1
|
An N, Huang X, Yang Z, Zhang M, Ma M, Yu F, Jing L, Du B, Wang YF, Zhang X, Zhang P. Cryo-EM structure and molecular mechanism of the jasmonic acid transporter ABCG16. NATURE PLANTS 2024:10.1038/s41477-024-01839-0. [PMID: 39496849 DOI: 10.1038/s41477-024-01839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
Jasmonates (JAs) are a class of oxylipin phytohormones including jasmonic acid (JA) and derivatives that regulate plant growth, development and biotic and abiotic stress. A number of transporters have been identified to be responsible for the cellular and subcellular translocation of JAs. However, the mechanistic understanding of how these transporters specifically recognize and transport JAs is scarce. Here we determined the cryogenic electron microscopy structure of JA exporter AtABCG16 in inward-facing apo, JA-bound and occluded conformations, and outward-facing post translocation conformation. AtABCG16 structure forms a homodimer, and each monomer contains a nucleotide-binding domain, a transmembrane domain and an extracellular domain. Structural analyses together with biochemical and plant physiological experiments revealed the molecular mechanism by which AtABCG16 specifically recognizes and transports JA. Structural analyses also revealed that AtABCG16 features a unique bifurcated substrate translocation pathway, which is composed of two independent substrate entrances, two substrate-binding pockets and a shared apoplastic cavity. In addition, residue Phe608 from each monomer is disclosed to function as a gate along the translocation pathway controlling the accessing of substrate JA from the cytoplasm or apoplast. Based on the structural and biochemical analyses, a working model of AtABCG16-mediated JA transport is proposed, which diversifies the molecular mechanisms of ABC transporters.
Collapse
Affiliation(s)
- Ning An
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Huang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Yang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Minhua Zhang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Miaolian Ma
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Fang Yu
- Shanghai Normal University, Shanghai, China
| | - Lianyan Jing
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Boya Du
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Roitman M, Eshel D. Similar chilling response of dormant buds in potato tuber and woody perennials. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6076-6092. [PMID: 38758594 DOI: 10.1093/jxb/erae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy, where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of endodormancy by influencing plant hormones and sugar metabolism, which affect the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid, affecting the symplastic connection of dormant buds. This review explores how chilling affects endodormancy duration and explores the similarity of the chilling response of dormant buds in potato tubers and woody perennials.
Collapse
Affiliation(s)
- Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
3
|
Zheng L, Wen Y, Lin Y, Tian J, Shaobai J, Hao Z, Wang C, Sun T, Wang L, Chen C. Phytohormonal dynamics in the abscission zone of Korla fragrant pear during calyx abscission: a visual study. FRONTIERS IN PLANT SCIENCE 2024; 15:1452072. [PMID: 39439514 PMCID: PMC11493647 DOI: 10.3389/fpls.2024.1452072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
Introduction Phytohormones play a crucial role in regulating the abscission of plant organs and tissues. Methods In this study, the ultrastructure of the sepals of Korla fragrant pears was observed using a transmission electron microscope, and high-performance liquid and gas chromatography were used to analyze the dynamic changes of phytohormones in the abscission zone during the calyx abscission process of Korla fragrant pears, and mass spectrometry imaging was applied to ascertain the spatial distribution of phytohormones. Results The results revealed that the mitochondria in the abscission zone of the decalyx fruits were regularly distributed around the cell wall, and the chloroplasts were moderately present. In contrast, in the persistent calyx fruit, the corresponding parts of the abscission zone showed a scattered distribution of mitochondria within the cells, and there was a higher number of chloroplasts, which also contained starch granules inside. Mass spectrometry imaging revealed that ABA was enriched in the abscission zone of the decalyx fruit, and their ionic signal intensities were significantly stronger than those of the persistent calyx fruit. However, the ionic signal intensities of Indole-3-acetic acid (IAA) and Gibberellin A3 (GA3) of the persistent calyx fruit were significantly stronger than those in the abscission zone of the decalyx fruit and were concentrated in the persistent calyx fruit. 1-Aminocyclopropanecarboxylic Acid (ACC) did not show distinct regional distribution in both the decalyx and persistent calyx fruits. Furthermore, before the formation of the abscission zone, the levels of IAA, GA3, and zeatin (ZT) in the abscission zone of the decalyx fruits were significantly lower than those in the persistent calyx fruits by 37.9%, 57.7%, and 33.0%, respectively, while the levels of abscisic acid (ABA) and ethylene (ETH) were significantly higher by 21.9% and 25.0%, respectively. During the formation of the abscission zone, the levels of IAA, GA3, and ZT in the abscission zone of the decalyx fruits were significantly lower than those in the persistent calyx fruits by 41.7%, 71.7%, and 24.6%, respectively, while the levels of ABA and ETH were significantly higher by 15.2% and 80.0%, respectively. After the formation of the abscission zone, the levels of IAA and GA3 in the abscission zone of the decalyx fruits were lower than those in the persistent calyx fruits by 20.8% and 47.8%, respectively, while the levels of ABA and ETH were higher by 271.8% and 26.9%, respectively. In summary, during the calyx abscission process of Korla fragrant pears, IAA and GA3 in the abscission zone inhibited abscission, while ABA and ETH promoted calyx abscission. These research findings enrich the understanding of the regulatory mechanism of plant hormones on calyx abscission and provide a theoretical basis for the study of exogenous plant growth regulators for regulating calyx abscission in Korla fragrant pear.
Collapse
Affiliation(s)
- Lingling Zheng
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yue Wen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yan Lin
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jia Tian
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Junjie Shaobai
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhichao Hao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chunfeng Wang
- Korla Fragrant Pear Research Centre, Korla, Xinjiang, China
| | - Tianyu Sun
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lei Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chen Chen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Zhang W, Tao J, Chang Y, Wang D, Wu Y, Gu C, Tao W, Wang H, Xie X, Zhang Y. Cytokinin catabolism and transport are involved in strigolactone-modulated rice tiller bud elongation fueled by phosphate and nitrogen supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108982. [PMID: 39089046 DOI: 10.1016/j.plaphy.2024.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Phosphate (P) and nitrogen (N) fertilization affect rice tillering, indicating that P- and N-regulated tiller growth has a crucial effect on grain yield. Cytokinins and strigolactones (SLs) promote and inhibit tiller bud outgrowth, respectively; however, the underlying mechanisms are unclear. In this study, tiller bud outgrowth and cytokinin fractions were evaluated in rice plants fertilized at different levels of P and N. Low phosphate or nitrogen (LP or LN) reduced rice tiller numbers and bud elongation, in line with low cytokinin levels in tiller buds and xylem sap as well as low TCSn:GUS expression, a sensitive cytokinin signal reporter, in the stem base. Furthermore, exogenous cytokinin (6-benzylaminopurin, 6-BA) administration restored bud length and TCSn:GUS activity in LP- and LN-treated plants to similar levels as control plants. The TCSn:GUS activity and tiller bud outgrowth were less affected by LP and LN supplies in SL-synthetic and SL-signaling mutants (d17 and d53) compared to LP- and LN-treated wild-type (WT) plants, indicating that SL modulate tiller bud elongation under LP and LN supplies by reducing the cytokinin levels in tiller buds. OsCKX9 (a cytokinin catabolism gene) transcription in buds and roots was induced by LP, LN supplies and by adding the SL analog GR24. A reduced response of cytokinin fractions to LP and LN supplies was observed in tiller buds and xylem sap of the d53 mutant compared to WT plants. These results suggest that cytokinin catabolism and transport are involved in SL-modulated rice tillering fueled by P and N fertilization.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyao Chang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daojian Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaoyao Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changxiao Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqing Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongmei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaonan Xie
- Weed Science Center, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Japan
| | - Yali Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
He S, Li L, Lv M, Wang R, Wang L, Yu S, Gao Z, Li X. PGPR: Key to Enhancing Crop Productivity and Achieving Sustainable Agriculture. Curr Microbiol 2024; 81:377. [PMID: 39325205 DOI: 10.1007/s00284-024-03893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Due to the burgeoning global population and the advancement of economies, coupled with human activities leading to the degradation of soil ecosystems and the depletion of non-renewable resources, concerns have arisen regarding food security and human survival. In order to address these adverse impacts, the spotlight has been cast upon plant growth-promoting rhizobacteria (PGPR), driven by a strong environmental consciousness. PGPR possesses the capability to foster plant growth and amplify crop yield through both direct and indirect mechanisms. By expediting plant growth, augmenting nutrient assimilation, heightening crop yield and caliber, and fortifying stress resilience, the application of PGPR can mitigate reliance on chemical fertilizers and pesticides while diminishing ecological perils. This exposition delves into the function of PGPR in modulating plant hormones, fostering nutrient solubilization, and fortifying plant resistance against biotic and abiotic stressors. This review offers valuable insights into the intricate interplay between PGPR and plants, elucidating uncertainties ripe for further investigation. Profound comprehension and judicious utilization of PGPR are indispensable for attaining sustainable agricultural progression, making substantial contributions to resolving the conundrums of global food security and environmental conservation.
