1
|
Wu S, Zhao T, Jin L, Gong M. Exploring the synergistic effects of chuanxiong rhizoma and Cyperi rhizoma in eliciting a rapid anti-migraine action based on pharmacodynamics and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118608. [PMID: 39053709 DOI: 10.1016/j.jep.2024.118608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb-herb combination has been used to maximize the therapeutic efficacy in the theory of traditional Chinese medicine. Chuanxiong rhizoma (called Chuanxiong in Chinese, CX) and Cyperi rhizoma (called Xiangfu in Chinese, XF) have been used alone or in combination (CRCR) to treat migraine dating back to Eastern Jin Dynasty (AD317) of China. But no data demonstrate the possible necessities or advantages of combining CX and XF for migraine. AIM OF THE STUDY This study explores the combination mechanism based on pharmacodynamics and pharmacokinetics. MATERIALS AND METHODS A nitroglycerin-induced acute migraine model in rats was used to evaluate the anti-migraine effects of CRCR and the individual herbs using behavior, real time polymerase chain reaction and Western blot experiments. The absorption characteristics of active components involved in the anti-migraine action were analyzed by UPLC-MS/MS. RESULTS CX and CRCR significantly reversed the abnormal levels of vasoactive substances (5-HT, CGRP, MMP-2 and MMP-9) to normal levels, but XF did not. XF and CRCR significantly decreased the pro-inflammatory cytokines (IL-1β, IL-6, and TNF-a), and increased the anti-inflammatory cytokines (IL-4 and IL-10). CRCR significantly decreased the mRNA expression levels of c-fos, iNos and nNos, and the corresponding protein expression levels of c-Fos, iNOS, and nNOS. CRCR inhibited NOS/NO pathway by downregulating the expression levels of NOS and NO. Furthermore, CRCR significantly increased the intestinal absorption rate and amount, and changed the pharmacokinetic parameters of active components in comparison with the individual herbs. CONCLUSIONS CX had an advantage in regulating vasoactive substances, and XF focused on regulating inflammatory cytokines. CRCR is more effective in treating migraine than the individual herbs by depending on the synergistic action of CX and XF. This research provided some critical evidences on synergistic action between herb-herb interactions, and revealed the potential advantages of herb-herb combination in traditional Chinese medicine.
Collapse
Affiliation(s)
- Sha Wu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Ting Zhao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Linli Jin
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Muxin Gong
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Fan Z, Su D, Li ZC, Sun S, Ge Z. Metformin attenuates central sensitization by regulating neuroinflammation through the TREM2-SYK signaling pathway in a mouse model of chronic migraine. J Neuroinflammation 2024; 21:318. [PMID: 39627853 PMCID: PMC11613737 DOI: 10.1186/s12974-024-03313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Chronic migraine (CM) is a serious neurological disorder. Central sensitization is one of the important pathophysiological mechanisms underlying CM, and microglia-induced neuroinflammation conduces to central sensitization. Triggering receptor expressed on myeloid cells 2 (TREM2) is presented solely in microglia residing within the central nervous system and plays a key role in neuroinflammation. Metformin has been shown to regulate inflammatory responses and exert analgesic effects, but its relationship with CM remains unclear. In the study, we investigated whether metformin modulates TREM2 to improve central sensitization of CM and clarified the potential molecular mechanisms. METHODS A CM mouse model was induced by administration of nitroglycerin (NTG). Behavioral evaluations were conducted using von Frey filaments and hot plate experiments. Western blot and immunofluorescence techniques were employed to investigate the molecular mechanisms. Metformin and the SYK inhibitor R406 were administered to mice to assess their regulatory effects on neuroinflammation and central sensitization. To explore the role of TREM2-SYK in regulating neuroinflammation with metformin, a lentivirus encoding TREM2 was injected into the trigeminal nucleus caudalis (TNC). In vitro experiments were conducted to evaluate the regulation of TREM2-SYK by metformin, involving interventions with LPS, metformin, R406, siTREM2, and TREM2 plasmids. RESULTS Metformin and R406 pretreatment can effectively improve hyperalgesia in CM mice. Both metformin and R406 significantly inhibit c-fos and CGRP expression in CM mice, effectively suppressing the activation of microglia and NLRP3 inflammasome induced by NTG. With the administration of NTG, TREM2 expression gradually increased in TNC microglia. Additionally, we observed that metformin significantly inhibits TREM2 and SYK expression in CM mice. Lv-TREM2 attenuated metformin-mediated anti-inflammatory responses. In vitro experiments, knockdown of TREM2 inhibited LPS-induced SYK pathway activation and alleviated inflammatory responses. After the sole overexpression of TREM2, the SYK signaling pathway is activated, resulting in the activation of the NLRP3 inflammasome and an increased expression of pro-inflammatory cytokines; nevertheless, this consequence can be reversed by R406. The overexpression of TREM2 attenuates the inhibition of SYK activity mediated by metformin, and this effect can be reversed by R406. CONCLUSIONS Our findings suggest that metformin attenuates central sensitization in CM by regulating the activation of microglia and NLRP3 inflammasome through the TREM2-SYK pathway.
Collapse
Affiliation(s)
- Zhenzhen Fan
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Dandan Su
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Zi Chao Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Songtang Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Gong J, Duan X, Xiang B, Qin L, Hu J. Transcriptomic changes in the hypothalamus of mice with chronic migraine: Activation of pathways associated with neuropathic inflammation and central sensitization. Mol Cell Neurosci 2024; 131:103968. [PMID: 39251101 DOI: 10.1016/j.mcn.2024.103968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic migraine is a common central nervous system disorder characterized by recurrent, pulsating headaches. However, the extent and mechanisms of hypothalamic involvement in disease progression have not been thoroughly investigated. Herein, we created a chronic migraine mouse model using repeated intraperitoneal injections of nitroglycerin. We performed transcriptomic sequencing on the hypothalamus of mice with chronic migraine and control mice under normal physiological conditions, followed by differential gene set enrichment and functional analysis of the data. Additionally, we examined the intrinsic connection between chronic migraine and sleep disorders using transcriptomic sequencing data from sleep-deprived mice available in public databases. We identified 39 differentially expressed genes (DEGs) in the hypothalamus of a mouse model of chronic migraine. Functional analysis of DEGs revealed enrichment primarily in signaling transduction, immune-inflammatory responses, and the cellular microenvironment. A comparison of the transcriptomic data of sleep-deprived mice revealed two commonly expressed DEGs. Our findings indicate that the hypothalamic DEGs are primarily enriched in the PI3K/AKT/mTOR pathway and associated with the NF-κB/NLRP3/IL-1 β pathway activation to maintain the central sensitization of the chronic migraine. Chronic migraine-induced gene expression changes in the hypothalamus may help better understand the underlying mechanisms and identify therapeutic targets.
Collapse
Affiliation(s)
- Junyou Gong
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xianghan Duan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Biyu Xiang
- Department of Blood Transfusion, the First Hospital of Nanchang City, Nanchang, China
| | - Lijun Qin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jiejie Hu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Nagarajan G, Zhang Y. Distinct expression profile reveals glia involvement in the trigeminal system attributing to post-traumatic headache. J Headache Pain 2024; 25:203. [PMID: 39578726 PMCID: PMC11585153 DOI: 10.1186/s10194-024-01897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Post-traumatic headache (PTH) is a common comorbid symptom affecting at least one-third of patients with mild traumatic brain injury (mTBI). While neuroinflammation is known to contribute to the development of PTH, the cellular mechanisms in the trigeminal system crucial for understanding the pathogenesis of PTH remain unclear. METHODS A non-invasive repetitive mTBI (4 times with a 24-h interval) was induced in male mice and effect of mTBI was tested on either bregma or pre-bregma position on the head. Periorbital allodynia and spontaneous pain behavior were assessed using von Frey test and grimace score, respectively. Quantitative PCR was used to assess extent of mTBI pathology. RNA sequencing was performed to obtain transcriptomic profile of the trigeminal ganglion (TG), trigeminal nucleus caudalis (Sp5C) and periaqueductal gray (PAG) at 7 days post-TBI. Subsequently, quantitative PCR, in situ hybridization and immunohistochemistry were used to examine mRNA and protein expression of glia specific markers and pain associated molecules. RESULTS The repetitive impacts at the bregma, but not pre-bregma site led to periorbital hypersensitivity, which was correlated with enhanced inflammatory gene expression in multiple brain regions. RNA sequencing revealed mTBI induced distinct transcriptomic profiles in the peripheral TG and central Sp5C and PAG. Using gene set enrichment analysis, positive enrichment of non-neuronal cells in the TG and neuroinflammation in the Sp5C were identified to be essential in the pathogenesis of PTH. In situ assays also revealed that gliosis of satellite glial cells in the TG and astrocytes in the Sp5C were prominent days after injury. Furthermore, immunohistochemical study revealed a close interaction between activated microglia and reactive astrocytes correlating with increased calretinin interneurons in the Sp5C. CONCLUSIONS Transcriptomics analysis indicated that non-neuronal cells in peripheral TG and successive in situ assays revealed that glia in the central Sp5C are crucial in modulating headache-like symptoms. Thus, selective targeting of glia cells can be a therapeutic strategy for PTH attributed to repetitive mTBI.
Collapse
Affiliation(s)
- Gurueswar Nagarajan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
5
|
Zhang Y, Ge F, Luo Y, Ji X, Liu Z, Qiu Y, Hou J, Zhou R, Zhao C, Xu Q, Zhang S, Yu X, Wang C, Ge D, Meng F, Tao X. Paeonol and glycyrrhizic acid in combination ameliorate the recurrent nitroglycerin-induced migraine-like phenotype in rats by regulating the GABBR2/TRPM8/PRKACA/TRPV1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118464. [PMID: 38908492 DOI: 10.1016/j.jep.2024.118464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonol (PAE) and glycyrrhizic acid (GLY) are predominate components of 14 blood-entering ones of Piantongtang No. 1, which is a traditional Chinese medicine prescription for chronic migraine with minimal side effects. Both paeonol and glycyrrhizic acid exhibit analgesic, neuroprotective and anti-inflammatory properties individually. Our previous research has highlighted their combined effect (PAE + GLY) in ameliorating migraine symptoms. However, there are not yet any studies exploring the mechanism of action of PAE + GLY in the treatment of migraine. AIM OF THE STUDY This research aimed to determine the mechanism of PAE + GLY in ameliorating the recurrent nitroglycerin-induced migraine-like phenotype in rats. MATERIALS AND METHODS Using a nitroglycerin-induced migraine model via subcutaneous injection in the neck, we evaluated the effect of PAE + GLY on migraine-like symptoms. Behavioural tests and biomarkers analysis were employed, alongside transcriptome sequencing (RNA-seq). Mechanistic insights were further verified utilising reverse transcription quantitative PCR (RT-qPCR), Western blot (WB), ELISA and immunofluorescence (IF) techniques. RESULTS Following treatment with PAE + GLY, hyperalgesia threshold and 5-hydroxytryptamine (5-HT) levels increased, and migraine-like head scratching, histamine and calcitonin gene-related peptide (CGRP) levels were reduced. RNA-Seq experiments revealed that PAE + GLY upregulated the expression of Glutamate decarboxylase 2 (GAD2) and γ-aminobutyric acid type B receptor subunit 2 (GABBR2) genes. This upregulation activated the GABAergic synapse pathway, effectively inhibiting migraine attacks. Further validation demonstrated an increase in γ-aminobutyric acid (GABA) content in cerebrospinal fluid post PAE + GLY treatment, coupled with increased expression of dural GAD2, GABBR2 and transient receptor potential channel M8 (TRPM8). Consequently, this inhibited the expression of dural cAMP-dependent protein kinase catalytic subunit alpha (PRKACA) and transient receptor potential channel type 1 (TRPV1), subsequently downregulating p-ERK1/2, p-AKT1, IL-1β and TNF-α. CONCLUSIONS Our findings underscore that PAE + GLY ameliorates inflammatory hyperalgesia migraine by upregulating inhibitory neurotransmitters and modulating the GABBR2/TRPM8/PRKACA/TRPV1 pathway.
Collapse
Affiliation(s)
- Yao Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Ge
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yamin Luo
- Bejing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuenian Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zijian Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuehua Qiu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianchen Hou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ranran Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Caihong Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qianwei Xu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, 100089, China
| | - Shujing Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Yu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chunguo Wang
- Bejing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongyu Ge
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fengxian Meng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaohua Tao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Research Institute of Chinese Medicine Literature, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Clement A, Dam-Amby CL, Obelitz-Ryom K, Christensen SL. The search for non-evoked markers of pain in the GTN mouse model of migraine. Sci Rep 2024; 14:26481. [PMID: 39489838 PMCID: PMC11532339 DOI: 10.1038/s41598-024-78332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024] Open
Abstract
Rodent migraine models have been developed to study the underlying molecular mechanisms of migraine, but these need further development and validation to stay relevant. The glyceryl trinitrate (GTN) mouse model with tactile hypersensitivity as the primary readout, has been highly used to understand the pathophysiology of migraine. Nevertheless, this readout has questionable translatability to the experience of spontaneous pain and additional readouts are needed to improve this model. We explored the applicability of several spontaneous behaviours and burrowing activity as additional markers to detect effects of repeated GTN injections in mice. We used the Laboratory Animal Behaviour Observation Registration and Analysis System (LABORAS) test system to understand the potential effect of GTN on locomotion and other behavioral parameters in two different experiments. Burrowing was used to investigate the potential effect on GTN on a voluntary innate behavior of mice. We found no clear effect of GTN on either locomotion or burrowing in these experiments. With our experimental design, there was no significant difference between GTN and vehicle and neither locomotion nor burrowing activity will readily supplement the von Frey test. The search for additional none-evoked markers of pain in rodent migraine models will continue.
