1
|
Tabur S, Ozmen S, Oney-Birol S. Promoter role of putrescine for molecular and biochemical processes under drought stress in barley. Sci Rep 2024; 14:19202. [PMID: 39160181 PMCID: PMC11333763 DOI: 10.1038/s41598-024-70137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Drought, which adversely affects plant growth and continuity of life and reduces product yield and quality, is one of the most common abiotic stresses at the globally. One of the polyamines that regulates plant development and reacts to abiotic stressors, including drought stress, is Putrescine (Put). This study compared the physiological and molecular effects of applying exogenous Put (10 µM) to barley (Hordeum vulgare cv. Burakbey) under drought stress (- 6.30 mPa PEG 6000). The 21-day drought stress imposed on the barley plant had a strong negative effect on plant metabolism in all experimental groups. Exogenous Put treatment under drought stress had a reformative effect on the cell cycle (transitions from G0-G1 to S and from S to G2-M), total protein content (almost 100%), endogenous polyamine content, malondialdehyde (MDA) (70%), and ascorbate peroxidase (APX) (62%) levels compared to the drought stress plants. Superoxide dismutase (SOD) (12%) and catalase (CAT) (32%) enzyme levels in the same group increased further after exogenous Put application, forming a response to drought stress. Consequently, it was discovered that the administration of exogenous Put in barley raises endogenous polyamine levels and then improves drought tolerance due to increased antioxidant capability, cell division stimulation, and total protein content.
Collapse
Affiliation(s)
- Selma Tabur
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Serkan Ozmen
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Signem Oney-Birol
- Department of Moleculer Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey.
| |
Collapse
|
2
|
Jin X, Li X, Xie Z, Sun Y, Jin L, Hu T, Huang J. Nuclear factor OsNF-YC5 modulates rice seed germination by regulating synergistic hormone signaling. PLANT PHYSIOLOGY 2023; 193:2825-2847. [PMID: 37706533 DOI: 10.1093/plphys/kiad499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
Regulation of seed dormancy/germination is of great importance for seedling establishment and crop production. Nuclear factor-Y (NF-Y) transcription factors regulate plant growth and development, as well as stress responses; however, their roles in seed germination remain largely unknown. In this study, we reported that NF-Y gene OsNF-YC5 knockout increased, while its overexpression reduced, the seed germination in rice (Oryza sativa L.). ABA-induced seed germination inhibition assays showed that the osnf-yc5 mutant was less sensitive but OsNF-YC5-overexpressing lines were more sensitive to exogenous ABA than the wild type. Meanwhile, MeJA treatment substantially enhanced the ABA sensitivity of OsNF-YC5-overexpressing lines during seed germination. Mechanistic investigations revealed that the interaction of OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9) with OsNF-YC5 enhanced the stability of OsNF-YC5 by protein phosphorylation, while the interaction between JASMONATE ZIM-domain protein 9 (OsJAZ9) and OsNF-YC5 repressed OsNF-YC5 transcriptional activity and promoted its degradation. Furthermore, OsNF-YC5 transcriptionally activated ABA catabolic gene OsABA8ox3, reducing ABA levels in germinating seeds. However, the transcriptional regulation of OsABA8ox3 by OsNF-YC5 was repressed by addition of OsJAZ9. Notably, OsNF-YC5 improved seed germination under salinity conditions. Further investigation showed that OsNF-YC5 activated the high-affinity K+ transporter gene (OsHAK21) expression, and addition of SAPK9 could increase the transcriptional regulation of OsHAK21 by OsNF-YC5, thus substantially reducing the ROS levels to enhance seed germination under salt stress. Our findings establish that OsNF-YC5 integrates ABA and JA signaling during rice seed germination, shedding light on the molecular networks of ABA-JA synergistic interaction.
Collapse
Affiliation(s)
- Xinkai Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Amin B, Atif MJ, Pan Y, Rather SA, Ali M, Li S, Cheng Z. Transcriptomic analysis of Cucumis sativus uncovers putative genes related to hormone signaling under low temperature (LT) and high humidity (HH) stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111750. [PMID: 37257510 DOI: 10.1016/j.plantsci.2023.111750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Climate change has caused changes in environmental conditions, leading to both low temperature (LT) and high humidity (HH) stress on crops worldwide. Therefore, there is a growing need to enhance our understanding of the physiological and molecular mechanisms underlying LT and HH stress tolerance in cucumbers, given the significance of climate change. The findings of this study offer a comprehensive understanding of how the transcriptome and hormone profiles of cucumbers respond to LT and HH stress. In this study, cucumber seedlings were subjected to LT and HH stress (9/5 °C day/night temperature, 95% humidity) as well as control (CK) conditions (25/18 °C day/night temperature, 80% humidity) for 24, 48, and 72 h. It was observed that the LT and HH stress caused severe damage to the morphometric traits of the plants compared to the control treatment. The concentrations of phytohormones IAA, ethylene, and GA were lower, while ABA and JA were higher during LT and HH stress at most time points. To gain insights into the molecular mechanisms underlying this stress response, RNA-sequencing was performed. The analysis revealed a total of 10,459 differentially expressed genes (DEGs) with annotated pathways. These pathways included plant hormone signal transduction, protein processing in the endoplasmic reticulum, MAPK signaling pathway, carbon fixation in photosynthetic organisms, and glycerolipid metabolism. Furthermore, 123 DEGs associated with hormone signaling pathways were identified, and their responses to LT and HH stress were thoroughly discussed. Overall, this study sheds light on the LT and HH tolerance mechanisms in cucumbers, particularly focusing on the genes involved in the LT and HH response and the signaling pathways of endogenous phytohormones.
Collapse
Affiliation(s)
- Bakht Amin
- College of Horticulture, Northwest A&F University, Yangling 712100, China; Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource Conservation andGermplasm Innovation in Mountainous Region (Ministry of Education), College of AgriculturalSciences, Guizhou University, Guiyang 550025, China
| | - Muhammad Jawaad Atif
- College of Horticulture, Northwest A&F University, Yangling 712100, China; Horticultural Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | - Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shabir A Rather
- Center for Integrative Conservation and Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Menglun 666303, Yunnan, China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shuju Li
- Tianjin Kerun Cucumber Research Institute, Tianjin 300192, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Král D, Šenkyřík JB, Ondřej V. Expression of Genes Involved in ABA and Auxin Metabolism and LEA Gene during Embryogenesis in Hemp. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212995. [PMID: 36365448 PMCID: PMC9657790 DOI: 10.3390/plants11212995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 05/14/2023]
Abstract
The level of phytohormones such as abscisic acid (ABA) and auxins (Aux) changes dynamically during embryogenesis. Knowledge of the transcriptional activity of the genes of their metabolic pathways is essential for a deeper understanding of embryogenesis itself; however, it could also help breeding programs of important plants, such as Cannabis sativa, attractive for the pharmaceutical, textile, cosmetic, and food industries. This work aimed to find out how genes of metabolic pathways of Aux (IAA-1, IAA-2, X15-1, X15-2) and ABA (PP2C-1) alongside one member of the LEA gene family (CanLea34) are expressed in embryos depending on the developmental stage and the embryo cultivation in vitro. Walking stick (WS) and mature (M) cultivated and uncultivated embryos of C. sativa cultivars 'KC Dora' and 'USO 31' were analyzed. The RT-qPCR results indicated that for the development of immature (VH) embryos, the genes (IAA-1, IAA-2) are likely to be fundamental. Only an increased expression of the CanLea34 gene was characteristic of the fully maturated (M) embryos. In addition, this feature was significantly increased by cultivation. In conclusion, the cultivation led to the upsurge of expression of all studied genes.
Collapse
|
5
|
Exogenous Betaine Enhances the Protrusion Vigor of Rice Seeds under Heat Stress by Regulating Plant Hormone Signal Transduction and Its Interaction Network. Antioxidants (Basel) 2022; 11:antiox11091792. [PMID: 36139866 PMCID: PMC9496009 DOI: 10.3390/antiox11091792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Rice is an important food crop. Rice seedlings are mainly composed of root, coleoptile, mesocotyl and euphylla. The elongation of coleoptile and mesocotyl promotes the emergence of rice seedlings. Therefore, analyzing the mechanism of coleoptile and mesocotyl elongation is important for the cultivation of rice varieties. Due to global warming, heat stress is threatening rice yields. Betaine plays an important role in plant resistance to heat stress; however, we lack research on its regulation mechanism of rice seed germination under heat stress. Therefore, we explored the effects of soaking seeds with betaine at different concentrations on rice seed germination under heat stress. According to the results, soaking seeds with 10 mM of betaine could effectively improve the seeds’ germination potential and rate under heat stress to promote the germination of rice seeds. To clarify the mitigation mechanism of betaine in heat stress, we measured the antioxidant enzyme activity, malondialdehyde content, soluble protein content and endogenous hormone content of seed protrusion under heat stress. We constructed the cDNA library for transcriptome sequencing. According to the results, 10 mM of betaine improved the activities of the superoxide dismutase, peroxidase and catalase of seed protrusion under heat stress to reduce the malondialdehyde content and increase the soluble protein content to alleviate the effect of heat stress on rice seed germination. The detection of the endogenous hormone content showed that soaking seeds with 10 mM of betaine increased the content of gibberellin and decreased the contents of auxin and abscisic acid of seed protrusion under heat stress. According to the transcriptome analysis, betaine can induce the expressions of key genes in the biosynthesis and metabolism of auxin, abscisic acid and gibberellins in the seed coleoptile and mesocotyl elongation stage, regulate the signal transduction of three hormones and promote the germination of rice seeds under heat stress. This study revealed, for the first time, the physiological and molecular regulation mechanism of betaine promotion of seed germination under heat stress.
Collapse
|
6
|
Mukherjee A, Gaurav AK, Singh S, Yadav S, Bhowmick S, Abeysinghe S, Verma JP. The bioactive potential of phytohormones: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00748. [PMID: 35719852 PMCID: PMC9204661 DOI: 10.1016/j.btre.2022.e00748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Phytohormones act as bioactive compound for plant, humans and microbes. Cytokinin, GA and auxin reduce reactive oxygen to prevent cancer & tumour disease. Phytohormones used in pharmaceuticals products and cosmetics for human. Microbes can be a potential source for plant hormones production. Phytohormones play a key role in signalling for plant-animal–microbe interactions.