Collapse
Affiliation(s)
- Shidong He
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingli Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Minghao Lv
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Rongxin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lujun Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
6
|
Yan Q, Zhang M, Jia Y, Dong F, Shen Y, Li F. Identification of crucial metabolites in colored grain wheat (Triticum aestivum L.) regulated by nitrogen application. Food Res Int 2024; 191:114700. [PMID: 39059952 DOI: 10.1016/j.foodres.2024.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Colored wheats have drawn attention due to their nutritional compounds. However, limited information is obtained on the effects of nitrogen fertilizer on crucial metabolites and grain quality of wheats with different color grain. In the study, the pot experiment was conducted with white (W), blue (B), and purple (P) grain wheats treated with three levels of N (LN, 0 g kg-1; MN, 0.05 g kg-1; HN, 0.1 g kg-1). Higher N level could promote wheat growth, improve grain indexes, and nutrient uptake. SPAD values of flag leaves remained in the order HN > MN > LN across all wheat varieties, and maintained increasing during tested stages under purple wheat. Metabolomics analysis showed that the annotated 358 metabolites mainly belonged to 29 classes, including carboxylic acids and their derivatives, fatty acids, flavonoids, and phenols. 35, 39, and 70 differential accumulated metabolites were respectively found between the WLN vs. WHN, the BHN vs. BLN, and the PHN vs. PLN, which were mainly enriched in "biosynthesis of plant secondary metabolites", "cGMP-PKG signaling pathway", "sphingolipid signaling pathway", "biosynthesis of alkaloids derived from histidine and purine", and "biosynthesis of plant hormones". Additionally, erucic acid was dominated in the three wheat cultivars, and was decreased after treated with high N levels. Our study preliminarily revealed the different response mechanisms to different N levels in the white, blue, and purple grain wheats, and lay a theoretical foundation for further breeding of excellent colored grain varieties.
Collapse
Affiliation(s)
- Qiuyan Yan
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, PR China.
| | - Minmin Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Yaqin Jia
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, PR China.
| | - Fei Dong
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, PR China.
| | - Yanting Shen
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, PR China.
| | - Feng Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, PR China.
| |
Collapse
|
7
|
He Y, Zhang Y, Li J, Ren Z, Zhang W, Zuo X, Zhao W, Xing M, You J, Chen X. Transcriptome dynamics in Artemisia annua provides new insights into cold adaptation and de-adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1412416. [PMID: 39268001 PMCID: PMC11390472 DOI: 10.3389/fpls.2024.1412416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/15/2024]
Abstract
Plants adapt to cold stress through a tightly regulated process involving metabolic reprogramming and tissue remodeling to enhance tolerance within a short timeframe. However, the precise differences and interconnections among various organs during cold adaptation remain poorly understood. This study employed dynamic transcriptomic and metabolite quantitative analyses to investigate cold adaptation and subsequent de-adaptation in Artemisia annua, a species known for its robust resistance to abiotic stress. Our findings revealed distinct expression patterns in most differentially expressed genes (DEGs) encoding transcription factors and components of the calcium signal transduction pathway within the two organs under cold stress. Notably, the long-distance transport of carbon sources from source organs (leaves) to sink organs (roots) experienced disruption followed by resumption, while nitrogen transport from roots to leaves, primarily in the form of amino acids, exhibited acceleration. These contrasting transport patterns likely contribute to the observed differences in cold response between the two organs. The transcriptomic analysis further indicated that leaves exhibited increased respiration, accumulated anti-stress compounds, and initiated the ICE-CBF-COR signaling pathway earlier than roots. Differential expression of genes associated with cell wall biosynthesis suggests that leaves may undergo cell wall thickening while roots may experience thinning. Moreover, a marked difference was observed in phenylalanine metabolism between the two organs, with leaves favoring lignin production and roots favoring flavonoid synthesis. Additionally, our findings suggest that the circadian rhythm is crucial in integrating temperature fluctuations with the plant's internal rhythms during cold stress and subsequent recovery. Collectively, these results shed light on the coordinated response of different plant organs during cold adaptation, highlighting the importance of inter-organ communication for successful stress tolerance.
Collapse
Affiliation(s)
- Yunxiao He
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yujiao Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
- Yanbian Korean Autonomous Prefecture Academy of Agricultural Sciences, Yanbian, Jilin, China
| | - Jiangnan Li
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Zhiyi Ren
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wenjing Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xianghua Zuo
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Zhao
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Ming Xing
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jian You
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Zhou F, Feng W, Mou K, Yu Z, Zeng Y, Zhang W, Zhou Y, Li Y, Gao H, Xu K, Feng C, Jing Y, Li H. Genome-Wide Analysis and Expression Profiling of Soybean RbcS Family in Response to Plant Hormones and Functional Identification of GmRbcS8 in Soybean Mosaic Virus. Int J Mol Sci 2024; 25:9231. [PMID: 39273180 PMCID: PMC11395302 DOI: 10.3390/ijms25179231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Rubisco small subunit (RbcS), a core component with crucial effects on the structure and kinetic properties of the Rubisco enzyme, plays an important role in response to plant growth, development, and various stresses. Although Rbcs genes have been characterized in many plants, their muti-functions in soybeans remain elusive. In this study, a total of 11 GmRbcS genes were identified and subsequently divided into three subgroups based on a phylogenetic relationship. The evolutionary analysis revealed that whole-genome duplication has a profound effect on GmRbcSs. The cis-acting elements responsive to plant hormones, development, and stress-related were widely found in the promoter region. Expression patterns based on the RT-qPCR assay exhibited that GmRbcS genes are expressed in multiple tissues, and notably Glyma.19G046600 (GmRbcS8) exhibited the highest expression level compared to other members, especially in leaves. Moreover, differential expressions of GmRbcS genes were found to be significantly regulated by exogenous plant hormones, demonstrating their potential functions in diverse biology processes. Finally, the function of GmRbcS8 in enhancing soybean resistance to soybean mosaic virus (SMV) was further determined through the virus-induced gene silencing (VIGS) assay. All these findings establish a strong basis for further elucidating the biological functions of RbcS genes in soybeans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (F.Z.); (W.F.); (K.M.); (Z.Y.); (Y.Z.); (W.Z.); (Y.Z.); (Y.L.); (H.G.); (K.X.); (C.F.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (F.Z.); (W.F.); (K.M.); (Z.Y.); (Y.Z.); (W.Z.); (Y.Z.); (Y.L.); (H.G.); (K.X.); (C.F.)