Collapse
Affiliation(s)
- Amalie Clement
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Cecilie Luna Dam-Amby
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Karina Obelitz-Ryom
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Degel C, Zitelli K, Zapata J, Nassi J, Botta P. Harnessing Miniscope Imaging in Freely Moving Animals to Unveil Migraine Pathophysiology and Validate Novel Therapeutic Strategies. Synapse 2024; 78:e70001. [PMID: 39567365 PMCID: PMC11578939 DOI: 10.1002/syn.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
Migraine is a debilitating neurological disorder that affects millions worldwide. Elucidating its underlying mechanisms is crucial for developing effective therapeutic interventions. In this editorial, we discuss the potential applications of one-photon miniscopes, which enable minimally invasive, high spatiotemporal resolution fluorescence imaging in freely moving animals. By providing real-time visualization of vascular dynamics and neuronal activity, these cutting-edge techniques can offer unique insights into migraine pathophysiology. We explore the significance of these applications in preclinical research with a case study demonstrating their potential to drive the development of novel therapeutic strategies for effective migraine management.
Collapse
Affiliation(s)
- Caroline Degel
- H. Lundbeck A/S, Neuroscience Research, Circuit BiologyValbyDenmark
| | - Kevin Zitelli
- Inscopix ‐ A Bruker CompanyMountain ViewCaliforniaUSA
| | | | | | - Paolo Botta
- H. Lundbeck A/S, Neuroscience Research, Circuit BiologyValbyDenmark
| |
Collapse
|
8
|
Yang C, Wei C, Alam S, Chen X, McKemy DD. The neurotrophic factor artemin and its receptor GFRα3 mediate migraine-like pain via the ion channel TRPM8. Cephalalgia 2024; 44:3331024241297679. [PMID: 39552306 DOI: 10.1177/03331024241297679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND Migraine has a strong genetic foundation, including both monogenic and polygenic types. The former are rare, with most migraine considered polygenic, supported by genome-wide association studies (GWAS) identifying numerous genetic variants linked with migraine risk. Surprisingly, some of the most common mutations are associated with transient receptor potential melastatin 8 (TRPM8), a non-selective cation channel that is the primary sensor of cold temperatures in cutaneous primary afferents of the somatosensory system. However, it is unlikely that the temperature sensitivity of TRPM8 is relevant in migraine-related tissues, such as the meninges, suggesting other activation mechanisms underly its role in migraine pathogenesis. Thus, to define the basis of the channel's involvement, we reasoned that cellular processes that increase cold sensitivity in the skin, such as the neurotrophic factor artemin, via its receptor glial cell-line derived neurotrophic factor family receptor alpha-3 (GFRα3), also mediate TRPM8-associated migraine-like pain in the meninges. METHODS To investigate the role of artemin and GFRα3 in preclinical rodent migraine models, we infused nitroglycerin acutely and chronically, and measured changes in periorbital and hind paw mechanical sensitivity in male and female mice lacking GFRα3, after neutralization of free artemin with specific monoclonal antibodies, or by systemic treatment with a TRPM8-specific antagonist. Further, in mice lacking GFRα3 we tested the effects of supradural infusions of a mix of inflammatory mediators, as well as tested if dura stimulation with artemin or a TRPM8-specific agonist induce migraine-related pain in mice. RESULTS We find that mechanical allodynia induced by systemic nitroglycerin, or supradural infusion of inflammatory mediators, involves GFRα3. In addition, neutralization of circulating artemin reduces the nitroglycerin phenotype, demonstrating the importance of this neurotrophic pathway in headaches. Further, we show TRPM8 expression in the meninges, and that direct supradural infusion of either a TRPM8-specific agonist or artemin itself produces mechanical allodynia, with the latter dependent on TRPM8 and ameliorated by concurrent treatment with sumatriptan. CONCLUSIONS These results indicate that neuroinflammatory events in the meninges can produce migraine-like pain in mice via artemin and GFRα3, likely acting upstream of TRPM8, providing a novel pathway that may contribute to headaches or migraine pathogenesis.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Chao Wei
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sanaa Alam
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Xunyang Chen
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Zhang W, Zhang Y, Wang H, Sun X, Chen L, Zhou J. Animal Models of Chronic Migraine: From the Bench to Therapy. Curr Pain Headache Rep 2024; 28:1123-1133. [PMID: 38954246 DOI: 10.1007/s11916-024-01290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Chronic migraine is a disabling progressive disorder without effective management approaches. Animal models have been developed and used in chronic migraine research. However, there are several problems with existing models. Therefore, we aimed to summarize and analyze existing animal models to facilitate translation from basic to clinical. RECENT FINDINGS The most commonly used models are the inflammatory soup induction model and the nitric oxide donor induction model. In addition, KATP openers have also been used in model induction. Based on the above models, some molecular targets have been identified, such as glutamate receptors. However, each model has its shortcomings and characteristics, and there are still some common problems that need to be solved, such as spontaneous headache, evaluation criteria after model establishment, and identification methods. In this review, we summarized and highlighted the advantages and limitations of the currently commonly used animal models of chronic migraine with a special focus on drug discovery and current therapeutic strategies, and discussed the directions that can be worked on in the future.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Wang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Xuechun Sun
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Barnet M, Descheemaeker A, Favier L, Moisset X, Schopp J, Dallel R, Artola A, Monconduit L, Antri M. Estrous cycle regulates cephalic mechanical sensitivity and sensitization of the trigemino-cervical complex in a female rat model of chronic migraine. Pain 2024:00006396-990000000-00761. [PMID: 39480245 DOI: 10.1097/j.pain.0000000000003459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
ABSTRACT The higher incidence of migraines in women compared with men has led to the inclusion of female animals in pain research models. However, the critical role of the hormonal cycle is frequently overlooked, despite its clear correlation with migraine occurrences. In this study, we show in a rat model of migraine induced by repeated dural infusions of an inflammatory soup (IS) that a second IS (IS2) injection performed in proestrus/estrus (PE, high estrogen) female rats evokes higher cephalic mechanical hypersensitivities than when performed in metestrus/diestrus (MD, low estrogen) or ovariectomized (OV) rats. This hypersensitivity induced by IS2 correlates with increased c-Fos expression in outer lamina II (IIo) neurons located in the periorbital projection area of the trigemino-cervical complex (TCC), in PE only. Four IS (IS4) repetition induced an enlargement of c-Fos expression in adjacent territories areas in PE, but not MD or OV animals. Unexpectedly, c-Fos expression in locus coeruleus neurons does not potentiate after IS2 or IS4 injections. To examine the impacts of the hormonal cycle on the physiology of lamina IIo TCC neurons, we performed whole-cell patch-clamp recordings. Second inflammatory soup depolarizes neurons in PE and MD but not in OV rats and enhances excitatory synaptic inputs in PE animals to a greater extent compared with MD and OV rats. These findings show that central TCC sensitization triggered by meningeal nociceptor activation and the resulting cephalic hypersensitivity are modulated by the estrous cycle. This highlights the crucial need to account for not just sex, but also the female estrous cycle in pain research.
Collapse
Affiliation(s)
- Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Greco R, Francavilla M, Facchetti S, Demartini C, Zanaboni AM, Antonangeli MI, Maffei M, Cattani F, Aramini A, Allegretti M, Tassorelli C, De Filippis L. Intranasal administration of recombinant human BDNF as a potential therapy for some primary headaches. J Headache Pain 2024; 25:184. [PMID: 39455939 PMCID: PMC11515342 DOI: 10.1186/s10194-024-01890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In addition to its critical role in neurogenesis, brain-derived neurotrophic factor (BDNF) modulates pain and depressive behaviors. METHODS In a translational perspective, we tested the anti-migraine activity of highly purified and characterized recombinant human BDNF (rhBDNF) in an animal model of cephalic pain based on the chronic and intermittent NTG administration (five total injections over nine days), used to mimic recurrence of attacks over a given period. To achieve this, we assessed the effects of two doses of rhBDNF (40 and 80 µg/kg) administered intranasally to adult male Sprague-Dawley rats, on trigeminal hyperalgesia (by orofacial formalin test), gene expression (by rt-PCR) of neuropeptides and inflammatory cytokines in specific areas of the brain related to migraine pain. Serum levels of CGRP, PACAP, and VIP (by ELISA) were also evaluated. The effects of rhBDNF were compared with those of sumatriptan (5 mg/kg i.p), administered 1 h before the last NTG administration. RESULTS Both doses of rhBDNF significantly reduced NTG-induced nocifensive behavior in Phase II of the orofacial formalin test. The anti-hyperalgesic effect of intranasal high-dose rhBDNF administration in the NTG-treated animals was associated with a significant modulation of mRNA levels of neuropeptides (CGRP, PACAP, VIP) and cytokines (IL-1beta, IL-10) in the trigeminal ganglion, medulla-pons, and hypothalamic area. Of note, the effects of rhBNDF treatment were comparable to those induced by the administration of sumatriptan. rhBDNF administration at both doses significantly reduced serum levels of PACAP, while the higher dose also significantly reduced serum levels of VIP. CONCLUSIONS The findings suggest that intranasal rhBDNF has the potential to be a safe, non-invasive and effective therapeutic approach for the treatment of primary headache, particularly migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
| | - Miriam Francavilla
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sara Facchetti
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Chiara Demartini
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | | | - Cristina Tassorelli
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
12
|
Zhang J, Simoes R, Guo T, Cao YQ. Neuroimmune interactions in the development and chronification of migraine headache. Trends Neurosci 2024; 47:819-833. [PMID: 39271369 DOI: 10.1016/j.tins.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Migraine is highly prevalent and debilitating. The persistent headaches in this condition are thought to arise from the activation and sensitization of the trigeminovascular pathway. Both clinical and animal model studies have suggested that neuroimmune interactions contribute to the pathophysiology of migraine headache. In this review, we first summarize the findings from human studies implicating the dysregulation of the immune system in migraine, including genetic analyses, measurement of circulatory factors, and neuroimaging data. We next discuss recent advances from rodent studies aimed at elucidating the neuroimmune interactions that manifest at various levels of the trigeminovascular pathway and lead to the recruitment of innate and adaptive immune cells as well as immunocompetent glial cells. These cells reciprocally modulate neuronal activity via multiple pro- and anti-inflammatory mediators, thereby regulating peripheral and central sensitization. Throughout the discussions, we highlight the potential clinical and translational implications of the findings.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Roli Simoes
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tingting Guo
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Yang C, Wei C, Alam S, Chen X, McKemy DD. The neurotrophic factor artemin and its receptor GFRα3 mediate migraine-like pain via the ion channel TRPM8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611532. [PMID: 39314341 PMCID: PMC11419092 DOI: 10.1101/2024.09.09.611532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Migraine has a strong genetic foundation, including both monogenic and polygenic types. The former are rare, with most migraine considered polygenic, supported by genome-wide association studies (GWAS) identifying numerous genetic variants associated with migraine risk. Surprisingly, some of the most common mutations are associated with TRPM8, a non-selective cation channel that is the primary sensor of cold temperatures in primary afferent neurons of the somatosensory system. However, it is unlikely that the temperature sensitivity of TRPM8 underlies its role in migraine pathogenesis. To define the basis of the channel's involvement, we reasoned that cellular processes that increase cold sensitivity in the skin, such as the neurotrophic factor artemin, via its receptor GFRα3, also mediate TRPM8-associated migraine-like pain in the meninges. Methods To investigate the role of artemin and GFRα3 in preclinical rodent migraine models, we infused nitroglycerin acutely and chronically, and measured changes in periorbital and hind paw mechanical sensitivity in male and female mice lacking GFRα3, after neutralization of free artemin with specific monoclonal antibodies, or by systemic treatment with a TRPM8-specific antagonist. Further, in wildtypes and mice lacking either GFRα3 or TRPM8, we tested the effects of supradural infusions of a mix of inflammatory mediators, artemin, and a TRPM8-specific agonist on migraine-related pain in mice. Results We find that mechanical allodynia induced by systemic nitroglycerin, or supradural infusion of inflammatory mediators, involves GFRα3. In addition, neutralization of circulating artemin reduces the nitroglycerin phenotype, demonstrating the importance of this neurotrophic pathway. Further, we show TRPM8 expression in the meninges and that direct supradural infusion of either a TRPM8-specific agonist or artemin itself produces mechanical allodynia, the latter dependent on TRPM8 and ameliorated by concurrent treatment with sumatriptan. Conclusions These results indicate that neuroinflammatory events in the meninges can produce migraine-like pain in mice via artemin and GFRα3, likely acting upstream of TRPM8, providing a novel pathway that may contribute to migraine pathogenesis.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Chao Wei
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Sanaa Alam
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Xunyang Chen
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - David D. McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
14
|
Wang T, Zhu C, Zhang K, Gao J, Xu Y, Duan C, Wu S, Peng C, Guan J, Wang Y. Targeting IGF1/IGF1r signaling relieve pain and autophagic dysfunction in NTG-induced chronic migraine model of mice. J Headache Pain 2024; 25:156. [PMID: 39304806 PMCID: PMC11414239 DOI: 10.1186/s10194-024-01864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Chronic migraine is a severe and common neurological disorder, yet its precise physiological mechanisms remain unclear. The IGF1/IGF1r signaling pathway plays a crucial role in pain modulation. Studies have shown that IGF1, by binding to its receptor IGF1r, activates a series of downstream signaling cascades involved in neuronal survival, proliferation, autophagy and functional regulation. The activation of these pathways can influence nociceptive transmission. Furthermore, alterations in IGF1/IGF1r signaling are closely associated with the development of various chronic pain conditions. Therefore, understanding the specific mechanisms by which this pathway contributes to pain is of significant importance for the development of novel pain treatment strategies. In this study, we investigated the role of IGF1/IGF1r and its potential mechanisms in a mouse model of chronic migraine. METHODS Chronic migraine was induced in mice by repeated intraperitoneal injections of nitroglycerin. Mechanical and thermal hypersensitivity responses were assessed using Von Frey filaments and radiant heat, respectively. To determine the role of IGF1/IGF1r in chronic migraine (CM), we examined the effects of the IGF1 receptor antagonist ppp (Picropodophyllin) on pain behaviors and the expression of calcitonin gene-related peptide (CGRP) and c-Fos. RESULT In the nitroglycerin-induced chronic migraine model in mice, neuronal secretion of IGF1 is elevated within the trigeminal nucleus caudalis (TNC). Increased phosphorylation of the IGF1 receptor occurs, predominantly co-localizing with neurons. Treatment with ppp alleviated basal mechanical hypersensitivity and acute mechanical allodynia. Furthermore, ppp ameliorated autophagic dysfunction and reduced the expression of CGRP and c-Fos. CONCLUSION Our findings demonstrate that in the chronic migraine (CM) model in mice, there is a significant increase in IGF1 expression in the TNC region. This upregulation of IGF1 leads to enhanced phosphorylation of IGF1 receptors on neurons. Targeting and inhibiting this signaling pathway may offer potential preventive strategies for mitigating the progression of chronic migraine.