Plant hormones play an important role in growth, defence and plants productivity and there are several studies on their effects on plants. However, their role in humans and animals is limitedly studied. Recent studies suggest that plant hormone also works in mammalian systems, and have the potential to reduce human diseases such as cancer, diabetes, and also improve cell growth. Plant hormones such as indole-3-acetic acid (IAA) works as an antitumor, anti-cancer agent, gibberellins help in apoptosis, abscisic acid (ABA) as antidepressant compounds and regulation of glucose homeostasis whereas cytokinin works as an anti-ageing compound. The main aim of this review is to explore and correlate the relation of plant hormones and their important roles in animals, microbes and plants, and their interrelationships, emphasizing mainly human health. The most important and well-known plant hormones e.g., IAA, gibberellins, ABA, cytokinin and ethylene have been selected in this review to explore their effects on humans and animals.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anand Kumar Gaurav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shweta Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shiuly Bhowmick
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saman Abeysinghe
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Özmen S, Tabur S, Öney-Birol S, Özmen S. Molecular Responses of Exogenous Polyamines under Drought Stress in the Barley Plants. CYTOLOGIA 2022. [DOI: 10.1508/cytologia.87.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Serkan Özmen
- Department of Biology, Faculty of Arts and Science, Süleyman Demirel University
| | - Selma Tabur
- Department of Biology, Faculty of Arts and Science, Süleyman Demirel University
| | - Siğnem Öney-Birol
- Department of Molecular Biology, Faculty of Arts and Science, Mehmet Akif Ersoy University
| | - Serdar Özmen
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences
| |
Collapse
|
8
|
Ma F, An Z, Yue Q, Zhao C, Zhang S, Sun X, Li K, Zhao L, Su L. Effects of brassinosteroids on cancer cells: A review. J Biochem Mol Toxicol 2022; 36:e23026. [DOI: 10.1002/jbt.23026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Feifan Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Kunlun Li
- Research and Development Departments Jinan Hangchen Biotechnology Co., Ltd. Jinan China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| |
Collapse
|
9
|
Exogenous Gibberellin Treatment Enhances Melatonin Synthesis for Melatonin-Enriched Rice Production. Biomolecules 2022; 12:biom12020198. [PMID: 35204699 PMCID: PMC8961596 DOI: 10.3390/biom12020198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Melatonin production is induced by many abiotic and biotic stressors; it modulates the levels of many plant hormones and their signaling pathways. This study investigated the effects of plant hormones on melatonin synthesis. Melatonin synthesis in rice seedlings was significantly induced upon exogenous gibberellin 3 (GA3) treatment, while it was severely decreased by GA synthesis inhibitor paclobutrazol. In contrast, abscisic acid (ABA) strongly inhibited melatonin synthesis, whereas its inhibitor norflurazon (NF) induced melatonin synthesis. The observed GA-mediated increase in melatonin was closely associated with elevated expression levels of melatonin biosynthetic genes such as TDC3, T5H, and ASMT1; it was also associated with reduced expression levels of catabolic genes ASDAC and M2H. In a paddy field, the treatment of immature rice seeds with exogenous GA led to enhanced melatonin production in rice seeds; various transgenic rice plants downregulating a GA biosynthesis gene (GA3ox2) and a signaling gene (Gα) showed severely decreased melatonin levels, providing in vivo genetic evidence that GA has a positive effect on melatonin synthesis. This is the first study to report that GA is positively involved in melatonin synthesis in plants; GA treatment can be used to produce melatonin-rich seeds, vegetables, and fruits, which are beneficial for human health.
Collapse
|
10
|
Ahmad I, Kamran M, Meng X, Ali S, Ahmad S, Gao Z, Liu T, Han Q. Hormonal changes with uniconazole trigger canopy apparent photosynthesis and grain filling in wheat crop in a semi-arid climate. PROTOPLASMA 2021; 258:139-150. [PMID: 32968872 DOI: 10.1007/s00709-020-01559-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Phytohormones are important for the growth and development of plants. The objective of the experiment was to investigate the effect of foliar application of uniconazole (UCZ) at the four-leaf stage on hormone crosstalk and production of winter wheat. An experiment was carried out during 2015-2016 and 2016-2017 growth season in a semi-arid region, where UCZ at a concentration of 0 (CK, distilled water), 15 (FU15), 30 (FU30), and 45 (FU45) mg L-1 were sprayed on wheat crop at the four-leaf stage at a rate of 138.8 mL m-2. UCZ alters the endogenous hormone contents in flag leaves and in grains. UCZ inhibited gibberellic acid (GA) in flag leaves and in grains where the lower GA with UCZ improved the zeatin + zeatin riboside (Z + ZR) and abscisic acid (ABA) contents. The lower GA and higher Z + ZR and ABA contents with UCZ-treated plants improved the chlorophyll content and canopy apparent photosynthesis (CAP) as well as the grain-filling characteristics. The Z + ZR and ABA in flag leaves were positively correlated with chlorophyll content and CAP value while negatively with GA. Moreover, the Z + ZR and ABA were positively correlated with maximum grain weight, mean grain-filling rate, and maximum grain-filling rate, while negatively with GA level. Treatment FU30 significantly improved the chlorophyll content, CAP value, spike weight, grain-filling characteristics, and hormone contents of Z + ZR and ABA while it decreased the GA level. The hormone crosstalk with UCZ significantly increased the yield of wheat crop, where FU30 treatment performs better.
Collapse
Affiliation(s)
- Irshad Ahmad
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Muhammad Kamran
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiangping Meng
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shahzad Ali
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shakeel Ahmad
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Tiening Liu
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingfang Han
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Changes in endogenous hormone contents during seed germination of Anemone rivularis var. flore-minore. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Shohat H, Illouz-Eliaz N, Kanno Y, Seo M, Weiss D. The Tomato DELLA Protein PROCERA Promotes Abscisic Acid Responses in Guard Cells by Upregulating an Abscisic Acid Transporter. PLANT PHYSIOLOGY 2020; 184:518-528. [PMID: 32576645 PMCID: PMC7479916 DOI: 10.1104/pp.20.00485] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/13/2020] [Indexed: 05/03/2023]
Abstract
Plants reduce transpiration through stomatal closure to avoid drought stress. While abscisic acid (ABA) has a central role in the regulation of stomatal closure under water-deficit conditions, we demonstrated in tomato (Solanum lycopersicum) that a gibberellin response inhibitor, the DELLA protein PROCERA (PRO), promotes ABA-induced stomatal closure and gene transcription in guard cells. To study how PRO affects stomatal closure, we performed RNA-sequencing analysis of isolated guard cells and identified the ABA transporters ABA-IMPORTING TRANSPORTER1 1 (AIT1 1) and AIT1 2, also called NITRATE TRANSPORTER1/PTR TRANSPORTER FAMILY4 6 in Arabidopsis (Arabidopsis thaliana), as being upregulated by PRO. Tomato has four AIT1 genes, but only AIT1 1 and AIT1 2 were upregulated by PRO, and only AIT1 1 exhibited high expression in guard cells. Functional analysis of AIT1 1 in yeast (Saccharomyces cerevisiae) confirmed its activity as an ABA transporter, possibly an importer. A clustered regularly interspaced short palindromic repeats-Cas9-derived ait1 1 mutant exhibited an increased transpiration, a larger stomatal aperture, and a reduced stomatal response to ABA. Moreover, ait1 1 suppressed the promoting effects of PRO on ABA-induced stomatal closure and gene expression in guard cells, suggesting that the effects of PRO on stomatal aperture and transpiration are AIT1.1-dependent. Previous studies suggest a negative crosstalk between gibberellin and ABA that is mediated by changes in hormone biosynthesis and signaling. The results of this study suggest this crosstalk is also mediated by changes in hormone transport.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Natanella Illouz-Eliaz
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
13
|
Bian T, Ma Y, Guo J, Wu Y, Shi D, Guo X. Herbaceous peony (Paeonia lactiflora Pall.) PlDELLA gene negatively regulates dormancy release and plant growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110539. [PMID: 32563469 DOI: 10.1016/j.plantsci.2020.110539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 05/06/2023]
Abstract
DELLA protein plays a significant role in plant growth and development. In this study, PlDELLA with the open reading frame of 1866 bp in length was isolated from Paeonia lactiflora. Overexpression of PlDELLA in Arabidopsis thaliana showed that seed germination was significantly repressed as it took 144∼192 h for the OEs to reach 100 % germination and it required only 60 h for the WT. The OEs were also inhibited in bolting time and in plant vegetative growth. When PlDELLA was silenced in peony by virus-induced gene silencing method, peony budbreak occurred earlier by 8∼10 d and the vegetative growth was significantly accelerated compared with the control group. These results collectively indicated that PlDELLA negatively regulated dormancy release and plant growth. During chilling process to release peony endodormancy, PlDELLA expression down-regulated, and the content of both endogenous active GAs and ABA decreased, indicating decreasing of PlDELLA expression under chilling was not caused by the known gibberellin signal transduction pathway. Besides, PlDELLA had no interaction with the four screened PlWRKYs, PlWRKY13, PlWRKY18, PlWRKY40 or PlWRKY50. These findings not only enrich the knowledge of DELLA protein family, but also provide insights into understanding the function of PlDELLA protein in endodormancy release in peony.