| |
Collapse
|
9
|
Zheng Y, Zhao Z, Zou H, Wang W, Yang D, Gao Y, Meng R, Zhang S. Genomic analysis of PIN-FORMED genes reveals the roles of SmPIN3 in root architecture development in Salvia miltiorrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108827. [PMID: 38875779 DOI: 10.1016/j.plaphy.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/05/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Salvia miltiorrhiza is a widely utilized medicinal herb in China. Its roots serve as crucial raw materials for multiple drugs. The root morphology is essential for the quality of this herb, but little is known about the molecular mechanism underlying the root development in S. miltiorrhiza. Previous study reveals that the polar auxin transport is critical for lateral root development in S. miltiorrhiza. Whether the auxin efflux carriers PIN-FORMEDs (PINs) are involved in this process is worthy investigation. In this study, we identified nine SmPIN genes in S. miltiorrhiza, and their chromosome localization, physico-chemical properties, and phylogenetic relationship were analyzed. SmPINs were unevenly distributed across four chromosomes, and a variety of hormone responsive elements were detected in their promoter regions. The SmPIN proteins were divided into three branches according to the phylogenetic relationship. SmPINs with close evolutionary distance showed similar conserved motif features. The nine SmPINs showed distinct tissue-specific expression patterns and most of them were auxin-inducible genes. We generated SmPIN3 overexpression S. miltiorrhiza seedlings to investigate the function of SmPIN3 in the root development in this species. The results demonstrated that SmPIN3 regulated the root morphogenesis of S. miltiorrhiza by simultaneously affecting the lateral root development and the root anatomical structure. The root morphology, patterns of root xylem and phloem as well as the expressions of genes in the auxin signaling pathway all altered in the SmPIN3 overexpression lines. Our findings provide new insights for elucidating the regulatory roles of SmPINs in the auxin-mediated root development in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yuwei Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ziyang Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Haiyan Zou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yuanyuan Gao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ru Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
10
|
Cai G, Zang Y, Wang Z, Liu S, Wang G. Arabidopsis BTB-A2s Play a Key Role in Drought Stress. BIOLOGY 2024; 13:561. [PMID: 39194499 DOI: 10.3390/biology13080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Drought stress significantly impacts plant growth, productivity, and yield, necessitating a swift fine-tuning of pathways for adaptation to harsh environmental conditions. This study explored the effects of Arabidopsis BTB-A2.1, BTB-A2.2, and BTB-A2.3, distinguished by their exclusive possession of the Broad-complex, Tramtrack, and Bric-à-brac (BTB) domain, on the negative regulation of drought stress mediated by abscisic acid (ABA) signaling. Promoter analysis revealed the presence of numerous ABA-responsive and drought stress-related cis-acting elements within the promoters of AtBTB-A2.1, AtBTB-A2.2, and AtBTB-A2.3. The AtBTB-A2.1, AtBTB-A2.2, and AtBTB-A2.3 transcript abundances increased under drought and ABA induction according to qRT-PCR and GUS staining. Furthermore, the Arabidopsis btb-a2.1/2/3 triple mutant exhibited enhanced drought tolerance, supporting the findings from the overexpression studies. Additionally, we detected a decrease in the stomatal aperture and water loss rate of the Arabidopsis btb-a2.1/2/3 mutant, suggesting the involvement of these genes in repressing stomatal closure. Importantly, the ABA signaling-responsive gene levels within Arabidopsis btb-a2.1/2/3 significantly increased compared with those in the wild type (WT) under drought stress. Based on such findings, Arabidopsis BTB-A2s negatively regulate drought stress via the ABA signaling pathway.
Collapse
Affiliation(s)
- Guohua Cai
- School of Biological Sciences, Jining Medical University, Rizhao 276800, China
| | - Yunxiao Zang
- School of Biological Sciences, Jining Medical University, Rizhao 276800, China
| | - Zhongqian Wang
- School of Biological Sciences, Jining Medical University, Rizhao 276800, China
| | - Shuoshuo Liu
- School of Biological Sciences, Jining Medical University, Rizhao 276800, China
| | - Guodong Wang
- School of Biological Sciences, Jining Medical University, Rizhao 276800, China
| |
Collapse
|
11
|
Li X, Lin C, Lan C, Tao Z. Genetic and epigenetic basis of phytohormonal control of floral transition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4180-4194. [PMID: 38457356 DOI: 10.1093/jxb/erae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
The timing of the developmental transition from the vegetative to the reproductive stage is critical for angiosperms, and is fine-tuned by the integration of endogenous factors and external environmental cues to ensure successful reproduction. Plants have evolved sophisticated mechanisms to response to diverse environmental or stress signals, and these can be mediated by hormones to coordinate flowering time. Phytohormones such as gibberellin, auxin, cytokinin, jasmonate, abscisic acid, ethylene, and brassinosteroids and the cross-talk among them are critical for the precise regulation of flowering time. Recent studies of the model flowering plant Arabidopsis have revealed that diverse transcription factors and epigenetic regulators play key roles in relation to the phytohormones that regulate floral transition. This review aims to summarize our current knowledge of the genetic and epigenetic mechanisms that underlie the phytohormonal control of floral transition in Arabidopsis, offering insights into how these processes are regulated and their implications for plant biology.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenghao Lan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Holden CA, McAinsh MR, Taylor JE, Beckett P, Albacete A, Martínez-Andújar C, Morais CLM, Martin FL. Attenuated total reflection Fourier-transform infrared spectroscopy for the prediction of hormone concentrations in plants. Analyst 2024; 149:3380-3395. [PMID: 38712606 DOI: 10.1039/d3an01817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Plant hormones are important in the control of physiological and developmental processes including seed germination, senescence, flowering, stomatal aperture, and ultimately the overall growth and yield of plants. Many currently available methods to quantify such growth regulators quickly and accurately require extensive sample purification using complex analytic techniques. Herein we used ultra-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) to create and validate the prediction of hormone concentrations made using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectral profiles of both freeze-dried ground leaf tissue and extracted xylem sap of Japanese knotweed (Reynoutria japonica) plants grown under different environmental conditions. In addition to these predictions made with partial least squares regression, further analysis of spectral data was performed using chemometric techniques, including principal component analysis, linear discriminant analysis, and support vector machines (SVM). Plants grown in different environments had sufficiently different biochemical profiles, including plant hormonal compounds, to allow successful differentiation by ATR-FTIR spectroscopy coupled with SVM. ATR-FTIR spectral biomarkers highlighted a range of biomolecules responsible for the differing spectral signatures between growth environments, such as triacylglycerol, proteins and amino acids, tannins, pectin, polysaccharides such as starch and cellulose, DNA and RNA. Using partial least squares regression, we show the potential for accurate prediction of plant hormone concentrations from ATR-FTIR spectral profiles, calibrated with hormonal data quantified by UHPLC-HRMS. The application of ATR-FTIR spectroscopy and chemometrics offers accurate prediction of hormone concentrations in plant samples, with advantages over existing approaches.
