1
|
Yang X, Wang B, Jiang K, Xu K, Zhong C, Liu M, Wang L. The combined analysis of transcriptomics and metabolomics reveals the mechanisms by which dietary quercetin regulates growth and immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109579. [PMID: 38648996 DOI: 10.1016/j.fsi.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
As a potent antioxidant, the flavonoid compound quercetin (QUE) has been widely used in the farming of aquatic animals. However, there are fewer reports of the beneficial effects, especially in improving immunity of Penaeus vannamei by QUE. The aim of this study was to investigate the effects of dietary QUE on growth, apoptosis, antioxidant and immunity of P. vannamei. It also explored the potential mechanisms of QUE in improving the growth and immunity of P. vannamei. P. vannamei were fed diets with QUE for 60 days. The results revealed that QUE (0.5 or 1.0 g/kg) ameliorated the growth, and the expressions of genes related to apoptosis, antioxidant, and immunity. The differentially expressed genes (DEGs) and differential metabolites (DMs) obtained through transcriptomics and metabolomics, respectively, enriched in pathways related to nutritional metabolism such as lipid metabolism, amino acid metabolism, and carbohydrate metabolism. After QUE addition, especially at 0.5 g/kg, DEGs were enriched into the functions of response to stimulus and antioxidant activity, and the pathways of HIF-1 signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and FoxO signaling pathway. In conclusion, dietary QUE can ameliorate growth, apoptosis, antioxidant and immunity of P. vannamei, the appropriate addition amount was 0.5 g/kg rather than 1.0 g/kg. Regulations of QUE on nutrient metabolism and immune-related pathways, and bioactive metabolites, were important factors for improving the aforementioned abilities in P. vannamei.
Collapse
Affiliation(s)
- Xuanyi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Baojie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Keyong Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kefeng Xu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Chen Zhong
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Mei Liu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China.
| | - Lei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Yao J, Peng T, Shao C, Liu Y, Lin H, Liu Y. The Antioxidant Action of Astragali radix: Its Active Components and Molecular Basis. Molecules 2024; 29:1691. [PMID: 38675511 PMCID: PMC11052376 DOI: 10.3390/molecules29081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.
Collapse
Affiliation(s)
- Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Ting Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Changxin Shao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yuanyuan Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| | - Huanhuan Lin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yongqi Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| |
Collapse
|
3
|
Abdella FI, Toumi A, Boudriga S, Alanazi TY, Alshamari AK, Alrashdi AA, Hamden K. Antiobesity and antidiabetes effects of Cyperus rotundus rhizomes presenting protein tyrosine phosphatase, dipeptidyl peptidase 4, metabolic enzymes, stress oxidant and inflammation inhibitory potential. Heliyon 2024; 10:e27598. [PMID: 38486768 PMCID: PMC10937842 DOI: 10.1016/j.heliyon.2024.e27598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Diabetes is a significant global health concern that increases the vulnerability to various chronic illnesses. In view of this issue, the current research aimed to examine the effects of administering an extract derived from the tubers of Cyperus rotundus L (CrE) on obesity, type 1 diabetes, and liver-kidney toxicity. Through the utilization of HPLC-DAD analysis, it was discovered that the extract contained several components, including quercetin (47.8%), luteolin glucoside (17%), luteolin (7.56%), apigenin-7-glucoside (6.29%), naringinin (4.52%), and seven others. In vitro experiments they have demonstrated that CrE effectively inhibited key digestive enzymes associated with obesity and type 2 diabetes, such as DPP-4, PTP1B, lipase, and α-amylase, as evidenced by their respective IC50 values are about 23, 51,83, and 67 μg/ml respectively. Furthermore, when diabetic rats were administered CrE, the activity of pancreatic enzymes linked to inflammation, namely 5-lipoxygenase (5-LO), hyaluronidase (HAase), and myeloperoxidase (MPO), was significantly suppressed by 48, 41, 75, and 47%, respectively. Moreover, CrE exhibited protective effects on pancreatic β-cells by inhibiting the formation of thiobarbituric acid reactive substances (TBARS) by 65% and the induction of superoxide Dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities by 62, 108, and 112% respectively as compared to diabetic untreated rat. Additionally, CrE significantly inhibited the activities of intestinal, pancreatic, and serum lipase and α-amylase activities. In diabetic rats, CrE administration suppressed glycogen phosphorylase (GP) stimulated glycogen synthase (GS) activities by 45 and 30%; and this increased liver glycogen content by 45%. Furthermore, CrE modulated key hepatic enzymes involved in carbohydrate metabolism, including hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), glucose-6-phosphatase (G6P), and fructose-1,6-bisphosphatase (FBP). Notably, the average food and water intake (AFI and AWI) of diabetic rats treated with CrE was reduced by 15 and 16% respectively as compared to those without any treatment. Therefore, this study demonstrated the effectiveness of Cyperus rotundus tubers in preventing and treating obesity and diabetes.
Collapse
Affiliation(s)
- Faiza I.A. Abdella
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | - Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir, 5019, Tunisia
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir, 5019, Tunisia
| | - Tahani Y.A. Alanazi
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | | | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
4
|
Chemical synthesis of oligosaccharides and their application in new drug research. Eur J Med Chem 2023; 249:115164. [PMID: 36758451 DOI: 10.1016/j.ejmech.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Oligosaccharides are the ubiquitous molecules of life. In order to translate human bioglycosylation into clinical applications, homogeneous samples of oligosaccharides and glycoconjugates can be obtained by chemical, enzymatic or other biological methods for systematic studies. However, the structural complexity and diversity of glycans and their conjugates present a major challenge for the synthesis of such molecules. This review summarizes the chemical synthesis methods of oligosaccharides, the application of oligosaccharides in the field of medicinal chemistry according to their related biological activities, and shows the great prospect of oligosaccharides in the field of pharmaceutical chemistry.
Collapse
|
5
|
Gan J, Guo L, Zhang X, Yu Q, Yang Q, Zhang Y, Zeng W, Jiang X, Guo M. Anti-inflammatory therapy of atherosclerosis: focusing on IKKβ. J Inflamm (Lond) 2023; 20:8. [PMID: 36823573 PMCID: PMC9951513 DOI: 10.1186/s12950-023-00330-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic low-grade inflammation has been identified as a major contributor in the development of atherosclerosis. Nuclear Factor-κappa B (NF-κB) is a critical transcription factors family of the inflammatory pathway. As a major catalytic subunit of the IKK complex, IκB kinase β (IKKβ) drives canonical activation of NF-κB and is implicated in the link between inflammation and atherosclerosis, making it a promising therapeutic target. Various natural product derivatives, extracts, and synthetic, show anti-atherogenic potential by inhibiting IKKβ-mediated inflammation. This review focuses on the latest knowledge and current research landscape surrounding anti-atherosclerotic drugs that inhibit IKKβ. There will be more opportunities to fully understand the complex functions of IKKβ in atherogenesis and develop new effective therapies in the future.
Collapse
Affiliation(s)
- Jiali Gan
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Guo
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qun Yu
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuyue Yang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- grid.459559.10000 0004 9344 2915Oncology department, Ganzhou People’s Hospital, Ganzhou, Jiangxi China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
6
|
Schmitt F, Eckert GP. Caenorhabditis elegans as a Model for the Effects of Phytochemicals on Mitochondria and Aging. Biomolecules 2022; 12:1550. [PMID: 36358900 PMCID: PMC9687847 DOI: 10.3390/biom12111550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
The study of aging is an important topic in contemporary research. Considering the demographic changes and the resulting shifts towards an older population, it is of great interest to preserve youthful physiology in old age. For this endeavor, it is necessary to choose an appropriate model. One such model is the nematode Caenorhabditis elegans (C. elegans), which has a long tradition in aging research. In this review article, we explore the advantages of using the nematode model in aging research, focusing on bioenergetics and the study of secondary plant metabolites that have interesting implications during this process. In the first section, we review the situation of aging research today. Conventional theories and hypotheses about the ongoing aging process will be presented and briefly explained. The second section focuses on the nematode C. elegans and its utility in aging and nutrition research. Two useful genome editing methods for monitoring genetic interactions (RNAi and CRISPR/Cas9) are presented. Due to the mitochondria's influence on aging, we also introduce the possibility of observing bioenergetics and respiratory phenomena in C. elegans. We then report on mitochondrial conservation between vertebrates and invertebrates. Here, we explain why the nematode is a suitable model for the study of mitochondrial aging. In the fourth section, we focus on phytochemicals and their applications in contemporary nutritional science, with an emphasis on aging research. As an emerging field of science, we conclude this review in the fifth section with several studies focusing on mitochondrial research and the effects of phytochemicals such as polyphenols. In summary, the nematode C. elegans is a suitable model for aging research that incorporates the mitochondrial theory of aging. Its living conditions in the laboratory are optimal for feeding studies, thus enabling bioenergetics to be observed during the aging process.