Collapse
Affiliation(s)
- Tingting Bian
- College of Forestry, Shandong Agricultural University, Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, Taian, Shandong 271018, China
| | - Yan Ma
- College of Forestry, Shandong Agricultural University, Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, Taian, Shandong 271018, China
| | - Jing Guo
- College of Forestry, Shandong Agricultural University, Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, Taian, Shandong 271018, China
| | - Yang Wu
- College of Forestry, Shandong Agricultural University, Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, Taian, Shandong 271018, China
| | - Dongmei Shi
- College of Forestry, Shandong Agricultural University, Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, Taian, Shandong 271018, China
| | - Xianfeng Guo
- College of Forestry, Shandong Agricultural University, Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, Taian, Shandong 271018, China.
| |
Collapse
|
14
|
Fu J, Zhang C, Liu Y, Pang T, Dong B, Gao X, Zhu Y, Zhao H. Transcriptomic analysis of flower opening response to relatively low temperatures in Osmanthus fragrans. BMC PLANT BIOLOGY 2020; 20:337. [PMID: 32677959 PMCID: PMC7367400 DOI: 10.1186/s12870-020-02549-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sweet osmanthus (Osmanthus fragrans Lour.) is one of the top ten traditional ornamental flowers in China. The flowering time of once-flowering cultivars in O. fragrans is greatly affected by the relatively low temperature, but there are few reports on its molecular mechanism to date. A hypothesis had been raised that genes related with flower opening might be up-regulated in response to relatively low temperature in O. fragrans. Thus, our work was aimed to explore the underlying molecular mechanism of flower opening regulated by relatively low temperature in O. fragrans. RESULTS The cell size of adaxial and abaxial petal epidermal cells and ultrastructural morphology of petal cells at different developmental stages were observed. The cell size of adaxial and abaxial petal epidermal cells increased gradually with the process of flower opening. Then the transcriptomic sequencing was employed to analyze the differentially expressed genes (DEGs) under different number of days' treatments with relatively low temperatures (19 °C) or 23 °C. Analysis of DEGs in Gene Ontology analysis showed that "metabolic process", "cellular process", "binding", "catalytic activity", "cell", "cell part", "membrane", "membrane part", "single-organism process", and "organelle" were highly enriched. In KEGG analysis, "metabolic pathways", "biosynthesis of secondary metabolites", "plant-pathogen interaction", "starch and sucrose metabolism", and "plant hormone signal transduction" were the top five pathways containing the greatest number of DEGs. The DEGs involved in cell wall metabolism, phytohormone signal transduction pathways, and eight kinds of transcription factors were analyzed in depth. CONCLUSIONS Several unigenes involved in cell wall metabolism, phytohormone signal transduction pathway, and transcription factors with highly variable expression levels between different temperature treatments may be involved in petal cell expansion during flower opening process in response to the relatively low temperature. These results could improve our understanding of the molecular mechanism of relatively-low-temperature-regulated flower opening of O. fragrans, provide practical information for the prediction and regulation of flowering time in O. fragrans, and ultimately pave the way for genetic modification in O. fragrans.
Collapse
Affiliation(s)
- Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Yucheng Liu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Tianhong Pang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Bin Dong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Xiaoyue Gao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Yimin Zhu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Hongbo Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China.
| |
Collapse
|
15
|
Correia S, Queirós F, Ferreira H, Morais MC, Afonso S, Silva AP, Gonçalves B. Foliar Application of Calcium and Growth Regulators Modulate Sweet Cherry ( Prunus avium L.) Tree Performance. PLANTS 2020; 9:plants9040410. [PMID: 32224852 PMCID: PMC7238238 DOI: 10.3390/plants9040410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
Cracking of sweet cherry (Prunus avium L.) fruits is caused by rain events close to harvest. This problem has occurred in most cherry growing regions with significant economic losses. Several orchard management practices have been applied to reduce the severity of this disorder, like the foliar application of minerals or growth regulators. In the present study, we hypothesized that preharvest spray treatments improve the physiological performance of sweet cherry trees and could also mitigate environmental stressful conditions. Effects of repeated foliar spraying of calcium (Ca), gibberellic acid (GA3), abscisic acid (ABA), salicylic acid (SA), glycine betaine (GB), and the biostimulant Ascophyllum nodosum (AN) on the physiological and biochemical performance of ‘Skeena’ sweet cherry trees during two consecutive years (without Ca in 2015 and in 2016 with addition of Ca) were studied. Results showed that in general spray treatments improved the physiological performance and water status of the trees. AN and ABA sprays were demonstrated to be the best compounds for increasing yield and reducing cherry cracking as well as improving photosynthetic performance and leaf metabolites content. In conclusion, AN and ABA might be promising tools in the fruit production system.
Collapse
Affiliation(s)
- Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
- Correspondence:
| | - Filipa Queirós
- National Institute for Agrarian and Veterinary Research (INIAV, I.P.), Pólo de Alcobaça, Estrada de Leiria, 2460-059 Alcobaça, Portugal;
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
| | - Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
| | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (H.F.); (M.C.M.); (S.A.); (A.P.S.); (B.G.)
| |
Collapse
|
16
|
Zhang C, Wang Q, Zhang B, Zhang F, Liu P, Zhou S, Liu X. Hormonal and enzymatic responses of maize seedlings to chilling stress as affected by triazoles seed treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:220-227. [PMID: 31978750 DOI: 10.1016/j.plaphy.2020.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Triazole fungicides have been used for seed treatment to control soilborne diseases of maize, but seedlings coming from triazole-coated seed show serious phytotoxicity under chilling stress. To understand this phytotoxic impact, maize seed was treated with four triazoles fungicides and the corresponding seedlings were analysed on growth and gene expression. We found that maize seed coated with difenoconazole and tebuconazole exhibited either no or increased effects on germination and growth of maize at 25 °C, regardless of chemical concentrations. When maize seedlings were subjected to chilling treatment, however, their growth was significantly inhibited, and the inhibition was positively correlated with the rate of triazole application. Mesocotyl length decreased by 32.19-44.73% by difenoconazole, and 23.53-32.08% by tebuconazolet at rates of 1:50 and 1:25, respectively. However, myclobutanil did not have any effects at any temperatures. The contents of the gibberellin GA12 and abscisic acid in maize seedlings developed from difenoconazole- or tebuconazole-coated seed were significantly increased under chilling stress. The expression of two key catabolic enzyme genes, GA2ox3 and GA2ox4, was significantly up-regulated immediately following chilling stress and 2 days after recovery at 25 °C in the seedlings treated with difenoconazole or tebuconazole. This imbalance in phytohormones may explain why difenoconazole- or tebuconazole-coated seed more likely results in the phytotoxicity of maize seedlings under a low temperature condition during seed emergence and seedling growth. Since myclobutanil did not have this negative effect, it can be applied for seed coating in areas where temperatures are low during early seedling growth.
Collapse
Affiliation(s)
- Can Zhang
- China Agricultural University, Beijing, 100193, China
| | - Qiushi Wang
- China Agricultural University, Beijing, 100193, China
| | - Borui Zhang
- China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- China Agricultural University, Beijing, 100193, China
| | - Pengfei Liu
- China Agricultural University, Beijing, 100193, China
| | - Shunli Zhou
- China Agricultural University, Beijing, 100193, China
| | - Xili Liu
- China Agricultural University, Beijing, 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
17
|
Cao H, Han Y, Li J, Ding M, Li Y, Li X, Chen F, Soppe WJ, Liu Y. Arabidopsis thaliana SEED DORMANCY 4-LIKE regulates dormancy and germination by mediating the gibberellin pathway. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:919-933. [PMID: 31641755 DOI: 10.1093/jxb/erz471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The molecular mechanisms underlying seed dormancy and germination are not fully understood. Here, we show that Arabidopsis thaliana SEED DORMANCY 4-LIKE (AtSdr4L) is a novel specific regulator of dormancy and germination. AtSdr4L encodes a protein with an unknown biochemical function that is localized in the nucleus and is expressed specifically in seeds. Loss of function of AtSdr4L results in increased seed dormancy. The germination of freshly harvested seeds of the Atsdr4l mutant is insensitive to gibberellin (GA). After-ripened mutant seeds are hypersensitive to the GA biosynthesis-inhibitor paclobutrazol but show unaltered sensitivity to abscisic acid. Several GA biosynthesis genes and GA-regulated cell wall remodeling genes are down-regulated in the mutant in both dormant and after-ripened seeds. These results suggest that the Atsdr4l mutation causes both decreased GA biosynthesis and reduced responses. In addition, a genetic analysis indicated that AtSdr4L is epistatic to DELAY OF GERMINATION1 (DOG1) for dormancy and acts upstream of RGA-LIKE 2 (RGL2) in the GA pathway. We propose that AtSdr4L regulates seed dormancy and germination by mediating both the DOG1 and GA pathways.
Collapse
Affiliation(s)
- Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yi Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Ding
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wim Jj Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Sci Rep 2019; 9:8814. [PMID: 31217440 PMCID: PMC6584646 DOI: 10.1038/s41598-019-45102-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 05/23/2019] [Indexed: 01/24/2023] Open
Abstract
Seeds of tomato were magnetoprimed at 100 mT for 30 min followed by imbibition for 12 and 24 h, respectively, at 20 °C, to examine the biochemical and molecular changes involved in homeostasis of hydrogen peroxide (H2O2) and its signaling associated with hormone interactions for promoting vigor. The relative transcript profiles of genes involved in the synthesis of H2O2 like Cu-amine oxidase (AO), receptor for activated C kinase 1 (RACK1) homologue (ArcA2) and superoxide dismutase (SOD1 and SOD9) increased in magnetoprimed tomato seeds as compared to unprimed ones with a major contribution (21.7-fold) from Cu-amine oxidase. Amongst the genes involved in the scavenging of H2O2 i.e, metallothionein (MT1, MT3 and MT4), catalase (CAT1) and ascorbate peroxidase (APX1 and APX2), MT1 and MT4 exhibited 14.4- and 15.4-fold increase respectively, in the transcript abundance, in primed seeds compared to the control. We report in our study that metallothionein and RACK1 play a vital role in the reactive oxygen species mediated signal transduction pathway to enhance the speed of germination in magnetoprimed tomato seeds. Increased enzymatic activities of catalase and ascorbate peroxidase were observed at 12 h of imbibition in the magnetoprimed seeds indicating their roles in maintaining H2O2 levels in the primed seeds. The upregulation of ABA 8′-hydroxylase and GA3 oxidase1 genes eventually, lead to the decreased abscisic acid/gibberellic acid (ABA/GA3) ratio in the primed seeds, suggesting the key role of H2O2 in enhancing the germination capacity of magnetoprimed tomato seeds.
