found that inhibition of the crucial ISR effector, activating transcription factor 4 (ATF4), using the RNA interference suppressed the lipopolysaccharide (LPS)-stimulated microglial M1 polarization in vitro. Interestingly, counteracting ISR with a small-molecule ISR inhibitor (ISRIB) resulted in a significant microglial M1 towards M2 phenotype switching after LPS treatment. The potential underlying mechanisms may related to downregulate the intracellular NADPH oxidase 4 (NOX4) expression under the neuroinflammatory microenvironment. Notably, ISRIB ameliorated the infiltration of microglia and improved the neurobehavioral outcomes in the SBI rat model. Overall, our findings suggest that targeting ISR exerts a novel anti-inflammatory effect on microglia via regulating M1/M2 phenotype and may represent a potential therapeutic target to overcome neuroinflammation following SBI.
Collapse
Affiliation(s)
- Teng-Chao Huang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China; East China Institute of Digital Medical Engineering, Shangrao 334000, PR China
| | - Lun Luo
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Shi-Hai Jiang
- Department of Joint Replacement and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China; Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany
| | - Chuan Chen
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Hai-Yong He
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Chao-Feng Liang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Wen-Sheng Li
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Hui Wang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Lei Zhu
- Department of Burns, Plastic & Reconstructive Surgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Kun Wang
- Department of Joint Replacement and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China.
| | - Ying Guo
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China.
| |
Collapse
|
46
|
Postolache TT, Wadhawan A, Can A, Lowry CA, Woodbury M, Makkar H, Hoisington AJ, Scott AJ, Potocki E, Benros ME, Stiller JW. Inflammation in Traumatic Brain Injury. J Alzheimers Dis 2021; 74:1-28. [PMID: 32176646 DOI: 10.3233/jad-191150] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an increasing evidence that inflammation contributes to clinical and functional outcomes in traumatic brain injury (TBI). Many successful target-engaging, lesion-reducing, symptom-alleviating, and function-improving interventions in animal models of TBI have failed to show efficacy in clinical trials. Timing and immunological context are paramount for the direction, quality, and intensity of immune responses to TBI and the resulting neuroanatomical, clinical, and functional course. We present components of the immune system implicated in TBI, potential immune targets, and target-engaging interventions. The main objective of our article is to point toward modifiable molecular and cellular mechanisms that may modify the outcomes in TBI, and contribute to increasing the translational value of interventions that have been identified in animal models of TBI.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Saint Elizabeths Hospital, Department of Psychiatry, Washington, DC, USA
| | - Adem Can
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Margaret Woodbury
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael E Benros
- Copenhagen Research Center for Mental Health-CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland State Athletic Commission, Baltimore, MD, USA.,Saint Elizabeths Hospital, Neurology Consultation Services, Washington, DC, USA
| |
Collapse
|
47
|
Chen X, Gao C, Yan Y, Cheng Z, Chen G, Rui T, Luo C, Gao Y, Wang T, Chen X, Tao L. Ruxolitinib exerts neuroprotection via repressing ferroptosis in a mouse model of traumatic brain injury. Exp Neurol 2021; 342:113762. [PMID: 33991524 DOI: 10.1016/j.expneurol.2021.113762] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Various forms of cells death are involved in the pathological process of TBI, without exception to ferroptosis, which is mainly triggered by iron-dependent lipid peroxidation. Although there have been studies on ferroptosis and TBI, the effect of ruxolitinib (Ruxo), one type of FDA approved drugs for treating myelofibrosis, on the process of ferroptosis post-TBI is remained non-elucidated. Therefore, using a controlled cortical impact device to establish the mouse TBI model, we examined the effect of Ruxo on TBI-induced ferroptosis, in which the inhibitor of ferroptosis, Ferrostatin-1 (Fer-1) was used as a positive control. Moreover, we also respectively explored the effects of these two interventions on neurological deficits caused by TBI. We firstly examined the expression patterns of ferroptosis-related markers at protein level at different time points after TBI. And based on the expression changes of these markers, we chose 12 h post-TBI to prove the effect of Ruxo on ferroptosis. Importantly, we found the intensely inhibitory effect of Ruxo on ferroptosis, which is in parallel with the results obtained after Fer-1-treatment. In addition, these two treatments both alleviated the content of brain water and degree of neurodegeneration in the acute phase of TBI. Finally, we further confirmed the neuroprotective effect of Ruxo or Fer-1 via the wire-grip test, Morris water maze and open field test, respectively. Thereafter, the lesion volume and iron deposition were also measured to certificate their effects on the long-term outcomes of TBI. Our results ultimately demonstrate that inhibiting ferroptosis exerts neuroprotection, and this is another neuroprotective mechanism of Ruxo on TBI.