Collapse
Affiliation(s)
| | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Science, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
7
|
Fermentation of Vaccinium floribundum Berries with Lactiplantibacillus plantarum Reduces Oxidative Stress in Endothelial Cells and Modulates Macrophages Function. Nutrients 2022; 14:nu14081560. [PMID: 35458122 PMCID: PMC9027973 DOI: 10.3390/nu14081560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that high consumption of natural antioxidants promotes health by reducing oxidative stress and, thus, the risk of developing cardiovascular diseases. Similarly, fermentation of natural compounds with lactic acid bacteria (LAB), such as Lactiplantibacillus plantarum, enhances their beneficial properties as regulators of the immune, digestive, and cardiovascular system. We investigated the effects of fermentation with Lactiplantibacillus plantarum on the antioxidant and immunomodulatory effects of Pushgay berries (Vaccinium floribundum, Ericaceae family) in human umbilical vein endothelial cells (HUVECs) and macrophage cell line RAW264.7. Polyphenol content was assayed by Folin–Ciocalteu and HPLC-MS/MS analysis. The effects of berries solutions on cell viability or proliferation were assessed by WST8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt and Lactate dehydrogenase (LDH) release, Trypan blue exclusion test, and Alamar blue assay. Antioxidant activity was evaluated by a cell-based chemiluminescent probe for the detection of intracellular H2O2 production in HUVECs. Heme oxygenase-1 (HO-1) expression levels were investigated by RT-qPCR. Glutathione reductase (GR), glutathione peroxidase (Gpx), superoxide dismutase (SOD), and catalase (CAT) activities, as markers of intracellular antioxidant defense, were evaluated by spectrophotometric analysis. The immunomodulatory activity was examined in RAW 264.7 by quantification of inducible nitric oxide synthase (iNOS) and Tumor Necrosis Factor—alpha (TNFα) by RT-qPCR. Data showed that fermentation of Pushgay berries (i) enhances the content of quercetin aglycone, and (ii) increases their intracellular antioxidant activity, as indicated by the reduction in H2O2-induced cell death and the decrease in H2O2-induced HO-1 gene expression in HUVECs treated for 24 h with fermented berries solution (10 µg/mL). Moreover, treatment with Pushgay berries for 72 h (10 µg/mL) promotes cells growth in RAW 264.7, and only fermented Pushgay berries increase the expression of iNOS in the same cell line. Taken together, our results show that LAB fermentation of Pushgay berries enhances their antioxidant and immunomodulatory properties.
Collapse
|
8
|
Pawar A, Russo M, Rani I, Goswami K, Russo GL, Pal A. A critical evaluation of risk to reward ratio of quercetin supplementation for COVID-19 and associated comorbid conditions. Phytother Res 2022; 36:2394-2415. [PMID: 35393674 PMCID: PMC9111035 DOI: 10.1002/ptr.7461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
The interim results of the large, multinational trials on coronavirus disease 2019 (COVID‐19) using a combination of antiviral drugs appear to have little to no effect on the 28‐day mortality or the in‐hospital course. Therefore, there is a still vivid interest in finding alternate re‐purposed drugs and nutrition supplements, which can halt or slow the disease severity. We review here the multiple preclinical studies, partially supported by clinical evidence showing the quercetin's possible therapeutic/prophylaxis efficacy against severe acute respiratory syndrome coronavirus (SARS‐CoV) as well as comorbidities like chronic obstructive pulmonary disease (COPD), diabetes mellitus, obesity, coagulopathy, and hypertension. Currently, 14 interventional clinical trials are underway assessing the efficacy of quercetin along with other antiviral drugs/nutritional supplements as prophylaxis/treatment option against COVID‐19. The present review is tempting to suggest that, based on circumstantial scientific evidence and preliminary clinical data, the flavonoid quercetin can ameliorate COVID‐19 infection and symptoms acting in concert on two parallel and independent paths: inhibiting key factors responsible for SARS‐CoV‐2 infections and mitigating the clinical manifestations of the disease in patients with comorbid conditions. Despite the broad therapeutic properties of quercetin, further high power randomized clinical trials are needed to firmly establish its clinical efficacy against COVID‐19.
Collapse
Affiliation(s)
- Anil Pawar
- Department of Zoology, DAV University, Jalandhar, India
| | - Maria Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Ambala, India
| | | | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Amit Pal
- Department of Biochemistry, AIIMS, Kalyani, India
| |
Collapse
|
9
|
Quercetin Relieves the Excised Great Saphenous Vein Oxidative Damage and Inflammatory Reaction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6251559. [PMID: 35003306 PMCID: PMC8741364 DOI: 10.1155/2021/6251559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022]
Abstract
Objective The patency and quality of transplanted great saphenous vein (GSV) can seriously influence the physical state and life quality of patients who accepted the coronary artery bypass grafting (CABG). Quercetin is known for antioxidant, antithrombotic, anti-inflammatory, and antitumor properties. In this study, we examined the protection of quercetin to the great saphenous vein from oxidative and inflammatory damage. Methods The GSVs were collected from 15 patients undergoing CABG and cultured. Treated the veins by H2O2 and detected the NO, SOD, and MDA content by the relevant kits to explore the quercetin protection against oxidative damage. Then, for another group of GSVs, sheared them and detected the inflammatory cytokines, such as IL-6, TNFα, CCL20, PCNA, and VEGF. Collect the veins for H&E staining and PCNA and VEGF immunofluorescent staining. Results Pretreatment by quercetin reduced the production of NO and MDA induced by H2O2, and increased SOD activity. Quercetin also supressed the mRNA expressions of IL-6, TNFα after mechanical damage and had no influence on CCL20 and VEGF. Consistent with the lower expression of PCNA treated by quercetin, the vein intima was thinner. Conclusion These results demonstrated that quercetin protects GSVs by reducing the oxidative damage and inflammatory response and also suppresses the abnormal thickening of venous endothelium by inhibiting cell proliferation. It reminded that, to some extent, quercetin has the potential to release the great saphenous vein graft damage.
Collapse
|
10
|
Alotaibi BS, Ijaz M, Buabeid M, Kharaba ZJ, Yaseen HS, Murtaza G. Therapeutic Effects and Safe Uses of Plant-Derived Polyphenolic Compounds in Cardiovascular Diseases: A Review. Drug Des Devel Ther 2021; 15:4713-4732. [PMID: 34848944 PMCID: PMC8619826 DOI: 10.2147/dddt.s327238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022] Open
Abstract
Polyphenols have long been recognized as health-promoting entities, including beneficial effects on cardiovascular disease, but their reputation has been boosted recently following a number of encouraging clinical studies in multiple chronic pathologies, that seem to validate efficacy. Health benefits of polyphenols have been linked to their well-established powerful antioxidant activity. This review aims to provide comprehensive and up-to-date knowledge on the current therapeutic status of polyphenols having sufficient heed towards the treatment of cardiovascular diseases. Furthermore, data about the safety profile of highly efficacious polyphenols has also been investigated to further enhance their role in cardiac abnormalities. Evidence is presented to support the action of phenolic derivatives against cardiovascular pathologies by following receptors and signaling pathways which ultimately cause changes in endogenous antioxidant, antiplatelet, vasodilatory, and anti-inflammatory activities. In addition, in vitro antioxidant and pre-clinical and clinical experiments on anti-inflammatory as well as immunomodulatory attributes of polyphenols have revealed their role as cardioprotective agents. However, an obvious shortage of in vivo studies related to dose selection and toxicity of polyphenols makes these compounds a suitable target for clinical investigations. Further studies are needed for the development of safe and potent herbal products against cardiovascular diseases. The novelty of this review is to provide comprehensive knowledge on polyphenols safety and their health claims. It will help researchers to identify those moieties which likely exert protective and therapeutic effects towards cardiovascular diseases.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Manal Buabeid
- Medical and Bio-Allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hafiza Sidra Yaseen
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
11
|
Yao J, Wang Z, Wang R, Wang Y, Xu J, He X. Anti-proliferative and anti-inflammatory prenylated isoflavones and coumaronochromones from the fruits of Ficus altissima. Bioorg Chem 2021; 64:2893-900. [PMID: 34038794 DOI: 10.1021/acs.jafc.6b00227] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Ficus altissima, an evergreen arbor belonging to the Moraceae family, is mainly cultivated in the tropics and subtropics of South and Southeast Asia with the characteristic of exuberant vitality and luxuriant foliage. In this article, four new prenylated isoflavones (1-4), along with ten previously described isoflavones (5-14) and two known prenylated coumaronochromones (15 and 16) were firstly obtained from the fruits of F. altissima. Their structures were identified by various spectroscopic techniques including specific optical rotation, HR-ESI-MS and NMR. The isolated products were evaluated for their anti-proliferative activities against three human tumor cell lines (HepG2, MCF-7 and MDA-MB-231) through MTT assay. Compounds 2, 3 and 16 exhibited obvious anti-proliferative activities against MDA-MB-231 cell line and compounds 3, 13 and 16 showed effective cytotoxic effects on HepG2 cell line in a concentration-dependent manner, as verified by the colony formation assay, cell and nucleus morphological assessment and apoptosis assay. Meanwhile, compounds 5 and 12 exhibited significant inhibition activities on NO production in LPS-stimulated RAW 264.7 cell line compared with positive control indometacin. The phytochemical investigation of the fruits of F. altissima in this study could provide the evidence for the discovery of lead compounds.
