1
|
Tavakolidakhrabadi N, Ding WY, Saleem MA, Welsh GI, May C. Gene therapy and kidney diseases. Mol Ther Methods Clin Dev 2024; 32:101333. [PMID: 39434922 PMCID: PMC11492605 DOI: 10.1016/j.omtm.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, projected to become one of the leading causes of death by 2040. Current treatments primarily manage complications and slow progression, highlighting the urgent need for personalized therapies targeting the disease-causing genes. Our increased understanding of the underlying genomic changes that lead to kidney diseases coupled with recent successful gene therapies targeting specific kidney cells have turned gene therapy and genome editing into a promising therapeutic approach for treating kidney disease. This review paper reflects on different delivery routes and systems that can be exploited to target specific kidney cells and the ways that gene therapy can be used to improve kidney health.
Collapse
Affiliation(s)
- Nadia Tavakolidakhrabadi
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Wen Y. Ding
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Moin A. Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Gavin I. Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
2
|
Yudaeva A, Kostyusheva A, Kachanov A, Brezgin S, Ponomareva N, Parodi A, Pokrovsky VS, Lukashev A, Chulanov V, Kostyushev D. Clinical and Translational Landscape of Viral Gene Therapies. Cells 2024; 13:1916. [PMID: 39594663 PMCID: PMC11592828 DOI: 10.3390/cells13221916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Gene therapies hold significant promise for treating previously incurable diseases. A number of gene therapies have already been approved for clinical use. Currently, gene therapies are mostly limited to the use of adeno-associated viruses and the herpes virus. Viral vectors, particularly those derived from human viruses, play a critical role in this therapeutic approach due to their ability to efficiently deliver genetic material to target cells. Despite their advantages, such as stable gene expression and efficient transduction, viral vectors face numerous limitations that hinder their broad application. These limitations include small cloning capacities, immune and inflammatory responses, and risks of insertional mutagenesis. This review explores the current landscape of viral vectors used in gene therapy, discussing the different types of DNA- and RNA-based viral vectors, their characteristics, limitations, and current medical and potential clinical applications. The review also highlights strategies to overcome existing challenges, including optimizing vector design, improving safety profiles, and enhancing transgene expression both using molecular techniques and nanotechnologies, as well as by approved drug formulations.
Collapse
Affiliation(s)
- Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
| | - Vadim S. Pokrovsky
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Biochemistry, People’s Friendship University, 117198 Moscow, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
3
|
Willimann M, Grisch‐Chan HM, Rimann N, Rothgangl T, Hruzova M, Schwank G, Thöny B. Therapeutic liver cell transplantation to treat murine PKU. J Inherit Metab Dis 2024; 47:1322-1335. [PMID: 39449255 PMCID: PMC11586590 DOI: 10.1002/jimd.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
For gene therapy of the liver, in vivo applications based on adeno-associated virus are the most advanced vectors despite limitations, including low efficacy and episomal loss, potential integration and safety issues, and high production costs. Alternative vectors and/or delivery routes are of high interest. The regenerative ability of the liver bears the potential for ex vivo therapy using liver cell transplantation for disease correction if provided with a selective advantage to expand and replace the existing cell mass. Here we present such treatment of a mouse model of human phenylketonuria (PKU). Primary hepatocytes from wild-type mice were gene modified in vitro (with a lentiviral vector) that carries a gene editing system (CRISPR) to inhibit Cypor. Cypor inactivation confers paracetamol (or acetaminophen) resistance to hepatocytes and thus a growth advantage to eliminate the pre-existing liver cells upon grafting (via the spleen) and exposure to repeated treatment with paracetamol. Grafting Cypor-inactivated wild-type hepatocytes into inbred young adult enu2 (PKU) mice, followed by selective expansion by paracetamol dosing, resulted in replacing up to 5% of cell mass, normalization of blood phenylalanine, and permanent correction of PKU. Hepatocyte transplantation offers thus an armamentarium of novel therapy options for genetic liver defects.
Collapse
Affiliation(s)
- Melanie Willimann
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Hiu Man Grisch‐Chan
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Nicole Rimann
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Tanja Rothgangl
- University of ZurichInstitute for Pharmacology and ToxicologyZurichSwitzerland
| | - Martina Hruzova
- University of ZurichInstitute for Pharmacology and ToxicologyZurichSwitzerland
| | - Gerald Schwank
- University of ZurichInstitute for Pharmacology and ToxicologyZurichSwitzerland
| | - Beat Thöny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| |
Collapse
|
4
|
Shay TF, Jang S, Brittain TJ, Chen X, Walker B, Tebbutt C, Fan Y, Wolfe DA, Arokiaraj CM, Sullivan EE, Ding X, Wang TY, Lei Y, Chuapoco MR, Chou TF, Gradinaru V. Human cell surface-AAV interactomes identify LRP6 as blood-brain barrier transcytosis receptor and immune cytokine IL3 as AAV9 binder. Nat Commun 2024; 15:7853. [PMID: 39245720 PMCID: PMC11381518 DOI: 10.1038/s41467-024-52149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Adeno-associated viruses (AAVs) are foundational gene delivery tools for basic science and clinical therapeutics. However, lack of mechanistic insight, especially for engineered vectors created by directed evolution, can hamper their application. Here, we adapt an unbiased human cell microarray platform to determine the extracellular and cell surface interactomes of natural and engineered AAVs. We identify a naturally-evolved and serotype-specific interaction between the AAV9 capsid and human interleukin 3 (IL3), with possible roles in host immune modulation, as well as lab-evolved low-density lipoprotein receptor-related protein 6 (LRP6) interactions specific to engineered capsids with enhanced blood-brain barrier crossing in non-human primates after intravenous administration. The unbiased cell microarray screening approach also allows us to identify off-target tissue binding interactions of engineered brain-enriched AAV capsids that may inform vectors' peripheral organ tropism and side effects. Our cryo-electron tomography and AlphaFold modeling of capsid-interactor complexes reveal LRP6 and IL3 binding sites. These results allow confident application of engineered AAVs in diverse organisms and unlock future target-informed engineering of improved viral and non-viral vectors for non-invasive therapeutic delivery to the brain.
Collapse
Affiliation(s)
- Timothy F Shay
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Seongmin Jang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tyler J Brittain
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xinhong Chen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Beth Walker
- Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK
| | - Claire Tebbutt
- Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK
| | - Yujie Fan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Damien A Wolfe
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Cynthia M Arokiaraj
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Erin E Sullivan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xiaozhe Ding
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ting-Yu Wang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yaping Lei
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Miguel R Chuapoco
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tsui-Fen Chou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
5
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
6
|
Gonzalez-Visiedo M, Herzog RW, Munoz-Melero M, Blessinger SA, Cook-Mills JM, Daniell H, Markusic DM. Viral Vector Based Immunotherapy for Peanut Allergy. Viruses 2024; 16:1125. [PMID: 39066287 PMCID: PMC11281582 DOI: 10.3390/v16071125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Food allergy (FA) is estimated to impact up to 10% of the population and is a growing health concern. FA results from a failure in the mucosal immune system to establish or maintain immunological tolerance to innocuous dietary antigens, IgE production, and the release of histamine and other mediators upon exposure to a food allergen. Of the different FAs, peanut allergy has the highest incidence of severe allergic responses, including systemic anaphylaxis. Despite the recent FDA approval of peanut oral immunotherapy and other investigational immunotherapies, a loss of protection following cessation of therapy can occur, suggesting that these therapies do not address the underlying immune response driving FA. Our lab has shown that liver-directed gene therapy with an adeno-associated virus (AAV) vector induces transgene product-specific regulatory T cells (Tregs), eradicates pre-existing pathogenic antibodies, and protects against anaphylaxis in several models, including ovalbumin induced FA. In an epicutaneous peanut allergy mouse model, the hepatic AAV co-expression of four peanut antigens Ara h1, Ara h2, Ara h3, and Ara h6 together or the single expression of Ara h3 prevented the development of a peanut allergy. Since FA patients show a reduction in Treg numbers and/or function, we believe our approach may address this unmet need.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Sophia A. Blessinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Joan M. Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - David M. Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| |
Collapse
|
7
|
Patel RV, Nanda P, Richardson RM. Neurosurgical gene therapy for central nervous system diseases. Neurotherapeutics 2024; 21:e00434. [PMID: 39191071 PMCID: PMC11445594 DOI: 10.1016/j.neurot.2024.e00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Viral vector mediated gene therapies for neurodegenerative and neurodevelopmental conditions that require neurosurgical administration continue to expand. We systematically reviewed the National Institutes of Health (NIH) ClinicalTrials.gov database to identify all clinical trials studying in-vivo viral vector mediated gene therapies targeted to the CNS for neurodegenerative and neurodevelopmental diseases. We isolated studies which delivered therapies using neurosurgical approaches: intracisternal, intraventricular, and/or intraparenchymal. Clinical trials primarily registered in international countries were included if they were referenced by an NIH registered clinical trial. We performed a scoping review to identify the preclinical studies that supported each human clinical trial. Key preclinical and clinical data were aggregated to characterize vector capsid design, delivery methods, gene expression profile, and clinical benefit. A total of 64 clinical trials were identified in active, completed, terminated, and long-term follow-up stages. A range of CNS conditions across pediatric and adult populations are being studied with CNS targeted viral vector gene therapy, including Alzheimer's disease, Parkinson's disease, AADC deficiency, sphingolipidoses, mucopolysaccharidoses, neuronal ceroid lipofuscinoses, spinal muscular atrophy, adrenoleukodystrophy, Canavan disease, frontotemporal dementia, Huntington's disease, Rett syndrome, Dravet syndrome, mesial temporal lobe epilepsy, and glutaric acidemia. Adeno-associated viral vectors (AAVs) were utilized by the majority of tested therapies, with vector serotypes, regulatory elements, delivery methods, and vector monitoring varying based on the disease being studied. Intraparenchymal delivery has evolved significantly, with MRI-guided convection-enhanced delivery established as a gold standard method for pioneering novel gene targets.