Collapse
|
19
|
Li W, Yong Y, Zhang Y, Lyu Y. Transcriptional Regulatory Network of GA Floral Induction Pathway in LA Hybrid Lily. Int J Mol Sci 2019; 20:E2694. [PMID: 31159293 PMCID: PMC6600569 DOI: 10.3390/ijms20112694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The LA hybrid lily 'Aladdin' has both excellent traits of Longiflorum hybrids and Asiatic hybrids-such as big and vivid flower, strong stem, high self-propagation coefficient, and shorter low temperature time required to release bulb dormancy in contrast to Oriental hybrids. A genome-wide transcriptional analysis using transcriptome RNA-Seq was performed in order to explore whether there is a gibberellin floral induction pathway in the LA hybrid lily. Subsequently, gene co-expression network analysis was used to analyze the possible interactions of key candidate genes screened from transcriptome data. At the same time, a series of physiological, biochemical, and cultivation tests were carried out. RESULTS The content of five endogenous hormones changed sharply in the shoot apex during the treatment of 200 mg/L exogenous gibberellin and the ratio of ABA/GA3 dropped and stayed at a lower level after 4 hours' treatment from the higher levels initially, reaching a dynamic balance. In addition, the metabolism of carbohydrates in the bulbs increase during exogenous gibberellin treatment. A total of 124,041 unigenes were obtained by RNA-seq. With the transcriptome analysis, 48,927 unigenes and 48,725 unigenes respectively aligned to the NR database and the Uniprot database. 114,138 unigenes, 25,369 unigenes, and 19,704 unigenes respectively aligned to the COG, GO, and KEGG databases. 2148 differentially expression genes (DEGs) were selected with the indicators RPKM ≥ 0, FDR ≤ 0.05 and |log2(ratio)| ≥ 2. The number of the upregulated unigenes was significantly more than the number of the downregulated unigenes. Some MADS-box genes related to flowering transformation-such as AGL20, SOC1, and CO-were found to be upregulated. A large number of gibberellin biosynthesis related genes such as GA2ox, GA3ox, GA20ox, Cytochrome P450, CYP81, and gibberellin signal transduction genes such as DELLA, GASA, and GID1 were significantly differentially expressed. The plant hormones related genes such as NCED3 and sugar metabolism related genes such as α-amylase, sucrose synthase hexokinase, and so on were also found expressing differentially. In addition, stress resistance related genes such as LEA1, LEA2, LEA4, serine/threonine protein kinase, LRR receptor-like serine/threonine protein kinase, P34 kinase, histidine kinase 3 and epigenetic related genes in DNA methylation, histone methylation, acetylation, ubiquitination of ribose were also found. Particularly, a large number of transcription factors responsive to the exogenous gibberellin signal including WRKY40, WRKY33, WRKY27, WRKY21, WRKY7, MYB, AP2/EREBP, bHLH, NAC1, NAC2, and NAC11 were found to be specially expressing. 30 gene sequences were selected from a large number of differentially expressed candidate genes for qRT-PCR expression verification (0, 2, 4, 8, and 16 h) and compared with the transcriptome expression levels. CONCLUSIONS 200mg/L exogenous GA3 can successfully break the bulb's dormancy of the LA hybrid lily and significantly accelerated the flowering process, indicating that gibberellin floral induction pathway is present in the LA lily 'Aladdin'. With the GCNs analysis, two second messenger G protein-coupled receptor related genes that respond to gibberellin signals in the cell were discovered. The downstream transport proteins such as AMT, calcium transport ATPase, and plasma membrane ATPase were also discovered participating in GA signal transduction. Transcription factors including WRKY7, NAC2, NAC11, and CBF specially regulated phosphorylation and glycosylation during the ubiquitination degradation process of DELLA proteins. These transcription factors also activated in abscisic acid metabolism. A large number of transcription factors such as WRKY21, WRKY22, NAC1, AP2, EREB1, P450, and CYP81 that both regulate gibberellin signaling and low-temperature signals have also been found. Finally, the molecular mechanism of GA floral induction pathway in the LA hybrid lily 'Aladdin' was constructed.
Collapse
Affiliation(s)
- Wenqi Li
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Yubing Yong
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Yue Zhang
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Marques A, Nijveen H, Somi C, Ligterink W, Hilhorst H. Induction of desiccation tolerance in desiccation sensitive Citrus limon seeds. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:624-638. [PMID: 30697936 PMCID: PMC6593971 DOI: 10.1111/jipb.12788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/25/2019] [Indexed: 05/03/2023]
Abstract
Many economically important perennial species bear recalcitrant seeds, including tea, coffee, cocoa, mango, citrus, rubber, oil palm and coconut. Orthodox seeds can be dried almost completely without losing viability, but so-called recalcitrant seeds have a very limited storage life and die upon drying below a higher critical moisture content than orthodox seeds. As a result, the development of long-term storage methods for recalcitrant seeds is compromised. Lowering this critical moisture content would be very valuable since dry seed storage is the safest, most convenient and cheapest method for conserving plant genetic resources. Therefore, we have attempted to induce desiccation tolerance (DT) in the desiccation sensitive seeds of Citrus limon. We show that DT can be induced by paclobutrazol (an inhibitor of gibberellin biosynthesis) and we studied its associated transcriptome to delineate the molecular mechanisms underlying this induction of DT. Paclobutrazol not only interfered with gibberellin related gene expression but also caused extensive changes in expression of genes involved in the biosynthesis and signaling of other hormones. Paclobutrazol induced a transcriptomic switch encompassing suppression of biotic- and induction of abiotic responses. We hypothesize that this is the main driver of the induction of DT by paclobutrazol in C. limon seeds.
Collapse
Affiliation(s)
- Alexandre Marques
- Laboratory of Plant PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Harm Nijveen
- Laboratory of Plant PhysiologyWageningen University and ResearchWageningenThe Netherlands
- Bioinformatics GroupWageningen University and ResearchWageningenThe Netherlands
| | - Charles Somi
- Laboratory of Plant PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Wilco Ligterink
- Laboratory of Plant PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Henk Hilhorst
- Laboratory of Plant PhysiologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
21
|
Bedini A, Mercy L, Schneider C, Franken P, Lucic-Mercy E. Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior. FRONTIERS IN PLANT SCIENCE 2018; 9:1800. [PMID: 30619390 PMCID: PMC6304697 DOI: 10.3389/fpls.2018.01800] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi establish probably one of the oldest mutualistic relationships with the roots of most plants on earth. The wide distribution of these fungi in almost all soil ecotypes and the broad range of host plant species demonstrate their strong plasticity to cope with various environmental conditions. AM fungi elaborate fine-tuned molecular interactions with plants that determine their spread within root cortical tissues. Interactions with endomycorrhizal fungi can bring various benefits to plants, such as improved nutritional status, higher photosynthesis, protection against biotic and abiotic stresses based on regulation of many physiological processes which participate in promoting plant performances. In turn, host plants provide a specific habitat as physical support and a favorable metabolic frame, allowing uptake and assimilation of compounds required for the life cycle completion of these obligate biotrophic fungi. The search for formal and direct evidences of fungal energetic needs raised strong motivated projects since decades, but the impossibility to produce AM fungi under axenic conditions remains a deep enigma and still feeds numerous debates. Here, we review and discuss the initial favorable and non-favorable metabolic plant context that may fate the mycorrhizal behavior, with a focus on hormone interplays and their links with mitochondrial respiration, carbon partitioning and plant defense system, structured according to the action of phosphorus as a main limiting factor for mycorrhizal symbiosis. Then, we provide with models and discuss their significances to propose metabolic targets that could allow to develop innovations for the production and application of AM fungal inocula.
Collapse
Affiliation(s)
| | | | | | - Philipp Franken
- Department of Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Leibniz-Institut für Gemüse- und Zierpflanzenbau Großbeeren/Erfurt, Großbeeren, Germany
| | | |
Collapse
|
22
|
Liao X, Li M, Liu B, Yan M, Yu X, Zi H, Liu R, Yamamuro C. Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proc Natl Acad Sci U S A 2018; 115:E11542-E11550. [PMID: 30455308 PMCID: PMC6298082 DOI: 10.1073/pnas.1812575115] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fruit growth and ripening are controlled by multiple phytohormones. How these hormones coordinate and interact with each other to control these processes at the molecular level is unclear. We found in the early stages of Fragaria vesca (woodland strawberry) fruit development, auxin increases both widths and lengths of fruits, while gibberellin [gibberellic acid (GA)] mainly promotes their longitudinal elongation. Auxin promoted GA biosynthesis and signaling by activating GA biosynthetic and signaling genes, suggesting auxin function is partially dependent on GA function. To prevent the repressive effect of abscisic acid (ABA) on fruit growth, auxin and GA suppressed ABA accumulation during early fruit development by activating the expression of FveCYP707A4a encoding cytochrome P450 monooxygenase that catalyzes ABA catabolism. At the onset of fruit ripening, both auxin and GA levels decreased, leading to a steep increase in the endogenous level of ABA that drives fruit ripening. ABA repressed the expression of FveCYP707A4a but promoted that of FveNCED, a rate-limiting step in ABA biosynthesis. Accordingly, altering FveCYP707A4a expression changed the endogenous ABA levels and affected FveNCED expression. Hence, ABA catabolism and biosynthesis are tightly linked by feedback and feedforward loops to limit ABA contents for fruit growth and to quickly increase ABA contents for the onset of fruit ripening. These results indicate that FveCYP707A4a not only regulates ABA accumulation but also provides a hub to coordinate fruit size and ripening times by relaying auxin, GA, and ABA signals.