Collapse
Affiliation(s)
- Jiaming Yao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhe Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ru Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| |
Collapse
|
12
|
Giménez-Bastida JA, González-Sarrías A, Laparra-Llopis JM, Schneider C, Espín JC. Targeting Mammalian 5-Lipoxygenase by Dietary Phenolics as an Anti-Inflammatory Mechanism: A Systematic Review. Int J Mol Sci 2021; 22:7937. [PMID: 34360703 PMCID: PMC8348464 DOI: 10.3390/ijms22157937] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action have mostly been associated with the modulation of pro-inflammatory cytokines (TNF-α, IL-1β), prostaglandins (PGE2), and the interaction with NF-κB and cyclooxygenase 2 (COX-2) pathways. Much less is known about the 5-lipoxygenase (5-LOX) pathway as a target of dietary (poly)phenols. This systematic review aimed to summarize how dietary (poly)phenols target the 5-LOX pathway in preclinical and human studies. The number of studies identified is low (5, 24, and 127 human, animal, and cellular studies, respectively) compared to the thousands of studies focusing on the COX-2 pathway. Some (poly)phenolics such as caffeic acid, hydroxytyrosol, resveratrol, curcumin, nordihydroguaiaretic acid (NDGA), and quercetin have been reported to reduce the formation of 5-LOX eicosanoids in vitro. However, the in vivo evidence is inconclusive because of the low number of studies and the difficulty of attributing effects to (poly)phenols. Therefore, increasing the number of studies targeting the 5-LOX pathway would largely expand our knowledge on the anti-inflammatory mechanisms of (poly)phenols.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| | - José Moisés Laparra-Llopis
- Group of Molecular Immunonutrition in Cancer, Madrid Institute for Advanced Studies in Food (IMDEA-Food), 28049 Madrid, Spain;
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN 37232, USA;
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| |
Collapse
|
13
|
Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity. Carbohydr Polym 2021; 262:117972. [PMID: 33838788 DOI: 10.1016/j.carbpol.2021.117972] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
Abstract
In order to improve the anti-inflammatory activity of chitosan oligosaccharide (COS), chitosan oligosaccharide graft citronellol derivatives (COS-g-Cit1-3) were successfully synthesized via grafting citronellol (Cit) onto COS backbone. The degrees of substitution (DS) of COS-g-Cit1-3 were 0.165, 0.199 and 0.182, respectively. The structure of COS-g-Cit1-3 was confirmed by UV-vis, FT-IR, 1H NMR and elemental analysis. The in vivo anti-inflammatory activity evaluation results displayed that COS-g-Cit1-3 drastically reduced the paw swelling, and the oedema inhibitions were 22.58 %, 29.03 % and 25.81 %, respectively. The results indicated that the anti-inflammatory effects of COS-g-Cit1-3 were significantly higher than COS and COS-g-Cit2 exhibited the highest anti-inflammatory ability. The results also presented that COS-g-Cit1-3 reduced the expression levels of TNF-α by promoting the secretion of IL-4 and IL-10. Moreover, western blot analysis data proved that COS-g-Cit1-3 inactivated the NF-κB signaling pathway via inhibiting the phosphorylation of p65, IKBα and IKKβ.
Collapse
|
14
|
Hosseini A, Razavi BM, Banach M, Hosseinzadeh H. Quercetin and metabolic syndrome: A review. Phytother Res 2021; 35:5352-5364. [PMID: 34101925 DOI: 10.1002/ptr.7144] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/27/2020] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Metabolic syndrome (MetS) is a complex of diseases that lead to mortality due to the development of cardiovascular problems. Quercetin, as an important flavonoid, has various properties such as decreasing blood pressure, anti-hyperlipidemia, anti-hyperglycemia, anti-oxidant, antiviral, anticancer, anti-inflammatory, anti-microbial, neuroprotective, and cardio-protective effects. In this review article, we collected original articles from different sources such as Google Scholar, Medline, Scopus, and Pubmed, which is related to the effect of quercetin on the improvement of the signs of MetS, including elevated glucose level, hyperlipidemia, obesity, and blood pressure. According to these data, quercetin may also have a role in the management of metabolic disorders via different mechanisms such as increasing adiponectin, decreasing leptin, anti-oxidant activity, reduction of insulin resistance, the elevation of insulin level, and blocking of calcium channel. We have attempted to make some recommendations on the quercetin application in patients. However, it needs to do further clinical trials and more investigations to show the real clinical value of quercetin on metabolic syndrome.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Fledderus J, Vanchin B, Rots MG, Krenning G. The Endothelium as a Target for Anti-Atherogenic Therapy: A Focus on the Epigenetic Enzymes EZH2 and SIRT1. J Pers Med 2021; 11:jpm11020103. [PMID: 33562658 PMCID: PMC7915331 DOI: 10.3390/jpm11020103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Endothelial cell inflammatory activation and dysfunction are key events in the pathophysiology of atherosclerosis, and are associated with an elevated risk of cardiovascular events. Yet, therapies specifically targeting the endothelium and atherosclerosis are lacking. Here, we review how endothelial behaviour affects atherogenesis and pose that the endothelium may be an efficacious cellular target for antiatherogenic therapies. We discuss the contribution of endothelial inflammatory activation and dysfunction to atherogenesis and postulate that the dysregulation of specific epigenetic enzymes, EZH2 and SIRT1, aggravate endothelial dysfunction in a pleiotropic fashion. Moreover, we propose that commercially available drugs are available to clinically explore this postulation.
Collapse
Affiliation(s)
- Jolien Fledderus
- Medical Biology Section, Laboratory for Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (J.F.); (B.V.)
| | - Byambasuren Vanchin
- Medical Biology Section, Laboratory for Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (J.F.); (B.V.)
- Department Cardiology, School of Medicine, Mongolian National University of Medical Sciences, Jamyan St 3, Ulaanbaatar 14210, Mongolia
| | - Marianne G. Rots
- Epigenetic Editing, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands;
| | - Guido Krenning
- Medical Biology Section, Laboratory for Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (J.F.); (B.V.)
- Correspondence: ; Tel.: +31-50-361-8043; Fax: +31-50-361-9911
| |
Collapse
|
16
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
17
|
Dehghani F, Sezavar Seyedi Jandaghi SH, Janani L, Sarebanhassanabadi M, Emamat H, Vafa M. Effects of quercetin supplementation on inflammatory factors and quality of life in post-myocardial infarction patients: A double blind, placebo-controlled, randomized clinical trial. Phytother Res 2020; 35:2085-2098. [PMID: 33216421 DOI: 10.1002/ptr.6955] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of death in the world. Epidemiological studies have shown that dietary flavonoids are inversely related to cardiovascular morbidity and mortality. The study aimed to determine whether quercetin supplementation can improve inflammatory factors, total antioxidant capacity (TAC) and quality of life (QOL) in patients following MI. This randomized double-blind, placebo-controlled trial was conducted on 88 post-MI patients. Participants were randomly assigned into quercetin (n = 44) and placebo groups (n = 44) receiving 500 mg/day quercetin or placebo tablets for 8 weeks. Quercetin supplementation significantly increased serum TAC compared to placebo (Difference: 0.24 (0.01) mmol/L and 0.00 (0.00) mmol/L respectively; p < .001). TNF-α levels significantly decreased in the quercetin group (p = .009); this was not, however, significant compared to the placebo group. As for QOL dimensions, quercetin significantly lowered the scores of insecurity (Difference: -0.66 (12.5) and 0.00 (5.55) respectively; p < .001). No significant changes in IL-6, hs-CRP, blood pressure and other QOL dimensions were observed between the two groups. Quercetin supplementation (500 mg/day) in post-MI patients for 8 weeks significantly elevated TAC and improved the insecurity dimension of QOL, but failed to show any significant effect on inflammatory factors, blood pressure and other QOL dimensions.