Collapse
Affiliation(s)
- Ruchit V Patel
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Willimann M, Tiyaboonchai A, Adachi K, Li B, Waldburger L, Nakai H, Grompe M, Thöny B. AAV Capsid Screening for Translational Pig Research Using a Mouse Xenograft Liver Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596409. [PMID: 38853940 PMCID: PMC11160762 DOI: 10.1101/2024.05.29.596409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In gene therapy, delivery vectors are a key component for successful gene delivery and safety, based on which adeno-associated viruses (AAVs) gained popularity in particular for the liver, but also for other organs. Traditionally, rodents have been used as animal models to develop and optimize treatments, but species and organ specific tropism of AAV desire large animal models more closely related to humans for preclinical in-depth studies. Relevant AAV variants with the potential for clinical translation in liver gene therapy were previously evolved in vivo in a xenogeneic mouse model transplanted with human hepatocytes. Here, we selected and evaluated efficient AAV capsids using chimeric mice with a >90% xenografted pig hepatocytes. The pig is a valuable preclinical model for therapy studies due to its anatomic and immunological similarities to humans. Using a DNA-barcoded recombinant AAV library containing 47 different capsids and subsequent Illumina sequencing of barcodes in the AAV vector genome DNA and transcripts in the porcine hepatocytes, we found the AAVLK03 and AAVrh20 capsid to be the most efficient delivery vectors regarding transgene expression in porcine hepatocytes. In attempting to validate these findings with primary porcine hepatocytes, we observed capsid-specific differences in cell entry and transgene expression efficiency where the AAV2, AAVAnc80, and AAVDJ capsids showed superior efficiency to AAVLK03 and AAVrh20. This work highlights intricacies of in vitro testing with primary hepatocytes and the requirements for suitable pre-clinical animal models but suggests the chimeric mouse to be a valuable model to predict AAV capsids to transduce porcine hepatocytes efficiently.
Collapse
Affiliation(s)
- Melanie Willimann
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Amita Tiyaboonchai
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Kei Adachi
- Oregon Health & Science University, Department of Molecular & Medical Genetics, Portland, Oregon, USA
| | - Bin Li
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Lea Waldburger
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Hiroyuki Nakai
- Oregon Health & Science University, Department of Molecular & Medical Genetics, Portland, Oregon, USA
| | - Markus Grompe
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Beat Thöny
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| |
Collapse
|
9
|
Ball JB, Frank MG, Green-Fulgham SM, Watkins LR. Use of adeno-associated viruses for transgenic modulation of microglia structure and function: A review of technical considerations and challenges. Brain Behav Immun 2024; 118:368-379. [PMID: 38471576 PMCID: PMC11103248 DOI: 10.1016/j.bbi.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Microglia play a central role in the etiology of many neuropathologies. Transgenic tools are a powerful experiment approach to gain reliable and specific control over microglia function. Adeno-associated virus (AAVs) vectors are already an indispensable tool in neuroscience research. Despite ubiquitous use of AAVs and substantial interest in the role of microglia in the study of central nervous system (CNS) function and disease, transduction of microglia using AAVs is seldom reported. This review explores the challenges and advancements made in using AAVs for expressing transgenes in microglia. First, we will examine the functional anatomy of the AAV capsid, which will serve as a basis for subsequent discussions of studies exploring the relationship between capsid mutations and microglia transduction efficacy. After outlining the functional anatomy of AAVs, we will consider the experimental evidence demonstrating AAV-mediated transduction of microglia and microglia-like cell lines followed by an examination of the most promising experimental approaches identified in the literature. Finally, technical limitations will be considered in future applications of AAV experimental approaches.
Collapse
Affiliation(s)
- Jayson B Ball
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA.
| | - Matthew G Frank
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Suzanne M Green-Fulgham
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
10
|
Rouse CJ, Jensen VN, Heldermon CD. Mucopolysaccharidosis type IIIB: a current review and exploration of the AAV therapy landscape. Neural Regen Res 2024; 19:355-359. [PMID: 37488890 PMCID: PMC10503619 DOI: 10.4103/1673-5374.377606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
Mucopolysaccharidoses type IIIB is a rare genetic disorder caused by mutations in the gene that encodes for N-acetyl-alpha-glucosaminidase. This results in the aggregation of heparan sulfate polysaccharides within cell lysosomes that leads to progressive and severe debilitating neurological dysfunction. Current treatment options are expensive, limited, and presently there are no approved cures for mucopolysaccharidoses type IIIB. Adeno-associated virus gene therapy has significantly advanced the field forward, allowing researchers to successfully design, enhance, and improve potential cures. Our group recently published an effective treatment using a codon-optimized triple mutant adeno-associated virus 8 vector that restores N-acetyl-alpha-glucosaminidase levels, auditory function, and lifespan in the murine model for mucopolysaccharidoses type IIIB to that seen in healthy mice. Here, we review the current state of the field in relation to the capsid landscape, adeno-associated virus gene therapy and its successes and challenges in the clinic, and how novel adeno-associated virus capsid designs have evolved research in the mucopolysaccharidoses type IIIB field.
Collapse
|
11
|
Lin X, Feng T, Cui E, Li Y, Qin Z, Zhao X. A rat model established by simulating genetic-environmental interactions recapitulates human Alzheimer's disease pathology. Brain Res 2024; 1822:148663. [PMID: 37918702 DOI: 10.1016/j.brainres.2023.148663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND In humans, Alzheimer's disease (AD) is typically sporadic in nature, and its pathology is usually influenced by extensive factors. The study established a rat model based on the genetic-environmental interaction. METHODS A rat model was established by transduction of an adeno-associated virus combined with acrolein treatment. Rats were assigned to the normal control (NC), acrolein group, AAV (-) group, AAV-APP group, and AAV-APP/acrolein group. The success of model construction was verified in multiple ways, including by assessing cognitive function, examining microstructural changes in the brain in vivo, and performing immunohistochemistry. The contribution of genetic (APP mutation) and environmental (acrolein) factors to AD-like phenotypes in the model was explored by factorial analysis. RESULTS 1) The AAV-APP/acrolein group showed a decline in cognitive function, as indicated by a reduced gray matter volume in key cognition-related brain areas, lower FA values in the hippocampus and internal olfactory cortex, and Aβ deposition in the cortex and hippocampus. 2) The AAV-APP group also showed a decline in cognitive function, although the group exhibited atypical brain atrophy in the gray matter and insignificant Aβ deposition. 3) The acrolein group did not show any significant changes in Aβ levels, gray matter volume, or cognitive function. 4) The genetic factor (APP mutation) explained 39.74% of the AD-like phenotypes in the model factors, and the environmental factor (acrolein exposure) explained 33.3%. CONCLUSIONS The genetic-environmental interaction rat model exhibited a phenotype that resembled the features of human AD and will be useful for research on AD.