Collapse
Affiliation(s)
- Tianxiao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chenlu Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Kaibo Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunhao Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chenyang Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shouyi Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Cheng Peng
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Jisong Guan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Yonggang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
15
|
Vafaei A, Vafaeian A, Iranmehr A, Nassireslami E, Hasannezhad B, Hosseini Y. Effects of β-sitosterol on anxiety in migraine-induced rats: The role of oxidative/nitrosative stress and mitochondrial function. CNS Neurosci Ther 2024; 30:e14892. [PMID: 39301958 PMCID: PMC11413762 DOI: 10.1111/cns.14892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Anxiety often coexists with migraine, and both conditions share a commonality in oxidative/nitrosative stress and mitochondrial dysfunction contributing to their pathogenesis. β-Sitosterol, a plant sterol, has shown promise in mitigating oxidative/nitrosative stress, enhancing mitochondrial function, and exerting neuroprotective effects. In this study, we investigated the impact of β-sitosterol on migraine-associated anxiety and whether this effect was associated with alleviation of oxidative/nitrosative stress and improvement in mitochondrial function. METHODS Nitroglycerin was used to induce migraine in adult male Wistar rats. β-Sitosterol treatment consisted of daily intraperitoneal injections (10 mg/kg) for 10 days following migraine induction. Anxiety levels were evaluated using open-field test (OFT) and hole-board test (HBT). Frontal cortex samples were analyzed for malondialdehyde (MDA), glutathione (GSH), reactive oxygen/nitrogen species, nitric oxide (NO) (markers of oxidative/nitrosative stress), and ATP (indicator of mitochondrial function). RESULTS Migraine induction led to impaired performance in both the OFT and the HBT. Concurrently, it elevated MDA, reactive oxygen/nitrogen species, and NO levels while diminishing GSH levels in the frontal cortex, signifying heightened oxidative/nitrosative stress. Moreover, ATP levels decreased, indicating mitochondrial dysfunction. Treatment with β-sitosterol significantly restored performance in both behavioral assays and normalized the levels of MDA, GSH, reactive oxygen/nitrogen species, NO, and ATP. CONCLUSION β-Sitosterol exerted anxiolytic effects in migraine, which can be attributed to its ability to ameliorate oxidative/nitrosative stress and enhance mitochondrial function.
Collapse
Affiliation(s)
- Ali Vafaei
- Toxicology Research CenterAJA University of Medical SciencesTehranIran
| | | | - Arad Iranmehr
- Neurosurgery Department, Sina HospitalTehran University of Medical SciencesTehranIran
- Gammaknife Center, Yas HospitalTehran University of Medical SciencesTehranIran
| | | | - Behnam Hasannezhad
- Cognitive and Behavioral Research CenterAJA University of Medical SciencesTehranIran
| | - Yasaman Hosseini
- Cognitive and Behavioral Research CenterAJA University of Medical SciencesTehranIran
| |
Collapse
|
16
|
Cropper HC, Conway CM, Wyche W, Pradhan AA. Glial activation in pain and emotional processing regions in the nitroglycerin mouse model of chronic migraine. Headache 2024; 64:973-982. [PMID: 38899347 DOI: 10.1111/head.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Our aim was to survey astrocyte and microglial activation across four brain regions in a mouse model of chronic migraine. BACKGROUND Chronic migraine is a leading cause of disability, with higher rates in females. The role of central nervous system neurons and glia in migraine pathophysiology is not fully elucidated. Preclinical studies have shown abnormal glial activation in the trigeminal nucleus caudalis of male rodents. No current reports have investigated glial activation in both sexes in other important brain regions involved with the nociceptive and emotional processing of pain. METHODS The mouse nitroglycerin model of migraine was used, and nitroglycerin (10 mg/kg) or vehicle was administered every other day for 9 days. Prior to injections on days 1, 5, and 9, cephalic allodynia was determined by periorbital von Frey hair testing. Immunofluorescent staining of astrocyte marker, glial fibrillary protein (GFAP), and microglial marker, ionized calcium binding adaptor molecule 1 (Iba1), in male and female trigeminal nucleus caudalis, periaqueductal gray, somatosensory cortex, and nucleus accumbens was completed. RESULTS Behavioral testing demonstrated increased cephalic allodynia in nitroglycerin- versus vehicle-treated mice. An increase in the percent area covered by GFAP+ cells in the trigeminal nucleus caudalis and nucleus accumbens, but not the periaqueductal gray or somatosensory cortex, was observed in response to nitroglycerin. No significant differences were observed for Iba1 staining across brain regions. We did not detect significant sex differences in GFAP or Iba1 quantification. CONCLUSIONS Immunohistochemical analysis suggests that, at the time point tested, immunoreactivity of GFAP+ astrocytes, but not Iba1+ microglia, changes in response to chronic migraine-associated pain. Additionally, there do not appear to be significant differences between males and females in GFAP+ or Iba1+ cells across the four brain regions analyzed.
Collapse
Affiliation(s)
- Haley C Cropper
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Catherine M Conway
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Whitney Wyche
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Ernstsen C, Obelitz-Ryom K, Kristensen DMB, Olesen J, Christensen SL, Guo S. Mechanisms of GTN-induced migraine: Role of NOS isoforms, sGC and peroxynitrite in a migraine relevant mouse model. Cephalalgia 2024; 44:3331024241277542. [PMID: 39314067 DOI: 10.1177/03331024241277542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND Migraine research has highlighted the pivotal role of nitric oxide (NO) in migraine pathophysiology. Nitric oxide donors such as glyceryl trinitrate (GTN) induce migraine attacks in humans, whereas spontaneous migraine attacks can be aborted by inhibiting NO production. The present study aimed to investigate how GTN triggers migraine through its three nitric oxide synthase (NOS) isoforms (neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS)) via a suspected feed-forward phenomenon. METHODS Migraine-relevant hypersensitivity was induced by repeated injection of GTN in an in vivo mouse model. Cutaneous tactile sensitivity was assessed using von Frey filaments. Signaling pathways involved in this model were dissected using non-selective and selective NOS inhibitors, knockout mice lacking eNOS or nNOS and their wild-type control mice. Also, we tested a soluble guanylate cyclase inhibitor and a peroxynitrite decomposition catalyst (Ntotal = 312). RESULTS Non-selective NOS inhibition blocked GTN-induced hypersensitivity. This response was partially associated with iNOS, and potentially nNOS and eNOS conjointly. Furthermore, we found that the GTN response was largely dependent on the generation of peroxynitrite and partly soluble guanylate cyclase. CONCLUSIONS Migraine-relevant hypersensitivity induced by GTN is mediated by a possible feed-forward phenomenon of NO driven mainly by iNOS but with contributions from other isoforms. The involvement of peroxynitrite adds to the notion that oxidative stress reactions are also involved.
Collapse
Affiliation(s)
- Charlotte Ernstsen
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Karina Obelitz-Ryom
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - David Møbjerg B Kristensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- University Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement Et Travail) - UMR_S, 1085, Rennes, France
| | - Jes Olesen
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Anaesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Song Guo
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
18
|
Palmiter RD. Parabrachial neurons promote nociplastic pain. Trends Neurosci 2024; 47:722-735. [PMID: 39147688 DOI: 10.1016/j.tins.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The parabrachial nucleus (PBN) in the dorsal pons responds to bodily threats and transmits alarm signals to the forebrain. Parabrachial neuron activity is enhanced during chronic pain, and inactivation of PBN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic activation of all glutamatergic neurons in the PBN, or just the subpopulation that expresses the Calca gene, is sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain, defined as diffuse pain without tissue inflammation or nerve injury. This review focuses on the role(s) of molecularly defined PBN neurons and the downstream nodes in the brain that contribute to establishing nociplastic pain.
Collapse
Affiliation(s)
- Richard D Palmiter
- Departments of Biochemistry and Genome Sciences, Investigator of the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
Xiao S, Lu G, Liu J, Su W, Li C, Liu Y, Meng F, Zhao J, Gao N, Chang Y, Guo X, Yu S, Liu R. Brain-wide mapping of c-Fos expression in nitroglycerin-induced models of migraine. J Headache Pain 2024; 25:136. [PMID: 39169303 PMCID: PMC11337778 DOI: 10.1186/s10194-024-01837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Migraine is a neurological disorder characterized by complex, widespread, and sudden attacks with an unclear pathogenesis, particularly in chronic migraine (CM). Specific brain regions, including the insula, amygdala, thalamus, and cingulate, medial prefrontal, and anterior cingulate cortex, are commonly activated by pain stimuli in patients with CM and animal models. This study employs fluorescence microscopy optical sectioning tomography (fMOST) technology and AAV-PHP.eB whole-brain expression to map activation patterns of brain regions in CM mice, thus enhancing the understanding of CM pathogenesis and suggesting potential treatment targets. METHODS By repeatedly administering nitroglycerin (NTG) to induce migraine-like pain in mice, a chronic migraine model (CMM) was established. Olcegepant (OLC) was then used as treatment and its effects on mechanical pain hypersensitivity and brain region activation were observed. All mice underwent mechanical withdrawal threshold, light-aversive, and elevated plus maze tests. Viral injections were administered to the mice one month prior to modelling, and brain samples were collected 2 h after the final NTG/vehicle control injection for whole-brain imaging using fMOST. RESULTS In the NTG-induced CMM, mechanical pain threshold decreased, photophobia, and anxiety-like behavior were observed, and OLC was found to improve these manifestations. fMOST whole-brain imaging results suggest that the isocortex-cerebral cortex plate region, including somatomotor areas (MO), somatosensory areas (SS), and main olfactory bulb (MOB), appears to be the most sensitive area of activation in CM (P < 0.05). Other brain regions such as the inferior colliculus (IC) and intermediate reticular nucleus (IRN) were also exhibited significant activation (P < 0.05). The improvement in migraine-like symptoms observed with OLC treatment may be related to its effects on these brain regions, particularly SS, MO, ansiform lobule (AN), IC, spinal nucleus of the trigeminal, caudal part (Sp5c), IRN, and parvicellular reticular nucleus (PARN) (P < 0.05). CONCLUSIONS fMOST whole-brain imaging reveals c-Fos + cells in numerous brain regions. OLC improves migraine-like symptoms by modulating brain activity in some brain regions. This study demonstrates the activation of the specific brain areas in NTG-induced CMM and suggests some regions as a potential treatment mechanism according to OLC.