Collapse
Affiliation(s)
- Fereshteh Dehghani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hadi Emamat
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Carrizzo A, Izzo C, Forte M, Sommella E, Di Pietro P, Venturini E, Ciccarelli M, Galasso G, Rubattu S, Campiglia P, Sciarretta S, Frati G, Vecchione C. A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E8706. [PMID: 33218062 PMCID: PMC7698807 DOI: 10.3390/ijms21228706] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) such as hypertension, atherosclerosis, myocardial infarction, and diabetes are a significant public health problem worldwide. Although several novel pharmacological treatments to reduce the progression of CVDs have been discovered during the last 20 years, the better way to contain the onset of CVDs remains prevention. In this regard, nutraceuticals seem to own a great potential in maintaining human health, exerting important protective cardiovascular effects. In the last years, there has been increased focus on identifying natural compounds with cardiovascular health-promoting effects and also to characterize the molecular mechanisms involved. Although many review articles have focused on the individual natural compound impact on cardiovascular diseases, the aim of this manuscript was to examine the role of the most studied nutraceuticals, such as resveratrol, cocoa, quercetin, curcumin, brassica, berberine and Spirulina platensis, on different CVDs.
Collapse
Affiliation(s)
- Albino Carrizzo
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Carmine Izzo
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Maurizio Forte
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Paola Di Pietro
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Eleonora Venturini
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Gennaro Galasso
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Speranza Rubattu
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Petro Campiglia
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Sebastiano Sciarretta
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Giacomo Frati
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Carmine Vecchione
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| |
Collapse
|
19
|
Chaikijurajai T, Tang WHW. Myeloperoxidase: a potential therapeutic target for coronary artery disease. Expert Opin Ther Targets 2020; 24:695-705. [PMID: 32336171 PMCID: PMC7387188 DOI: 10.1080/14728222.2020.1762177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/26/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Coronary artery disease (CAD) poses significant morbidity and mortality globally. Despite significant advances in treatment interventions, residual cardiovascular risks remain unchecked. Recent clinical trials have shed light on the potential therapeutic benefits of targeting anti-inflammatory pathways. Myeloperoxidase (MPO) plays an important role in atherosclerotic plaque formation and destabilization of the fibrous cap; both increase the risk of atherosclerotic cardiovascular disease and especially CAD. AREAS COVERED This article examines the role of MPO in the pathogenesis of atherosclerotic CAD and the mechanistic data from several key therapeutic drug targets. There have been numerous interesting studies on prototype compounds that directly or indirectly attenuate the enzymatic activities of MPO, and subsequently exhibit atheroprotective effects; these include aminobenzoic acid hydrazide, ferulic acid derivative (INV-315), thiouracil derivatives (PF-1355 and PF-06282999), 2-thioxanthines derivative (AZM198), triazolopyrimidines, acetaminophen, N-acetyl lysyltyrosylcysteine (KYC), flavonoids, and alternative substrates such as thiocyanate and nitroxide radical. EXPERT OPINION Future investigations must determine if the cardiovascular benefits of direct systemic inhibition of MPO outweigh the risk of immune dysfunction, which may be less likely to arise with alternative substrates or MPO inhibitors that selectively attenuate atherogenic effects of MPO.
Collapse
Affiliation(s)
- Thanat Chaikijurajai
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| | - W. H. Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
20
|
Demir EA, Ozturk A, Tutuk O, Dogan H, Tumer C. Anticonvulsive and behavior modulating effects of sophoretin and rutoside. Biol Futur 2019; 70:251-259. [PMID: 34554444 DOI: 10.1556/019.70.2019.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/25/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Seizures are the hallmarks of most types of epilepsies. Behavioral and cognitive impairments coincide with interictal periods even though it is not clear whether these impairments spring out of the seizure itself or accompanying sociopsychological burden of the disease. MATERIALS AND METHODS In this study, we investigated behavioral and cognitive consequences of a single GABA receptor-related seizure in mice, and examined the potential anticonvulsive and behavior-modulating properties of sophoretin (quercetin) and rutoside (rutin). RESULTS The study demonstrated that sophoretin and rutoside, common flavonoids of the human diet, delay the seizure onset and reduce the seizure stage. Moreover, they exerted an antidepressant-like effect, which was independent of the seizure. Neither treatments nor seizure altered recognition and spatial memory performances of the mice. CONCLUSIONS Behavioral or cognitive disturbances that are evident in epileptic patients did not appear following a single seizure. In addition, we suggest that both sophoretin and rutoside successfully alleviate the seizure severity without interfering in the behavioral stability and cognitive performance. Hence, these flavonoids may be of use as adjuncts to the current treatment options.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Atakan Ozturk
- Department of Physiology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Okan Tutuk
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Hatice Dogan
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Cemil Tumer
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
21
|
The Use of Nutraceuticals to Counteract Atherosclerosis: The Role of the Notch Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5470470. [PMID: 31915510 PMCID: PMC6935452 DOI: 10.1155/2019/5470470] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Despite the currently available pharmacotherapies, today, thirty percent of worldwide deaths are due to cardiovascular diseases (CVDs), whose primary cause is atherosclerosis, an inflammatory disorder characterized by the buildup of lipid deposits on the inside of arteries. Multiple cellular signaling pathways have been shown to be involved in the processes underlying atherosclerosis, and evidence has been accumulating for the crucial role of Notch receptors in regulating the functions of the diverse cell types involved in atherosclerosis onset and progression. Several classes of nutraceuticals have potential benefits for the prevention and treatment of atherosclerosis and CVDs, some of which could in part be due to their ability to modulate the Notch pathway. In this review, we summarize the current state of knowledge on the role of Notch in vascular health and its modulation by nutraceuticals for the prevention of atherosclerosis and/or treatment of related CVDs.
Collapse
|
22
|
Tabrizi R, Tamtaji OR, Mirhosseini N, Lankarani KB, Akbari M, Heydari ST, Dadgostar E, Asemi Z. The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2019; 60:1855-1868. [PMID: 31017459 DOI: 10.1080/10408398.2019.1604491] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Reza Tabrizi
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Kamran B. Lankarani
- Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Taghi Heydari
- Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Wei B, Zhang Y, Tang L, Ji Y, Yan C, Zhang X. Protective effects of quercetin against inflammation and oxidative stress in a rabbit model of knee osteoarthritis. Drug Dev Res 2019; 80:360-367. [PMID: 30609097 DOI: 10.1002/ddr.21510] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022]
Abstract
Hit, Lead & Candidate Discovery This study investigated the effects of a natural phenolic compound quercetin on surgical-induced osteoarthritis (OA) in rabbits. Forty-eight New Zealand White rabbits were used to establish OA model by Hulth modified method, and subsequently randomized into untreated OA group (treatment was drinking water), celecoxib treated group (celecoxib 100 mg kg-1 by gavage), and quercetin treated group (25 mg kg-1 by gavage). Sixteen nonoperated rabbits served as the normal controls (drinking water was given). The treatment (length: 4 weeks) started on the 5th week postoperation when the OA pathological changes were manifested. Expressions of superoxide dismutase (SOD), matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinases-1 (TIMP-1) in serum, synovial fluid, and synovial tissue were measured at 8 and 12 weeks postoperation. Pathological analysis was performed with synovial tissue section and Osteoarthritis Research Society International histopathology grading and staging scores were determined. The quercetin treated group showed higher SOD and TIMP-1 expressions but lower MMP-13 expression than untreated OA group in the serum, synovial fluid and synovial tissues (p < .05). There was no significant difference in the SOD, MMP-13 and TIMP-1 expressions between the quercetin-treated and celecoxib-treated groups. The MMP-13/TIMP-1 ratio of the quercetin treated group was significantly lower than that of the untreated OA group (p < .05). Quercetin can up-regulate SOD and TIMP-1, down-regulate MMP-13, and improve the degeneration of OA through weakening the oxidative stress responses and inhibiting the degradation of cartilage extracellular matrix.