Collapse
Affiliation(s)
- Claire A Holden
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Martin R McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Alfonso Albacete
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/ Mayor s/n, La Alberca, E-30150 Murcia, Spain
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | | | - Camilo L M Morais
- Center for Education, Science and Technology of the Inhamuns Region, State University of Ceará, Tauá 63660-000, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
| | - Francis L Martin
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
- Biocel UK Ltd, Hull HU10 6TS, UK
| |
Collapse
|
13
|
Wu H, Wan X, Niu J, Cao Y, Wang S, Zhang Y, Guo Y, Xu H, Xue X, Yao J, Zhu C, Li Y, Li Q, Lu T, Yu H, Jiang W. Enhancing iron content and growth of cucumber seedlings with MgFe-LDHs under low-temperature stress. J Nanobiotechnology 2024; 22:268. [PMID: 38764056 PMCID: PMC11103931 DOI: 10.1186/s12951-024-02545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
The development of cost-effective and eco-friendly fertilizers is crucial for enhancing iron (Fe) uptake in crops and can help alleviate dietary Fe deficiencies, especially in populations with limited access to meat. This study focused on the application of MgFe-layered double hydroxide nanoparticles (MgFe-LDHs) as a potential solution. We successfully synthesized and characterized MgFe-LDHs and observed that 1-10 mg/L MgFe-LDHs improved cucumber seed germination and water uptake. Notably, the application of 10 mg/L MgFe-LDHs to roots significantly increased the seedling emergence rate and growth under low-temperature stress. The application of 10 mg/L MgFe-LDHs during sowing increased the root length, lateral root number, root fresh weight, aboveground fresh weight, and hypocotyl length under low-temperature stress. A comprehensive analysis integrating plant physiology, nutrition, and transcriptomics suggested that MgFe-LDHs improve cold tolerance by upregulating SA to stimulate CsFAD3 expression, elevating GA3 levels for enhanced nitrogen metabolism and protein synthesis, and reducing levels of ABA and JA to support seedling emergence rate and growth, along with increasing the expression and activity of peroxidase genes. SEM and FTIR further confirmed the adsorption of MgFe-LDHs onto the root hairs in the mature zone of the root apex. Remarkably, MgFe-LDHs application led to a 46% increase (p < 0.05) in the Fe content within cucumber seedlings, a phenomenon not observed with comparable iron salt solutions, suggesting that the nanocrystalline nature of MgFe-LDHs enhances their absorption efficiency in plants. Additionally, MgFe-LDHs significantly increased the nitrogen (N) content of the seedlings by 12% (p < 0.05), promoting nitrogen fixation in the cucumber seedlings. These results pave the way for the development and use of LDH-based Fe fertilizers.
Collapse
Affiliation(s)
- Hongyang Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaoyang Wan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiefei Niu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
- Faculty of Medicine, Ludwig- Maximilians-University München, Munich, 81377, Germany
| | - Yidan Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shufang Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yayu Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xian Xue
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Cuifang Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
14
|
Ali J, Mukarram M, Ojo J, Dawam N, Riyazuddin R, Ghramh HA, Khan KA, Chen R, Kurjak D, Bayram A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14307. [PMID: 38705723 DOI: 10.1111/ppl.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Phytohormones, pivotal regulators of plant growth and development, are increasingly recognized for their multifaceted roles in enhancing crop resilience against environmental stresses. In this review, we provide a comprehensive synthesis of current research on utilizing phytohormones to enhance crop productivity and fortify their defence mechanisms. Initially, we introduce the significance of phytohormones in orchestrating plant growth, followed by their potential utilization in bolstering crop defences against diverse environmental stressors. Our focus then shifts to an in-depth exploration of phytohormones and their pivotal roles in mediating plant defence responses against biotic stressors, particularly insect pests. Furthermore, we highlight the potential impact of phytohormones on agricultural production while underscoring the existing research gaps and limitations hindering their widespread implementation in agricultural practices. Despite the accumulating body of research in this field, the integration of phytohormones into agriculture remains limited. To address this discrepancy, we propose a comprehensive framework for investigating the intricate interplay between phytohormones and sustainable agriculture. This framework advocates for the adoption of novel technologies and methodologies to facilitate the effective deployment of phytohormones in agricultural settings and also emphasizes the need to address existing research limitations through rigorous field studies. By outlining a roadmap for advancing the utilization of phytohormones in agriculture, this review aims to catalyse transformative changes in agricultural practices, fostering sustainability and resilience in agricultural settings.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
| | - James Ojo
- Department of Crop Production, Kwara State University, Malete, Nigeria
| | - Nancy Dawam
- Department of Zoology, Faculty of Natural and Applied Sciences, Plateau State University Bokkos, Diram, Nigeria
| | | | - Hamed A Ghramh
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Daniel Kurjak
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Ahmet Bayram
- Plant Protection, Faculty of Agriculture, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
15
|
Shani E, Hedden P, Sun TP. Highlights in gibberellin research: A tale of the dwarf and the slender. PLANT PHYSIOLOGY 2024; 195:111-134. [PMID: 38290048 PMCID: PMC11060689 DOI: 10.1093/plphys/kiae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 02/01/2024]
Abstract
It has been almost a century since biologically active gibberellin (GA) was isolated. Here, we give a historical overview of the early efforts in establishing the GA biosynthesis and catabolism pathway, characterizing the enzymes for GA metabolism, and elucidating their corresponding genes. We then highlight more recent studies that have identified the GA receptors and early GA signaling components (DELLA repressors and F-box activators), determined the molecular mechanism of DELLA-mediated transcription reprograming, and revealed how DELLAs integrate multiple signaling pathways to regulate plant vegetative and reproductive development in response to internal and external cues. Finally, we discuss the GA transporters and their roles in GA-mediated plant development.
Collapse
Affiliation(s)
- Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Hedden
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacky University, 78371 Olomouc, Czech Republic
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Tai-ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Shu H, Xu K, Li X, Liu J, Altaf MA, Fu H, Lu X, Cheng S, Wang Z. Exogenous strigolactone enhanced the drought tolerance of pepper (Capsicum chinense) by mitigating oxidative damage and altering the antioxidant mechanism. PLANT CELL REPORTS 2024; 43:106. [PMID: 38532109 DOI: 10.1007/s00299-024-03196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
KEY MESSAGE Exogenous SL positively regulates pepper DS by altering the root morphology, photosynthetic character, antioxidant enzyme activity, stomatal behavior, and SL-related gene expression. Drought stress (DS) has always been a problem for the growth and development of crops, causing significant negative impacts on crop productivity. Strigolactone (SL) is a newly discovered class of plant hormones that are involved in plants' growth and development and environmental stresses. However, the role of SL in response to DS in pepper remains unknown. DS considerably hindered photosynthetic pigments content, damaged root architecture system, and altered antioxidant machinery. In contrast, SL application significantly restored pigment concentration modified root architecture system, and increased relative chlorophyll content (SPAD). Additionally, SL treatment reduced oxidative damage by reducing hydrogen peroxide (H2O2) (24-57%) and malondialdehyde (MDA) (79-89%) accumulation in pepper seedlings. SL-pretreated pepper seedlings showed significant improvement in antioxidant enzyme activity, proline accumulation, and soluble sugar content. Furthermore, SL-related genes (CcSMAX2, CcSMXL6, and CcSMXL3) were down-regulated under DS. These findings suggest that the foliar application of SL can alleviate the adverse effects of drought tolerance by up-regulating chlorophyll content and activating antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Kaijing Xu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
| | - Xiangrui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
| | - Jiancheng Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
17
|
Liang Z, Wang Q, Sun M, Du R, Jin W, Liu S. Transcriptome and metabolome profiling reveal the effects of hormones on current-year shoot growth in Chinese 'Cuiguan' pear grafted onto vigorous rootstock 'Duli' and dwarf rootstock 'Quince A'. BMC PLANT BIOLOGY 2024; 24:169. [PMID: 38443784 PMCID: PMC10913655 DOI: 10.1186/s12870-024-04858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Dwarf rootstocks have important practical significance for high-density planting in pear orchards. The shoots of 'Cuiguan' grafted onto the dwarf rootstock were shorter than those grafted onto the vigorous rootstock. However, the mechanism of shorter shoot formation is not clear. RESULTS In this study, the current-year shoot transcriptomes and phytohormone contents of 'CG‒QA' ('Cuiguan' was grafted onto 'Quince A', and 'Hardy' was used as interstock) and 'CG‒DL' ('Cuiguan' was grafted onto 'Duli', and 'Hardy' was used as interstock) were compared. The transcriptome results showed that a total of 452 differentially expressed genes (DEGs) were identified, including 248 downregulated genes and 204 upregulated genes; the plant hormone signal transduction and zeatin biosynthesis pathways were significantly enriched in the top 20 KEGG enrichment terms. Abscisic acid (ABA) was the most abundant hormone in 'CG‒QA' and 'CG‒DL'; auxin and cytokinin (CTK) were the most diverse hormones; additionally, the contents of ABA, auxin, and CTK in 'CG‒DL' were higher than those in 'CG‒QA', while the fresh shoot of 'CG‒QA' accumulated more gibberellin (GA) and salicylic acid (SA). Metabolome and transcriptome co-analysis identified three key hormone-related DEGs, of which two (Aldehyde dehydrogenase gene ALDH3F1 and YUCCA2) were upregulated and one (Cytokinin oxidase/dehydrogenase gene CKX3) was downregulated. CONCLUSIONS Based on the results of transcriptomic and metabolomic analysis, we found that auxin and CTK mainly regulated the shoot differences of 'CG-QA' and 'CG-DL', and other hormones such as ABA, GA, and SA synergistically regulated this process. Three hormone-related genes ALDH3F1, YUCCA2, and CKX3 were the key genes contributing to the difference in shoot growth between 'CG-QA' and 'CG-DL' pear. This research provides new insight into the molecular mechanism underlying shoot shortening after grafted onto dwarf rootstocks.