Collapse
Affiliation(s)
- Xiaomei Lin
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China
| | - Tianyuyi Feng
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China
| | - Erheng Cui
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China
| | - Yunfei Li
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China
| | - Zhang Qin
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China
| | - Xiaohu Zhao
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China.
| |
Collapse
|
12
|
Khan SU, Khan MU, Suleman M, Inam A, Din MAU. Hemophilia Healing with AAV: Navigating the Frontier of Gene Therapy. Curr Gene Ther 2024; 24:265-277. [PMID: 38284735 DOI: 10.2174/0115665232279893231228065540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Gene therapy for hemophilia has advanced tremendously after thirty years of continual study and development. Advancements in medical science have facilitated attaining normal levels of Factor VIII (FVIII) or Factor IX (FIX) in individuals with haemophilia, thereby offering the potential for their complete recovery. Despite the notable advancements in various countries, there is significant scope for further enhancement in haemophilia gene therapy. Adeno-associated virus (AAV) currently serves as the primary vehicle for gene therapy in clinical trials targeting haemophilia. Subsequent investigations will prioritize enhancing viral capsid structures, transgene compositions, and promoters to achieve heightened transduction efficacy, diminished immunogenicity, and more predictable therapeutic results. The present study indicates that whereas animal models have transduction efficiency that is over 100% high, human hepatocytes are unable to express clotting factors and transduction efficiency to comparable levels. According to the current study, achieving high transduction efficiency and high levels of clotting factor expression in human hepatocytes is still insufficient. It is also crucial to reduce the risk of cellular stress caused by protein overload. Despite encountering various hurdles, the field of haemophilia gene therapy holds promise for the future. As technology continues to advance and mature, it is anticipated that a personalized therapeutic approach will be developed to cure haemophilia effectively.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Amrah Inam
- School of Life Science and Technology, Institute of Biomedical Engineering and Bioinformatics, Xi'an Jiaotong University, Xi'an, China
| | - Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| |
Collapse
|
13
|
Jacobs R, Dogbey MD, Mnyandu N, Neves K, Barth S, Arbuthnot P, Maepa MB. AAV Immunotoxicity: Implications in Anti-HBV Gene Therapy. Microorganisms 2023; 11:2985. [PMID: 38138129 PMCID: PMC10745739 DOI: 10.3390/microorganisms11122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) has afflicted humankind for decades and there is still no treatment that can clear the infection. The development of recombinant adeno-associated virus (rAAV)-based gene therapy for HBV infection has become important in recent years and research has made exciting leaps. Initial studies, mainly using mouse models, showed that rAAVs are non-toxic and induce minimal immune responses. However, several later studies demonstrated rAAV toxicity, which is inextricably associated with immunogenicity. This is a major setback for the progression of rAAV-based therapies toward clinical application. Research aimed at understanding the mechanisms behind rAAV immunity and toxicity has contributed significantly to the inception of approaches to overcoming these challenges. The target tissue, the features of the vector, and the vector dose are some of the determinants of AAV toxicity, with the latter being associated with the most severe adverse events. This review discusses our current understanding of rAAV immunogenicity, toxicity, and approaches to overcoming these hurdles. How this information and current knowledge about HBV biology and immunity can be harnessed in the efforts to design safe and effective anti-HBV rAAVs is discussed.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Makafui Dennis Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
| | - Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Keila Neves
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
14
|
Asokan A, Shen S. Redirecting AAV vectors to extrahepatic tissues. Mol Ther 2023; 31:3371-3375. [PMID: 37805712 PMCID: PMC10727976 DOI: 10.1016/j.ymthe.2023.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors are the current benchmark for systemic delivery of gene therapies to multiple organs in vivo. Despite clinical successes, safe and effective gene delivery to extrahepatic tissues has proven challenging due to dose limiting toxicity arising from high liver uptake of AAV vectors. Deeper understanding of AAV structure, receptor biology, and pharmacology has enabled the design and engineering of liver-de-targeted capsids ushering in several new vector candidates. This next generation of AAVs offers significant promise for extrahepatic gene delivery to cardiovascular, musculoskeletal, and neurological tissues with improved safety profiles.
Collapse
Affiliation(s)
- Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Shen Shen
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA, USA.
| |
Collapse
|
15
|
Valentino LA, Ozelo MC, Herzog RW, Key NS, Pishko AM, Ragni MV, Samelson-Jones BJ, Lillicrap D. A review of the rationale for gene therapy for hemophilia A with inhibitors: one-shot tolerance and treatment? J Thromb Haemost 2023; 21:3033-3044. [PMID: 37225021 DOI: 10.1016/j.jtha.2023.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
The therapeutic landscape for people living with hemophilia A (PwHA) has changed dramatically in recent years, but many clinical challenges remain, including the development of inhibitory antibodies directed against factor VIII (FVIII) that occur in approximately 30% of people with severe hemophilia A. Emicizumab, an FVIII mimetic bispecific monoclonal antibody, provides safe and effective bleeding prophylaxis for many PwHA, but clinicians still explore therapeutic strategies that result in immunologic tolerance to FVIII to enable effective treatment with FVIII for problematic bleeding events. This immune tolerance induction (ITI) to FVIII is typically accomplished through repeated long-term exposure to FVIII using a variety of protocols. Meanwhile, gene therapy has recently emerged as a novel ITI option that provides an intrinsic, consistent source of FVIII. As gene therapy and other therapies now expand therapeutic options for PwHA, we review the persistent unmet medical needs with respect to FVIII inhibitors and effective ITI in PwHA, the immunology of FVIII tolerization, the latest research on tolerization strategies, and the role of liver-directed gene therapy to mediate FVIII ITI.
Collapse
Affiliation(s)
- Leonard A Valentino
- National Hemophilia Foundation, New York, New York, USA; Rush University, Chicago, Illinois, USA.
| | | | - Roland W Herzog
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nigel S Key
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
16
|
Roe K. A latent pathogen infection classification system that would significantly increase healthcare safety. Immunol Res 2023; 71:673-677. [PMID: 37010691 PMCID: PMC10069357 DOI: 10.1007/s12026-023-09377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
Most viral, bacterial, fungal, and protozoan pathogens can cause latent infections. Latent pathogens can be reactivated from any intentional medical treatment causing immune system suppression, pathogen infections, malnutrition, stress, or drug side effects. These reactivations of latent pathogen infections can be dangerous and even lethal, especially in immuno-suppressed individuals. The latent pathogen infections in an individual can be classified and updated on a periodic basis in a four category system by whether or not an individual's immune system is damaged and by whether or not these latent infections will assist other active or latent pathogen infections. Such a classification system for latent infections by viral, bacterial, fungal, and protozoan parasite pathogens would be practical and useful and indicate whether certain medical treatments will be dangerous for transmitting or reactivating an individual's latent pathogen infections. This classification system will immediately provide latent pathogen infection status information that is potentially vital for emergency care and essential for quickly and safely selecting tissue or organ transplant donors and recipients, and it will significantly increase the safety of medical care for both patients and medical care providers.