Collapse
Affiliation(s)
- Bing Wei
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, China
| | - Yan Zhang
- Department of Pathology, Zhucheng Maternal and Child Health Hospital, Weifang, China
| | - Lixia Tang
- Department of General Diseases, The First People's Hospital of Yongkang, Jinhua, China
| | - Yikui Ji
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, China
| | - Cheng Yan
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, China
| | - Xiaoke Zhang
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, China
| |
Collapse
|
24
|
Nabila M, Damayanthi E, Marliyati SA. Extracts of okra (Abelmoschus esculentus L.) improves dyslipidemia by amelioratinglipid profile while not affectinghs-CRP levelsin streptozotocin-induced rats. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/196/1/012039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries. Atherosclerosis 2018; 277:136-144. [DOI: 10.1016/j.atherosclerosis.2018.08.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 01/04/2023]
|
26
|
Ju S, Ge Y, Li P, Tian X, Wang H, Zheng X, Ju S. Dietary quercetin ameliorates experimental colitis in mouse by remodeling the function of colonic macrophages via a heme oxygenase-1-dependent pathway. Cell Cycle 2018; 17:53-63. [PMID: 28976231 DOI: 10.1080/15384101.2017.1387701] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel disease (IBD) results from a chronic intestinal inflammation and tissue destruction via an aberrant immune-driven inflammatory response towards an altered gut microbiota. Dietary intervention is becoming an attractive avenue for the therapy of colitis because diet is a key determinant of the mucosal immune response. Quercetin (QCN) is the most common in nature and the major representative of dietary antioxidant flavonoids, which has been demonstrated to influence the progression of colitis. However, the underlying mechanism of QCN on intestinal immunomodulation remains unclear. Here, our study demonstrated dietary QCN could ameliorate experimental colitis in part by modulating the anti-inflammatory effects and bactericidal capacity of macrophages via Heme oxygenase-1 (Hmox1, HO-1) dependent pathway. It suggested that QCN might restore the proper intestinal host-microbe relationship to ameliorate the colitis via rebalancing the pro-inflammatory, anti-inflammatory and bactericidal function of enteric macrophages. Hence, modulating the function of intestinal macrophages with dietary administration of QCN to restore the immunological hemostasis and rebalance the enteric commensal flora is a potential and promising strategy for IBD therapy.
Collapse
Affiliation(s)
- Songwen Ju
- a Central Laboratory , Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou Municipal Hospital , Suzhou , Jiangsu Province , China.,c Suzhou Digestive Diseases and Nutrition Research Center , Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou Municipal Hospital , Suzhou , Jiangsu Province , China
| | - Yan Ge
- b Department of Immunology , School of Biology and Basic Medical Sciences , Medical College , Soochow University , Suzhou , Jiangsu Province , China
| | - Ping Li
- c Suzhou Digestive Diseases and Nutrition Research Center , Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou Municipal Hospital , Suzhou , Jiangsu Province , China
| | - Xinxin Tian
- d Nanjing Municipal Government Hospital , Nanjing , Jiangsu Province , China
| | - Haiyan Wang
- b Department of Immunology , School of Biology and Basic Medical Sciences , Medical College , Soochow University , Suzhou , Jiangsu Province , China
| | - Xiaocui Zheng
- b Department of Immunology , School of Biology and Basic Medical Sciences , Medical College , Soochow University , Suzhou , Jiangsu Province , China
| | - Songguang Ju
- b Department of Immunology , School of Biology and Basic Medical Sciences , Medical College , Soochow University , Suzhou , Jiangsu Province , China
| |
Collapse
|
27
|
Xiao L, Liu L, Guo X, Zhang S, Wang J, Zhou F, Liu L, Tang Y, Yao P. Quercetin attenuates high fat diet-induced atherosclerosis in apolipoprotein E knockout mice: A critical role of NADPH oxidase. Food Chem Toxicol 2017; 105:22-33. [DOI: 10.1016/j.fct.2017.03.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
|
28
|
Mohammadi-Sartang M, Mazloom Z, Sherafatmanesh S, Ghorbani M, Firoozi D. Effects of supplementation with quercetin on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 2017; 71:1033-1039. [DOI: 10.1038/ejcn.2017.55] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 11/10/2022]
|
29
|
Ahmed IA, Mikail MA, Ibrahim M. Baccaurea angulata fruit juice ameliorates altered hematological and biochemical biomarkers in diet-induced hypercholesterolemic rabbits. Nutr Res 2017. [PMID: 28633869 DOI: 10.1016/j.nutres.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypercholesterolemia is an important risk factor linked to the alteration of blood hematology and clinical chemistry associated with the development and progression of atherosclerosis. Previous studies have demonstrated the safety and potential health benefits of Baccaurea angulata (BA) fruit. We hypothesized that the oral administration of BA fruit juice could ameliorate the alteration in the hematological and biochemical biomarkers of diet-induced hypercholesterolemic rabbits. The aim of this study was to investigate the effects of different doses of BA juice on the hematological and biochemical biomarkers in normo- and hypercholesterolemic rabbits. Thirty-five healthy adult New Zealand White rabbits were assigned to seven different groups for 90days of diet intervention. Four atherogenic groups were fed a 1% cholesterol diet and 0, 0.5, 1.0, and 1.5mL of BA juice per kg of rabbit daily. The other three normal groups were fed a commercial rabbit pellet diet and 0, 0.5, and 1.0mL of BA juice per kg of rabbit daily. Baseline and final blood samples after 90days of repeated administration BA juice were analyzed for hematological parameters while serum, aortic and hepatic lysates were analyzed for lipid profiles and other biochemical biomarkers. The alteration of the hemopoietic system, physiological changes in serum and tissues lipid profiles and other biochemicals resulting from the consumption of a high-cholesterol diet were significantly (P<.05) ameliorated by the administration of BA juice. Improvements of the biomarkers in rabbits were dose-dependent, markedly enhanced at the highest dose of juice (1.5mL/kg/day). The results suggest potential health benefits of the antioxidant-rich BA fruit juice against hypercholesterolemia-associated hematological and biochemical alterations in the rabbit.
Collapse
Affiliation(s)
- Idris Adewale Ahmed
- Department of Nutrition Sciences, International Islamic University Malaysia (IIUM); Department of Biotechnology, Lincoln University College, Malaysia.
| | | | - Muhammad Ibrahim
- Department of Nutrition Sciences, International Islamic University Malaysia (IIUM).
| |
Collapse
|
30
|
Sahebkar A. Effects of quercetin supplementation on lipid profile: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2017; 57:666-676. [PMID: 25897620 DOI: 10.1080/10408398.2014.948609] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND In spite of promising experimental findings, randomized controlled trials (RCTs) have yielded mixed results on the impact of quercetin supplementation on plasma lipid levels. AIM The present study aimed to quantify the effects of quercetin on plasma lipids using a meta-analysis of RCTs. METHODS A systematic literature search of Medline was conducted for RCTs that investigated the efficacy of quercetin supplementation on plasma lipids comprising total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated for net changes in lipid concentrations using a random-effects model. Meta-regression analysis was conducted to assess the effect of quercetin dose and duration of supplementation as moderators on the calculated effect measures. RESULTS Five RCTs totaling 442 subjects (221 in the quercetin and 221 in the control group) fulfilled the eligibility criteria and selected for analyses. Combined estimate of effect size for the impact of quercetin on plasma LDL-C (WMD: 1.43 mg/dL, 95% CI: -0.92-3.78, p = 0.23), HDL-C (WMD: 0.26 mg/dL, 95% CI: -0.74-1.25, p = 0.61) and triglycerides (WMD: -9.42 mg/dL, 95% CI: -27.80-8.96, p = 0.32) was not statistically significant. However, a borderline significant but clinically non-relevant increase in total cholesterol was observed (WMD: 3.13 mg/dL, 95% CI: -0.01-6.27, p = 0.05). When the analysis was confined to the subgroups of studies with quercetin doses ≥500 mg/day and follow-up of ≥ 4 weeks, a significant increase in total cholesterol (WMD: 3.57 mg/dL, 95% CI: 0.21-6.92, p = 0.04) and a decline in triglycerides (WMD: -24.54 mg/dL, 95% CI: -33.09 to -15.99, p < 0.00001) was observed, but LDL-C and HDL-C concentrations remained unchanged (p > 0.05). Changes in plasma triglycerides, but not other indices of lipid profile, were significantly associated with quercetin dose (slope: -0.057; 95% CI: -0.103 to -0.010; p = 0.02) and duration of supplementation (slope: -5.314; 95% CI: -9.482 to -1.147; p = 0.01). CONCLUSION Available evidence from RCTs does not suggest any clinically relevant effect of quercetin supplementation on plasma lipids, apart from a significant reduction of triglycerides at doses above 50 mg/day.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- a Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran.,b Cardiovascular Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
31
|
Abdel-Wahhab MA, Aljawish A, El-Nekeety AA, Abdel-Aziem SH, Hassan NS. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet. Food Chem Toxicol 2017; 99:209-221. [PMID: 27923682 DOI: 10.1016/j.fct.2016.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022]
Abstract
This study aimed to evaluate the protective role of chitosan nanoparticles (COS-NPs) singly or plus quercetin (Q) against OTA-induced oxidative stress and renal genotoxicity. Twelve groups of male Sprague-Dawley rats were treated orally for 3 weeks included the control group, animals fed OTA-contaminated diet (3 mg/kg diet); COS-NPs-treated groups at low (140 mg/kg b.w.) or high (280 mg/kg b.w.) dose, Q-treated group (50 mg/kg b.w.), Q plus low or high dose of COS-NPs-treated groups and OTA plus Q and/or COS-NPs at the two tested doses-treated groups. The results indicated that COS-NPs were roughly rod in shape with average particle size of 200 nm and zeta potential 31.4 ± 2.8 mV. Animals fed OTA-contaminated diet showed significant changes in serum biochemical parameters, increase kidney MDA and DNA fragmentation and decreased GPx and SOD gene expression accompanied with severe histological changes. Q and/or COS-NPs at the two tested doses induced significant improvements in all tested parameters and succeeded to overcome these effects especially in the animals treated with Q plus the high dose of COS-NPs. It could be concluded that COS-NPs are promise candidate to enhance the antioxidant effect of Q and protect against the nephrotoxicity of OTA in high endemic areas.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt.