Collapse
Affiliation(s)
- Xiong Liao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mengsi Li
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bin Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Miaoling Yan
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaomin Yu
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Renyi Liu
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chizuko Yamamuro
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
| |
Collapse
|
23
|
Li Z, Gao Y, Zhang Y, Lin C, Gong D, Guan Y, Hu J. Reactive Oxygen Species and Gibberellin Acid Mutual Induction to Regulate Tobacco Seed Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:1279. [PMID: 30356911 PMCID: PMC6190896 DOI: 10.3389/fpls.2018.01279] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Seed germination is a complex process controlled by various mechanisms. To examine the potential contribution of reactive oxygen species (ROS) and gibberellin acid (GA) in regulating seed germination, diphenylene iodonium chloride (DPI) and uniconazole (Uni), as hydrogen peroxide (H2O2) and GA synthesis inhibitor, respectively, were exogenously applied on tobacco seeds using the seed priming method. Seed priming with DPI or Uni decreased germination percentage as compared with priming with H2O, especially the DPI + Uni combination. H2O2 and GA completely reversed the inhibition caused by DPI or Uni. The germination percentages with H2O2 + Uni and GA + DPI combinations kept the same level as with H2O. Meanwhile, GA or H2O2 increased GA content and deceased ABA content through corresponding gene expressions involving homeostasis and signal transduction. In addition, the activation of storage reserve mobilization and the enhancement of soluble sugar content and isocitrate lyase (ICL) activity were also induced by GA or H2O2. These results strongly suggested that H2O2 and GA were essential for tobacco seed germination and by downregulating the ABA/GA ratio and inducing reserve composition mobilization mutually promoted seed germination. Meanwhile, ICL activity was jointly enhanced by a lower ABA/GA ratio and a higher ROS concentration.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajing Guan
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
24
|
Marciniak K, Kućko A, Wilmowicz E, Świdziński M, Przedniczek K, Kopcewicz J. Gibberellic acid affects the functioning of the flower abscission zone in Lupinus luteus via cooperation with the ethylene precursor independently of abscisic acid. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:170-174. [PMID: 30114566 DOI: 10.1016/j.jplph.2018.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 05/22/2023]
Abstract
The abscission of plant organs is a phytohormone-controlled process. Our study provides new insight into the involvement of gibberellic acid (GA3) in the functioning of the flower abscission zone (AZ) in yellow lupine (Lupinus luteus L.). Physiological studies demonstrated that GA3 stimulated flower abortion. Additionally, this phytohormone was abundantly presented in the AZ cells of naturally abscised flowers, especially in vascular bundles. Interesting interactions among GA3 and other modulators of flower separation were also investigated. GA3 accumulated after treatment with the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Abscisic acid (ABA) treatment did not cause such an effect. Furthermore, the expression of the newly identified LlGA20ox1 and LlGA2ox1 genes encoding 2-oxoglutarate-dependent dioxygenases fluctuated after ACC or ABA treatment which confirmed the existence of regulatory crosstalk. GA3 appears to cooperate with the ET precursor in the regulation of AZ function in L. luteus flowers; however, the presented mechanism is ABA-independent.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Chair of Plant Physiology and Biotechnology,Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Agata Kućko
- Chair of Plant Physiology and Biotechnology,Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology,Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Michał Świdziński
- Department of Cell Biology, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Krzysztof Przedniczek
- Chair of Plant Physiology and Biotechnology,Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Jan Kopcewicz
- Chair of Plant Physiology and Biotechnology,Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
25
|
Kim SH, Woo OG, Jang H, Lee JH. Characterization and comparative expression analysis of CUL1 genes in rice. Genes Genomics 2018; 40:233-241. [PMID: 29892794 DOI: 10.1007/s13258-017-0622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/15/2017] [Indexed: 11/28/2022]
Abstract
Cullin-RING E3 ubiquitin ligase (CRL) complex is known as the largest family of E3 ligases. The most widely characterized CRL, SCF complex (CRL1), utilizes CUL1 as a scaffold protein to assemble the complex components. To better understand CRL1-mediated cellular processes in rice, three CUL1 genes (OsCUL1s) were isolated in Oryza sativa. Although all OsCUL1 proteins exhibited high levels of amino acid similarities with each other, OsCUL1-3 had a somewhat distinct structure from OsCUL1-1 and OsCUL1-2. Basal expression levels of OsCUL1-3 were much lower than those of OsCUL1-1 and OsCUL1-2 in all selected samples, showing that OsCUL1-1 and OsCUL1-2 play predominant roles relative to OsCUL1-3 in rice. OsCUL1-1 and OsCUL1-2 genes were commonly upregulated in dry seeds and by ABA and salt/drought stresses, implying their involvement in ABA-mediated processes. These genes also showed similar expression patterns in response to various hormones and abiotic stresses, alluding to their functional redundancy. Expression of the OsCUL1-3 gene was also induced in dry seeds and by ABA-related salt and drought stresses, implying their participation in ABA responses. However, its expression pattern in response to hormones and abiotic stresses was somehow different from those of the OsCUL1-1 and OsCUL1-2 genes. Taken together, these findings suggest that the biological role and function of OsCUL1-3 may be distinct from those of OsCUL1-1 and OsCUL1-2. The results of expression analysis of OsCUL1 genes in this study will serve as a useful platform to better understand overlapping and distinct roles of OsCUL1 proteins and CRL1-mediated cellular processes in rice plants.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea
| | - Og-Geum Woo
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea.,Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunsoo Jang
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
26
|
Racca S, Welchen E, Gras DE, Tarkowská D, Turečková V, Maurino VG, Gonzalez DH. Interplay between cytochrome c and gibberellins during Arabidopsis vegetative development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:105-121. [PMID: 29385297 DOI: 10.1111/tpj.13845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild-type but with the same number of leaves. CYTc-deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc-deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild-type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone-dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Sofía Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Veronika Turečková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
27
|
Xiong W, Ye T, Yao X, Liu X, Ma S, Chen X, Chen ML, Feng YQ, Wu Y. The dioxygenase GIM2 functions in seed germination by altering gibberellin production in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:276-291. [PMID: 29205921 DOI: 10.1111/jipb.12619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 05/28/2023]
Abstract
The phytohormones gibberellic acid (GA) and abscisic acid (ABA) antagonistically control seed germination. High levels of GA favor seed germination, whereas high levels of ABA hinder this process. The direct relationship between GA biosynthesis and seed germination ability need further investigation. Here, we identified the ABA-insensitive gain-of-function mutant germination insensitive to ABA mutant 2 (gim2) by screening a population of XVE T-DNA-tagged mutant lines. Based on two loss-of-function gim2-ko mutant lines, the disruption of GIM2 function caused a delay in seed germination. By contrast, upregulation of GIM2 accelerated seed germination, as observed in transgenic lines overexpressing GIM2 (OE). We detected a reduction in endogenous bioactive GA levels and an increase in endogenous ABA levels in the gim2-ko mutants compared to wild type. Conversely, the OE lines had increased endogenous bioactive GA levels and decreased endogenous ABA levels. The expression levels of a set of GA- and/or ABA-related genes were altered in both the gim2-ko mutants and the OE lines. We confirmed that GIM2 has dioxygenase activity using an in vitro enzyme assay, observing that GIM2 can oxidize GA12 . Hence, our characterization of GIM2 demonstrates that it plays a role in seed germination by affecting the GA metabolic pathway in Arabidopsis.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xuan Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Sheng Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ming-Luan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Lei Y, Xu Y, Hettenhausen C, Lu C, Shen G, Zhang C, Li J, Song J, Lin H, Wu J. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC PLANT BIOLOGY 2018; 18:35. [PMID: 29448940 PMCID: PMC5815232 DOI: 10.1186/s12870-018-1250-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/30/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Soil salinity is an important factor affecting growth, development, and productivity of almost all land plants, including the forage crop alfalfa (Medicago sativa). However, little is known about how alfalfa responds and adapts to salt stress, particularly among different salt-tolerant cultivars. RESULTS Among seven alfalfa cultivars, we found that Zhongmu-1 (ZM) is relatively salt-tolerant and Xingjiang Daye (XJ) is salt-sensitive. Compared to XJ, ZM showed slower growth under low-salt conditions, but exhibited stronger tolerance to salt stress. RNA-seq analysis revealed 2237 and 1125 differentially expressed genes (DEGs) between ZM and XJ in the presence and absence of salt stress, among which many genes are involved in stress-related pathways. After salt treatment, compared with the controls, the number of DEGs in XJ (19373) was about four times of that in ZM (4833). We also detected specific differential gene expression patterns: In response to salt stress, compared with XJ, ZM maintained relatively more stable expression levels of genes related to the ROS and Ca2+ pathways, phytohormone biosynthesis, and Na+/K+ transport. Notably, several salt resistance-associated genes always showed greater levels of expression in ZM than in XJ, including a transcription factor. Consistent with the suppression of plant growth resulting from salt stress, the expression of numerous photosynthesis- and growth hormone-related genes decreased more dramatically in XJ than in ZM. By contrast, the expression levels of photosynthetic genes were lower in ZM under low-salt conditions. CONCLUSIONS Compared with XJ, ZM is a salt-tolerant alfalfa cultivar possessing specific regulatory mechanisms conferring exceptional salt tolerance, likely by maintaining high transcript levels of abiotic and biotic stress resistance-related genes. Our results suggest that maintaining this specific physiological status and/or plant adaptation to salt stress most likely arises by inhibition of plant growth in ZM through plant hormone interactions. This study identifies new candidate genes that may regulate alfalfa tolerance to salt stress and increases the understanding of the genetic basis for salt tolerance.
Collapse
Affiliation(s)
- Yunting Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610000 China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Chengkai Lu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610000 China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|
29
|
Shu K, Zhou W, Yang W. APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism. THE NEW PHYTOLOGIST 2018; 217:977-983. [PMID: 29058311 DOI: 10.1111/nph.14880] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormones abscisic acid (ABA) and gibberellin (GA) antagonistically mediate diverse plant developmental processes including seed dormancy and germination, root development, and flowering time control, and thus the optimal balance between ABA and GA is essential for plant growth and development. Although more than a half and one century have passed since the initial discoveries of ABA and GA, respectively, the precise mechanisms underlying ABA-GA antagonism still need further investigation. Emerging evidence indicates that two APETALA 2 (AP2)-domain-containing transcription factors (ATFs), ABI4 in Arabidopsis and OsAP2-39 in rice, play key roles in ABA and GA antagonism. These two transcription factors precisely regulate the transcription pattern of ABA and GA biosynthesis or inactivation genes, mediating ABA and GA levels. In this Viewpoint article, we try to shed light on the effects of ATFs on ABA-GA antagonism, and summarize the overlapping but distinct biological functions of these ATFs in the antagonism between ABA and GA. Finally, we strongly propose that further research is needed into the detailed roles of additional numerous ATFs in ABA and GA crosstalk, which will improve our understanding of the antagonism between these two phytohormones.