Collapse
|
17
|
Huang X, Wang X, Li L, Wang Q, Xu W, Wu W, Xie X, Diao Y. MiR133b-mediated inhibition of EGFR-PTK pathway promotes rAAV2 transduction by facilitating intracellular trafficking and augmenting second-strand synthesis. J Cell Mol Med 2023; 27:2714-2729. [PMID: 37469226 PMCID: PMC10494303 DOI: 10.1111/jcmm.17858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is an extremely attractive vector in the in vivo delivery of gene therapy as it is safe and its genome is simple. However, challenges including low permissiveness to specific cells and restricted tissue specificity have hindered its clinical application. Based on the previous studies, epidermal growth factor receptor-protein tyrosine kinase (EGFR-PTK) negatively regulated rAAV transduction, and EGFR-positive cells were hardly permissive to rAAV transduction. We constructed a novel rAAV-miRNA133b vector, which co-expressed miRNA133b and transgene, and investigated its in vivo and in vitro transduction efficiency. Confocal microscopy, live-cell imaging, pharmacological reagents and labelled virion tracking were used to analyse the effect of miRNA133b on rAAV2 transduction and the underlying mechanisms. The results demonstrated that miRNA133b could promote rAAV2 transduction and the effects were limited to EGFR-positive cells. The increased transduction was found to be a direct result of decreased rAAV particles degradation in the cytoplasm and enhanced second-strand synthesis. ss-rAAV2-miRNA133b vector specifically increased rAAV2 transduction in EGFR-positive cells or tissues, while ss-rAAV2-Fluc-miRNA133b exerted an antitumor effect. rAAV-miRNA133b vector might emerge as a promising platform for delivering various transgene to treat EGFR-positive cell-related diseases, such as non-small-cell lung cancer.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Xiao Wang
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Ling Li
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Qizhao Wang
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Wentao Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenlin Wu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xiaolan Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Yong Diao
- School of MedicineHuaqiao UniversityQuanzhouChina
| |
Collapse
|
18
|
Gore R, Esmail T, Pflepsen K, Marron Fernandez de Velasco E, Kitto KF, Riedl MS, Karlen A, McIvor RS, Honda CN, Fairbanks CA, Vulchanova L. AAV-mediated gene transfer to colon-innervating primary afferent neurons. FRONTIERS IN PAIN RESEARCH 2023; 4:1225246. [PMID: 37599864 PMCID: PMC10436501 DOI: 10.3389/fpain.2023.1225246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Investigation of neural circuits underlying visceral pain is hampered by the difficulty in achieving selective manipulations of individual circuit components. In this study, we adapted a dual AAV approach, used for projection-specific transgene expression in the CNS, to explore the potential for targeted delivery of transgenes to primary afferent neurons innervating visceral organs. Focusing on the extrinsic sensory innervation of the mouse colon, we first characterized the extent of dual transduction following intrathecal delivery of one AAV9 vector and intracolonic delivery of a second AAV9 vector. We found that if the two AAV9 vectors were delivered one week apart, dorsal root ganglion (DRG) neuron transduction by the second vector was greatly diminished. Following delivery of the two viruses on the same day, we observed colocalization of the transgenes in DRG neurons, indicating dual transduction. Next, we delivered intrathecally an AAV9 vector encoding the inhibitory chemogenetic actuator hM4D(Gi) in a Cre-recombinase dependent manner, and on the same day injected an AAV9 vector carrying Cre-recombinase in the colon. DRG expression of hM4D(Gi) was demonstrated at the mRNA and protein level. However, we were unable to demonstrate selective inhibition of visceral nociception following hM4D(Gi) activation. Taken together, these results establish a foundation for development of strategies for targeted transduction of primary afferent neurons for neuromodulation of peripheral neural circuits.
Collapse
Affiliation(s)
- Reshma Gore
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Tina Esmail
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Kelsey Pflepsen
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | | | - Kelley F. Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Maureen S. Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Andrea Karlen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - R. Scott McIvor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Christopher N. Honda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn A. Fairbanks
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
19
|
Wada M, Uchida N, Posadas-Herrera G, Hayashita-Kinoh H, Tsunekawa Y, Hirai Y, Okada T. Large-scale purification of functional AAV particles packaging the full genome using short-term ultracentrifugation with a zonal rotor. Gene Ther 2023; 30:641-648. [PMID: 36977769 PMCID: PMC10457186 DOI: 10.1038/s41434-023-00398-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/17/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023]
Abstract
Adeno-associated virus (AAV) vector-based gene therapy is potentially curative for various genetic diseases; however, the development of a scalable purification method for full-genome AAV vectors remains crucial to increase productivity and reduce cost of GMP production. In this study, we developed a large-scale short-term purification method for functional full-genome AAV particles by using 2-step cesium chloride (CsCl) density-gradient ultracentrifugation with a zonal rotor. The 2-step CsCl method with a zonal rotor improves separation between empty and full-genome AAV particles, reducing the ultracentrifugation time (4-5 h) and increasing the AAV volume for purification. The highly purified full-genome AAV particles were confirmed by analytical ultracentrifugation (AUC), droplet digital PCR (ddPCR) in the whole region of the AAV vector genome, transduction efficiency in target cells, and transmission electronic microscopy (TEM). The high-purity AAV9 particles were obtained using culture supernatant during vector preparation rather than cell lysate. CsCl could be simply removed by a hydroxyapatite column. Interestingly, ddPCR analysis revealed that "empty" AAV particles contain small fragments of the inverted terminal repeat (ITR), probably due to unexpected packaging of Rep-mediated ITR fragments. This large-scale functional AAV vector purification with ultracentrifugation would be effective for gene therapy.
Collapse
Affiliation(s)
- Mikako Wada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoya Uchida
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Guillermo Posadas-Herrera
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Tsunekawa
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Almeida CF, Robriquet F, Vetter TA, Huang N, Neinast R, Hernandez-Rosario L, Rajakumar D, Arnold WD, McBride KL, Flanigan KM, Weiss RB, Wein N. Promising AAV.U7snRNAs vectors targeting DMPK improve DM1 hallmarks in patient-derived cell lines. Front Cell Dev Biol 2023; 11:1181040. [PMID: 37397246 PMCID: PMC10309041 DOI: 10.3389/fcell.2023.1181040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults and affects mainly the skeletal muscle, heart, and brain. DM1 is caused by a CTG repeat expansion in the 3'UTR region of the DMPK gene that sequesters muscleblind-like proteins, blocking their splicing activity and forming nuclear RNA foci. Consequently, many genes have their splicing reversed to a fetal pattern. There is no treatment for DM1, but several approaches have been explored, including antisense oligonucleotides (ASOs) aiming to knock down DMPK expression or bind to the CTGs expansion. ASOs were shown to reduce RNA foci and restore the splicing pattern. However, ASOs have several limitations and although being safe treated DM1 patients did not demonstrate improvement in a human clinical trial. AAV-based gene therapies have the potential to overcome such limitations, providing longer and more stable expression of antisense sequences. In the present study, we designed different antisense sequences targeting exons 5 or 8 of DMPK and the CTG repeat tract aiming to knock down DMPK expression or promote steric hindrance, respectively. The antisense sequences were inserted in U7snRNAs, which were then vectorized in AAV8 particles. Patient-derived myoblasts treated with AAV8. U7snRNAs showed a significant reduction in the number of RNA foci and re-localization of muscle-blind protein. RNA-seq analysis revealed a global splicing correction in different patient-cell lines, without alteration in DMPK expression.
Collapse
Affiliation(s)
- Camila F. Almeida
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Florence Robriquet
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Tatyana A. Vetter
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Nianyuan Huang
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Reid Neinast
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Dhanarajan Rajakumar
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - W. David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH, United States
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO, United States
| | - Kim L. McBride
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Kevin M. Flanigan
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neurology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Robert B. Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Nicolas Wein
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Tang Y, Fakhari S, Huntemann ED, Feng Z, Wu P, Feng WY, Lei J, Yuan F, Excoffon KJ, Wang K, Limberis MP, Kolbeck R, Yan Z, Engelhardt JF. Immunosuppression reduces rAAV2.5T neutralizing antibodies that limit efficacy following repeat dosing to ferret lungs. Mol Ther Methods Clin Dev 2023; 29:70-80. [PMID: 36950451 PMCID: PMC10025970 DOI: 10.1016/j.omtm.2023.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The efficacy of redosing the recombinant adeno-associated virus (rAAV) vector rAAV2.5T to ferret lung is limited by AAV neutralizing antibody (NAb) responses. While immunosuppression strategies have allowed for systemic rAAV repeat dosing, their utility for rAAV lung-directed gene therapy is largely unexplored. To this end, we evaluated two immunosuppression (IS) strategies to improve repeat dosing of rAAV2.5T to ferret lungs: (1) a combination of three IS drugs (Tri-IS) with broad coverage against cellular and humoral responses (methylprednisolone [MP], azathioprine, and cyclosporine) and (2) MP alone, which is typically used in systemic rAAV applications. Repeat dosing utilized AAV2.5T-SP183-fCFTRΔR (recombinant ferret CFTR transgene), followed 28 days later by AAV2.5T-SP183-gLuc (for quantification of transgene expression). Both the Tri-IS and MP strategies significantly improved transgene expression following repeat dosing and reduced AAV2.5T NAb responses in the bronchioalveolar lavage fluid (BALF) and plasma, while AAV2.5T binding antibody subtypes and cellular immune responses by ELISpot were largely unchanged by IS. One exception was the reduction in plasma AAV2.5T binding immunoglobulin G (IgG) in both IS groups. Only the Tri-IS strategy significantly suppressed splenocyte expression of IFNA (interferon α [IFN-α]) and IL4. Our studies suggest that IS strategies may be useful in clinical application of rAAV targeting lung genetic diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shahab Fakhari
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Eric D. Huntemann
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zehua Feng
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Peipei Wu
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - William Y. Feng
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Junying Lei
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Feng Yuan
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Ziying Yan
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - John F. Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Mulcrone PL, Lam AK, Frabutt D, Zhang J, Chrzanowski M, Herzog RW, Xiao W. Chemical modification of AAV9 capsid with N-ethyl maleimide alters vector tissue tropism. Sci Rep 2023; 13:8436. [PMID: 37231038 PMCID: PMC10212940 DOI: 10.1038/s41598-023-35547-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
Although more adeno-associated virus AAV-based drugs enter the clinic, vector tissue tropism remains an unresolved challenge that limits its full potential despite that the tissue tropism of naturally occurring AAV serotypes can be altered by genetic engineering capsid vie DNA shuffling, or molecular evolution. To further expand the tropism and thus potential applications of AAV vectors, we utilized an alternative approach that employs chemical modifications to covalently link small molecules to reactive exposed Lysine residues of AAV capsids. We demonstrated that AAV9 capsid modified with N-ethyl Maleimide (NEM) increased its tropism more towards murine bone marrow (osteoblast lineage) while decreased transduction of liver tissue compared to the unmodified capsid. In the bone marrow, AAV9-NEM transduced Cd31, Cd34, and Cd90 expressing cells at a higher percentage than unmodified AAV9. Moreover, AAV9-NEM localized strongly in vivo to cells lining the calcified trabecular bone and transduced primary murine osteoblasts in culture, while WT AAV9 transduced undifferentiated bone marrow stromal cells as well as osteoblasts. Our approach could provide a promising platform for expanding clinical AAV development to treat bone pathologies such as cancer and osteoporosis. Thus, chemical engineering the AAV capsid holds great potential for development of future generations of AAV vectors.