Collapse
Affiliation(s)
- Zhenxu Liang
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Qinghua Wang
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Mingde Sun
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Ruirui Du
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Wanmei Jin
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Songzhong Liu
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China.
| |
Collapse
|
18
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Lian C, Lan J, Ma R, Li J, Zhang F, Zhang B, Liu X, Chen S. Genome-Wide Analysis of Aux/IAA Gene Family in Artemisia argyi: Identification, Phylogenetic Analysis, and Determination of Response to Various Phytohormones. PLANTS (BASEL, SWITZERLAND) 2024; 13:564. [PMID: 38475411 PMCID: PMC10934841 DOI: 10.3390/plants13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Artemisia argyi is a traditional herbal medicine plant, and its folium artemisia argyi is widely in demand due to moxibustion applications globally. The Auxin/indole-3-acetic acid (Aux/IAA, or IAA) gene family has critical roles in the primary auxin-response process, with extensive involvement in plant development and stresses, controlling various essential traits of plants. However, the systematic investigation of the Aux/IAA gene family in A. argyi remains limited. In this study, a total of 61 Aux/IAA genes were comprehensively identified and characterized. Gene structural analysis indicated that 46 Aux/IAA proteins contain the four typical domains, and 15 Aux/IAA proteins belong to non-canonical IAA proteins. Collinear prediction and phylogenetic relationship analyses suggested that Aux/IAA proteins were grouped into 13 distinct categories, and most Aux/IAA genes might experience gene loss during the tandem duplication process. Promoter cis-element investigation indicated that Aux/IAA promoters contain a variety of plant hormone response and stress response cis-elements. Protein interaction prediction analysis demonstrated that AaIAA26/29/7/34 proteins are possibly core members of the Aux/IAA family interaction. Expression analysis in roots and leaves via RNA-seq data indicated that the expression of some AaIAAs exhibited tissue-specific expression patterns, and some AaIAAs were involved in the regulation of salt and saline-alkali stresses. In addition, RT-qPCR results indicated that AaIAA genes have differential responses to auxin, with complex response patterns in response to other hormones, indicating that Aux/IAA may play a role in connecting auxin and other hormone signaling pathways. Overall, these findings shed more light on AaIAA genes and offer critical foundational knowledge toward the elucidation of their function during plant growth, stress response, and hormone networking of Aux/IAA family genes in A. argyi.
Collapse
Affiliation(s)
- Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Jinxu Lan
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Jingjing Li
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Fei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Bao Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Xiuyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| |
Collapse
|
20
|
Xu G, Li Y, Lin X, Yu Y. Effects and mechanisms of polystyrene micro- and nano-plastics on the spread of antibiotic resistance genes from soil to lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169293. [PMID: 38104810 DOI: 10.1016/j.scitotenv.2023.169293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Effects of microplastics (MPs) and nanoplastics (NPs) on the spread of antibiotic resistance genes (ARGs) in soil-plant systems are still unclear. To investigate the spread and mechanisms of ARGs from soil to lettuce, lettuce was exposed to soil spiked with two environmentally relevant concentrations of polystyrene MPs (100 μm) and NPs (100 nm). Results showed that microorganisms that carried ARGs in soil were increased after exposure to MPs/NPs, which led to an increase in ARGs in roots. NPs were absorbed by roots and can be transported to leaves. Analysis of transcriptomics, proteomics and metabolomics indicated that high concentration of NPs regulated the expression of related genes and proteins and improved the accumulation of flavonoids in the lettuce, therefore decreased the abundance of microorganisms that contained ARGs. Our work emphasizes the size and dose influences of MPs and NPs on the spread of ARGs from soil to plant.
Collapse
Affiliation(s)
- Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Lin
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
21
|
Li H, Che R, Zhu J, Yang X, Li J, Fernie AR, Yan J. Multi-omics-driven advances in the understanding of triacylglycerol biosynthesis in oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:999-1017. [PMID: 38009661 DOI: 10.1111/tpj.16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
22
|
Zhu C, Jiang R, Wen S, Xia T, Zhu S, Hou X. Foliar spraying of indoleacetic acid (IAA) enhances the phytostabilization of Pb in naturally tolerant ryegrass by limiting the root-to-shoot transfer of Pb and improving plant growth. PeerJ 2023; 11:e16560. [PMID: 38111653 PMCID: PMC10726742 DOI: 10.7717/peerj.16560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Exogenous addition of IAA has the potential to improve the metal tolerance and phytostabilization of plants, but these effects have not been systematically investigated in naturally tolerant plants. Ryegrass (Lolium perenne L.) is a typical indigenous plant in the Lanping Pb/Zn mining area with high adaptability. This study investigated the phytostabilization ability and Pb tolerance mechanism of ryegrass in response to Pb, with or without foliar spraying of 0.1 mmol L-1 IAA. The results indicated that appropriate IAA treatment could be used to enhance the phytostabilization efficiency of naturally tolerant plants. Foliar spraying of IAA increased the aboveground and belowground biomass of ryegrass and improved root Pb phytostabilization. Compared to Pb-treated plants without exogenous IAA addition, Pb concentration in the shoots of ryegrass significantly decreased, then increased in the roots after the foliar spraying of IAA. In the 1,000 mg kg-1 Pb-treated plants, Pb concentration in the shoots decreased by 69.9% and increased by 79.1% in the roots after IAA treatment. IAA improved plant growth, especially in soils with higher Pb concentration. Foliar spraying of IAA increased shoot biomass by 35.9% and root biomass by 109.4% in 1,000 mg kg-1 Pb-treated plants, and increased shoot biomass by 196.5% and root biomass by 71.5% in 2,000 mg kg-1 Pb-treated plants. In addition, Pb stress significantly decreased the content of photosynthetic pigments and anti-oxidase activities in ryegrass, while foliar spraying of IAA remedied these negative impacts. In summary, foliar spraying of IAA could increase the biomass and improve the Pb tolerance of ryegrass.