Collapse
Affiliation(s)
- Xueshi Chen
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Cheng Gao
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Ya'nan Yan
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Zhiqi Cheng
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Guang Chen
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Tongyu Rui
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Yuan Gao
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Tao Wang
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Xiping Chen
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China.
| |
Collapse
|
48
|
Kim N, Wang B, Koikawa K, Nezu Y, Qiu C, Lee TH, Zhou XZ. Inhibition of death-associated protein kinase 1 attenuates cis P-tau and neurodegeneration in traumatic brain injury. Prog Neurobiol 2021; 203:102072. [PMID: 33979671 DOI: 10.1016/j.pneurobio.2021.102072] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/05/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of mortality and disability in young people and may lead to the development of progressive neurodegeneration, such as that observed in chronic traumatic encephalopathy. We have recently found that the conformation-specific cis phosphorylated form of tau (cis P-tau) is a major early driver of neurodegeneration after TBI. However, not much is known about how cis P-tau is regulated in TBI. In this study, we demonstrated a novel critical role of death-associated protein kinase 1 (DAPK1) in regulating cis P-tau induction after TBI. We found that DAPK1 is significantly upregulated in mouse brains after TBI and subsequently promotes cis P-tau induction. Genetic deletion of DAPK1 in mice not only significantly decreases cis P-tau expression, but also effectively attenuates neuropathology development and rescues behavioral impairments after TBI. Mechanistically, DAPK1-mediated cis P-tau induction is regulated by the phosphorylation of Pin1 at Ser71, a unique prolyl isomerase known to control the conformational status of P-tau. Furthermore, pharmacological suppression of DAPK1 kinase activity dramatically decreases the levels of Pin1 phosphorylated at Ser71 as well as cis P-tau after neuronal stress. Thus, DAPK1 is a novel regulator of TBI that, in combination with its downstream targets, has a major impact on the development and/or outcome of TBI, and targeting DAPK1 might offer a potential therapeutic impact on TBI-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Nami Kim
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,02215, USA
| | - Bin Wang
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Kazuhiro Koikawa
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yutaka Nezu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Chenxi Qiu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Tae Ho Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,02215, USA.
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
49
|
Tarudji AW, Gee CC, Romereim SM, Convertine AJ, Kievit FM. Antioxidant thioether core-crosslinked nanoparticles prevent the bilateral spread of secondary injury to protect spatial learning and memory in a controlled cortical impact mouse model of traumatic brain injury. Biomaterials 2021; 272:120766. [PMID: 33819812 DOI: 10.1016/j.biomaterials.2021.120766] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 01/19/2023]
Abstract
The secondary phase of traumatic brain injury (TBI) is partly caused by the release of excess reactive oxygen species (ROS) from the primary injury. However, there are currently no therapies that have been shown to reduce the secondary spread of injury beyond the primary insult. Nanoparticles offer the ability to rapidly accumulate and be retained in injured brain for improved target engagement. Here, we utilized systemically administered antioxidant thioether core-cross-linked nanoparticles (NP1) that scavenge and inactivate ROS to reduce this secondary spread of injury in a mild controlled cortical impact (CCI) mouse model of TBI. We found that NP1 treatment protected CCI mice from injury induced learning and memory deficits observed in the Morris water maze (MWM) test at 1-month post-CCI. This protection was likely a result of NP1-mediated reduction in oxidative stress in the ipsilateral hemisphere as determined by immunofluorescence imaging of markers of oxidative stress and the spread of neuroinflammation into the contralateral hippocampus as determined by immunofluorescence imaging of activated microglia and neuron-astrocyte-microglia triad formation. These data suggest NP1-mediated reduction in post-traumatic oxidative stress correlates with the reduction in the spread of injury to the contralateral hippocampus to protect spatial memory and learning in CCI mice. Therefore, these materials may offer an improved treatment strategy to reduce the secondary spread of TBI.
Collapse
Affiliation(s)
- Aria W Tarudji
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Connor C Gee
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Sarah M Romereim
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Anthony J Convertine
- Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, Rolla, MO, 65409, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA.
| |
Collapse
|
50
|
Ercan S, Aktaş A. Neuroprotective Effects of Sildenafil on Traumatic Brain Injury in an Experimental Rat Model. INDIAN JOURNAL OF NEUROTRAUMA 2021. [DOI: 10.1055/s-0041-1724148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Objective Not only primary injuries, secondary injuries such as posttraumatic biochemical cascades, ischemia, and hypoxia also affect the morbidity and mortality of traumatic brain injury (TBI). Sildenafil released the vasodilatation by relaxing the smooth muscle of the systemic artery and vein. Also, the effects of sildenafil are evidenced in multiple sclerosis, Alzheimer's disease, and memory loss as a part of experimental studies. Sildenafil decreases oxidative stress by increasing the cGMP level. We aimed to examine the protective effects of sildenafil on TBI with histopathological and biochemical parameters.
Method 21 Sprague–Dawley rats were separated into three groups (n = 7). “The weight drop injury model,” which was described by Marmou, was used for the head injury. Group 1: nontraumatic sham group, Group 2: nontreated TBI group, Group 3: sildenafil (100 mg/kg) treated TBI group. The whole brain and serum were collected for histopathological and biochemical study. The histopathological sections were examined under a light microscope.
Results On comparison of total antioxidant status (TAS), total oxidant status (TOS), nitric oxide (NO), and plasma nitrite/nitrate (PNOx) between groups, NO level was significantly high in group 3 (p = 0.013). Even though the TAS level was significantly high in group 3 (p = 0.02), there were no significant differences in TOS level in groups (p = 0.225). Disappearing Nissle granules occurred in a pyknotic situation in the cell nucleus, and acidophilic staining in neuron cells, which describe the neuron degeneration observed in the trauma group. The neuron degeneration markers were not seen in the sildenafil-treated trauma group.
Conclusion Our study has shown that sildenafil decreases the oxygen radicals and affects the recovery of experimental TBI in rats.
Collapse
Affiliation(s)
- Serdar Ercan
- Department of Neurosurgery, Eskisehir City Hospital, Eskisehir, Turkey
| | - Ayfer Aktaş
- Dicle University, Medical Faculty, Department of Histology & Embryology, Diyarbakir, Diyarbakir, Turkey
| |
Collapse
|