Collapse
Affiliation(s)
- Shaobo Xiao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, 650100, Yunnan, China
| | - Guangshuang Lu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Department of Pediatrics, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, 237005, China
| | - Jiayi Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wenjie Su
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Chenhao Li
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Yingyuan Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Fanchao Meng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Jinjing Zhao
- Department of Neurology, The 305 Hospital of the People's Liberation Army, Beijing, 100017, China
| | - Nan Gao
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Chang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xinghao Guo
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shengyuan Yu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| | - Ruozhuo Liu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| |
Collapse
|
20
|
Mohos V, Harmat M, Kun J, Aczél T, Zsidó BZ, Kitka T, Farkas S, Pintér E, Helyes Z. Topiramate inhibits adjuvant-induced chronic orofacial inflammatory allodynia in the rat. Front Pharmacol 2024; 15:1461355. [PMID: 39221150 PMCID: PMC11361966 DOI: 10.3389/fphar.2024.1461355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic orofacial pain disorders are common debilitating conditions, affecting the trigeminal system. Its underlying pathophysiological mechanisms are still unclear and the therapy is often unsatisfactory, therefore, preclinical models are crucial to identify the key mediators and novel treatment options. Complete Freund's adjuvant (CFA)-induced orofacial inflammatory allodynia/hyperalgesia is commonly used in rodents, but it has not been validated with currently used drugs. Here we tested the effects of the adjuvant analgesic/antiepileptic voltage-gated Na+ channel blocker complex mechanism of action topiramate in comparison with the gold standard antimigraine serotonin 5-HT1B/D receptor agonist sumatriptan in this model. CFA was injected subcutaneously into the right whisker pad of male Sprague-Dawley rats (250-300 g), then mechanonociceptive threshold values were investigated with von Frey filaments (3, 5, and 7 days after CFA injection). Effects of topiramate (30 mg/kg per os) and sumatriptan (1 mg/kg subcutaneous) on the adjuvant-induced chronic inflammatory orofacial allodynia were investigated 60, 120, and 180 min after the treatments each day. To determine the optimal concentration for drug effect analysis, we tested the effects of two different CFA-concentrations (1 and 0.5 mg/mL) on mechanonociceptive thresholds. Both concentrations of CFA induced a chronic orofacial allodynia in 60% of all rats. Although, higher CFA concentration induced greater allodynia, much more stable threshold reduction was observed with the lower CFA concentration: on day 3 the thresholds decreased from 18.30 g to approximately 11 g (low) and 5 g (high), respectively, however a slight increase was observed in the case of higher CFA concentration (on days 5, 7, and 11). In all investigation days, topiramate showed significant anti-allodynic effect comparing the pre and post drug dose and comparing the vehicle treated to the drug treated groups. Sumatriptan also caused a significant threshold increase compared to pre dose thresholds (day 3) and also showed a slight anti-allodynic effect compared to the vehicle-treated group (day 3 and 5). In the present study CFA-induced chronic orofacial allodynia was reversed by topiramate in rats validating the model with the adjuvant analgesic. Other than establishing a validated orofacial pain-related syndrome model in rats, new ways are opened for the repurposing of topiramate.
Collapse
Affiliation(s)
- Violetta Mohos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Máté Harmat
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Jozsef Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Tímea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Kitka
- Uzsoki Cardiovascular Center Ltd., Budapest, Hungary
| | - Sándor Farkas
- Uzsoki Cardiovascular Center Ltd., Budapest, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, PTE HUN-REN Chronic Pain Research Group, Budapest, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, PTE HUN-REN Chronic Pain Research Group, Budapest, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
21
|
Ruby HA, Sayed RH, Khattab MA, Sallam NA, Kenway SA. Fenofibrate ameliorates nitroglycerin-induced migraine in rats: Role of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. Eur J Pharmacol 2024; 976:176667. [PMID: 38795754 DOI: 10.1016/j.ejphar.2024.176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Migraine, a debilitating neurological condition, significantly affects patients' quality of life. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist approved for managing dyslipidemia, has shown promise in treating neurological disorders. Therefore, this study aims to investigate the protective effects of fenofibrate against nitroglycerin (NTG)-induced chronic migraine in rats. Migraine was induced in rats by administering five intermittent doses of NTG (10 mg/kg, i. p.) on days 1, 3, 5, 7, and 9. Rats were treated with either topiramate (80 mg/kg/day, p. o.), a standard drug, or fenofibrate (100 mg/kg/day, p. o.) from day 1-10. Fenofibrate significantly improved mechanical and thermal hypersensitivity, photophobia, and head grooming compared to topiramate. These effects were associated with reduced serum levels of nitric oxide (NO), calcitonin gene-related peptide (CGRP), and pituitary adenylate cyclase-activating polypeptide (PACAP). Furthermore, fenofibrate down-regulated c-Fos expression in the medulla and medullary pro-inflammatory cytokine contents. Additionally, fenofibrate attenuated NTG-induced histopathological changes in the trigeminal ganglia and trigeminal nucleus caudalis. These effects were associated with the inhibition of CGRP/p-CREB/purinergic 2X receptor 3 (P2X3) and nerve growth factor (NGF)/protein kinase C (PKC)/acid-sensing ion channel 3 (ASIC3) signaling pathways. This study demonstrates that fenofibrate attenuated NTG-induced migraine-like signs in rats. These effects were partially mediated through the inhibition of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. The present study supports the idea that fenofibrate could be an effective candidate for treating migraine headache without significant adverse effects. Future studies should explore its clinical applicability.
Collapse
Affiliation(s)
- Hassan A Ruby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt; School of Pharmacy, Newgiza University, Giza, Egypt.
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt
| | - Sanaa A Kenway
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt
| |
Collapse
|
22
|
Guo S, Christensen SL, Al‐Karagholi MA, Olesen J. Molecular nociceptive mechanisms in migraine: The migraine cascade. Eur J Neurol 2024; 31:e16333. [PMID: 38894592 PMCID: PMC11235602 DOI: 10.1111/ene.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This review will explore the categorization of migraine-provoking molecules, their cellular actions, site of action and potential drug targets based on the migraine cascade model. METHODS Personal experience and literature. RESULTS Migraine impacts over 1 billion people worldwide but is underfunded in research. Recent progress, particularly through the human and animal provocation model, has deepened our understanding of its mechanisms. This model have identified endogenous neuropeptides such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP) that induces controlled migraine-like attacks leading to significant discoveries of their role in migraine. This knowledge led to the development of CGRP-inhibiting drugs; a groundbreaking migraine treatment now accessible globally. Also a PACAP-inhibiting drug was effective in a recent phase II trial. Notably, rodent studies have shed light on pain pathways and the mechanisms of various migraine-inducing substances identifying novel drug targets. This is primarily done by using selective inhibitors that target specific signaling pathways of the known migraine triggers leading to the hypothesized cellular cascade model of migraine. CONCLUSION The model of migraine presents numerous opportunities for innovative drug development. The future of new migraine treatments is limited only by the investment from pharmaceutical companies.
Collapse
Affiliation(s)
- Song Guo
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
- Department of NeurologyZealand University HospitalRoskildeDenmark
| | - Sarah Louise Christensen
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| | - Mohammad Al‐Mahdi Al‐Karagholi
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| |
Collapse
|
23
|
Guo S, Rasmussen RH, Hay-Schmidt A, Ashina M, Asuni AA, Jensen JM, Holm A, Lauritzen SP, Dorsam G, Hannibal J, Georg B, Kristensen DM, Olesen J, Christensen SL. VPAC1 and VPAC2 receptors mediate tactile hindpaw hypersensitivity and carotid artery dilatation induced by PACAP38 in a migraine relevant mouse model. J Headache Pain 2024; 25:126. [PMID: 39085771 PMCID: PMC11293201 DOI: 10.1186/s10194-024-01830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide pivotal in migraine pathophysiology and is considered a promising new migraine drug target. Although intravenous PACAP triggers migraine attacks and a recent phase II trial with a PACAP-inhibiting antibody showed efficacy in migraine prevention, targeting the PACAP receptor PAC1 alone has been unsuccessful. The present study investigated the role of three PACAP receptors (PAC1, VPAC1 and VPAC2) in inducing migraine-relevant hypersensitivity in mice. METHODS Hindpaw hypersensitivity was induced by repeated PACAP38 injections. Tactile sensitivity responses were quantified using von Frey filaments in three knockout (KO) mouse strains, each lacking one of the PACAP-receptors (Ntotal = 160). Additionally, ex vivo wire myography was used to assess vasoactivity of the carotid artery, and gene expression of PACAP receptors was examined by qPCR. RESULTS PACAP38 induced hypersensitivity in WT controls (p < 0.01) that was diminished in VPAC1 and VPAC2 KO mice (p < 0.05). In contrast, PAC1 KO mice showed similar responses to WT controls (p > 0.05). Myograph experiments supported these findings showing diminished vasoactivity in VPAC1 and VPAC2 KO mice. We found no upregulation of the non-modified PACAP receptors in KO mice. CONCLUSIONS This study assessed all three PACAP receptors in a migraine mouse model and suggests a significant role of VPAC receptors in migraine pathophysiology. The lack of hypersensitivity reduction in PAC1 KO mice suggests the involvement of other PACAP receptors or compensatory mechanisms. The results indicate that targeting only individual PACAP receptors may not be an effective migraine treatment.
Collapse
MESH Headings
- Animals
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Migraine Disorders/chemically induced
- Migraine Disorders/physiopathology
- Migraine Disorders/metabolism
- Mice, Knockout
- Disease Models, Animal
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Mice
- Carotid Arteries/drug effects
- Carotid Arteries/physiopathology
- Hyperalgesia/physiopathology
- Hyperalgesia/chemically induced
- Hyperalgesia/metabolism
- Male
- Vasodilation/drug effects
- Vasodilation/physiology
- Mice, Inbred C57BL
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Hindlimb/physiopathology
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Holm Rasmussen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Anders Hay-Schmidt
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ayodeji A Asuni
- Department of Preclinical Fluid Biomarkers and Occupancy, H. Lundbeck A/S, Copenhagen, Denmark
| | - Jeppe Møller Jensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Anja Holm
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Experimental Clinical Research, Translational Research Centre, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Sabrina Prehn Lauritzen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Glenn Dorsam
- Department of Microbiological Sciences, North Dakota State University, Fargo, USA
| | - Jens Hannibal
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - David Møbjerg Kristensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark.
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Zhang W, Wan F, Duan L, Tao W, Wang J, Huang L, Yan L. The Proteomic Analysis of Chronic Migraine Exosomes Reveals Disease Patterns and Potential Biomarkers. Mol Neurobiol 2024:10.1007/s12035-024-04389-w. [PMID: 39066974 DOI: 10.1007/s12035-024-04389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Exosomes have been identified as optimal biomarkers to screen for multiple diseases. However, few studies focus on the abundant exosome population isolated from plasma of migraine. This study investigated whether proteins in abundant exosomes can aid in the diagnosis of chronic migraine (CM). Plasma exosomes were collected by centrifugation, from which protein samples were extracted. A pilot study (CM, 18; episodic migraine (EM), 26) followed by a second dataset (CM, 26; EM, 16; tension-type headache (TTH), 20; control, 22) was applied to establish a diagnostic model of CM. We employed proteomics based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) to search for potential candidate biomarkers in plasma exosomes from CM patients. In total, 530 proteins in plasma exosomes were co-detected. Among them, 13 proteins were found significantly dysregulated between the plasma exosomes of CM patients and other groups. The receiver operating characteristic curve analysis revealed a combination of six proteins (upregulated: RAP2B, AK1, BID, DAG1, PICALM, PSMB2) could distinguish CM patients with high accuracy. Linear correlation analysis showed that the combination was significantly correlated with Headache Impact Test (HIT-6) scores (assessing the negative impact of headaches on normal daily activity). The RT-qPCR results showed the same trends in CM models with nitroglycerin as the exosomal protein sequencing results. These data revealed dysregulated proteins in plasma exosomes of CM, and the combination of plasma exosomal proteins RAP2B, AK1, BID, DAG1, PICALM, and PSMB2 could serve as a novel candidate biomarker for CM diagnosis.