Collapse
Affiliation(s)
| | | | | | | | - Saiyong Zhu
- Zhejiang Ecological Civilization Academy, Huzhou, China
- College of Environmental & Resource Sciences of Zhejiang University, Hangzhou, China
| | | |
Collapse
|
23
|
Wang L, Zhang H, Fatima Z, Ge J, Zhang X, Zou Y, Yu C, Li D. Highly sensitive analysis of photoregulation and dynamic distribution of phytohormones based on nanoconfined liquid phase nanoextraction. Anal Chim Acta 2023; 1283:341907. [PMID: 37977798 DOI: 10.1016/j.aca.2023.341907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND As a vital energy source, light is one of the most significant environmental signals for plants' growth and development. The crosstalk amongst phytohormones regulated by light exhibits quantitative dynamic changes, but methodologies to analyze their distribution during plant growth are still limited. Rapid, highly sensitive, low-invasive detection and simultaneous assessment of the levels of multiple classes of phytohormones have important phytology applications, however the existing sample pretreatment strategies remain intricate, laborious, and far from being developed for in vivo high-sensitivity testing. (81) RESULTS: We applied a nanoconfined liquid phase nanoextraction (NLPNE) technique based on acidified carbon nanofibers (ACNFs) in combination with LC-ESI-MS/MS for highly sensitive analysis of acidic phytohormones' photoregulation and dynamic distribution. In this system, the mass transfer ability of analytes entering the nanoconfined space is significantly improved given the nanoconfined effect. In particular, the accelerated and strong adsorption of alkaline compounds to the ACNFs surface provide minimum interference for acidic compounds (photosensitive phytohormones), which facilitates their simple, fast, and selective quantification with improved sensitivity. The ACNFs-NLPNE strategy achieved quantitative enrichment of multi-class phytohormones in less than 5 min, and detection limits down to 0.49 fg mL-1. Moreover, we monitored the phytohormone changes under red and blue monochromatic light with relative standard deviations <13.4 %. The results further indicated that short-time red light regulation promoted Lepidium sativum L. growth while blue light inhibited it. (141) SIGNIFICANCE: A nanoconfinement effect-based sample pretreatment platform was developed for monitoring photoregulation phytohormones dynamic distribution with higher sensitivity and stability. Our findings highlighted the importance of the NLPNE approach in providing an accurate plant crosstalk information at the molecular level, which opens a promising avenue for investigating internal hormonal responses to external stimuli. (52).
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Haijing Zhang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China
| | - Zakia Fatima
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Jiahui Ge
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Xinyang Zhang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Yilin Zou
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Chunyu Yu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China.
| |
Collapse
|
24
|
Wu H, Wan X, Niu J, Xu H, Zhang Y, Xue X, Li Y, Li Q, Lu T, Yu H, Jiang W. Enhancing lettuce yield via Cu/Fe-layered double hydroxide nanoparticles spraying. J Nanobiotechnology 2023; 21:417. [PMID: 37950234 PMCID: PMC10638715 DOI: 10.1186/s12951-023-02178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Layered double hydroxides (LDHs) have been widely used in the field of plant engineering, such as DNA/RNA transformation and enhancing plant disease resistance. However, few studies have examined the direct effects of LDHs on plants and their potential utility as nanofertilizers. In this study, the retention capacity of Cu/Fe-layered double hydroxide nanoparticles (CuFe-LDHs) was assessed by comparative experiments on vegetables. The results showed that the retention of CuFe-LDHs in leafy vegetables was high, such as lettuce. Phenotypic analysis revealed that the fresh and dry weights of lettuce leaves were both increased by spraying 10-100 μg/mL CuFe-LDHs. Using the optimal concentration of 10 μg/mL, we conducted further experiments to elucidate the mechanism of CuFe-LDHs promoting lettuce growth. It was found that the application of CuFe-LDHs had a significant effect on growth and induced physiological, transcriptomic, and metabolomic changes, including an increase in the chlorophyll b content, net photosynthetic rate, and intercellular carbon dioxide concentration, as well as modifications in gene expression patterns and metabolite profiles. This work provides compelling evidence that CuFe-LDHs can efficiently adsorb on the surface of lettuce leaves through hydrogen bonding, promote lettuce growth, mitigate the toxicity of heavy metal ions compared to their raw materials at the same concentration and offer a molecular-scale insight into the response of leafy vegetables to CuFe-LDHs.
Collapse
Affiliation(s)
- Hongyang Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyang Wan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiefei Niu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xian Xue
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
25
|
Yang L, Luo S, Jiao J, Yan W, Zeng B, He H, He G. Integrated Transcriptomic and Metabolomic Analysis Reveals the Mechanism of Gibberellic acid Regulates the Growth and Flavonoid Synthesis in Phellodendron chinense Schneid Seedlings. Int J Mol Sci 2023; 24:16045. [PMID: 38003235 PMCID: PMC10671667 DOI: 10.3390/ijms242216045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The phytohormone gibberellic acids (GAs) play a crucial role in the processes of growth, organ development, and secondary metabolism. However, the mechanism of exogenous GA3 regulating the growth and flavonoid synthesis in Phellodendron chinense Schneid (P. chinense Schneid) seedlings remains unclear. In this study, the physicochemical properties, gene expression level, and secondary metabolite of P. chinense Schneid seedlings under GA3 treatment were investigated. The results showed that GA3 significantly improved the plant height, ground diameter, fresh weight, chlorophyll content, soluble substance content, superoxide dismutase, and peroxidase activities. This was accompanied by elevated relative expression levels of Pc(S)-GA2ox, Pc(S)-DELLA, Pc(S)-SAUR50, Pc(S)-PsaD, Pc(S)-Psb 27, Pc(S)-PGK, Pc(S)-CER3, and Pc(S)-FBA unigenes. Conversely, a notable reduction was observed in the carotenoid content, catalase activity and the relative expression abundances of Pc(S)-KAO, Pc(S)-GID1/2, and Pc(S)-GH 3.6 unigenes in leaves of P. chinense Schneid seedlings (p < 0.05). Furthermore, GA3 evidently decreased the contents of pinocembrin, pinobanksin, isosakuranetin, naringin, naringenin, (-)-epicatechin, tricetin, luteolin, and vitexin belonged to flavonoid in stem bark of P. chinense Schneid seedlings (p < 0.05). These results indicated that exogenous GA3 promoted growth through improving chlorophyll content and gene expression in photosynthesis and phytohormone signal pathway and inhibited flavonoid synthesis in P. chinense Schneid seedlings.
Collapse
Affiliation(s)
- Lv Yang
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Shengwei Luo
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Jing Jiao
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Baiquan Zeng
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Gongxiu He
- College of Forestry, Central South University of Forestry & Technology, Changsha 410004, China
| |
Collapse
|
26
|
Zhang D, Qu S, Wang M, Liu Y, Xu C, Kan H, Wang Y, Dong K. Application of a three dimensional polyethyleneimine functionalized graphene oxide aerogel as an adsorbent for the determination of phytohormones in ginseng. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5630-5638. [PMID: 37853757 DOI: 10.1039/d3ay01368e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Aerogels have attracted considerable attention in sample pretreatment for their outstanding properties, such as the unique porous structure, large surface area and abundant modifiable active sites. The present research reports a three-dimensional interconnected porous network aerogel (PEI-AGO) manufactured based on graphene oxide (GO), polyethyleneimine (PEI) and agar as basic materials through a vacuum freeze-drying treatment. The PEI-AGO aerogel exhibits great potential as a solid phase extraction adsorbent for the selective purification of six endogenous plant hormones in conjunction with high performance liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS). Several factors affecting the extraction efficiency were investigated. Under the optimized extraction conditions, a wide linear range of 0.5-100 ng mL-1 with a good linearity (r > 0.9934) was observed. Low limits of detection (LODs) and limits of quantification (LOQs) were obtained in the range of 0.032-0.155 ng mL-1 and 0.107-0.518 ng mL-1, respectively. Furthermore, the relative recoveries for spiked ginseng samples exhibited remarkable consistency, ranging from 90.2% to 117.6%, with a relative standard deviation (RSD) of ≤9.4% (n = 3). In summary, PEI-AGO has proven to be an effective adsorbent for the pretreatment and enrichment of phytohormones which can be used for the determination of trace endogenous acidic plant hormones in ginseng leaves.
Collapse
Affiliation(s)
- Dongxue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Shuai Qu
- Jilin Institute of Biology, 1244 Qianjin Street, Changchun 130012, Jilin, China
| | - Mingyue Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Yuhan Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| |
Collapse
|
27
|
Wang Y, Perez-Sancho J, Platre MP, Callebaut B, Smokvarska M, Ferrer K, Luo Y, Nolan TM, Sato T, Busch W, Benfey PN, Kvasnica M, Winne JM, Bayer EM, Vukašinović N, Russinova E. Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones. Nat Chem Biol 2023; 19:1331-1341. [PMID: 37365405 PMCID: PMC10729306 DOI: 10.1038/s41589-023-01346-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 04/21/2023] [Indexed: 06/28/2023]
Abstract
Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.