Collapse
Affiliation(s)
- Kai Shu
- Department of Plant Physiology and Biotechnology, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenguan Zhou
- Department of Plant Physiology and Biotechnology, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- Department of Plant Physiology and Biotechnology, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
30
|
Bao YZ, Yao ZQ, Cao XL, Peng JF, Xu Y, Chen MX, Zhao SF. Transcriptome analysis of Phelipanche aegyptiaca seed germination mechanisms stimulated by fluridone, TIS108, and GR24. PLoS One 2017; 12:e0187539. [PMID: 29099877 PMCID: PMC5669479 DOI: 10.1371/journal.pone.0187539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/20/2017] [Indexed: 01/29/2023] Open
Abstract
P. aegyptiaca is one of the most destructive root parasitic plants worldwide, causing serious damage to many crop species. Under natural conditions P. aegyptiaca seeds must be conditioned and then stimulated by host root exudates before germinating. However, preliminary experiments indicated that TIS108 (a triazole-type inhibitor of strigolactone) and fluridone (FL, an inhibitor of carotenoid-biosynthesis) both stimulated the germination of P. aegyptiaca seeds without a water preconditioning step (i.e. unconditioned seeds). The objective of this study was to use deep RNA sequencing to learn more about the mechanisms by which TIS108 and FL stimulate the germination of unconditioned P. aegyptiaca seeds. Deep RNA sequencing was performed to compare the mechanisms of germination in the following treatments: (i) unconditioned P. aegyptiaca seeds with no other treatment, (ii) unconditioned seeds treated with 100 mg/L TIS108, (iii) unconditioned seeds treated with 100 mg/L FL + 100 mg/L GA3, (iv) conditioned seeds treated with sterile water, and (v) conditioned seeds treated with 0.03 mg/L GR24. The de novo assembled transcriptome was used to analyze transcriptional dynamics during seed germination. The key gene categories involved in germination were also identified. The results showed that only 119 differentially expressed genes were identified in the conditioned treatment vs TIS108 treatment. This indicated that the vast majority of conditions for germination were met during the conditioning stage. Abscisic acid (ABA) and gibberellic acid (GA) played important roles during P. aegyptiaca germination. The common pathway of TIS108, FL+GA3, and GR24 in stimulating P. aegyptiaca germination was the simultaneous reduction in ABA concentrations and increase GA concentrations. These results could potentially aid the identification of more compounds that are capable of stimulating P. aegyptiaca germination. Some potential target sites of TIS108 were also identified in our transcriptome data. The results of this experiment suggest that TIS108 and FL+GA3 could be used to control P. aegyptiaca through suicidal germination.
Collapse
Affiliation(s)
- Ya Zhou Bao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Zhao Qun Yao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Xiao Lei Cao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Jin Feng Peng
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Ying Xu
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Mei Xiu Chen
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Si Feng Zhao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
- * E-mail:
| |
Collapse
|
31
|
Genome-Wide Analysis of the Biosynthesis and Deactivation of Gibberellin-Dioxygenases Gene Family in Camellia sinensis (L.) O. Kuntze. Genes (Basel) 2017; 8:genes8090235. [PMID: 28925957 PMCID: PMC5615368 DOI: 10.3390/genes8090235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Gibberellins (GAs), a class of diterpenoid phytohormones, play a key role in regulating diverse processes throughout the life cycle of plants. Bioactive GA levels are rapidly regulated by Gibberellin-dioxygenases (GAox), which are involved in the biosynthesis and deactivation of gibberellin. In this manuscript, a comprehensive genome-wide analysis was carried out to find all GAox in Camellia sinensis. For the first time in a tea plant, 14 CsGAox genes, containing two domains, DIOX_N (PF14226) and 2OG-FeII_Oxy, were identified (PF03171). These genes all belong to 2-oxoglutarate-dependent dioxygenases (2-ODD), including four CsGA20ox (EC: 1.14.11.12), three CsGA3ox (EC: 1.14.11.15), and seven CsGA2ox (EC: 1.14.11.13). According to the phylogenetic classification as in Arabidopsis, the CsGAox genes spanned five subgroups. Each CsGAox shows tissue-specific expression patterns, although these vary greatly. Some candidate genes, which may play an important role in response to external abiotic stresses, have been identified with regards to patterns, such as CsGA20ox2, CsGA3ox2, CsGA3ox3, CsGA2ox1, CsGA2ox2, and CsGA2ox4. The bioactive GA levels may be closely related to the GA20ox, GA3ox and GA2ox genes. In addition, the candidate genes could be used as marker genes for abiotic stress resistance breeding in tea plants.
Collapse
|
32
|
Szewińska J, Simińska J, Bielawski W. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:10-21. [PMID: 27771502 DOI: 10.1016/j.jplph.2016.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteolysis is an important process for development and germination of cereal seeds. Among the many types of proteases identified in plants are the cysteine proteases (CPs) of the papain and legumain families, which play a crucial role in hydrolysing storage proteins during seed germination as well as in processing the precursors of these proteins and the inactive forms of other proteases. Moreover, all of the tissues of cereal seeds undergo progressive degradation via programed cell death, which is integral to their growth. In view of the important roles played by proteases, their uncontrolled activity could be harmful to the development of seeds and young seedlings. Thus, the activities of these enzymes are regulated by intracellular inhibitors called phytocystatins (PhyCys). The phytocystatins inhibit the activity of proteases of the papain family, and the presence of an additional motif in their C-termini allows them to also regulate the activity of members of the legumain family. A balance between the levels of cysteine proteases and phytocystatins is necessary for proper cereal seed development, and this is maintained through the antagonistic activities of gibberellins (GAs) and abscisic acid (ABA), which regulate the expression of the corresponding genes. Transcriptional regulation of cysteine proteases and phytocystatins is determined by cis-acting elements located in the promoters of these genes and by the expression of their corresponding transcription factors (TFs) and the interactions between different TFs.
Collapse
Affiliation(s)
- Joanna Szewińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland.
| | - Joanna Simińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| | - Wiesław Bielawski
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| |
Collapse
|
33
|
Yang L, Yang D, Yan X, Cui L, Wang Z, Yuan H. The role of gibberellins in improving the resistance of tebuconazole-coated maize seeds to chilling stress by microencapsulation. Sci Rep 2016; 6:35447. [PMID: 27819337 PMCID: PMC5098164 DOI: 10.1038/srep35447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/29/2016] [Indexed: 12/02/2022] Open
Abstract
Chilling stress during germination often causes severe injury. In the present study, maize seed germination and shoot growth under chilling stress were negatively correlated with the dose of tebuconazole in an exponential manner as predicted by the model Y = A + B × e(−x/k). Microencapsulation was an effective means of eliminating potential phytotoxic risk. The gibberellins (GAs) contents were higher after microencapsulation treatment than after conventional treatment when the dose of tebuconazole was higher than 0.12 g AI (active ingredient) kg−1 seed. Further analysis indicated that microencapsulation can stimulate ent-kaurene oxidase (KO) activity to some extent, whereas GA 3-oxidase (GA3ox) and GA 2-oxidase (GA2ox) activities remained similar to those in the control. Genes encoding GA metabolic enzymes exhibited different expression patterns. Transcript levels of ZmKO1 increased in the microcapsule treatments compared to the control. Even when incorporated into microcapsules, tebuconazole led to the upregulation of ZmGA3ox1 at doses of less than 0.12 g AI kg−1 seed and to the upregulation of ZmGA3ox2 when the dose was higher than 0.12 g AI kg−1 seed. With increasing doses of microencapsulated tebuconazole, the transcript levels of ZmGA2ox4, ZmGA2ox5 and ZmGA2ox6 exhibited upward trends, whereas the transcript levels of ZmGA2ox7 exhibited a downward trend.
Collapse
Affiliation(s)
- Lijuan Yang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Daibin Yang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaojing Yan
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhenying Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huizhu Yuan
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
34
|
Liu X, Hu P, Huang M, Tang Y, Li Y, Li L, Hou X. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat Commun 2016; 7:12768. [PMID: 27624486 PMCID: PMC5027291 DOI: 10.1038/ncomms12768] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/30/2016] [Indexed: 12/18/2022] Open
Abstract
The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC–RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC–RGL2–ABI5 module integrates GA and ABA signalling pathways during seed germination. Crosstalk between gibberellic acid (GA) and abscisic acid (ABA) regulates seed germination. Here the authors show that NF-YC transcription factors can interact with the RGL2 DELLA protein to regulate expression of ABI5 and therefore modulate ABA- and GA-responsive gene expression.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Pengwei Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mingkun Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Tang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ling Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
35
|
Li Z, Zhang J, Liu Y, Zhao J, Fu J, Ren X, Wang G, Wang J. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L. BMC PLANT BIOLOGY 2016; 16:41. [PMID: 26860357 PMCID: PMC4748683 DOI: 10.1186/s12870-016-0724-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/28/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Auxin was recognized as a secondary dormancy phytohormone, controlling seed dormancy and germination. However, the exogenous auxin-controlled seed dormancy and germination remain unclear in physiological process and gene network. RESULTS Tobacco seeds soaked in 1000 mg/l auxin solution showed markedly decreased germination compared with that in low concentration of auxin solutions and ddH2O. Using an electron microscope, observations were made on the seeds which did not unfold properly in comparison to those submerged in ddH2O. The radicle traits measured by WinRHIZO, were found to be also weaker than the other treatment groups. Quantified by ELISA, there was no significant difference found in β-1,3glucanase activity and abscisic acid (ABA) content between the seeds imbibed in gradient concentration of auxin solution and those soaked in ddH2O. However, gibberellic acid (GA) and auxin contents were significantly higher at the time of exogenous auxin imbibition and were gradually reduced at germination. RNA sequencing (RNA-seq), revealed that the transcriptome of auxin-responsive dormancy seeds were more similar to that of the imbibed seeds when compared with primary dormancy seeds by principal component analysis. The results of gene differential expression analysis revealed that auxin-controlled seed secondary dormancy was associated with flavonol biosynthetic process, gibberellin metabolic process, adenylyl-sulfate reductase activity, thioredoxin activity, glutamate synthase (NADH) activity and chromatin regulation. In addition, auxin-responsive germination responded to ABA, auxin, jasmonic acid (JA) and salicylic acid (SA) mediated signaling pathway (red, far red and blue light), glutathione and methionine (Met) metabolism. CONCLUSIONS In this study, exogenous auxin-mediated seed secondary dormancy is an environmental model that prevents seed germination in an unfavorable condition. Seeds of which could not imbibe normally, and radicles of which also could not develop normally and emerge. To complete the germination, seeds of which would stimulate more GA synthesis to antagonize the stimulation of exogenous auxin. Exogenous auxin regulates multi-metabolic networks controlling seed secondary dormancy and germination, of which the most important thing was that we found the auxin-responsive seed secondary dormancy refers to epigenetic regulation and germination to enhance Met pathway. Therefore, this study uncovers a previously unrecognized transcriptional regulatory networks and physiological development process of seed dormancy and germination with superfluous auxin signal activate.
Collapse
Affiliation(s)
- Zhenhua Li
- College of Agriculture and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Beijing, 100094, China.