Collapse
Affiliation(s)
- Patrick L Mulcrone
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anh K Lam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dylan Frabutt
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Junping Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Chrzanowski
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
23
|
Arjomandnejad M, Dasgupta I, Flotte TR, Keeler AM. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023; 37:311-329. [PMID: 36862289 PMCID: PMC9979149 DOI: 10.1007/s40259-023-00585-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
24
|
Gorovits B, Azadeh M, Buchlis G, Fiscella M, Harrison T, Havert M, Janetzki S, Jawa V, Long B, Mahnke YD, McDermott A, Milton M, Nelson R, Vettermann C, Wu B. Evaluation of Cellular Immune Response to Adeno-Associated Virus-Based Gene Therapy. AAPS J 2023; 25:47. [PMID: 37101079 PMCID: PMC10132926 DOI: 10.1208/s12248-023-00814-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
The number of approved or investigational late phase viral vector gene therapies (GTx) has been rapidly growing. The adeno-associated virus vector (AAV) technology continues to be the most used GTx platform of choice. The presence of pre-existing anti-AAV immunity has been firmly established and is broadly viewed as a potential deterrent for successful AAV transduction with a possibility of negative impact on clinical efficacy and a connection to adverse events. Recommendations for the evaluation of humoral, including neutralizing and total antibody based, anti-AAV immune response have been presented elsewhere. This manuscript aims to cover considerations related to the assessment of anti-AAV cellular immune response, including review of correlations between humoral and cellular responses, potential value of cellular immunogenicity assessment, and commonly used analytical methodologies and parameters critical for monitoring assay performance. This manuscript was authored by a group of scientists involved in GTx development who represent several pharma and contract research organizations. It is our intent to provide recommendations and guidance to the industry sponsors, academic laboratories, and regulatory agencies working on AAV-based GTx viral vector modalities with the goal of achieving a more consistent approach to anti-AAV cellular immune response assessment.
Collapse
Affiliation(s)
| | - Mitra Azadeh
- Ultragenyx Pharmaceutical Inc, Novato, California, USA
| | - George Buchlis
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Mike Havert
- Gene Therapy Partners, San Diego, California, USA
| | | | - Vibha Jawa
- Bristol Myers Squibb Pharmaceutical, Princeton, New Jersey, USA
| | - Brian Long
- BioMarin Pharmaceutical Inc, Novato, California, USA
| | | | - Andrew McDermott
- Labcorp Early Development Laboratories Inc, Indianapolis, Indiana, USA
| | - Mark Milton
- Lake Boon Pharmaceutical Consulting LLC, Hudson, New York, USA
| | | | | | - Bonnie Wu
- Janssen Pharmaceuticals, Raritan, New Jersey, USA
| |
Collapse
|
25
|
Meneses AD, Koga S, Li Z, O’Leary J, Li F, Chen K, Murakami A, Qiao W, Kurti A, Heckman MG, White L, Xie M, Chen Y, Finch NA, Lim MJ, Delenclos M, DeTure MA, Linares C, Martin NB, Ikezu TC, van Blitterswijk MM, Wu LJ, McLean PJ, Rademakers R, Ross OA, Dickson DW, Bu G, Zhao N. APOE2 Exacerbates TDP-43 Related Toxicity in the Absence of Alzheimer Pathology. Ann Neurol 2023; 93:830-843. [PMID: 36546684 PMCID: PMC10471132 DOI: 10.1002/ana.26580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies. METHODS We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice. Behavior tests were performed across ages. Animals were harvested at 11 months of age and TDP-43 overexpression-related neurodegeneration and gliosis were assessed. To further address the human relevance, we analyzed the association of APOE with TDP-43 pathology in 160 postmortem brains from autopsy-confirmed amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) in the Mayo Clinic Brain Bank. RESULTS We found that TDP-43 overexpression induced motor function deficits, neuronal loss, and gliosis in the motor cortex, especially in APOE2 mice, with much milder or absent effects in APOE3, APOE4, or Apoe-KO mice. In the motor cortex of the ALS and FTLD-MND postmortem human brains, we found that the APOE2 allele was associated with more severe TDP-43-positive dystrophic neurites. INTERPRETATION Our data suggest a genotype-specific effect of APOE on TDP-43 proteinopathy and neurodegeneration in the absence of AD pathology, with the strongest association seen with APOE2. ANN NEUROL 2023;93:830-843.
Collapse
Affiliation(s)
- Axel D. Meneses
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Clinical and Translational Science Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Justin O’Leary
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Fuyao Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Kai Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Aya Murakami
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G. Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Launia White
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - NiCole A. Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Melina J. Lim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael A. DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Tadafumi C. Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Long-Jun Wu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
26
|
Ishibashi Y, Sung CYW, Grati M, Chien W. Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hear Res 2023; 432:108735. [PMID: 36965335 DOI: 10.1016/j.heares.2023.108735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Adeno-associated virus (AAV)-mediated inner ear gene therapy is a promising treatment option for hearing loss and dizziness. Several studies have shown that AAV-mediated inner ear gene therapy can be applied to various mouse models of hereditary hearing loss to improve their auditory function. Despite the increase in AAV-based animal and clinical studies aiming to rescue auditory and vestibular functions, little is currently known about the host immune responses to AAV in the mammalian inner ear. It has been reported that the host immune response plays an important role in the safety and efficacy of viral-mediated gene therapy. Therefore, in order for AAV-mediated gene therapy to be successfully and safely translated into patients with hearing loss and dizziness, a better understanding of the host immune responses to AAV in the inner ear is critical. In this review, we summarize the current knowledge on host immune responses to AAV-mediated gene therapy in the mammalian inner ear and other organ systems. We also outline the areas of research that are critical for ensuring the safety and efficacy of AAV-mediated inner ear gene therapy in future clinical and translational studies.
Collapse
Affiliation(s)
- Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Tumor antigen-loaded AAV vaccine drives protective immunity in a melanoma animal model. Mol Ther Methods Clin Dev 2023; 28:301-311. [PMID: 36851984 PMCID: PMC9957711 DOI: 10.1016/j.omtm.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
We previously described therapeutic opportunities provided by capsid- and expression cassette-optimized adeno-associated virus serotype 6 (AAV6) vectors to suppress tumor growth in both solid and metastatic mouse models by using artificial ovalbumin (OVA) immunogen. In the current study, we further elucidated the mechanism of function of a novel AAV-based vaccine loaded with the melanoma tumor-associated antigens premelanosome protein gp100, tyrosinase (Tyr), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (TRP2). We showed that the AAV6-based vaccine creates cellular and humoral antigen-specific responses, while antigen expression at the site of vaccine injection was temporal, and the clearance of antigen coincided with T cell infiltration. Our data revealed the superior protective immune response of optimized AAV6-TRP1 compared with other self-antigens in a disease-free mouse model. We further assessed the ability of AAV6-TRP1 to protect animals from metastatic spread in the lungs and to extend animal survival by inhibiting solid tumor growth. Flow cytometry-based analysis indicated significant infiltration of CD8+ T cells and natural killer (NK) cells in the tumor site, as well as changes in the polarization of intratumoral macrophages. Altogether, our data strongly support the use of optimized AAV vectors for cancer vaccine development.