Collapse
Affiliation(s)
- Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jessica Perez-Sancho
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université de Bordeaux, Centre National de la Recherche Scientifique, Villenave d'Ornon, France
| | - Matthieu Pierre Platre
- Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Brenda Callebaut
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Marija Smokvarska
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université de Bordeaux, Centre National de la Recherche Scientifique, Villenave d'Ornon, France
| | - Karoll Ferrer
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, Olomouc, Czech Republic
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | - Takeo Sato
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université de Bordeaux, Centre National de la Recherche Scientifique, Villenave d'Ornon, France
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
28
|
Wong C, Alabadí D, Blázquez MA. Spatial regulation of plant hormone action. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6089-6103. [PMID: 37401809 PMCID: PMC10575700 DOI: 10.1093/jxb/erad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Although many plant cell types are capable of producing hormones, and plant hormones can in most cases act in the same cells in which they are produced, they also act as signaling molecules that coordinate physiological responses between different parts of the plant, indicating that their action is subject to spatial regulation. Numerous publications have reported that all levels of plant hormonal pathways, namely metabolism, transport, and perception/signal transduction, can help determine the spatial ranges of hormone action. For example, polar auxin transport or localized auxin biosynthesis contribute to creating a differential hormone accumulation across tissues that is instrumental for specific growth and developmental responses. On the other hand, tissue specificity of cytokinin actions has been proposed to be regulated by mechanisms operating at the signaling stages. Here, we review and discuss current knowledge about the contribution of the three levels mentioned above in providing spatial specificity to plant hormone action. We also explore how new technological developments, such as plant hormone sensors based on FRET (fluorescence resonance energy transfer) or single-cell RNA-seq, can provide an unprecedented level of resolution in defining the spatial domains of plant hormone action and its dynamics.
Collapse
Affiliation(s)
- Cynthia Wong
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| |
Collapse
|
29
|
Huang X, Zhang X, An N, Zhang M, Ma M, Yang Y, Jing L, Wang Y, Chen Z, Zhang P. Cryo-EM structure and molecular mechanism of abscisic acid transporter ABCG25. NATURE PLANTS 2023; 9:1709-1719. [PMID: 37666961 DOI: 10.1038/s41477-023-01509-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
Abscisic acid (ABA) is one of the plant hormones that regulate various physiological processes, including stomatal closure, seed germination and development. ABA is synthesized mainly in vascular tissues and transported to distal sites to exert its physiological functions. Many ABA transporters have been identified, however, the molecular mechanism of ABA transport remains elusive. Here we report the cryogenic electron microscopy structure of the Arabidopsis thaliana adenosine triphosphate-binding cassette G subfamily ABA exporter ABCG25 (AtABCG25) in inward-facing apo conformation, ABA-bound pre-translocation conformation and outward-facing occluded conformation. Structural and biochemical analyses reveal that the ABA bound with ABCG25 adopts a similar configuration as that in ABA receptors and that the ABA-specific binding is dictated by residues from transmembrane helices TM1, TM2 and TM5a of each protomer at the transmembrane domain interface. Comparison of different conformational structures reveals conformational changes, especially those of transmembrane helices and residues constituting the substrate translocation pathway during the cross-membrane transport process. Based on the structural data, a 'gate-flipper' translocation model of ABCG25-mediated ABA cross-membrane transport is proposed. Our structural data on AtABCG25 provide new clues to the physiological study of ABA and shed light on its potential applications in plants and agriculture.
Collapse
Affiliation(s)
- Xiaowei Huang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ning An
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minhua Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Miaolian Ma
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianyan Jing
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongfei Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenguo Chen
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
30
|
González-Villagra J, Bravo LA, Reyes-Díaz M, Cohen JD, Ribera-Fonseca A, López-Olivari R, Jorquera-Fontena E, Tighe-Neira R. Pre-Harvest Salicylic Acid Application Affects Fruit Quality and Yield under Deficit Irrigation in Aristotelia chilensis (Mol.) Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3279. [PMID: 37765440 PMCID: PMC10537942 DOI: 10.3390/plants12183279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Salicylic acid (SA) application is a promising agronomic tool. However, studies under field conditions are required, to confirm the potential benefits of SA. Thus, SA application was evaluated under field conditions for its effect on abscisic acid levels, antioxidant related-parameters, fruit quality, and yield in Aristotelia chilensis subjected to different levels of irrigation. During two growing seasons, three-year-old plants under field conditions were subjected to full irrigation (FI: 100% of reference evapotranspiration (ETo), and deficit irrigation (DI: 60% ETo). During each growth season, a single application of 0.5 mM SA was performed at fruit color change by spraying fruits and leaves of both irrigation treatments. The results showed that DI plants experienced moderate water stress (-1.3 MPa), which increased ABA levels and oxidative stress in the leaves. The SA application facilitated the recovery of all physiological parameters under the DI condition, increasing fruit fresh weight by 44%, with a 27% increase in fruit dry weight, a 1 mm increase in equatorial diameter, a 27% improvement in yield per plant and a 27% increase in total yield, with lesser oxidative stress and tissue ABA levels in leaves. Also, SA application significantly increased (by about 10%) the values of fruit trait variables such as soluble solids, total phenols, and antioxidant activity, with the exceptions of titratable acidity and total anthocyanins, which did not vary. The results demonstrated that SA application might be used as an agronomic strategy to improve fruit yield and quality, representing a saving of 40% regarding water use.
Collapse
Affiliation(s)
- Jorge González-Villagra
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile; (E.J.-F.); (R.T.-N.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile
| | - León A. Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile;
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.R.-D.); (A.R.-F.)
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.R.-D.); (A.R.-F.)
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Jerry D. Cohen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA;
| | - Alejandra Ribera-Fonseca
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.R.-D.); (A.R.-F.)
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Medioambiente, Campus Andrés Bello, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Rafael López-Olivari
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Km 10 camino Cajón-Vilcún s/n, Temuco P.O. Box 929, Chile;
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile; (E.J.-F.); (R.T.-N.)
| | - Ricardo Tighe-Neira
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile; (E.J.-F.); (R.T.-N.)
| |
Collapse
|
31
|
Wang D, Sarsaiya S, Qian X, Jin L, Shu F, Zhang C, Chen J. Analysis of the response mechanisms of Pinellia ternata to terahertz wave stresses using transcriptome and metabolic data. FRONTIERS IN PLANT SCIENCE 2023; 14:1227507. [PMID: 37771489 PMCID: PMC10522861 DOI: 10.3389/fpls.2023.1227507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Pinellia ternata (Thunb.) Breit. (Araceae), a significant medicinal plant, has been used to treat various diseases for centuries. Terahertz radiation (THZ) is located between microwaves and infrared rays on the electromagnetic spectrum. THZ possesses low single-photon energy and a spectral fingerprint, but its effects on plant growth have not yet been investigated. The study's primary objective was to examine the transcriptome and metabolome databases of the SY line to provide a new perspective for identifying genes associated with resistance and growth promotion and comprehending the underlying molecular mechanism. Variations in the biological characteristics of P. ternata grown under control and experimental conditions were analyzed to determine the effect of THZ. Compared with the control group, phenotypic variables such as leaf length, petiole length, number of leaves, leaf petiole diameter, and proliferation coefficient exhibited significant differences. P. ternata response to THZ was analyzed regarding the effects of various coercions on root exudation. The experimental group contained considerably more sugar alcohol than the control group. The transcriptome analysis revealed 1,695 differentially expressed genes (DEGs), including 509 upregulated and 1,186 downregulated genes. In the KEGG-enriched plant hormone signaling pathway, there were 19 differentially expressed genes, 13 of which were downregulated and six of which were upregulated. In the metabolomic analysis, approximately 416 metabolites were uncovered. There were 112 DEMs that were downregulated, whereas 148 were upregulated. The P. ternata leaves displayed significant differences in phytohormone metabolites, specifically in brassinolide (BR) and abscisic acid (ABA). The rise in BR triggers alterations in internal plant hormones, resulting in faster growth and development of P. ternata. Our findings demonstrated a link between THZ and several metabolic pathway processes, which will enhance our understanding of P. ternata mechanisms.