Collapse
Affiliation(s)
- Weiyun Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Fen Wan
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lihui Duan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Wen Tao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jun Wang
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Lin Huang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Lanyun Yan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
25
|
Liu X, Yang W, Zhu C, Sun S, Yang B, Wu S, Wang L, Liu Z, Ge Z. TLR2 Mediates Microglial Activation and Contributes to Central Sensitization in a Recurrent Nitroglycerin-induced Chronic Migraine Model. Mol Neurobiol 2024; 61:3697-3714. [PMID: 38008889 DOI: 10.1007/s12035-023-03781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Central sensitization is an important pathophysiological mechanism underlying chronic migraine (CM). Previous studies have shown that microglial activation and subsequent inflammation in the trigeminal nucleus caudalis (TNC) contribute to central sensitization. Toll-like receptor 2 (TLR2) is a receptor expressed on the membrane of microglia and participates in central sensitization in inflammatory and chronic pain; however, its role in CM is unclear. Therefore, this study investigated TLR2 involvement in CM in detail. Mice treated with recurrent nitroglycerin (NTG) were used as a CM model. Hyperalgesia was assessed using a 50% paw mechanical threshold and a 50% periorbital threshold on a Von Frey filament pain meter. Western blotting and immunofluorescence analyses were used to detect the expression of TLR2, microglia, c-fos and CGRP in TNC. The expression of inflammatory factors (IL-6, IL-1β、 IL-10、TNF-α and IFN-β1) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). A selective TLR2 antagonist (C29) was systematically administered to observe its effect on hyperalgesia, microglia activation and the expression of c-fos, CGRP and inflammatory factors. Recurrent administration of NTG resulted in acute and chronic hypersensitivity, accompanied by upregulation of TLR2 expression and microglial activation in TNC. C29 partially inhibited pain hypersensitivity. C29 suppressed microglial activation induced by NTG administration. Inhibition of TLR2 reduced the expression of c-fos and CGRP in TNC after NTG treatment. C29 inhibited the expression of inflammatory mediators in TNC. These data showed that microglial TLR2 plays a critical role in the pathogenesis of CM by regulating microglial activation in TNC.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wenping Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chenlu Zhu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Songtang Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Bin Yang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Shouyi Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Longde Wang
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhiyan Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
26
|
Zhang X, Zhang W, Wang Y, Zhang Y, Zhang D, Qin G, Zhou J, Chen L. SIRT1-regulated ROS generation activates NMDAR2B phosphorylation to promote central sensitization and allodynia in a male chronic migraine rat model. Front Mol Neurosci 2024; 17:1387481. [PMID: 38840778 PMCID: PMC11150646 DOI: 10.3389/fnmol.2024.1387481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Background Central sensitization is one of the pivotal pathological mechanisms in chronic migraine (CM). Silent information regulator 1 (SIRT1) was shown to be involved in CM, but its specific mechanism is unclear. Reactive oxygen species (ROS) are increasingly regarded as important signaling molecules in several models of pain. However, studies about the role of ROS in the central sensitization of CM model are rare. We thus explored the specific process of SIRT1 involvement in the central sensitization of CM, focusing on the ROS pathway. Methods Inflammatory soup was repeatedly administered to male Sprague-Dawley rats to establish a CM model. The SIRT1 expression level in trigeminal nucleus caudalis (TNC) tissues was assessed by qRT-PCR and Western blotting analysis. The levels of ROS were detected by a Tissue Reactive Oxygen Detection Kit, DHE staining, and the fluorescence signal intensity of 8-OHdG. A ROS scavenger (tempol), a SIRT1 activator (SRT1720), a SIRT1 inhibitor (EX527), and a mitochondrial fission inhibitor (Mdivi-1) were used to investigate the specific molecular mechanisms involved. NMDAR2B, CGRP, ERK, and mitochondrial fission-related protein were evaluated by Western blotting, and the CGRP level in frozen sections of the TNC was detected via immunofluorescence staining. Results After repeated inflammatory soup infusion and successful establishment of the CM rat model, SIRT1 expression was found to be significantly reduced, accompanied by elevated ROS levels. Treatment with Tempol, SRT1720, or Mdivi-1 alleviated allodynia and reduced the increase in NMDAR2B phosphorylation and CGRP and ERK phosphorylation in the CM rat. In contrast, EX527 had the opposite effect in CM rat. SRT1720 and EX527 decreased and increased ROS levels, respectively, in CM rats, and tempol reversed the aggravating effect of EX527 in CM rats. Furthermore, the regulatory effect of SIRT1 on ROS may include the involvement of the mitochondrial fission protein DRP1. Conclusion The results indicate the importance of SIRT1 in CM may be due to its role in regulating the production of ROS, which are involved in modulating central sensitization in CM. These findings could lead to new ideas for CM treatment with the use of SIRT1 agonists and antioxidants.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyun Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Wang L, Liu X, Zhu C, Wu S, Li Z, Jing L, Zhang Z, Jing Y, Wang Y. Environmental enrichment alleviates hyperalgesia by modulating central sensitization in a nitroglycerin-induced chronic migraine model of mice. J Headache Pain 2024; 25:74. [PMID: 38724948 PMCID: PMC11083806 DOI: 10.1186/s10194-024-01779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Chronic migraine (CM) is a debilitating neurofunctional disorder primarily affecting females, characterized by central sensitization. Central sensitization refers to the enhanced response to sensory stimulation, which involves changes in neuronal excitability, synaptic plasticity, and neurotransmitter release. Environmental enrichment (EE) can increase the movement, exploration, socialization and other behaviors of mice. EE has shown promising effects in various neurological disorders, but its impact on CM and the underlying mechanism remains poorly understood. Therefore, the purpose of this study was to determine whether EE has the potential to serve as a cost-effective intervention strategy for CM. METHODS A mouse CM model was successfully established by repeated administration of nitroglycerin (NTG). We selected adult female mice around 8 weeks old, exposed them to EE for 2 months, and then induced the CM model. Nociceptive threshold tests were measured using Von Frey filaments and a hot plate. The expression of c-Fos, calcitonin gene-related peptide (CGRP) and inflammatory response were measured using WB and immunofluorescence to evaluate central sensitization. RNA sequencing was used to find differentially expressed genes and signaling pathways. Finally, the expression of the target differential gene was investigated. RESULTS Repeated administration of NTG can induce hyperalgesia in female mice and increase the expression of c-Fos and CGRP in the trigeminal nucleus caudalis (TNC). Early exposure of mice to EE reduced NTG-induced hyperalgesia in CM mice. WB and immunofluorescence revealed that EE inhibited the overexpression of c-Fos and CGRP in the TNC of CM mice and alleviated the inflammatory response of microglia activation. RNA sequencing analysis identified that several central sensitization-related signaling pathways were altered by EE. VGluT1, a key gene involved in behavior, internal stimulus response, and ion channel activity, was found to be downregulated in mice exposed to EE. CONCLUSION EE can significantly ameliorate hyperalgesia in the NTG-induced CM model. The mechanisms may be to modulate central sensitization by reducing the expression of CGRP, attenuating the inflammatory response, and downregulating the expression of VGluT1, etc., suggesting that EE can serve as an effective preventive strategy for CM.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Xiaoming Liu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Chenlu Zhu
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Shouyi Wu
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Zhilei Li
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Lipeng Jing
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Zhenchang Zhang
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China.
| | - Yonggang Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China.
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
28
|
Condon LF, Yu Y, Park S, Cao F, Pauli JL, Nelson TS, Palmiter RD. Parabrachial Calca neurons drive nociplasticity. Cell Rep 2024; 43:114057. [PMID: 38583149 PMCID: PMC11210282 DOI: 10.1016/j.celrep.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Pain that persists beyond the time required for tissue healing and pain that arises in the absence of tissue injury, collectively referred to as nociplastic pain, are poorly understood phenomena mediated by plasticity within the central nervous system. The parabrachial nucleus (PBN) is a hub that relays aversive sensory information and appears to play a role in nociplasticity. Here, by preventing PBN Calca neurons from releasing neurotransmitters, we demonstrate that activation of Calca neurons is necessary for the manifestation and maintenance of chronic pain. Additionally, by directly stimulating Calca neurons, we demonstrate that Calca neuron activity is sufficient to drive nociplasticity. Aversive stimuli of multiple sensory modalities, such as exposure to nitroglycerin, cisplatin, or lithium chloride, can drive nociplasticity in a Calca-neuron-dependent manner. Aversive events drive nociplasticity in Calca neurons in the form of increased activity and excitability; however, neuroplasticity also appears to occur in downstream circuitry.
Collapse
Affiliation(s)
- Logan F Condon
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Ying Yu
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sekun Park
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Feng Cao
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jordan L Pauli
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tyler S Nelson
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Liu Y, Gong Z, Zhai D, Yang C, Lu G, Wang S, Xiao S, Li C, Chen L, Lin X, Zhang S, Yu S, Dong Z. Unveiling the therapeutic potential of Dl-3-n-butylphthalide in NTG-induced migraine mouse: activating the Nrf2 pathway to alleviate oxidative stress and neuroinflammation. J Headache Pain 2024; 25:50. [PMID: 38565987 PMCID: PMC10986135 DOI: 10.1186/s10194-024-01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Migraine stands as a prevalent primary headache disorder, with prior research highlighting the significant involvement of oxidative stress and inflammatory pathways in its pathogenesis and chronicity. Existing evidence indicates the capacity of Dl-3-n-butylphthalide (NBP) to mitigate oxidative stress and inflammation, thereby conferring neuroprotective benefits in many central nervous system diseases. However, the specific therapeutic implications of NBP in the context of migraine remain to be elucidated. METHODS We established a C57BL/6 mouse model of chronic migraine (CM) using recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg), and prophylactic treatment was simulated by administering NBP (30 mg/kg, 60 mg/kg, 120 mg/kg) by gavage prior to each NTG injection. Mechanical threshold was assessed using von Frey fibers, and photophobia and anxious behaviours were assessed using a light/dark box and elevated plus maze. Expression of c-Fos, calcitonin gene-related peptide (CGRP), Nucleus factor erythroid 2-related factor 2 (Nrf2) and related pathway proteins in the spinal trigeminal nucleus caudalis (SP5C) were detected by Western blotting (WB) or immunofluorescence (IF). The expression of IL-1β, IL-6, TNF-α, Superoxide dismutase (SOD) and malondialdehyde (MDA) in SP5C and CGRP in plasma were detected by ELISA. A reactive oxygen species (ROS) probe was used to detect the expression of ROS in the SP5C. RESULTS At the end of the modelling period, chronic migraine mice showed significantly reduced mechanical nociceptive thresholds, as well as photophobic and anxious behaviours. Pretreatment with NBP attenuated nociceptive sensitization, photophobia, and anxiety in the model mice, reduced expression levels of c-Fos and CGRP in the SP5C and activated Nrf2 and its downstream proteins HO-1 and NQO-1. By measuring the associated cytokines, we also found that NBP reduced levels of oxidative stress and inflammation. Most importantly, the therapeutic effect of NBP was significantly reduced after the administration of ML385 to inhibit Nrf2. CONCLUSIONS Our data suggest that NBP may alleviate migraine by activating the Nrf2 pathway to reduce oxidative stress and inflammation in migraine mouse models, confirming that it may be a potential drug for the treatment of migraine.
Collapse
Affiliation(s)
- Yingyuan Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Zihua Gong
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, Hebei, China
| | - Deqi Zhai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chunxiao Yang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Guangshuang Lu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shuqing Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shaobo Xiao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ludan Chen
- Clinical School of Anhui Medical University, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoxue Lin
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shuhua Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| | - Zhao Dong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
30
|
Spekker E, Fejes-Szabó A, Nagy-Grócz G. Models of Trigeminal Activation: Is There an Animal Model of Migraine? Brain Sci 2024; 14:317. [PMID: 38671969 PMCID: PMC11048078 DOI: 10.3390/brainsci14040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine, recognized as a severe headache disorder, is widely prevalent, significantly impacting the quality of life for those affected. This article aims to provide a comprehensive review of the application of animal model technologies in unraveling the pathomechanism of migraine and developing more effective therapies. It introduces a variety of animal experimental models used in migraine research, emphasizing their versatility and importance in simulating various aspects of the condition. It details the benefits arising from the utilization of these models, emphasizing their role in elucidating pain mechanisms, clarifying trigeminal activation, as well as replicating migraine symptoms and histological changes. In addition, the article consciously acknowledges the inherent limitations and challenges associated with the application of animal experimental models. Recognizing these constraints is a fundamental step toward fine-tuning and optimizing the models for a more accurate reflection of and translatability to the human environment. Overall, a detailed and comprehensive understanding of migraine animal models is crucial for navigating the complexity of the disease. These findings not only provide a deeper insight into the multifaceted nature of migraine but also serve as a foundation for developing effective therapeutic strategies that specifically address the unique challenges arising from migraine pathology.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6725 Szeged, Hungary
| | - Annamária Fejes-Szabó
- HUN-REN–SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary;
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári Krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
31
|
Park S, Jung H, Han SW, Lee SH, Sohn JH. Differences in Neuropathology between Nitroglycerin-Induced Mouse Models of Episodic and Chronic Migraine. Int J Mol Sci 2024; 25:3706. [PMID: 38612517 PMCID: PMC11011425 DOI: 10.3390/ijms25073706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Multiple animal models of migraine have been used to develop new therapies. Understanding the transition from episodic (EM) to chronic migraine (CM) is crucial. We established models mimicking EM and CM pain and assessed neuropathological differences. EM and CM models were induced with single NTG or multiple injections over 9 days. Mechanical hypersensitivity was assessed. Immunofluorescence utilized c-Fos, NeuN, and Iba1. Proinflammatory and anti-inflammatory markers were analyzed. Neuropeptides (CGRP, VIP, PACAP, and substance P) were assessed. Mechanical thresholds were similar. Notable neuropathological distinctions were observed in Sp5C and ACC. ACC showed increased c-Fos and NeuN expression in CM (p < 0.001) and unchanged in EM. Sp5C had higher c-Fos and NeuN expression in EM (p < 0.001). Iba1 was upregulated in Sp5C of EM and ACC of CM (p < 0.001). Proinflammatory markers were strongly expressed in Sp5C of EM and ACC of CM. CGRP expression was elevated in both regions and was higher in CM. VIP exhibited higher levels in the Sp5C of EM and ACC of CM, whereas PACAP and substance P were expressed in the Sp5C in both models. Despite similar thresholds, distinctive neuropathological differences in Sp5C and ACC between EM and CM models suggest a role in the EM to CM transformation.