Collapse
|
28
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
29
|
Chen X, Lim DA, Lawlor MW, Dimmock D, Vite CH, Lester T, Tavakkoli F, Sadhu C, Prasad S, Gray SJ. Biodistribution of Adeno-Associated Virus Gene Therapy Following Cerebrospinal Fluid-Directed Administration. Hum Gene Ther 2023; 34:94-111. [PMID: 36606687 DOI: 10.1089/hum.2022.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adeno-associated virus (AAV)-based gene therapies, exemplified by the approved therapy for spinal muscular atrophy, have the potential to deliver disease-course-altering treatments for central nervous system (CNS) indications. However, several clinical trials have reported severe adverse events, including patient deaths following high-dose systemic administration for muscle-directed gene transfer, highlighting the need to explore approaches utilizing lower doses when targeting the CNS. Animal models of disease provide insight into the response to new AAV therapies. However, translation from small to larger animals and eventually to humans is hampered by anatomical and biological differences across the species and their impact on AAV delivery. We performed a literature review of preclinical studies of AAV gene therapy biodistribution following cerebrospinal fluid (CSF) delivery (intracerebroventricular, intra-cisterna magna, and intrathecal lumbar). The reviewed literature varies greatly in the reported biodistribution of AAV following administration into the CSF. Differences between studies, including animal model, vector serotype used, method used to assess biodistribution, and route of administration, among other variables, contribute to differing outcomes and difficulties in translating these preclinical results. For example, only half of the published AAV-based gene therapy studies report vector copy number, the most direct readout following administration of a vector; none of these studies reported details such as the empty:full capsid ratio and quality of encapsidated genome. Analysis of the last decade's literature focusing on AAV-based gene therapies targeting the CNS underscores limitations of the body of knowledge and room for continued research. In particular, there is a need to understand the biodistribution achieved by different CSF-directed routes of administration and determining if specific cell types/structures of interest will be transduced. Our findings point to a clear need for a more systematic approach across the field to align the assessments and elements reported in preclinical research to enable more reliable translation across animal models and into human studies.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel A Lim
- Department of Neurological Surgery, Eli and Edythe Broad Center for Regeneration Medicine, and the Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Michael W Lawlor
- Medical College of Wisconsin and Diverge Translational Science Laboratory, Milwaukee, Wisconsin, USA
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Charles H Vite
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and
| | | | | | | | | | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
30
|
Olshefsky A, Richardson C, Pun SH, King NP. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem 2022; 33:2018-2034. [PMID: 35487503 PMCID: PMC9673152 DOI: 10.1021/acs.bioconjchem.2c00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite remarkable advances over the past several decades, many therapeutic nanomaterials fail to overcome major in vivo delivery barriers. Controlling immunogenicity, optimizing biodistribution, and engineering environmental responsiveness are key outstanding delivery problems for most nanotherapeutics. However, notable exceptions exist including some lipid and polymeric nanoparticles, some virus-based nanoparticles, and nanoparticle vaccines where immunogenicity is desired. Self-assembling protein nanoparticles offer a powerful blend of modularity and precise designability to the field, and have the potential to solve many of the major barriers to delivery. In this review, we provide a brief overview of key designable features of protein nanoparticles and their implications for therapeutic delivery applications. We anticipate that protein nanoparticles will rapidly grow in their prevalence and impact as clinically relevant delivery platforms.
Collapse
Affiliation(s)
- Audrey Olshefsky
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Christian Richardson
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Neil P. King
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
31
|
Trimarco JD, Nelson SL, Chaparian RR, Wells AI, Murray NB, Azadi P, Coyne CB, Heaton NS. Cellular glycan modification by B3GAT1 broadly restricts influenza virus infection. Nat Commun 2022; 13:6456. [PMID: 36309510 PMCID: PMC9617049 DOI: 10.1038/s41467-022-34111-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Communicable respiratory viral infections pose both epidemic and pandemic threats and broad-spectrum antiviral strategies could improve preparedness for these events. To discover host antiviral restriction factors that may act as suitable targets for the development of host-directed antiviral therapies, we here conduct a whole-genome CRISPR activation screen with influenza B virus (IBV). A top hit from our screen, beta-1,3-glucuronyltransferase 1 (B3GAT1), effectively blocks IBV infection. Subsequent studies reveal that B3GAT1 activity prevents cell surface sialic acid expression. Due to this mechanism of action, B3GAT1 expression broadly restricts infection with viruses that require sialic acid for entry, including Victoria and Yamagata lineage IBVs, H1N1/H3N2 influenza A viruses (IAVs), and the unrelated enterovirus D68. To understand the potential utility of B3GAT1 induction as an antiviral strategy in vivo, we specifically express B3GAT1 in the murine respiratory epithelium and find that overexpression is not only well-tolerated, but also protects female mice from a lethal viral challenge with multiple influenza viruses, including a pandemic-like H1N1 IAV. Thus, B3GAT1 may represent a host-directed broad-spectrum antiviral target with utility against clinically relevant respiratory viruses.
Collapse
Affiliation(s)
- Joseph D Trimarco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sarah L Nelson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan R Chaparian
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra I Wells
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan B Murray
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
32
|
Wu F, Sambamurti K, Sha S. Current Advances in Adeno-Associated Virus-Mediated Gene Therapy to Prevent Acquired Hearing Loss. J Assoc Res Otolaryngol 2022; 23:569-578. [PMID: 36002664 PMCID: PMC9613825 DOI: 10.1007/s10162-022-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
Adeno-associated viruses (AAVs) are viral vectors that offer an excellent platform for gene therapy due to their safety profile, persistent gene expression in non-dividing cells, target cell specificity, lack of pathogenicity, and low immunogenicity. Recently, gene therapy for genetic hearing loss with AAV transduction has shown promise in animal models. However, AAV transduction for gene silencing or expression to prevent or manage acquired hearing loss is limited. This review provides an overview of AAV as a leading gene delivery vector for treating genetic hearing loss in animal models. We highlight the advantages and shortcomings of AAV for investigating the mechanisms and preventing acquired hearing loss. We predict that AAV-mediated gene manipulation will be able to prevent acquired hearing loss.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA.
| |
Collapse
|
33
|
Abstract
Adeno-associated virus (AAV) has a single-stranded DNA genome encapsidated in a small icosahedrally symmetric protein shell with 60 subunits. AAV is the leading delivery vector in emerging gene therapy treatments for inherited disorders, so its structure and molecular interactions with human hosts are of intense interest. A wide array of electron microscopic approaches have been used to visualize the virus and its complexes, depending on the scientific question, technology available, and amenability of the sample. Approaches range from subvolume tomographic analyses of complexes with large and flexible host proteins to detailed analysis of atomic interactions within the virus and with small ligands at resolutions as high as 1.6 Å. Analyses have led to the reclassification of glycan receptors as attachment factors, to structures with a new-found receptor protein, to identification of the epitopes of antibodies, and a new understanding of possible neutralization mechanisms. AAV is now well-enough characterized that it has also become a model system for EM methods development. Heralding a new era, cryo-EM is now also being deployed as an analytic tool in the process development and production quality control of high value pharmaceutical biologics, namely AAV vectors.