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, GuiYang, 550081, China.
| | - Jie Zhang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, GuiYang, 550081, China.
| | - Yiling Liu
- Institute of Tobacco, Guizhou University, Guiyang, 550025, China.
| | - Jiehong Zhao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, GuiYang, 550081, China.
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xueliang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, GuiYang, 550081, China.
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jianhua Wang
- College of Agriculture and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Beijing, 100094, China.
| |
Collapse
|
36
|
Tamiru M, Undan JR, Takagi H, Abe A, Yoshida K, Undan JQ, Natsume S, Uemura A, Saitoh H, Matsumura H, Urasaki N, Yokota T, Terauchi R. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2015; 88:85-99. [PMID: 25800365 DOI: 10.1007/s11103-015-0310-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/16/2015] [Indexed: 05/05/2023]
Abstract
Cytochrome P450s are among the largest protein coding gene families in plant genomes. However, majority of the genes remain uncharacterized. Here, we report the characterization of dss1, a rice mutant showing dwarfism and reduced grain size. The dss1 phenotype is caused by a non-synonymous point mutation we identified in DSS1, which is member of a P450 gene cluster located on rice chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. Phenotypes of several dwarf mutants characterized in rice are associated with defects in the biosynthesis or perception of the phytohormones gibberellins (GAs) and brassinosteroids (BRs). However, both GA and BR failed to rescue the dss1 phenotype. Hormone profiling revealed the accumulation of abscisic acid (ABA) and ABA metabolites, as well as significant reductions in GA19 and GA53 levels, precursors of the bioactive GA1, in the mutant. The dss1 contents of cytokinin and auxins were not significantly different from wild-type plants. Consistent with the accumulation of ABA and metabolites, germination and early growth was delayed in dss1, which also exhibited an enhanced tolerance to drought. Additionally, expressions of members of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. RNA-seq-based transcriptome profiling revealed, among others, that cell wall-related genes and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively. Taken together, these findings suggest that DSS1 mediates growth and stress responses in rice by fine-tuning GA-to-ABA balance, and might as well play a role in lipid metabolism.
Collapse
Affiliation(s)
- Muluneh Tamiru
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schultink A, Naylor D, Dama M, Pauly M. The role of the plant-specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide O-acetylation. PLANT PHYSIOLOGY 2015; 167:1271-83. [PMID: 25681330 PMCID: PMC4378174 DOI: 10.1104/pp.114.256479] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/05/2015] [Indexed: 05/17/2023]
Abstract
A mutation in the ALTERED XYLOGLUCAN9 (AXY9) gene was found to be causative for the decreased xyloglucan acetylation phenotype of the axy9.1 mutant, which was identified in a forward genetic screen for Arabidopsis (Arabidopsis thaliana) mutants. The axy9.1 mutant also exhibits decreased O-acetylation of xylan, implying that the AXY9 protein has a broad role in polysaccharide acetylation. An axy9 insertional mutant exhibits severe growth defects and collapsed xylem, demonstrating the importance of wall polysaccharide O-acetylation for normal plant growth and development. Localization and topological experiments indicate that the active site of the AXY9 protein resides within the Golgi lumen. The AXY9 protein appears to be a component of the plant cell wall polysaccharide acetylation pathway, which also includes the REDUCED WALL ACETYLATION and TRICHOME BIREFRINGENCE-LIKE proteins. The AXY9 protein is distinct from the TRICHOME BIREFRINGENCE-LIKE proteins, reported to be polysaccharide acetyltransferases, but does share homology with them and other acetyltransferases, suggesting that the AXY9 protein may act to produce an acetylated intermediate that is part of the O-acetylation pathway.
Collapse
Affiliation(s)
- Alex Schultink
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Dan Naylor
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Murali Dama
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Markus Pauly
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| |
Collapse
|
38
|
Liu Y, Tong X, Hui W, Liu T, Chen X, Li J, Zhuang C, Yang Y, Liu Z. Efficient culture protocol for plant regeneration from petiole explants of physiologically mature trees ofJatropha curcasL. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1013308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
39
|
Li L, Zhang W, Zhang L, Li N, Peng J, Wang Y, Zhong C, Yang Y, Sun S, Liang S, Wang X. Transcriptomic insights into antagonistic effects of gibberellin and abscisic acid on petal growth in Gerbera hybrida. FRONTIERS IN PLANT SCIENCE 2015; 6:168. [PMID: 25852718 PMCID: PMC4362084 DOI: 10.3389/fpls.2015.00168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/02/2015] [Indexed: 05/19/2023]
Abstract
Petal growth is central to floral morphogenesis, but the underlying genetic basis of petal growth regulation is yet to be elucidated. In this study, we found that the basal region of the ray floret petals of Gerbera hybrida was the most sensitive to treatment with the phytohormones gibberellin (GA) and abscisic acid (ABA), which regulate cell expansion during petal growth in an antagonistic manner. To screen for differentially expressed genes (DEGs) and key regulators with potentially important roles in petal growth regulation by GA or/and ABA, the RNA-seq technique was employed. Differences in global transcription in petals were observed in response to GA and ABA and target genes antagonistically regulated by the two hormones were identified. Moreover, we also identified the pathways associated with the regulation of petal growth after application of either GA or ABA. Genes relating to the antagonistic GA and ABA regulation of petal growth showed distinct patterns, with genes encoding transcription factors (TFs) being active during the early stage (2 h) of treatment, while genes from the "apoptosis" and "cell wall organization" categories were expressed at later stages (12 h). In summary, we present the first study of global expression patterns of hormone-regulated transcripts in G. hybrida petals; this dataset will be instrumental in revealing the genetic networks that govern petal morphogenesis and provides a new theoretical basis and novel gene resources for ornamental plant breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaojing Wang
- *Correspondence: Xiaojing Wang, Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, No. 55, Zhongshan Avenue West, Tianhe District, Guangzhou 510631, China
| |
Collapse
|
40
|
Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S, Guo YD. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA₄ interaction in cucumber (Cucumis sativus L.). J Pineal Res 2014; 57:269-79. [PMID: 25112973 DOI: 10.1111/jpi.12167] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022]
Abstract
Although previous studies have found that melatonin can promote seed germination, the mechanisms involved in perceiving and signaling melatonin remain poorly understood. In this study, it was found that melatonin was synthesized during cucumber seed germination with a peak in melatonin levels occurring 14 hr into germination. This is indicative of a correlation between melatonin synthesis and seed germination. Meanwhile, seeds pretreated with exogenous melatonin (1 μM) showed enhanced germination rates under 150 mM NaCl stress compared to water-pretreated seeds under salinity stress. There are two apparent mechanisms by which melatonin alleviated salinity-induced inhibition of seed germination. Exogenous melatonin decreased oxidative damage induced by NaCl stress by enhancing gene expression of antioxidants. Under NaCl stress, compared to untreated control, the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly increased by approximately 1.3-5.0-fold, with a concomitant 1.4-2.0-fold increase of CsCu-ZnSOD, CsFe-ZnSOD, CsCAT, and CsPOD in melatonin-pretreated seeds. Melatonin also alleviated salinity stress by affecting abscisic acid (ABA) and gibberellin acid (GA) biosynthesis and catabolism during seed germination. Compared to NaCl treatment, melatonin significantly up-regulated ABA catabolism genes (e.g., CsCYP707A1 and CsCYP707A2, 3.5 and 105-fold higher than NaCl treatment at 16 hr, respectively) and down-regulated ABA biosynthesis genes (e.g., CsNECD2, 0.29-fold of CK2 at 16 hr), resulting in a rapid decrease of ABA content during the early stage of germination. At the same time, melatonin positively up-regulated GA biosynthesis genes (e.g., GA20ox and GA3ox, 2.3 and 3.9-fold higher than NaCl treatment at 0 and 12 hr, respectively), contributing to a significant increase of GA (especially GA4) content. In this study, we provide new evidence suggesting that melatonin alleviates the inhibitory effects of NaCl stress on germination mainly by regulating the biosynthesis and catabolism of ABA and GA4.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang XH, Li B, Hu YG, Chen L, Min DH. The wheat E subunit of V-type H+-ATPase is involved in the plant response to osmotic stress. Int J Mol Sci 2014; 15:16196-210. [PMID: 25222556 PMCID: PMC4200794 DOI: 10.3390/ijms150916196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
The vacuolar type H+-ATPase (V-type H+-ATPase) plays important roles in establishing an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this paper, a putative E subunit of the V-type H+-ATPase gene, W36 was isolated from stress-induced wheat de novo transcriptome sequencing combining with 5'-RACE and RT-PCR methods. The full-length of W36 gene was 1097 bp, which contained a 681 bp open reading frame (ORF) and encoded 227 amino acids. Southern blot analysis indicated that W36 was a single-copy gene. The quantitative real-time PCR (qRT-PCR) analysis revealed that the expression level of W36 could be upregulated by drought, cold, salt, and exogenous ABA treatment. A subcellular localization assay showed that the W36 protein accumulated in the cytoplasm. Isolation of the W36 promoter revealed some cis-acting elements responding to abiotic stresses. Transgenic Arabidopsis plants overexpressing W36 were enhanced salt and mannitol tolerance. These results indicate that W36 is involved in the plant response to osmotic stress.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Bo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Dong-Hong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
42
|
Zhang Y, Zhen L, Tan X, Li L, Wang X. The involvement of hexokinase in the coordinated regulation of glucose and gibberellin on cell wall invertase and sucrose synthesis in grape berry. Mol Biol Rep 2014; 41:7899-910. [PMID: 25163631 DOI: 10.1007/s11033-014-3683-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/19/2014] [Indexed: 11/24/2022]
Abstract
In plants, hexokinase (HXK, EC 2.7.1.1), an enzyme normally involved in hexose phosphorylation, plays an important role in sugar sensing and signaling. The hexokinase activity of grape HXKs was confirmed by functional complementation of the hexokinase-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). HXK1 and HXK2 were able to complement this mutant. The subcellular localization of HXK1 and HXK2, observed with green fluorescent protein fusion constructs, indicated that HXK1 localized to the cytosol while HXK2 was a nuclear-targeted hexokinase. Gibberellin (GA3) control various processes across plant life and has been involved in sugar accumulation. The coordinated regulation of exogenous GA3 with Glc on CWINV, SuSy1, or SuSy2 expressions indicated that GA3 can relieve the repression of Glc on CWINV or SuSy1 expression, and the repression of GA3 on SuSy2 expression overrides the Glc-inductive effect, resulting in the down-regulation of SuSy2 expression. It was concluded that GA3 negatively interfere with Glc signal transduction depending on hexokinase phosphorylation. GA3 might regulate CWINV, SuSy1 or SuSy2 expression to in order to maintain an intracellular sugar levels and normal cell metabolism. Our results provide new insights into the crosstalk mechanism of GA3 and Glc signaling depending on hexokinase in grape berry sugar accumulation.