| | - Abdulhadi Aljawish
- Laboratory of Nutrition and Toxicology (NUTox), INSERM UMR 866, Bourgogne University, 1 Esplanade Erasme, 21000 Dijon, France
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Dept., National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
32
|
Selin-Rani S, Senthil-Nathan S, Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Lija-Escaline J, Kalaivani K, Abdel-Megeed A, Hunter WB, Alessandro RT. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. CHEMOSPHERE 2016; 165:257-267. [PMID: 27657818 DOI: 10.1016/j.chemosphere.2016.08.136] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
A novel flavonoid, quercetin, was isolated from the medicinal plant Euphorbia hirta L. through chromatography techniques including: TLC, Column chromatography, NMR and then screened for toxicity to larvae of Spodoptera litura Fab. Bioassays were used to analyze pupal weight, survival rate, fecundity, egg hatchability, population growth index, Nutritional index and histopathology of treated larvae at a range of E. hirta extract concentrations. Results of toxicity assays demonstrated that, 6 ppm of quercetin caused 94.6% mortality of second, 91.8% of third, 88% of fourth, and 85.2% of fifth instars respectively. The lethal concentrations (LC50 and LC90) was calculated as 10.88 and 69.91 ppm for fourth instar larvae. The changes in consumption ratio and approximate digestibility produced a reduction in growth rates. Histopathology examinations revealed that the cell organelles were severely infected. Analyses of earthworm toxicity effects resulted in significantly lower rates compared to synthetic insecticides (chloropyrifos and cypermethrin). These results suggests that the botanical compound (quercetin), could have a part as a new biorational product which provides an ecofriendly alternative. Validation of the potential of quercetin, still needs to be demonstrated under field conditions, where formulation will be important in maintaining the activity.
Collapse
Affiliation(s)
- Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Jalasteen Lija-Escaline
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, 627 802, Tirunelveli, Tamil Nadu, India
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture, Saba Basha, Alexandria University, P.O.Box.21531, Alexandria, 21526, Egypt
| | - Wayne B Hunter
- United States Department of Agriculture, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Rocco T Alessandro
- Treasure Coast Chemistry Consultants, LLC 107 Lakes End Drive, Apt. B Ft. Pierce, FL, 34982, USA
| |
Collapse
|
33
|
Bhaskar S, Helen A. Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats. Mol Cell Biochem 2016; 423:53-65. [PMID: 27665434 DOI: 10.1007/s11010-016-2824-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/08/2016] [Indexed: 11/28/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that have a unique and essential function in innate immunity. The effect of quercetin on TLR-mediated downstream signaling mechanism and its effect on TLR-mediated MAP kinase and Akt pathways were studied in oxLDL-stimulated hPBMCs using specific inhibitors. The pretreatment of hPBMCs with specific TLR inhibitor, CLI-095, decreased the NF-κB nuclear translocation and TNF-α release by oxLDL. When the cells treated with inhibitor and quercetin together, the inhibition was more effective. The specific inhibitor for p38 MAPK, SB203580, reduced the phosphorylated p38 level and decreased the NF-κB activation and TNF-α release by oxLDL-challenged hPBMCs. This inhibitor showed enhanced inhibition when treated with quercetin together. The inhibitors for ERK1/2, PD98059, and for JNK, SP606125, also showed inhibitory effect on NF-κB activation and TNF-α release by oxLDL-simulated hPBMCs. Quercetin supplementation enhanced the inhibition of nuclear translocation of NF-κB and the release of cytokines. TLR4 inhibition study confirmed the downstream signaling mechanism mediated by NF-κB which is involved in the oxLDL-induced inflammatory response, and quercetin suppresses the cytokine, TNF-α release by modulating TLR-NF-κB signaling pathway. In addition to NF-κB signaling pathway, inflammation induced by oxLDL was also related to the activation of p38MAPK, ERK1/2 and JNK, and Akt pathways, and the protective effect of quercetin may be also related to the inhibition of activation of these pathways. Quercetin significantly downregulated the elevated mRNA expression of TLRs and cytokine TNF-α in HCD-fed atherosclerotic rats in vivo. As quercetin possesses inhibition on both TLR-NF-κB signaling pathway and TLR-mediated MAPK pathway, it is evident that it can be used as a therapeutic agent to ameliorate atherosclerotic inflammation. Since quercetin is the major flavonoid and forms the backbone of many other flavonoids and this study provides strong evidence that it has potent anti-inflammatory effect, quercetin may be a promising agent for the prevention and treatment of atherosclerosis and promote health by reducing harmful vascular inflammation.
Collapse
Affiliation(s)
- Shobha Bhaskar
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - A Helen
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
34
|
Bhaskar S, Sudhakaran PR, Helen A. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cell Immunol 2016; 310:131-140. [PMID: 27585526 DOI: 10.1016/j.cellimm.2016.08.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/20/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022]
Abstract
Adhesion molecules expressed by activated endothelial cells play key role in regulating leukocyte trafficking to sites of inflammation. The present study attempted to explore whether the polyphenolic flavonoid quercetin influence leukocyte endothelial attraction and the involvement of TLR-NF-κB signaling pathway in the expression of adhesion molecules involved in the early development of atherosclerosis. Quercetin at 25μM concentration significantly reduced the HUVEC expression of VCAM-1 and ICAM-1 evidently enhanced by oxLDL. In addition, quercetin significantly downregulated the mRNA expression of MCP-1 and alleviated the nuclear translocation of NF-κB p65 subunit in oxLDL induced HUVECs. Western blot and PCR analyses revealed that quercetin significantly attenuated the expression of both protein and mRNA expression of TLR2 and TLR4. Quercetin supplementation significantly decreased the inflammatory mediators like COX, 5-LOX, MPO, NOS, CRP and the mRNA expression of the cytokine; IL-6 in hypercholesterolemic diet (HCD) fed atherosclerotic rats. The results demonstrate that quercetin is effective to regulate the atherosclerotic inflammatory process by inhibiting oxLDL induced endothelial leukocyte adhesion by attenuating the TLR-NF-κB signaling pathway in endothelial cells and decrease the inflammatory process induced by HCD in rats. Therefore, quercetin acts as anti-inflammatory and anti-atherogenic agent, which may have implications for strategies attenuating endothelial dysfunction-related atherosclerosis.
Collapse
Affiliation(s)
- Shobha Bhaskar
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - P R Sudhakaran
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - A Helen
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
35
|
Hu Y, Zhao Y, Yuan L, Yang X. Protective effects of tartary buckwheat flavonoids on high TMAO diet-induced vascular dysfunction and liver injury in mice. Food Funct 2016; 6:3359-72. [PMID: 26267818 DOI: 10.1039/c5fo00581g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was performed to investigate the liver and vascular changes in high trimethylamine-N-oxide (TMAO) diet-fed mice, and the possible vasoprotective and hepatoprotective effects of purified tartary buckwheat flavonoid fraction (TBF). HPLC analysis revealed that the content of rutin and quercetin presented in TBF was 53.6% and 37.2%, respectively, accounting for 90.8% of TBF. Mice fed 1.5% TMAO in drinking water for 8 weeks significantly displayed vascular dysfunction and liver damage (p < 0.01). The administration of TBF at 400 and 800 mg per kg bw significantly elevated plasma NO and eNOS concentrations, and serum HDL-C and PGI2 levels, and lowered serum TC, TG, LDL-C, ET-1 and TX-A2 levels of TMAO-fed mice. TBF also reduced serum AST and ALT activities, and hepatic NEFA and MDA levels, and increased the hepatic GSH-Px and SOD activities in TMAO-fed mice, which were consistent with the observations of the histological alterations of the liver. This report firstly showed that dietary TMAO might cause liver damage and TBF prevented TMAO-induced vascular dysfunction and hepatic injury.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | | | | | | |
Collapse
|
36
|
Zhang Y, Si Y, Zhai L, Guo S, Zhao J, Sang H, Pang X, Zhang X, Chen A, Qin S. Celastrus Orbiculatus Thunb. Reduces Lipid Accumulation by Promoting Reverse Cholesterol Transport in Hyperlipidemic Mice. Lipids 2016; 51:677-92. [DOI: 10.1007/s11745-016-4145-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/15/2016] [Indexed: 02/03/2023]
|
37
|
Hashimoto N, Blumberg JB, Chen CYO. Hyperglycemia and Anthocyanin Inhibit Quercetin Metabolism in HepG2 Cells. J Med Food 2016; 19:141-7. [DOI: 10.1089/jmf.2015.0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Naoto Hashimoto
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
- Koshi Headquarters, National Agricultural Research Center for Kyushu Okinawa Region, Koshi, Kumamoto, Japan
- Memuro Research Station, National Agriculture Research Center for Hokkaido Region, Kasai, Hokkaido, Japan
| | - Jeffrey B. Blumberg
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - C.-Y. Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Salvamani S, Gunasekaran B, Shukor MY, Abu Bakar MZ, Ahmad SA. Phytochemical investigation, hypocholesterolemic and anti-atherosclerotic effects of Amaranthus viridis leaf extract in hypercholesterolemia-induced rabbits. RSC Adv 2016. [DOI: 10.1039/c6ra04827g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypercholesterolemia is one of the main causes for coronary heart disease, which occurs due to high levels of serum cholesterol.