Collapse
Affiliation(s)
- Songyi Park
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.P.); (H.J.); (S.-W.H.); (S.-H.L.)
| | - Harry Jung
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.P.); (H.J.); (S.-W.H.); (S.-H.L.)
| | - Sang-Won Han
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.P.); (H.J.); (S.-W.H.); (S.-H.L.)
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Sang-Hwa Lee
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.P.); (H.J.); (S.-W.H.); (S.-H.L.)
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jong-Hee Sohn
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.P.); (H.J.); (S.-W.H.); (S.-H.L.)
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
32
|
Ma C, Zhu C, Zhang Y, Yu M, Song Y, Chong Y, Yang Y, Zhu C, Jiang Y, Wang C, Cheng S, Jia K, Yu G, Li J, Tang Z. Gastrodin alleviates NTG-induced migraine-like pain via inhibiting succinate/HIF-1α/TRPM2 signaling pathway in trigeminal ganglion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155266. [PMID: 38241917 DOI: 10.1016/j.phymed.2023.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Increasing evidence highlights the involvement of metabolic disorder and calcium influx mediated by transient receptor potential channels in migraine; however, the relationship between these factors in the pathophysiology of migraine remains unknown. Gastrodin is the major component of the traditional Chinese medicine Tianma, which is extensively used in migraine therapy. PURPOSE Our work aimed to explore the analgesic action of gastrodin and its regulatory mechanisms from a metabolic perspective. METHODS/RESULTS After being treated with gastrodin, the mice were given nitroglycerin (NTG) to induce migraine. Gastrodin treatment significantly raised the threshold of sensitivity in response to both mechanical and thermal stimulus evidenced by von Frey and hot plate tests, respectively, and decreased total contact numbers in orofacial operant behavioral assessment. We found that the expression of transient receptor potential melastatin 2 (TRPM2) channel was increased in the trigeminal ganglion (TG) of NTG-induced mice, resulting in a sustained Ca2+ influx to trigger migraine pain. The content of succinate, a metabolic biomarker, was elevated in blood samples of migraineurs, as well as in the serum and TG tissue from NTG-induced migraine mice. Calcium imaging assay indicated that succinate insult elevated TRPM2-mediated calcium flux signal in TG neurons. Mechanistically, accumulated succinate upregulated hypoxia inducible factor-1α (HIF-1α) expression and promoted its translocation into nucleus, where HIF-1α enhanced TRPM2 expression through transcriptional induction in TG neurons, evidenced by luciferase reporter measurement. Gastrodin treatment inhibited TRPM2 expression and TRPM2-dependent Ca2+ influx by attenuating succinate accumulation and downstream HIF-1α signaling, and thereby exhibited analgesic effect. CONCLUSION This work revealed that succinate was a critical metabolic signaling molecule and the key mediator of migraine pain through triggering TRPM2-mediated calcium overload. Gastrodin alleviated NTG-induced migraine-like pain via inhibiting succinate/HIF-1α/TRPM2 signaling pathway in TG neurons. These findings uncovered the anti-migraine effect of gastrodin and its regulatory mechanisms from a metabolic perspective and provided a novel theoretical basis for the analgesic action of gastrodin.
Collapse
Affiliation(s)
- Chao Ma
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Chunran Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210009, China
| | - Yajun Zhang
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Mei Yu
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yizhi Song
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yulong Chong
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210009, China
| | - Yan Yang
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Chan Zhu
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yucui Jiang
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Changming Wang
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shuo Cheng
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Keke Jia
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Guang Yu
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jia Li
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Zongxiang Tang
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
33
|
Joshi S, Williamson J, Moosa S, Kapur J. Progesterone Receptor Activation Regulates Sensory Sensitivity and Migraine Susceptibility. THE JOURNAL OF PAIN 2024; 25:642-658. [PMID: 37777034 DOI: 10.1016/j.jpain.2023.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Women develop chronic pain during their reproductive years more often than men, and estrogen and progesterone regulate this susceptibility. We tested whether brain progesterone receptor (PR) signaling regulates pain susceptibility. During the estrous cycle, animals were more sensitive to mechanical stimulus during the estrus stage than in the diestrus stage, suggesting a role for reproductive hormones, estrogen, and progesterone. Progesterone treatment of ovariectomized and estrogen-primed mice caused a delayed reduction in the mechanical threshold. Segesterone, a specific agonist of PRs replicated this effect, whereas, the segesterone-induced reduction in mechanical threshold was blocked in the mice lacking PRs in the nervous system. Segesterone treatment also did not alter mechanical threshold in adult male and juvenile female mice. PR activation increased the cold sensitivity but did not affect the heat and light sensitivity. We evaluated whether PR activation altered experimental migraine. Segesterone and nitroglycerin when administered sequentially, reduced the pain threshold but not when given separately. PRs were expressed in several components of the migraine ascending pain pathway, and their deletion blocked the painful effects of nitroglycerin. PR activation also increased the number of active neurons in the components of the migraine ascending pain pathway. These studies have uncovered a pain-regulating function of PRs. Targeting PRs may provide a novel therapeutic avenue to treat chronic pain and migraine in women. PERSPECTIVE: This article provides evidence for the role of progesterone receptors in regulating pain sensitivity and migraine susceptibility in females. Progesterone receptors may be a therapeutic target to treat chronic pain conditions more prevalent in women than men.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Shayan Moosa
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia; Department of Neuroscience, University of Virginia, Charlottesville, Virginia; UVA Brain Institute, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
34
|
Lillo Vizin RC, Kopruszinski CM, Redman PM, Ito H, Rau J, Dodick DW, Navratilova E, Porreca F. Unraveling the directional relationship of sleep and migraine-like pain. Brain Commun 2024; 6:fcae051. [PMID: 38444905 PMCID: PMC10914446 DOI: 10.1093/braincomms/fcae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Migraine and sleep disorders are common co-morbidities. Patients frequently link their sleep to migraine attacks suggesting a potential causal relationship between these conditions. However, whether migraine pain promotes or disrupts sleep or whether sleep disruption can increase the risk of migraine remains unknown. We assessed the potential impact of periorbital allodynia, a measure consistent with migraine-like pain, from multiple preclinical models on sleep quantity and quality. Additionally, we evaluated the possible consequences of sleep deprivation in promoting susceptibility to migraine-like pain. Following the implantation of electroencephalogram/electromyography electrodes to record sleep, mice were treated with either single or repeated systemic injections of nitroglycerin at the onset of their active phase (i.e. nocturnal awake period). Neither single nor repeated nitroglycerin affected the total sleep time, non-rapid eye movement sleep, rapid eye movement sleep, sleep depth or other measures of sleep architecture. To account for the possible disruptive effects of the surgical implantation of electroencephalogram/electromyography electrodes, we used immobility recordings as a non-invasive method for assessing sleep-wake behaviour. Neither single nor repeated nitroglycerin administration during either the mouse sleep (i.e. daylight) or active (i.e. night) periods influenced immobility-defined sleep time. Administration of an inflammatory mediator mixture onto the dura mater at either sleep or active phases also did not affect immobility-defined sleep time. Additionally, inhalational umbellulone-induced migraine-like pain in restraint-stressed primed mice did not alter immobility-defined sleep time. The possible influence of sleep disruption on susceptibility to migraine-like pain was evaluated by depriving female mice of sleep over 6 h with novel objects, a method that does not increase circulating stress hormones. Migraine-like pain was not observed following acute sleep deprivation. However, in sleep-deprived mice, subthreshold doses of systemic nitroglycerin or dural calcitonin gene-related peptide induced periorbital cutaneous allodynia consistent with migraine-like pain. Our data reveal that while migraine-like pain does not significantly disrupt sleep, sleep disruption increases vulnerability to migraine-like pain suggesting that a therapeutic strategy focused on improving sleep may diminish migraine attacks.
Collapse
Affiliation(s)
- Robson C Lillo Vizin
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Caroline M Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Paula M Redman
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Hisakatsu Ito
- Department of Anesthesiology, University of Toyama, Toyama 930-0194, Japan
| | - Jill Rau
- Department of Neurology, Bob Bové Neuroscience Institute at HonorHealth, Scottsdale, AZ 85251, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
35
|
Han C, Lim JY, Koike N, Kim SY, Ono K, Tran CK, Mangutov E, Kim E, Zhang Y, Li L, Pradhan AA, Yagita K, Chen Z, Yoo SH, Burish MJ. Regulation of headache response and transcriptomic network by the trigeminal ganglion clock. Headache 2024; 64:195-210. [PMID: 38288634 PMCID: PMC10961824 DOI: 10.1111/head.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To characterize the circadian features of the trigeminal ganglion in a mouse model of headache. BACKGROUND Several headache disorders, such as migraine and cluster headache, are known to exhibit distinct circadian rhythms of attacks. The circadian basis for these rhythmic pain responses, however, remains poorly understood. METHODS We examined trigeminal ganglion ex vivo and single-cell cultures from Per2::LucSV reporter mice and performed immunohistochemistry. Circadian behavior and transcriptomics were investigated using a novel combination of trigeminovascular and circadian models: a nitroglycerin mouse headache model with mechanical thresholds measured every 6 h, and trigeminal ganglion RNA sequencing measured every 4 h for 24 h. Finally, we performed pharmacogenomic analysis of gene targets for migraine, cluster headache, and trigeminal neuralgia treatments as well as trigeminal ganglion neuropeptides; this information was cross-referenced with our cycling genes from RNA sequencing data to identify potential targets for chronotherapy. RESULTS The trigeminal ganglion demonstrates strong circadian rhythms in both ex vivo and single-cell cultures, with core circadian proteins found in both neuronal and non-neuronal cells. Using our novel behavioral model, we showed that nitroglycerin-treated mice display circadian rhythms of pain sensitivity which were abolished in arrhythmic Per1/2 double knockout mice. Furthermore, RNA-sequencing analysis of the trigeminal ganglion revealed 466 genes that displayed circadian oscillations in the control group, including core clock genes and clock-regulated pain neurotransmitters. In the nitroglycerin group, we observed a profound circadian reprogramming of gene expression, as 331 of circadian genes in the control group lost rhythm and another 584 genes gained rhythm. Finally, pharmacogenetics analysis identified 10 genes in our trigeminal ganglion circadian transcriptome that encode target proteins of current medications used to treat migraine, cluster headache, or trigeminal neuralgia. CONCLUSION Our study unveiled robust circadian rhythms in the trigeminal ganglion at the behavioral, transcriptomic, and pharmacogenetic levels. These results support a fundamental role of the clock in pain pathophysiology. PLAIN LANGUAGE SUMMARY Several headache diseases, such as migraine and cluster headache, have headaches that occur at the same time each day. We learned that the trigeminal ganglion, an important pain structure in several headache diseases, has a 24-hour cycle that might be related to this daily cycle of headaches. Our genetic analysis suggests that some medications may be more effective in treating migraine and cluster headache when taken at specific times of the day.
Collapse
Affiliation(s)
- Chorong Han
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Ji Ye Lim
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sun Young Kim
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Kaori Ono
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Celia K. Tran
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Elizaveta Mangutov
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Yanping Zhang
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lingyong Li
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amynah A. Pradhan
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, UTHealth Houston, Houston, Texas, USA
| | - Mark J. Burish
- Department of Neurosurgery, UTHealth Houston, Houston, Texas, USA
| |
Collapse
|
36
|
Akerman S, Goadsby PJ, Romero-Reyes M. PACAP-38 related modulation of the cranial parasympathetic projection: A novel mechanism and therapeutic target in severe primary headache. Br J Pharmacol 2024; 181:480-494. [PMID: 37706270 DOI: 10.1111/bph.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Little is known of how cranial autonomic symptoms (CAS) in cluster headache and migraine may contribute to their severe headache phenotype. This strong association suggests the involvement of the cranial parasympathetic efferent pathway. To investigate its contribution, we studied the role of pituitary adenylate cyclase activating polypeptide-38 (PACAP-38), a potent sensory and parasympathetic neuropeptide, in modulating pre- and post-ganglionic cranial parasympathetic projection neurons, and their influence on headache-related trigeminal-autonomic responses. EXPERIMENTAL APPROACH Using PACAP-38 and PACAP-38 responsive receptor antagonists, electrophysiological, behavioural and facial neurovascular-blood flow was measured in rats to probe trigeminal- and parasympathetic-neuronal, periorbital thresholds and cranial-autonomic outcomes, as they relate to primary headaches. KEY RESULTS Sumatriptan attenuated the development of PACAP-38 mediated activation and sensitization of trigeminocervical neurons and related periorbital allodynia. PACAP-38 also caused activation and enhanced responses of dural-responsive pre-ganglionic pontine-superior salivatory parasympathetic neurons. Further, the PACAP-38 responsive receptor antagonists dissected a role of VPAC1 and PAC1 receptors in attenuating cranial-autonomic and trigeminal-neuronal responses to activation of the cranial parasympathetic projection, which requires post-ganglionic parasympathetic neurotransmission. CONCLUSION AND IMPLICATIONS Given the prevailing view that sumatriptan acts to some degree via a peripheral mechanism, our data support that PACAP-38 mediated receptor activation modulates headache-related cranial-autonomic and trigeminovascular responses via peripheral and central components of the cranial parasympathetic projection. This provides a mechanistic rationale for the association of CAS with more severe headache phenotypes in cluster headache and migraine, and supports the cranial parasympathetic projection as a potential novel locus for treatment by selectively targeting PACAP-38 or PACAP-38 responsive VPAC1 /PAC1 receptors.