Collapse
Affiliation(s)
- Yujing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No. 17, Haidian District, Beijing, 100083, China
| | | | | | | | | |
Collapse
|
43
|
Zhang D, Ren L, Yue JH, Wang L, Zhuo LH, Shen XH. GA4 and IAA were involved in the morphogenesis and development of flowers in Agapanthus praecox ssp. orientalis. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:966-76. [PMID: 24913054 DOI: 10.1016/j.jplph.2014.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 05/13/2023]
Abstract
The transition from vegetative to reproductive growth represents a major phase change in angiosperms. Hormones play important roles in this process. In this study, gibberellic acid (GA), cytokinins (CKs), indoleacetic acid (IAA), and abscisic acid (ABA) were analyzed during the flowering in Agapanthus praecox ssp. orientalis. Eleven types of endogenous gibberellins in addition to GA1 were detected in various organs. GA9 was detected with the highest concentrations, followed by GA5, GA8, and GA19. However, GA4 was the main bioactive GA that was involved in the regulation of flowering. Eight types of endogenous cytokinins were detected in A. praecox ssp. orientalis, and zeatin, zeatin riboside, zeatin-O-glucoside, and N(6)-isopentenyladenosine-5-monophosphate were present at higher levels throughout the study, of which zeatin plays an important role in the development of various organs. IAA increased by 581% in the shoot tips from the vegetative to inflorescence bud stages and had the most significant changes during flowering. Phytohormone immunolocalization analysis suggested that IAA involved in differentiation and development of each floral organs, GA and zeatin play important roles in floret primordia differentiation and ovule development. Using exogenous plant growth regulators proved that GA signaling regulate the scape elongation and stimulate early-flowering, and IAA signaling is involved in the pedicel and corolla elongation and delay flowering slightly.
Collapse
Affiliation(s)
- Di Zhang
- Department of Landscape Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Ren
- Department of Landscape Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-hua Yue
- Department of Landscape Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Wang
- Department of Ornamental Plants and Horticulture, College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Li-huan Zhuo
- Department of Ornamental Plants and Horticulture, College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Xiao-hui Shen
- Department of Landscape Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
44
|
Yang D, Wang N, Yan X, Shi J, Zhang M, Wang Z, Yuan H. Microencapsulation of seed-coating tebuconazole and its effects on physiology and biochemistry of maize seedlings. Colloids Surf B Biointerfaces 2014; 114:241-6. [DOI: 10.1016/j.colsurfb.2013.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 11/26/2022]
|
45
|
Chen K, Arora R. Priming memory invokes seed stress-tolerance. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2013. [PMID: 0 DOI: 10.1016/j.envexpbot.2012.03.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
46
|
Locascio A, Blázquez MA, Alabadí D. Genomic analysis of DELLA protein activity. PLANT & CELL PHYSIOLOGY 2013; 54:1229-37. [PMID: 23784221 DOI: 10.1093/pcp/pct082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in gene expression are the main outcome of hormone signaling cascades that widely control plant physiology. In the case of the hormones gibberellins, the transcriptional control is exerted through the activity of the DELLA proteins, which act as negative regulators in the signaling pathway. This review focuses on recent transcriptomic approaches in the context of gibberellin signaling, which have provided useful information on new processes regulated by these hormones such as the regulation of photosynthesis and gravitropism. Moreover, the enrichment of specific cis-elements among DELLA primary targets has also helped extend the view that DELLA proteins regulate gene expression through the interaction with multiple transcription factors from different families.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas-CSIC-U. Politécnica de Valencia, Valencia, Spain
| | | | | |
Collapse
|
47
|
Ma K, Song Y, Huang Z, Lin L, Zhang Z, Zhang D. The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid. PLANT CELL REPORTS 2013; 32:401-414. [PMID: 23224581 DOI: 10.1007/s00299-012-1373-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/20/2012] [Accepted: 11/25/2012] [Indexed: 06/01/2023]
Abstract
KEY MESSAGE : We report that low fertility during intraspecific hybridization in Chinese white poplar was caused by prefertilization barriers, reduced ovules, and embryonic abortion. Hormone concentrations and gene expression patterns were also evaluated during the fertilization process. Hybrid vigor holds tremendous potential for yield increases and trait improvement; however, some hybridization combinations within Populus show very low fertility. To explore the causes of this low fertility in intraspecific hybridization of Chinese white poplar, we examined anatomical structure, hormone levels and expression of key genes in two unique crossing combinations of Populus × tomentosa "Pt02" × P. × tomentosa "LM50", and (P. × tomentosa × P. alba cv. bolleana "Ptb") × P. × tomentosa "LM50". The seed set potential in the intraspecific hybridization P. × tomentosa "Pt02" × P. × tomentosa "LM50" was quite low, which was likely caused by prefertilization barriers, reduced ovule numbers, and embryonic abortion in ovaries. During intraspecific hybridization, we found reduced indoleacetic acid (IAA) in pistils, which may cause pollen tube deformations and increased IAA in heart-stage embryos, which may affect embryo development. Gibberellin A3 (GA3) decreased from the zygote dormancy stage to globular-stage embryos, which may be caused by failure of fertilization in specific embryos. The maximum zeatin (Z) concentration was found in heart-stage embryos, but Z concentrations quickly decreased, which may affect endosperm development. Increasing concentrations of abscisic acid (ABA) during zygote dormancy and eight-cell proembryo stages likely induced abscission of the infructescence. High ABA concentrations also regulated embryo maturity. Measurement of genes expression showed that high expression of SRK and/or SLG may result in rejection of pollen by stigmatic papillae through a mechanism, reminiscent of self-incompatibility. Also, low expression of LEC1 and FUS3 may cause embryonic abortion. Identification and eventual bypassing of these barriers may allow future genetic improvement of this key woody crop species.
Collapse
Affiliation(s)
- Kaifeng Ma
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, 100083 Beijing, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Yoon JM, Nakajima M, Mashiguchi K, Park SH, Otani M, Asami T. Chemical screening of an inhibitor for gibberellin receptors based on a yeast two-hybrid system. Bioorg Med Chem Lett 2013; 23:1096-8. [DOI: 10.1016/j.bmcl.2012.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/14/2012] [Accepted: 12/05/2012] [Indexed: 11/15/2022]
|
49
|
Goldberg-Moeller R, Shalom L, Shlizerman L, Samuels S, Zur N, Ophir R, Blumwald E, Sadka A. Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013. [PMID: 23199686 DOI: 10.1016/j.plantsci.2012.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gibberellins (GAs) affect flowering in a species-dependent manner: in long-day and biennial plants they promote flowering, whereas in other plants, including fruit trees, they inhibit it. The mechanism by which GAs promote flowering in Arabidopsis is not fully understood, although there is increasing evidence that they may act through more than one pathway. In citrus, GA treatment during the flowering induction period reduces the number of flowers; the mechanism of flowering inhibition is not clear; the hormone may act directly in the bud to determine its fate toward vegetative growth, generate a mobile signal, or both. However, bud metabolic and regulatory pathways are expected to be altered upon GA treatment. We investigated the effect of GA treatments on global gene expression in the bud during the induction period, and on the expression of key flowering genes. Overall, about 2000 unigenes showed altered expression, with about 300 showing at least a two-fold change. Changes in flavonoids and trehalose metabolic pathways were validated, and among other altered pathways, such as cell-wall components, were discussed in light of GA's inhibition of flowering. Among flowering-control genes, GA treatment resulted in reduced mRNA levels of FT, AP1 and a few flower-organ-identity genes. mRNA levels of FLC-like and SOC1 were not altered by the treatment, whereas LEAFY mRNA was induced in GA-treated buds. Surprisingly, FT expression was higher in buds than leaves. Overall, our results shed light on changes taking place in the bud during flowering induction in response to GA treatment.
Collapse
Affiliation(s)
- Ravit Goldberg-Moeller
- Department of Fruit Trees Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Li J, Sima W, Ouyang B, Wang T, Ziaf K, Luo Z, Liu L, Li H, Chen M, Huang Y, Feng Y, Hao Y, Ye Z. Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6407-20. [PMID: 23077200 PMCID: PMC3504492 DOI: 10.1093/jxb/ers295] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have evolved and adapted to different environments. Dwarfism is an adaptive trait of plants that helps them avoid high-energy costs under unfavourable conditions. The role of gibberellin (GA) in plant development has been well established. Several plant dehydration-responsive element-binding proteins (DREBs) have been identified and reported to be induced under abiotic and biotic stress conditions. A tomato DREB gene named SlDREB, which is a transcription factor and was cloned from cultivated tomato M82, was found to play a negative role in tomato plant architecture and enhances drought tolerance. Tissue expression profiles indicated that SlDREB was expressed mainly in the stem and leaf and could be induced by abscisic acid (ABA) but suppressed by GA and ethylene. SlDREB altered plant morphology by restricting leaf expansion and internode elongation when overexpressed, and the resulting dwarfism of tomato plants could be recovered by application of exogenous gibberellic acid (GA(3)). Transcriptional analysis of transgenic plants revealed that overexpression of SlDREB caused the dwarf phenotype by downregulating key genes involved in GA biosynthesis such as ent-copalyl diphosphate synthase (SlCPS) and GA 20-oxidases (SlGA20ox1, -2, and -4), thereby decreasing endogenous GA levels in transgenic plants. A yeast activity assay demonstrated that SlDREB specifically bound to dehydration-responsive element/C-repeat (DRE/CRT) elements of the SlCPS promoter region. Taken together, these data demonstrated that SlDREB can downregulate the expression of key genes required for GA biosynthesis and that it acts as a positive regulator in drought stress responses by restricting leaf expansion and internode elongation.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wei Sima
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Khurram Ziaf
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhidan Luo
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lifeng Liu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingluan Chen
- 2 Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yunqing Huang
- 2 Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yuqi Feng
- 2 Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yanhong Hao
- 2 Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|