Collapse
Affiliation(s)
- Shamala Salvamani
- Department of Biochemistry
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Baskaran Gunasekaran
- Department of Biochemistry
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Mohd Yunus Shukor
- Department of Biochemistry
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Md. Zuki Abu Bakar
- Department of Veterinary Pre Clinical
- Faculty of Veterinary Medicine
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| |
Collapse
|
39
|
Cai X, Bao L, Dai X, Ding Y, Zhang Z, Li Y. Quercetin protects RAW264.7 macrophages from glucosamine-induced apoptosis and lipid accumulation via the endoplasmic reticulum stress pathway. Mol Med Rep 2015; 12:7545-53. [PMID: 26398703 DOI: 10.3892/mmr.2015.4340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 08/24/2015] [Indexed: 11/05/2022] Open
Abstract
It is increasingly recognized that macrophages are a key cell in the development of atherosclerosis. Glucosamine, the product of the hexosamine biosynthetic pathway in diabetes mellitus, can disturb lipid metabolism, induce apoptosis and accelerate atherosclerosis via endoplasmic reticulum (ER) stress in various types of cells. Previous studies have indicated that quercetin possesses antidiabetic, anti‑oxidative, anti‑inflammatory and anti‑apoptotic activities as a flavonoid. Studies have also demonstrated its novel pharmacological properties for inhibiting ER stress. The present study focussed on the effects of quercetin on cell injury and ER stress in glucosamine‑induced macrophages. RAW264.7 macrophages were cultured with 15 mM glucosamine, following which the levels of apoptosis, intracellular total and free cholesterol, and apoptosis‑ and ER stress‑associated proteins were measured in the macrophages treated with or without quercetin. Additionally, the ratio of cholestryl ester/total cholesterol was calculated to observe the formation of foam cells. The results demonstrated that apoptosis and abnormal lipid accumulation in the RAW264.7 cells, which was induced by glucosamine, were significantly reversed by quercetin. In addition, quercetin treatment suppressed the increase of C/EBP homologous protein, and inhibited the activation of JNK and caspase‑12, which was induced by glucosamine. Quercetin also increased the expression level of full length activating transcriptional factor 6 and decreased the expression of glucose regulated protein 78. Of note, the beneficial effects of quercetin on the glucosamine‑induced RAW264.7 cells were reversed by treatment with tunicamycin. These findings suggest that quercetin may have properties to prevent glucosamine‑induced apoptosis and lipid accumulation via the ER stress pathway in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Lei Bao
- Department of Clinical Nutrition, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xiaoqian Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
40
|
Hung CH, Chan SH, Chu PM, Tsai KL. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol Nutr Food Res 2015. [PMID: 26202455 DOI: 10.1002/mnfr.201500144] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SCOPE Atherosclerosis is believed to be an independent predictor of cardiovascular diseases. A growing body of evidence suggests that quercetin is a potent antioxidant and anti-inflammatory compound. The molecular mechanisms underlying its protective effects against oxidative stress in human endothelial cells remain unclear. This study was designed to confirm the hypothesis that quercetin inhibits oxidized LDL (oxLDL) induced endothelial oxidative damage by activating sirtuin 1 (SIRT1) and to explore the role of adenosine monophosphate activated protein kinase (AMPK), which is a negative regulator of Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) and free radicals. METHODS AND RESULTS Human umbilical vein endothelial cells were treated with oxLDL with or without quercetin pretreatment. We found that quercetin pretreatment increased SIRT1 mRNA expression. In fact, quercetin protected against oxLDL-impaired SIRT1 and AMPK activities and reduced oxLDL-activated NOX2 and NOX4. However, silencing SIRT1 and AMPK diminished the protective function of quercetin against oxidative injuries. The results also indicated that oxLDL suppressed AKT/endothelial NO synthase, impaired mitochondrial dysfunction, and enhanced reactive oxygen species formation, activating the Nuclear Factor Kappa B (NF-κB) pathway. CONCLUSION These results provide new insight regarding the possible molecular mechanisms of quercetin. Quercetin suppresses oxLDL-induced endothelial oxidative injuries by activating SIRT1 and modulating the AMPK/NADPH oxidase/AKT/endothelial NO synthase signaling pathway.
Collapse
Affiliation(s)
- Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hung Chan
- Department of Internal Medicine, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
41
|
Abdel-Wahhab MA, Aljawish A, El-Nekeety AA, Abdel-Aiezm SH, Abdel-Kader HAM, Rihn BH, Joubert O. Chitosan nanoparticles and quercetin modulate gene expression and prevent the genotoxicity of aflatoxin B 1 in rat liver. Toxicol Rep 2015; 2:737-747. [PMID: 28962409 PMCID: PMC5598511 DOI: 10.1016/j.toxrep.2015.05.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 11/30/2022] Open
Abstract
The aims of the current study were to prepare chitosan nanoparticles (CNPs) and to evaluate its protective role alone or in combination with quercetin (Q) against AFB1-induce cytotoxicity in rats. Male Sprague-Dawley rats were divided into 12 groups and treated orally for 4 weeks as follow: the control group, the group treated with AFB1 (80 μg/kg b.w.) in corn oil, the groups treated with low (140 mg/kg b.w.) or high (280 mg/kg b.w.) dose of CNPs, the group treated with Q (50 mg/kg b.w.), the groups treated with Q plus the low or the high dose of CNPs and the groups treated with AFB1 plus Q and/or CNPs at the two tested doses. The results also revealed that administration of AFB1 resulted in a significant increase in serum cytokines, Procollagen III, Nitric Oxide, lipid peroxidation and DNA fragmentation accompanied with a significant decrease in GPx I and Cu–Zn SOD-mRNA gene expression. Q and/or CNPs at the two tested doses overcome these effects especially in the group treated with the high dose of CNPs plus Q. It could be concluded that CNPs is a promise candidate as drug delivery enhances the protective effect of Q against the cytogenetic effects of AFB1 in high endemic areas.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Abdulhadi Aljawish
- Université de Lorraine, Laboratoire d'Ingénierie des Biomolécules (LIBio), 2 avenue de la Forêt de Haye, TSA40602-F-54518 Vandœuvre-lès-Nancy, France
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | | | - Bertrand H Rihn
- Faculty of Pharmacy, EA 3452 CITHEFOR, Lorraine University, 54001 Nancy Cedex, France
| | - Olivier Joubert
- Faculty of Pharmacy, EA 3452 CITHEFOR, Lorraine University, 54001 Nancy Cedex, France
| |
Collapse
|
42
|
Dietary Njavara rice bran oil reduces experimentally induced hypercholesterolaemia by regulating genes involved in lipid metabolism. Br J Nutr 2015; 113:1207-19. [DOI: 10.1017/s0007114515000513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was carried out to evaluate the anti-atherogenic effect of Njavara rice bran oil (NjRBO) on atherosclerosis by modulating enzymes and genes involved in lipid metabolism in rats fed a high-cholesterol diet (HCD). Adult male rats (Sprague–Dawley strain, weighing 100–120 g) were divided into three groups of nine animals each. Group I served as the control, group II were fed a HCD and group III were fed a HCD and NjRBO (100 mg/kg body weight). The study duration was 60 d. Serum and tissue lipid profile, atherogenic index, enzymes of lipid metabolism, plasma C-reactive protein levels, serum paraoxonase and arylesterase activities, thiobarbituric acid-reactive substances, gene and protein expression of paraoxonase 1 (PON1), PPARα, ATP-binding cassette transporter A1 (ABCA1), apoB and apoA1 in the liver were quantified. Total cholesterol, TAG, phospholipid, NEFA, LDL-cholesterol concentrations in the serum and liver, lipogenic enzyme activities, hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity and atherogenic index were significantly increased in HCD-fed rats, but they decreased after treatment with NjRBO. HDL-cholesterol level and lecithin cholesterol acyl transferase activity were increased in the NjRBO-treated group, but decreased in the HCD-fed group. The expression levels of ABCA1, apoA1, PON1 and PPARα were found to be significantly increased in NjRBO-treated group compared with the HCD-fed group; however, the expression level of apoB was found to be higher in HCD-fed group and lower in the NjRBO-treated group. These data suggest that NjRBO possesses an anti-atherogenic property by modulating lipid metabolism and up-regulating genes involved in reverse cholesterol transport and antioxidative defence mechanism through the induction of the gene expressionPON1.