Collapse
Affiliation(s)
- Scott
M. Stagg
- Department
of Biological Sciences, Florida State University, Tallahassee, Florida 32306, United States
- Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Craig Yoshioka
- Department
of Biomedical Engineering, Oregon Health
& Science University, Portland Oregon 97239, United States
| | - Omar Davulcu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Michael S. Chapman
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
34
|
Burdett T, Nuseibeh S. Changing trends in the development of AAV-based gene therapies: a meta-analysis of past and present therapies. Gene Ther 2022; 30:323-335. [PMID: 36089633 DOI: 10.1038/s41434-022-00363-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022]
Abstract
Gene therapy has seen a transformation from a proof-of-concept approach to a clinical reality over the past several decades, with adeno-associated virus (AAV)-mediated gene therapy emerging as the leading platform for in vivo gene transfer. A systematic review of AAV-based gene therapies in clinical development was conducted herein to determine why only a handful of AAV-based gene therapy products have achieved market approval. The indication to be treated, route of administration and vector design were investigated as critical factors and assessed for their impact on clinical safety and efficacy. A shift in recent years towards high-dose systemic administration for the treatment of metabolic, neurological and haematological diseases was identified, with intravenous administration demonstrating the highest efficacy and safety risks in clinical trials. Recent years have seen a decline in favour of traditional AAV serotypes and promoters, accompanied by an increase in favour and higher clinical success rate for novel capsids and tissue-specific promoters. Furthermore, a meta-analysis was performed to identify factors that may inhibit the translation of therapeutic efficacy from preclinical large animal studies to first-in-human clinical trials and a detrimental effect on clinical efficacy was associated with alterations to administration routes.
Collapse
|
35
|
Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol 2022; 13:991832. [PMID: 36119036 PMCID: PMC9479010 DOI: 10.3389/fimmu.2022.991832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) is a promising delivery vehicle for in vivo gene therapy and has been widely used in >200 clinical trials globally. There are already several approved gene therapy products, e.g., Luxturna and Zolgensma, highlighting the remarkable potential of AAV delivery. In the past, AAV has been seen as a relatively non-immunogenic vector associated with low risk of toxicity. However, an increasing number of recent studies indicate that immune responses against AAV and transgene products could be the bottleneck of AAV gene therapy. In clinical studies, pre-existing antibodies against AAV capsids exclude many patients from receiving the treatment as there is high prevalence of antibodies among humans. Moreover, immune response could lead to loss of efficacy over time and severe toxicity, manifested as liver enzyme elevations, kidney injury, and thrombocytopenia, resulting in deaths of non-human primates and patients. Therefore, extensive efforts have been attempted to address these issues, including capsid engineering, plasmapheresis, IgG proteases, CpG depletion, empty capsid decoy, exosome encapsulation, capsid variant switch, induction of regulatory T cells, and immunosuppressants. This review will discuss these methods in detail and highlight important milestones along the way.
Collapse
Affiliation(s)
- Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoli Wei
- Guangzhou Dezheng Biotechnology Co., Ltd., Guangzhou, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Ou
- Genemagic Biosciences, Philadelphia, PA, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Li Ou,
| |
Collapse
|
36
|
Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, Tarcsa E, Fang X, Hofer L, Kavita U, Upreti VV, Gupta S, Loo L, Johnson AJ, Chandode RK, Stubenrauch KG, Vinzing M, Xia CQ, Jawa V. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol Ther Methods Clin Dev 2022; 26:471-494. [PMID: 36092368 PMCID: PMC9418752 DOI: 10.1016/j.omtm.2022.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunogenicity has imposed a challenge to efficacy and safety evaluation of adeno-associated virus (AAV) vector-based gene therapies. Mild to severe adverse events observed in clinical development have been implicated with host immune responses against AAV gene therapies, resulting in comprehensive evaluation of immunogenicity during nonclinical and clinical studies mandated by health authorities. Immunogenicity of AAV gene therapies is complex due to the number of risk factors associated with product components and pre-existing immunity in human subjects. Different clinical mitigation strategies have been employed to alleviate treatment-induced or -boosted immunogenicity in order to achieve desired efficacy, reduce toxicity, or treat more patients who are seropositive to AAV vectors. In this review, the immunogenicity risk assessment, manifestation of immunogenicity and its impact in nonclinical and clinical studies, and various clinical mitigation strategies are summarized. Last, we present bioanalytical strategies, methodologies, and assay validation applied to appropriately monitor immunogenicity in AAV gene therapy-treated subjects.
Collapse
|
37
|
Darvishi F, Jahanafrooz Z, Mokhtarzadeh A. Microbial L-asparaginase as a promising enzyme for treatment of various cancers. Appl Microbiol Biotechnol 2022; 106:5335-5347. [DOI: 10.1007/s00253-022-12086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
|
38
|
Lateralized deficits after unilateral AAV-vector based overexpression of alpha-synuclein in the midbrain of rats on drug-free behavioural tests. Behav Brain Res 2022; 429:113887. [DOI: 10.1016/j.bbr.2022.113887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
|
39
|
Muhuri M, Gao G. Membranous Bubbles: High-Purity and High-Titer Exosomes as the Potential Solution for Adeno-Associated Viruses to Evade Neutralization? Hum Gene Ther 2021; 32:1427-1429. [PMID: 34935455 DOI: 10.1089/hum.2021.29189.mmu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program, and
| | - Guangping Gao
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
40
|
Hu H, Mosca R, Gomero E, van de Vlekkert D, Campos Y, Fremuth LE, Brown SA, Weesner JA, Annunziata I, d’Azzo A. AAV-mediated gene therapy for galactosialidosis: A long-term safety and efficacy study. Mol Ther Methods Clin Dev 2021; 23:644-658. [PMID: 34901309 PMCID: PMC8640647 DOI: 10.1016/j.omtm.2021.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 11/05/2022]
Abstract
AAV-mediated gene therapy holds promise for the treatment of lysosomal storage diseases (LSDs), some of which are already in clinical trials. Yet, ultra-rare subtypes of LSDs, such as some glycoproteinoses, have lagged. Here, we report on a long-term safety and efficacy preclinical study conducted in the murine model of galactosialidosis, a glycoproteinosis caused by a deficiency of protective protein/cathepsin A (PPCA). One-month-old Ctsa -/- mice were injected intravenously with a high dose of a self-complementary AAV2/8 vector expressing human CTSA in the liver. Treated mice, examined up to 12 months post injection, appeared grossly indistinguishable from their wild-type littermates. Sustained expression of scAAV2/8-CTSA in the liver resulted in the release of the therapeutic precursor protein in circulation and its widespread uptake by cells in visceral organs and the brain. Increased cathepsin A activity resolved lysosomal vacuolation throughout the affected organs and sialyl-oligosacchariduria. No signs of hyperplasia or inflammation were detected in the liver up to a year of age. Clinical chemistry panels, blood cell counts, and T cell immune responses were normal in all treated animals. These results warrant a close consideration of this gene therapy approach for the treatment of galactosialidosis, an orphan disease with no cure in sight.
Collapse
Affiliation(s)
- Huimin Hu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rosario Mosca
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elida Gomero
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Yvan Campos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leigh E. Fremuth
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Scott A. Brown
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason A. Weesner
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
41
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
42
|
Inherent hepatocytic heterogeneity determines expression and retention of edited F9 alleles post-AAV/CRISPR infusion. Proc Natl Acad Sci U S A 2021; 118:2110887118. [PMID: 34649996 DOI: 10.1073/pnas.2110887118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
Infusing CRISPR/donor-loaded adeno-associated viral vectors (AAV/CRISPR) could enable in vivo hepatic gene editing to remedy hemophilia B (HB) with inherited deficiency of clotting factor IX (FIX). Yet, current regimens focus on correcting HB with simple mutations in the coding region of the F9, overlooking those carrying complicated mutations involving the regulatory region. Moreover, a possible adverse effect of treatment-related inflammation remains unaddressed. Here we report that a single DNA cutting-mediated long-range replacement restored the FIX-encoding function of a mutant F9 (mF9) carrying both regulatory and coding defects in a severe mouse HB model, wherein incorporation of a synthetic Alb enhancer/promoter-mimic (P2) ensured FIX elevation to clinically meaningful levels. Through single-cell RNA sequencing (scRNA-seq) of liver tissues, we revealed that a subclinical hepatic inflammation post-AAV/CRISPR administration regulated the vulnerability of the edited mF9-harboring host cells to cytotoxic T lymphocytes (CTLs) and the P2 activity in a hepatocytic subset-dependent manner via modulating specific sets of liver-enriched transcription factors (LETFs). Collectively, our study establishes an AAV/CRISPR-mediated gene-editing protocol applicable to complicated monogenetic disorders, underscoring the potentiality of improving therapeutic benefits through managing inflammation.