Collapse
Affiliation(s)
- Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Peter J Goadsby
- Headache Group, Wolfson Sensory, Pain and Regeneration Research Centre (SPaRRC), Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Zhang Y, Huang W, Shan Z, Zhou Y, Qiu T, Hu L, Yang L, Wang Y, Xiao Z. A new experimental rat model of nocebo-related nausea involving double mechanisms of observational learning and conditioning. CNS Neurosci Ther 2024; 30:e14389. [PMID: 37545429 PMCID: PMC10848046 DOI: 10.1111/cns.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
AIM The nocebo effect, such as nausea and vomiting, is one of the major reasons patients discontinue therapy. The underlying mechanisms remain unknown due to a lack of reliable experimental models. The goal of this study was to develop a new animal model of nocebo-related nausea by combining observational learning and Pavlovian conditioning paradigms. METHODS Male Sprague-Dawley rats with nitroglycerin-induced migraine were given 0.9% saline (a placebo) or LiCl (a nausea inducer) following headache relief, according to different paradigms. RESULTS Both strategies provoked nocebo nausea responses, with the conditioning paradigm having a greater induction impact. The superposition of two mechanisms led to a further increase in nausea responses. A preliminary investigation of the underlying mechanism revealed clearly raised peripheral and central cholecystokinin (CCK) levels, as well as specific changes in the 5-hydroxytryptamine and cannabinoid systems. Brain networks related to emotion, cognition, and visceral sense expressed higher c-Fos-positive neurons, including the anterior cingulate cortex (ACC), insula, basolateral amygdala (BLA), thalamic paraventricular nucleus (PVT), hypothalamic paraventricular nucleus (PVN), nucleus tractus solitarius (NTS), periaqueductal gray (PAG), and dorsal raphe nucleus-dorsal part (DRD). We also found that nausea expectances in the model could last for at least 12 days. CONCLUSION The present study provides a useful experimental model of nocebo nausea that might be used to develop potential molecular pathways and therapeutic strategies for nocebo.
Collapse
Affiliation(s)
- Yu Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Wanbin Huang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Zhengming Shan
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Yanjie Zhou
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Tao Qiu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Luyu Hu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Liu Yang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Yue Wang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Zheman Xiao
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| |
Collapse
|
38
|
Sun S, Fan Z, Liu X, Wang L, Ge Z. Microglia TREM1-mediated neuroinflammation contributes to central sensitization via the NF-κB pathway in a chronic migraine model. J Headache Pain 2024; 25:3. [PMID: 38177990 PMCID: PMC10768449 DOI: 10.1186/s10194-023-01707-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Neuroinflammation, mediated by the activation of microglia, contributes to central sensitization, which is associated with the development of chronic migraine (CM). TREM1 receptors amplify the inflammatory response. However, their relationship to CM is unclear. Thus, this study endeavoured to elucidate the exact role of TREM1 in CM. METHODS Nitroglycerin (NTG) was repeatedly administered intraperitoneally to establish the CM model. Mechanical and thermal sensitivities were assessed using von Frey filaments and hot plate assays. Using Western blotting, TREM1, NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were all detected. Immunofluorescence was used to examine the cellular distribution of TREM1 and NLRP3, the number of microglia, immunoreactivity, and morphological changes. We examined the effects of TREM1 antagonists (LR12) and NF-κB inhibitors (PDTC) on pain behaviour, as well as the production of c-fos and CGRP. Additionally, we investigated whether LR12 and PDTC affect the activation of microglia and the NLRP3 inflammasome. We synthesized siRNA and TREM1-overexpressing plasmids to transfect BV2 cells treated with LPS and normal BV2 cells and treated TREM1-overexpressing BV2 cells with PDTC. The NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were quantified using Western blotting. RESULTS Following NTG administration, the expression of TREM1 was significantly upregulated and exclusively localized in microglia in the TNC, and was well co-localized with NLRP3. Furthermore, activation of the classical NF-κB pathway was observed. Pre-treatment with LR12 and PDTC effectively attenuated mechanical hypersensitivity, suppressed the expression of c-fos and CGRP, and inhibited NF-κB activity in CM mice. Additionally, inhibition of TREM1 and NF-κB activity mitigated NTG-induced microglia and NLRP3 activation, as well as proinflammatory cytokines production. In vitro, knockdown of TREM1 resulted in attenuated activation of the NF-κB pathway following lipopolysaccharide (LPS) treatment and reduced expression of NLRP3 inflammasome components as well as proinflammatory cytokines. After TREM1 overexpression, the NF-κB pathway was activated, NLRP3 inflammasome components and proinflammatory cytokines were upregulated, and PDTC reversed this phenomenon. CONCLUSIONS Our findings suggest that TREM1 regulates microglia and NLRP3 activation via the NF-κB pathway, thereby contributing to central sensitization and implicating its involvement in chronic migraine pathogenesis.
Collapse
Affiliation(s)
- Songtang Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Zhenzhen Fan
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Xuejiao Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Longde Wang
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
39
|
Kim SJ, Yeo JH, Yoon SY, Roh DH. GV16 acupoint stimulation with bee venom reduces peripheral hypersensitivity via activation of α2 adrenoceptors in a nitroglycerin-induced migraine mouse model. Integr Med Res 2023; 12:100999. [PMID: 37953754 PMCID: PMC10638029 DOI: 10.1016/j.imr.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/23/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Background Peripheral hypersensitivities develop in the face and hindpaws of mice with nitroglycerin (NTG)-induced migraine. We evaluated whether diluted bee venom (DBV) injections at acupoints prevented these peripheral hypersensitivities and c-Fos expression in the trigeminal nucleus caudalis (TNC). Methods NTG (10 mg/kg, intraperitoneal, i.p.) was administered every other day for nine days. DBV (0.1 mg/kg) was subcutaneously injected into the ST36 (Zusanli), LI4 (Hegu), or GV16 (Fengfu) acupoints 75 min after each NTG injection. Mice were pretreated with naloxone (5 mg/kg, i.p.) or yohimbine (5 mg/kg, i.p.) 30 min before the DBV injections. Results NTG injection caused facial cold allodynia, hindpaw mechanical allodynia, and increased c-Fos-immunoreactive (ir) cells in the TNC. Repetitive DBV injections at GV16, but not the ST36, or LI4 acupoints, suppressed NTG-induced hindpaw mechanical allodynia and facial cold allodynia. The number of c-Fos-ir cells also decreased in response to DBV injections at the GV16 acupoint. Remarkably, pretreatment with yohimbine reversed the anti-allodynic effects of DBV injections and attenuated the decreased c-Fos expression in response to GV16 DBV treatment. Naloxone did not block the effects of GV16 DBV stimulation. Conclusion These findings demonstrate that repetitive DBV treatment at the GV16 acupoint relieves NTG-induced facial and hindpaw hypersensitivities and decreases in c-Fos expression in the TNC via activation of the alpha-2 adrenoceptors, but not the opioid receptors.
Collapse
Affiliation(s)
- Sol-Ji Kim
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Hee Yeo
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo-Yeon Yoon
- Department of Companion Animals, Yuhan University, Bucheon-si, Gyeonggi-do 14780, Republic of Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
40
|
Gong Z, Yang C, Dai W, Miao S, Liu Y, Jiao Z, Li B, Xie W, Zhao W, Han X, Yu S, Dong Z. Annexin A1 exerts analgesic effect in a mouse model of medication overuse headache. iScience 2023; 26:108153. [PMID: 37867938 PMCID: PMC10587614 DOI: 10.1016/j.isci.2023.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Medication overuse headache (MOH) is a serious global condition. The interaction between headache attacks and medication overuse complicates the understanding of its pathophysiology. In this study, we developed a preclinical MOH model that incorporates these two key factors by overusing rizatriptan benzoate (RIZ, 4 mg/kg, i.g.) in a glyceryl trinitrate (GTN, 10 mg/kg, i.p.) induced chronic migraine mouse model. We observed that RIZ overuse aggravated GTN-induced cutaneous allodynia and caused a prolonged state of latent sensitization. We also detected a significant upregulation of Annexin-A1 (ANXA1), a protein mainly expressed in the microglia of the spinal trigeminal nucleus caudalis (SPVC), in GTN+RIZ mice. Intracerebroventricular injection of ANXA1-derived peptide Ac2-26 trifluoroacetic acid (TFA) (5 μg/mouse) inhibited bright light stress (BLS) induced acute allodynia via the formyl peptide receptor (FPR) in GTN+RIZ mice. These results suggest that ANXA1 may have an analgesic effect in triptan-associated MOH and could potentially serve as a therapeutic target.
Collapse
Affiliation(s)
- Zihua Gong
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Medical Oncology, Bethune International peace Hospital, Shijiazhuang, Hebei 050082, China
| | - Chunxiao Yang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Dai
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuai Miao
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingyuan Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Zhiyang Jiao
- Department of Outpatient, Shijiazhuang Fourth Retired Cadre Sanatorium of Hebei province Military Region, Shijiazhuang, Hebei 050082, China
| | - Bozhi Li
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Xie
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Wei Zhao
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Xun Han
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Zhao Dong
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
41
|
Sturaro C, Fakhoury B, Targowska-Duda KM, Zribi G, Schoch J, Ruzza C, Calò G, Toll L, Cippitelli A. Preclinical effects of cannabidiol in an experimental model of migraine. Pain 2023; 164:2540-2552. [PMID: 37310430 DOI: 10.1097/j.pain.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/25/2023] [Indexed: 06/14/2023]
Abstract
ABSTRACT Migraine is a disabling disorder characterized by recurrent headaches, accompanied by abnormal sensory sensitivity and anxiety. Despite extensive historical use of cannabis in headache disorders, there is limited research on the nonpsychoactive cannabidiol (CBD) for migraine and there is no scientific evidence to prove that CBD is an effective treatment. The effects of CBD are examined here using a calcitonin gene-related peptide (CGRP)-induced migraine model that provides measures of cephalic allodynia, spontaneous pain, altered light sensitivity (photophobia), and anxiety-like behavior in C57BL/6J mice. A single administration of CGRP induced facial hypersensitivity in both female and male mice. Repeated CGRP treatment produced progressively decreased levels in basal thresholds of allodynia in females, but not in males. A single CBD administration protected both females and males from periorbital allodynia induced by a single CGRP injection. Repeated CBD administration prevented increased levels of basal allodynia induced by repeated CGRP treatment in female mice and did not lead to responses consistent with migraine headache as occurs with triptans. Cannabidiol, injected after CGRP, reversed CGRP-evoked allodynia. Cannabidiol also reduced spontaneous pain traits induced by CGRP administration in female mice. Finally, CBD blocked CGRP-induced anxiety in male mice, but failed in providing protection from CGRP-induced photophobia in females. These results demonstrate the efficacy of CBD in preventing episodic and chronic migraine-like states with reduced risk of causing medication overuse headache. Cannabidiol also shows potential as an abortive agent for treating migraine attacks and headache-related conditions such as spontaneous pain and anxiety.
Collapse
Affiliation(s)
- Chiara Sturaro
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Bianca Fakhoury
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Katarzyna M Targowska-Duda
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Gilles Zribi
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Jennifer Schoch
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lawrence Toll
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Andrea Cippitelli
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
42
|
Rasmussen RH, Christensen SL, Calloe K, Nielsen BS, Rehfeld A, Taylor-Clark TE, Haanes KA, Taboureau O, Audouze K, Klaerke DA, Olesen J, Kristensen DM. Xenobiotic Exposure and Migraine-Associated Signaling: A Multimethod Experimental Study Exploring Cellular Assays in Combination with Ex Vivo and In Vivo Mouse Models. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117003. [PMID: 37909725 PMCID: PMC10619430 DOI: 10.1289/ehp12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or 100 μ M . None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (N total = 144 ). DISCUSSION Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.
Collapse
Affiliation(s)
- Rikke H. Rasmussen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - Sarah L. Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - Kirstine Calloe
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Brian Skriver Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Anders Rehfeld
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Thomas E. Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Kristian A. Haanes
- Department of Clinical Experimental Research, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Denmark
| | - Olivier Taboureau
- Unité de Biologie Fonctionnelle, Université Paris Cité, Centre national de la recherche scientifique (CNRS, French National Centre for Scientific Research), Institut national de la santé et de la recherche médicale (Inserm, National Institute of Health & Medical Research), Paris, France
| | | | - Dan A. Klaerke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - David M. Kristensen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Institut de recherche en santé, environnement et travail (Irset) – UMR_S 1085, Université de Rennes, Inserm, École des hautes études en santé publique (EHESP), Rennes, France
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
43
|
Condon LF, Yu Y, Park S, Cao F, Pauli JL, Nelson TS, Palmiter RD. Parabrachial Calca neurons drive nociplasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564223. [PMID: 37961621 PMCID: PMC10634894 DOI: 10.1101/2023.10.26.564223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain that persists beyond the time required for tissue healing and pain that arises in the absence of tissue injury are poorly understood phenomena mediated by plasticity within the central nervous system. The parabrachial nucleus (PBN) is a hub that relays aversive sensory information and appears to play a role in nociplasticity. Here, by preventing PBN Calca neurons from releasing neurotransmitter or directly stimulating them we demonstrate that activation of Calca neurons is both necessary for the manifestation of chronic pain after nerve ligation and is sufficient to drive nociplasticity in wild-type mice. Aversive stimuli such as exposure to nitroglycerin, cisplatin, or LiCl can drive nociplasticity in a Calca-neuron-dependent manner. Calcium fluorescence imaging reveals that nitroglycerin activates PBN Calca neurons and potentiates their responses to mechanical stimulation. The activity and excitability of Calca neurons increased for several days after aversive events, but prolonged nociplasticity likely occurs in downstream circuitry.