Collapse
|
43
|
El-Denshary ES, Aljawish A, El-Nekeety AA, Hassan NS, Saleh RH, Rihn BH, Abdel-Wahhab MA. Possible Synergistic Effect and Antioxidant Properties of Chitosan Nanoparticles and Quercetin against Carbon Tetrachloride-Induce Hepatotoxicity in Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/snl.2015.52005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Aortic relaxant activity of Crataegus gracilior Phipps and identification of some of its chemical constituents. Molecules 2014; 19:20962-74. [PMID: 25517338 PMCID: PMC6272000 DOI: 10.3390/molecules191220962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/16/2022] Open
Abstract
This study focused on the assessment of the vasorelaxant activity of the organic and aqueous extracts obtained from leaves and fruits of a Mexican hawthorn (Crataegus gracilior) on isolated rat aorta, and on the purification and identification of some of their secondary metabolites by the use of chromatographic and spectroscopic techniques. The results obtained showed that the methanol extract has a significantly more potent and effective vasorelaxant effect than the other tested extracts, with an EC50 = 8.69 ± 4.34 µg/mL and an Emax = 94.6% ± 11.30%, values that are close to that of acetylcholine, the positive control. From the same extract, two major triterpenes were isolated and identified as ursolic and corosolic acids by comparison of their experimental NMR spectroscopic data with those reported in the literature. Chlorogenic acid, rutin, quercetin, kaempferol and (+)-catechin were also identified using HPLC coupled with PDAD. All these compounds have already been proven to possess on their own antihypertensive effect and other benefits on cardiovascular diseases and they can support, at least in part, the traditional use of this plant species.
Collapse
|
45
|
Antiartherosclerotic effects of plant flavonoids. BIOMED RESEARCH INTERNATIONAL 2014; 2014:480258. [PMID: 24971331 PMCID: PMC4058282 DOI: 10.1155/2014/480258] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/11/2014] [Accepted: 05/11/2014] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin.
Collapse
|
46
|
Noh HJ, Kim CS, Kang JH, Park JY, Choe SY, Hong SM, Yoo H, Park T, Yu R. Quercetin suppresses MIP-1α-induced adipose inflammation by downregulating its receptors CCR1/CCR5 and inhibiting inflammatory signaling. J Med Food 2013; 17:550-7. [PMID: 24325454 DOI: 10.1089/jmf.2013.2912] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Obesity-induced inflammation is characterized by recruitment of adipose tissue macrophages that release inflammatory cytokines and chemokines. MIP-1α (macrophage inflammatory protein 1α)/CCL3, a CC chemokine, induces monocyte/macrophage infiltration and thus is implicated in obesity-induced adipose inflammation. Quercetin has been shown to modulate obesity-induced inflammation, but the mechanism of its action remains unclear. Here we demonstrate that quercetin decreases MIP-1α release from adipocytes and macrophages and from cocultured adipocytes/macrophages; it also opposes MIP-1α-induced macrophage infiltration and activation. The inhibitory action of quercetin on the MIP-1α-induced inflammatory responses of macrophages is mediated by downregulation of CCR1/CCR5, and inhibition of activation of JNK, p38 mitogen-activated-protein kinase (MAPK), and IKK as well as IκBα degradation. These findings suggest that quercetin may be a useful agent against obesity-induced adipose tissue inflammation.
Collapse
Affiliation(s)
- Hye-Ji Noh
- 1 Department of Food Science and Nutrition, University of Ulsan , Ulsan, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Beazley KE, Lima F, Borras T, Nurminskaya M. Attenuation of chondrogenic transformation in vascular smooth muscle by dietary quercetin in the MGP-deficient mouse model. PLoS One 2013; 8:e76210. [PMID: 24098781 PMCID: PMC3786963 DOI: 10.1371/journal.pone.0076210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/21/2013] [Indexed: 12/30/2022] Open
Abstract
RATIONALE Cartilaginous metaplasia of vascular smooth muscle (VSM) is characteristic for arterial calcification in diabetes and uremia and in the background of genetic alterations in matrix Gla protein (MGP). A better understanding of the molecular details of this process is critical for the development of novel therapeutic approaches to VSM transformation and arterial calcification. OBJECTIVE This study aimed to identify the effects of bioflavonoid quercetin on chondrogenic transformation and calcification of VSM in the MGP-null mouse model and upon TGF-β3 stimulation in vitro, and to characterize the associated alterations in cell signaling. METHODS AND RESULTS Molecular analysis revealed activation of β-catenin signaling in cartilaginous metaplasia in Mgp-/- aortae in vivo and during chondrogenic transformation of VSMCs in vitro. Quercetin intercepted chondrogenic transformation of VSM and blocked activation of β-catenin both in vivo and in vitro. Although dietary quercetin drastically attenuated calcifying cartilaginous metaplasia in Mgp-/- animals, approximately one-half of total vascular calcium mineral remained as depositions along elastic lamellae. CONCLUSION Quercetin is potent in preventing VSM chondrogenic transformation caused by diverse stimuli. Combined with the demonstrated efficiency of dietary quercetin in preventing ectopic chondrogenesis in the MGP-null vasculature, these findings indicate a potentially broad therapeutic applicability of this safe for human consumption bioflavonoid in the therapy of cardiovascular conditions linked to cartilaginous metaplasia of VSM. Elastocalcinosis is a major component of MGP-null vascular disease and is controlled by a mechanism different from chondrogenic transformation of VSM and not sensitive to quercetin.
Collapse
Affiliation(s)
- Kelly E. Beazley
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Florence Lima
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Teresa Borras
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maria Nurminskaya
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
48
|
Mahmoud MF, Hassan NA, El Bassossy HM, Fahmy A. Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: effect on low grade inflammation. PLoS One 2013; 8:e63784. [PMID: 23717483 PMCID: PMC3661670 DOI: 10.1371/journal.pone.0063784] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/05/2013] [Indexed: 01/18/2023] Open
Abstract
Vascular complications are the leading cause of morbidity and mortality in patients with diabetes. Quercetin is an important flavonoid with antioxidant and anti-inflammatory activity. Here, the effect of quercetin on diabetes-induced exaggerated vasoconstriction in insulin deficient and insulin resistant rat models was investigated. Insulin deficiency was induced by streptozotocin while, insulin resistance by fructose. Rats were left 8 weeks or 12 weeks after STZ or fructose administration respectively. Quercetin was daily administered in the last 6 weeks. Then, tail blood pressure (BP) was recorded in conscious animals; concentration-response curves for phenylephrine (PE) and KCl were studied in thoracic aorta rings. Non-fasting blood glucose level, serum insulin level, insulin resistance index, serum tumour necrosis factor-α (TNF-α) and serum C-reactive protein (CRP) were determined. Nuclear transcription factor-κB (NF-κB) was assessed by immunofluorescence technique. Histopathological examination was also performed. The results showed that quercetin protected against diabetes-induced exaggerated vasoconstriction and reduced the elevated blood pressure. In addition, quercetin inhibited diabetes associated adventitial leukocyte infiltration, endothelial pyknosis and increased collagen deposition. These effects were accompanied with reduction in serum level of both TNF-α and CRP and inhibition of aortic NF-κB by quercetin in both models of diabetes. On the other hand, quercetin did not affect glucose level in any of the used diabetic models. This suggests that the protective effect of quercetin is mediated by its anti-inflammatory effect rather than its metabolic effects. In summary, quercetin is potential candidate to prevent diabetic vascular complications in both insulin deficiency and resistance via its inhibitory effect on inflammatory pathways especially NF-κB signaling.
Collapse
Affiliation(s)
- Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | | | | | |
Collapse
|