Collapse
|
43
|
Sevin C, Deiva K. Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement. Front Mol Biosci 2021; 8:624988. [PMID: 34604300 PMCID: PMC8481654 DOI: 10.3389/fmolb.2021.624988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
There are over 70 known lysosomal storage disorders (LSDs), most caused by mutations in genes encoding lysosomal hydrolases. Central nervous system involvement is a hallmark of the majority of LSDs and, if present, generally determines the prognosis of the disease. Nonetheless, brain disease is currently poorly targeted by available therapies, including systemic enzyme replacement therapy, mostly (but not only) due to the presence of the blood–brain barrier that restricts the access of orally or parenterally administered large molecules into the brain. Thus, one of the greatest and most exciting challenges over coming years will be to succeed in developing effective therapies for the treatment of central nervous system manifestations in LSDs. Over recent years, gene therapy (GT) has emerged as a promising therapeutic strategy for a variety of inherited neurodegenerative diseases. In LSDs, the ability of genetically corrected cells to cross-correct adjacent lysosomal enzyme-deficient cells in the brain after gene transfer might enhance the diffusion of the recombinant enzyme, making this group of diseases a strong candidate for such an approach. Both in vivo (using the administration of recombinant adeno-associated viral vectors) and ex vivo (auto-transplantation of lentiviral vector-modified hematopoietic stem cells-HSCs) strategies are feasible. Promising results have been obtained in an ever-increasing number of preclinical studies in rodents and large animal models of LSDs, and these give great hope of GT successfully correcting neurological defects, once translated to clinical practice. We are now at the stage of treating patients, and various clinical trials are underway, to assess the safety and efficacy of in vivo and ex vivo GT in several neuropathic LSDs. In this review, we summarize different approaches being developed and review the current clinical trials related to neuropathic LSDs, their results (if any), and their limitations. We will also discuss the pitfalls and the remaining challenges.
Collapse
Affiliation(s)
- Caroline Sevin
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
44
|
Croze RH, Kotterman M, Burns CH, Schmitt CE, Quezada M, Schaffer D, Kirn D, Francis P. Viral Vector Technologies and Strategies: Improving on Nature. Int Ophthalmol Clin 2021; 61:59-89. [PMID: 34196318 PMCID: PMC8253506 DOI: 10.1097/iio.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Mehta N, Robbins DA, Yiu G. Ocular Inflammation and Treatment Emergent Adverse Events in Retinal Gene Therapy. Int Ophthalmol Clin 2021; 61:151-177. [PMID: 34196322 PMCID: PMC8259781 DOI: 10.1097/iio.0000000000000366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neesurg Mehta
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Deborah Ahn Robbins
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| |
Collapse
|
46
|
iPSC Preparation and Epigenetic Memory: Does the Tissue Origin Matter? Cells 2021; 10:cells10061470. [PMID: 34208270 PMCID: PMC8230744 DOI: 10.3390/cells10061470] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
The production of induced pluripotent stem cells (iPSCs) represent a breakthrough in regenerative medicine, providing new opportunities for understanding basic molecular mechanisms of human development and molecular aspects of degenerative diseases. In contrast to human embryonic stem cells (ESCs), iPSCs do not raise any ethical concerns regarding the onset of human personhood. Still, they present some technical issues related to immune rejection after transplantation and potential tumorigenicity, indicating that more steps forward must be completed to use iPSCs as a viable tool for in vivo tissue regeneration. On the other hand, cell source origin may be pivotal to iPSC generation since residual epigenetic memory could influence the iPSC phenotype and transplantation outcome. In this paper, we first review the impact of reprogramming methods and the choice of the tissue of origin on the epigenetic memory of the iPSCs or their differentiated cells. Next, we describe the importance of induction methods to determine the reprogramming efficiency and avoid integration in the host genome that could alter gene expression. Finally, we compare the significance of the tissue of origin and the inter-individual genetic variation modification that has been lightly evaluated so far, but which significantly impacts reprogramming.
Collapse
|
47
|
Bertolini TB, Shirley JL, Zolotukhin I, Li X, Kaisho T, Xiao W, Kumar SRP, Herzog RW. Effect of CpG Depletion of Vector Genome on CD8 + T Cell Responses in AAV Gene Therapy. Front Immunol 2021; 12:672449. [PMID: 34135899 PMCID: PMC8200677 DOI: 10.3389/fimmu.2021.672449] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno associated viral (AAV) vectors have emerged as a preferred platform for in vivo gene replacement therapy and represent one of the most promising strategies to treat monogenetic disorders such as hemophilia. However, immune responses to gene transfer have hampered human gene therapy in clinical trials. Over the past decade, it has become clear that innate immune recognition provides signals for the induction of antigen-specific responses against vector or transgene product. In particular, TLR9 recognition of the vector's DNA genome in plasmacytoid dendritic cells (pDCs) has been identified as a key factor. Data from clinical trials and pre-clinical studies implement CpG motifs in the vector genome as drivers of immune responses, especially of CD8+ T cell activation. Here, we demonstrate that cross-priming of AAV capsid-specific CD8+ T cells depends on XCR1+ dendritic cells (which are likely the main cross-presenting cell that cooperates with pDCs to activate CD8+ T cells) and can be minimized by the elimination of CpG motifs in the vector genome. Further, a CpG-depleted vector expressing human coagulation factor IX showed markedly reduced (albeit not entirely eliminated) CD8+ T cell infiltration upon intramuscular gene transfer in hemophilia B mice when compared to conventional CpG+ vector (comprised of native sequences), resulting in better preservation of transduced muscle fibers. Therefore, this deimmunization strategy is helpful in reducing the potential for CD8+ T cell responses to capsid or transgene product. However, CpG depletion had minimal effects on antibody responses against capsid or transgene product, which appear to be largely independent of CpG motifs.
Collapse
Affiliation(s)
- Thais B. Bertolini
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jamie L. Shirley
- Department Pediatrics, University of Florida, Gainesville, FL, United States
| | - Irene Zolotukhin
- Department Pediatrics, University of Florida, Gainesville, FL, United States
| | - Xin Li
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sandeep R. P. Kumar
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
48
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
49
|
George S, Tyson T, Rey NL, Sheridan R, Peelaerts W, Becker K, Schulz E, Meyerdirk L, Burmeister AR, von Linstow CU, Steiner JA, Galvis MLE, Ma J, Pospisilik JA, Labrie V, Brundin L, Brundin P. T Cells Limit Accumulation of Aggregate Pathology Following Intrastriatal Injection of α-Synuclein Fibrils. JOURNAL OF PARKINSONS DISEASE 2021; 11:585-603. [PMID: 33579871 PMCID: PMC8150548 DOI: 10.3233/jpd-202351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α-synucleinopathies, such as Parkinson's disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived from α-syn and altered populations of T cells have been found in PD and MSA patients, providing evidence that these cells can be key to the pathogenesis of the disease.ObjectiveTo study the role of the adaptive immune system with respect to α-syn pathology. METHODS We injected human α-syn preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. RESULTS Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in the substantia nigra. Reconstituting the T cell population decreased the accumulation of phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared to non-transplanted mice. CONCLUSION Our work provides evidence that T cells play a role in the pathogenesis of experimental α-synucleinopathy.
Collapse
Affiliation(s)
- Sonia George
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Trevor Tyson
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Nolwen L Rey
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-aux-Roses, France
| | - Rachael Sheridan
- Flow Cytometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Wouter Peelaerts
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Katelyn Becker
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Schulz
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Lindsay Meyerdirk
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Amanda R Burmeister
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Michigan State University - College of Human Medicine, Department of Psychiatry, Grand Rapids, MI, USA
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Michigan State University - College of Human Medicine, Department of Psychiatry, Grand Rapids, MI, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Michigan State University - College of Human Medicine, Department of Psychiatry, Grand Rapids, MI, USA
| |
Collapse
|
50
|
Ertl HCJ. T Cell-Mediated Immune Responses to AAV and AAV Vectors. Front Immunol 2021; 12:666666. [PMID: 33927727 PMCID: PMC8076552 DOI: 10.3389/fimmu.2021.666666] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Adeno-associated virus (AAV)-mediated gene transfer has benefited patients with inherited diseases, such as hemophilia B, by achieving long-term expression of the therapeutic transgene. Nevertheless, challenges remain due to rejection of AAV-transduced cells, which in some, but not all, patients can be prevented by immunosuppression. It is assumed that CD8+ T cells induced by natural infections with AAVs are recalled by the AAV vector's capsid and upon activation eliminate cells expressing the degraded capsid antigens. Alternatively, it is feasible that AAV vectors, especially if given at high doses, induce de novo capsid- or transgene product-specific T cell responses. This chapter discusses CD8+ T cell responses to AAV infections and AAV gene transfer and avenues to prevent their activation or block their effector functions.
Collapse
|