Collapse
Affiliation(s)
- Logan F Condon
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Ying Yu
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sekun Park
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Feng Cao
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jordan L Pauli
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tyler S Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University, NY 10010, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Lead Contact
| |
Collapse
|
44
|
Ryu S, Liu X, Guo T, Guo Z, Zhang J, Cao YQ. Peripheral CCL2-CCR2 signalling contributes to chronic headache-related sensitization. Brain 2023; 146:4274-4291. [PMID: 37284790 PMCID: PMC10545624 DOI: 10.1093/brain/awad191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Migraine, especially chronic migraine, is highly debilitating and still lacks effective treatment. The persistent headache arises from activation and sensitization of primary afferent neurons in the trigeminovascular pathway, but the underlying mechanisms remain incompletely understood. Animal studies indicate that signalling through chemokine C-C motif ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) mediates the development of chronic pain after tissue or nerve injury. Some migraine patients had elevated CCL2 levels in CSF or cranial periosteum. However, whether the CCL2-CCR2 signalling pathway contributes to chronic migraine is not clear. Here, we modelled chronic headache with repeated administration of nitroglycerin (NTG, a reliable migraine trigger in migraineurs) and found that both Ccl2 and Ccr2 mRNA were upregulated in dura and trigeminal ganglion (TG) tissues that are implicated in migraine pathophysiology. In Ccl2 and Ccr2 global knockout mice, repeated NTG administration did not evoke acute or persistent facial skin hypersensitivity as in wild-type mice. Intraperitoneal injection of CCL2 neutralizing antibodies inhibited chronic headache-related behaviours induced by repeated NTG administration and repetitive restraint stress, suggesting that the peripheral CCL2-CCR2 signalling mediates headache chronification. We found that CCL2 was mainly expressed in TG neurons and cells associated with dura blood vessels, whereas CCR2 was expressed in subsets of macrophages and T cells in TG and dura but not in TG neurons under both control and disease states. Deletion of Ccr2 gene in primary afferent neurons did not alter NTG-induced sensitization, but eliminating CCR2 expression in either T cells or myeloid cells abolished NTG-induced behaviours, indicating that both CCL2-CCR2 signalling in T cells and macrophages are required to establish chronic headache-related sensitization. At cellular level, repeated NTG administration increased the number of TG neurons that responded to calcitonin-gene-related peptide (CGRP) and pituitary adenylate cyclase activating polypeptide (PACAP) as well as the production of CGRP in wild-type but not Ccr2 global knockout mice. Lastly, co-administration of CCL2 and CGRP neutralizing antibodies was more effective in reversing NTG-induced behaviours than individual antibodies. Taken together, these results suggest that migraine triggers activate CCL2-CCR2 signalling in macrophages and T cells. This consequently enhances both CGRP and PACAP signalling in TG neurons, ultimately leading to persistent neuronal sensitization underlying chronic headache. Our work not only identifies the peripheral CCL2 and CCR2 as potential targets for chronic migraine therapy, but also provides proof-of-concept that inhibition of both peripheral CGRP and CCL2-CCR2 signalling is more effective than targeting either pathway alone.
Collapse
Affiliation(s)
- Sun Ryu
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Xuemei Liu
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Tingting Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Jintao Zhang
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| |
Collapse
|
45
|
Xie W, Li R, Tang W, Ma Z, Miao S, Li C, Yang C, Li B, Wang T, Gong Z, Zhou Y, Yu S. Proteomics profiling reveals mitochondrial damage in the thalamus in a mouse model of chronic migraine. J Headache Pain 2023; 24:122. [PMID: 37667199 PMCID: PMC10478405 DOI: 10.1186/s10194-023-01646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Migraine, a complex brain disorder, is regarded as a possible clinical manifestation of brain energy dysfunction. The trigeminovascular system is considered the basis for the pathogenesis of migraine, hence we depicted the proteomics profiling of key regions in this system, then focusing on protein alterations related to mitochondrial function. The aim of this study is to illustrate the role of mitochondria in migraine. METHODS A mouse model of chronic migraine (CM) was established by repeated nitroglycerin (NTG) stimulation and evaluated by von-Frey filaments, a hot plate and a light-dark box. Differentially expressed proteins (DEPs) in some subcortical brain regions of the trigeminovascular system were screened through liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyse the specificity of key signaling pathways in different brain regions. And then mitochondrial function, structure and dynamics were determined by qPCR, ELISA, and transmission electron microscope (TEM). Finally, the effect of mitochondrial intervention-Urolithin A (UA) on CM was investigated. RESULTS Repeated NTG injection triggered photophobia, periorbital and hind paw allodynia in mice. The proteomics profiling of CM model showed that 529, 109, 163, 152 and 419 DEPs were identified in the thalamus, hypothalamus, periaqueductal grey (PAG), trigeminal ganglion (TG) and trigeminocervical complex (TCC), respectively. The most significant changes in the brain region-specific pathways pointed to thalamic mitochondrial impairment. NTG induced mitochondrial structural disruption, dysfunction and homeostatic dysregulation, which could be partially attenuated by UA intervention. CONCLUSION Our findings highlight the involvement of mitochondrial damage in the thalamus in central sensitization of CM, which provides evidence of possible metabolic mechanisms in migraine pathophysiology.
Collapse
Affiliation(s)
- Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Ruibing Li
- Department of Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Tang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhenjie Ma
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Chunxiao Yang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tao Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zihua Gong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yue Zhou
- College of Life Science, Northwest University, Xi'an, Shanxi, China.
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
46
|
Yang L, Zhou Y, Zhang L, Wang Y, Zhang Y, Xiao Z. Aryl hydrocarbon receptors improve migraine-like pain behaviors in rats through the regulation of regulatory T cell/T-helper 17 cell-related homeostasis. Headache 2023; 63:1045-1060. [PMID: 37539825 DOI: 10.1111/head.14599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Accepted: 05/26/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE To investigate the effect of the aryl hydrocarbon receptor (AHR)/regulatory T cell (Treg)/T-helper 17 (Th17) cell pathway on the pathogenesis of migraine. BACKGROUND Migraine is a disabling neurovascular disease that imposes an enormous burden on both individuals and society. The pathophysiological mechanisms of migraine remain controversial. Recent studies have suggested that immune dysfunction may be involved in the pathogenesis of migraine. The AHR, a receptor expressed on most immune cells, has been implicated in the occurrence of many autoimmune diseases; however, whether it is involved in the pathogenesis of migraine is unclear. METHODS A chronic migraine rat model was established through repeated intraperitoneal injection of nitroglycerin (NTG). The mechanical and thermal pain thresholds were assessed using von Frey filaments and radiant heat. Next, the protein expression levels of AHR in the trigeminal nucleus caudalis (TNC) region of chronic migraine (CM)-like rats were quantified and the changes in Treg/Th17-related transcription factors and inflammatory factors in the TNC were explored. To determine the role of AHR in CM, we examined the effects of the AHR agonist 2-(1'-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and AHR antagonist CH-223191 on pain behavior, c-Fos, calcitonin gene-related peptide (CGRP), AHR, and Treg/Th17-related factor expression in CM-like rats. RESULTS Repeated administration of NTG significantly enhanced nociceptive hypersensitivity and increased expression of c-Fos and CGRP in rats, while AHR was significantly decreased in the TNC. In addition, the expression of the transcription factor forkhead box protein P3 and the signal transducer and activator of transcription 5 decreased significantly. In contrast, the expression of the transcription factor retinoic acid receptor-related orphan receptor γ t and signal transducer and activator of transcription 3 were significantly increased. Moreover, the mRNA level of transforming growth factor beta-1 was decreased, while that of interleukin (IL)-10 and IL-22 was increased in the TNC. The AHR agonist ITE alleviated migraine-like pain behaviors in rats, activated the AHR signaling pathway, and improved the imbalance of Treg/Th17-related transcription factors and inflammatory factors. Conversely, the AHR antagonist CH-223191 did not alleviate migraine-like pain behaviors in rats; and even exacerbated them. CONCLUSIONS The AHR participates in the development of CM by regulating Treg/Th17-related homeostasis. Therefore, treatments targeting the AHR/Treg/Th17 signaling pathway could be new effective interventions for CM treatment.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lily Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yue Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Jing F, Zou Q, Pu Y. GLP-1R agonist liraglutide attenuates pain hypersensitivity by stimulating IL-10 release in a nitroglycerin-induced chronic migraine mouse model. Neurosci Lett 2023; 812:137397. [PMID: 37442520 DOI: 10.1016/j.neulet.2023.137397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) has been indicated to involve in chronic pain, however, the mechanism by which GLP-1R alleviates the central sensitization of chronic migraine (CM) remains unclear. Treatment with GLP-1R agonist liraglutide attenuated trigeminal allodynia and suppressed the protein levels of CM-associated molecules in the trigeminal nucleus caudalis (TNC). Further analysis showed that injection of liraglutide stimulated the release of IL-10 in the TNC. Treatment with IL-10 also alleviated pain hyperalgesia. Our findings illustrated that liraglutide might alleviate the central sensitization of CM by stimulating the release of IL-10, which reveals a novel mechanism of CM.
Collapse
Affiliation(s)
- Feng Jing
- Department of Pathology, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New Area, Chongqing 400014, China.
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, No. 312 Zhongshan First Road, Yuzhong District, Chongqing 400013, China
| | - Yinshuang Pu
- Chongqing Key Laboratory of Neurodegenerative Diseases, No. 312 Zhongshan First Road, Yuzhong District, Chongqing 400013, China
| |
Collapse
|
48
|
Vila-Pueyo M, Gliga O, Gallardo VJ, Pozo-Rosich P. The Role of Glial Cells in Different Phases of Migraine: Lessons from Preclinical Studies. Int J Mol Sci 2023; 24:12553. [PMID: 37628733 PMCID: PMC10454125 DOI: 10.3390/ijms241612553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a complex and debilitating neurological disease that affects 15% of the population worldwide. It is defined by the presence of recurrent severe attacks of disabling headache accompanied by other debilitating neurological symptoms. Important advancements have linked the trigeminovascular system and the neuropeptide calcitonin gene-related peptide to migraine pathophysiology, but the mechanisms underlying its pathogenesis and chronification remain unknown. Glial cells are essential for the correct development and functioning of the nervous system and, due to its implication in neurological diseases, have been hypothesised to have a role in migraine. Here we provide a narrative review of the role of glia in different phases of migraine through the analysis of preclinical studies. Current evidence shows that astrocytes and microglia are involved in the initiation and propagation of cortical spreading depolarization, the neurophysiological correlate of migraine aura. Furthermore, satellite glial cells within the trigeminal ganglia are implicated in the initiation and maintenance of orofacial pain, suggesting a role in the headache phase of migraine. Moreover, microglia in the trigeminocervical complex are involved in central sensitization, suggesting a role in chronic migraine. Taken altogether, glial cells have emerged as key players in migraine pathogenesis and chronification and future therapeutic strategies could be focused on targeting them to reduce the burden of migraine.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Otilia Gliga
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Víctor José Gallardo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
- Headache Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| |
Collapse
|
49
|
Joshi S, Williamson J, Moosa S, Kapur J. Progesterone receptor activation regulates sensory sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552037. [PMID: 37609239 PMCID: PMC10441292 DOI: 10.1101/2023.08.04.552037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Women develop chronic pain during their reproductive years more often than men, and estrogen and progesterone regulate this susceptibility. We tested whether brain progesterone receptor (PR) signaling regulates pain susceptibility. During the estrous cycle, animals were more sensitive to pain during the estrus stage than in the diestrus stage, suggesting a role for reproductive hormones, estrogen, and progesterone. We measured the pain threshold daily for four days in ovariectomized, estrogen-primed animals treated with progesterone. The pain threshold was lower 2 days later and stayed that way for the duration of the testing. A specific progesterone-receptor (PR) agonist, segesterone, promoted pain, and mice lacking PR in the brain (PRKO) did not experience lowered pain threshold when treated with progesterone or segesterone. PR activation increased the cold sensitivity but did not affect the heat sensitivity and had a small effect on light sensitivity. Finally, we evaluated whether PR activation altered experimental migraine. Segesterone and nitroglycerin (NTG) when administered sequentially, reduced pain threshold but not separately. These studies have uncovered a pain-regulating function of PRs. Targeting PRs may provide a novel therapeutic avenue to treat chronic pain in women.
Collapse
|
50
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|