Collapse
Affiliation(s)
- Dongdong Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xu Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Leilei Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Fuxing Shu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | | | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
32
|
López-Pozo M, Adams WW, Demmig-Adams B. Lemnaceae as Novel Crop Candidates for CO 2 Sequestration and Additional Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:3090. [PMID: 37687337 PMCID: PMC10490035 DOI: 10.3390/plants12173090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Atmospheric carbon dioxide (CO2) is projected to be twice as high as the pre-industrial level by 2050. This review briefly highlights key responses of terrestrial plants to elevated CO2 and compares these with the responses of aquatic floating plants of the family Lemnaceae (duckweeds). Duckweeds are efficient at removing CO2 from the atmosphere, which we discuss in the context of their exceptionally high growth rates and capacity for starch storage in green tissue. In contrast to cultivation of terrestrial crops, duckweeds do not contribute to CO2 release from soils. We briefly review how this potential for contributions to stabilizing atmospheric CO2 levels is paired with multiple additional applications and services of duckweeds. These additional roles include wastewater phytoremediation, feedstock for biofuel production, and superior nutritional quality (for humans and livestock), while requiring minimal space and input of light and fertilizer. We, furthermore, elaborate on other environmental factors, such as nutrient availability, light supply, and the presence of a microbiome, that impact the response of duckweed to elevated CO2. Under a combination of elevated CO2 with low nutrient availability and moderate light supply, duckweeds' microbiome helps maintain CO2 sequestration and relative growth rate. When incident light intensity increases (in the presence of elevated CO2), the microbiome minimizes negative feedback on photosynthesis from increased sugar accumulation. In addition, duckweed shows a clear propensity for absorption of ammonium over nitrate, accepting ammonium from their endogenous N2-fixing Rhizobium symbionts, and production of large amounts of vegetative storage protein. Finally, cultivation of duckweed could be further optimized using hydroponic vertical farms where nutrients and water are recirculated, saving both resources, space, and energy to produce high-value products.
Collapse
Affiliation(s)
- Marina López-Pozo
- Department of Plant Biology & Ecology, University of the Basque Country, 48940 Leioa, Spain
| | - William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
33
|
Ran F, Bai X, Li J, Yuan Y, Li C, Li P, Chen H. Cytokinin and Metabolites Affect Rhizome Growth and Development in Kentucky Bluegrass ( Poa pratensis). BIOLOGY 2023; 12:1120. [PMID: 37627004 PMCID: PMC10452147 DOI: 10.3390/biology12081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Rhizome growth and development is regulated by phytohormone. However, endogenous phytohormones affect rhizome initiation, and sustained growth in perennial grass species remains elusive. In this study, we investigated the morphological characteristics and the content of indole-3-acetic acid (IAA), zeatin (ZT), gibberellic acid (GA3), and abscisic acid (ABA) in the rhizomes of two different Kentucky bluegrass. Using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), we performed metabolite analysis of two different rhizomes. In our study, the multi-rhizome Kentucky bluegrass material 'Yuzhong' had an average of 1113 rhizomes, while the few-rhizome material 'Anding' had an average of 347 rhizomes. The diameter of rhizome and length of rhizome internode in 'Yuzhong' were 1.68-fold and 1.33-fold higher than that of the 'Anding', respectively. The rhizome dry weight of 'Yuzhong' was 75.06 g, while the 'Anding' was 20.79 g. 'Yuzhong' had a higher ZT content (5.50 μg·g-1), which is 2.4-fold that of 'Anding' (2.27 μg·g-1). In contrast, the IAA, ABA, and GA3 content of rhizome were markedly higher in 'Anding' than 'Yuzhong'. Correlation analysis revealed significant correlations between ZT and ZT/ABA with the number of rhizomes, diameter of rhizome, and length of rhizome internode, whereas IAA, ABA, GA3, and IAA/ZT were opposite. In the metabolic profiles, we identified 163 differentially expressed metabolites (DEMs) (60 upregulated and 103 downregulated) in positive ion mode and 75 DEMs (36 upregulated and 39 downregulated) in negative ion mode. Histidine metabolism and ABC transporters pathways were the most significantly enriched in the positive and negative ion mode, respectively, both of which are involved in the synthesis and transport of cytokinin. These results indicate that cytokinin is crucial for rhizome development and promotes rhizome germination and growth of Kentucky bluegrass.
Collapse
Affiliation(s)
- Fu Ran
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Xiaoming Bai
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
| | - Juanxia Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Yajuan Yuan
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Ping Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Hui Chen
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
34
|
Czékus Z, Martics A, Pollák B, Kukri A, Tari I, Ördög A, Poór P. The local and systemic accumulation of ethylene determines the rapid defence responses induced by flg22 in tomato (Solanum lycopersicum L.). JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154041. [PMID: 37339571 DOI: 10.1016/j.jplph.2023.154041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Plant defence responses induced by the bacterial elicitor flg22 are highly dependent on phytohormones, including gaseous ethylene (ET). While the regulatory role of ET in local defence responses to flg22 exposure has been demonstrated, its contribution to the induction of systemic responses is not clearly understood. For this consideration, we examined the effects of different ET modulators on the flg22-induced local and systemic defence progression. In our experiments, ET biosynthesis inhibitor aminoethoxyvinyl glycine (AVG) or ET receptor blocker silver thiosulphate (STS) were applied 1 h before flg22 treatments and 1 h later the rapid local and systemic responses were detected in the leaves of intact tomato plants (Solanum lycopersicum L.). Based on our results, AVG not only diminished the flg22-induced ET accumulation locally, but also in the younger leaves confirming the role of ET in the whole-plant expanding defence progression. This increase in ET emission was accompanied by increased local expression of SlACO1, which was reduced by AVG and STS. Local ET biosynthesis upon flg22 treatment was shown to positively regulate local and systemic superoxide (O2.-) and hydrogen peroxide (H2O2) production, which in turn could contribute to ET accumulation in younger leaves. Confirming the role of ET in flg22-induced rapid defence responses, application of AVG reduced local and systemic ET, O2.- and H2O2 production, whereas STS reduced it primarily in the younger leaves. Interestingly, in addition to flg22, AVG and STS induced stomatal closure alone at whole-plant level, however in the case of combined treatments together with flg22 both ET modulators reduced the rate of stomatal closure in the older- and younger leaves as well. These results demonstrate that both local and systemic ET production in sufficient amounts and active ET signalling are essential for the development of flg22-induced rapid local and systemic defence responses.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary.
| | - Atina Martics
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary.
| | - Boglárka Pollák
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary.
| | - András Kukri
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary.
| | - Irma Tari
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary.
| | - Attila Ördög
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary.
| | - Péter Poór
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
35
|
Yue F, Zheng F, Li Q, Mei J, Shu C, Qian W. Comparative Transcriptome Analysis Points to the Biological Processes of Hybrid Incompatibility between Brassica napus and B. oleracea. PLANTS (BASEL, SWITZERLAND) 2023; 12:2622. [PMID: 37514237 PMCID: PMC10384443 DOI: 10.3390/plants12142622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Improving Brassica napus via introgression of the genome components from its parental species, B. oleracea and B. rapa, is an important breeding strategy. Interspecific hybridization between B. napus and B. rapa is compatible with high rate of survival ovules, while the hybridization between B. napus and B. oleracea is incompatible with the high occurrence of embryo abortion. To understand the diverse embryo fate in the two interspecific hybridizations, here, the siliques of B. napus pollinated with B. oleracea (AE) and B. rapa (NE) were employed for transcriptome sequencing at 8 and 16 days after pollination. Compared to NE and the parental line of B. napus, more specific differentially expressed genes (DEGs) (1274 and 1698) were obtained in AE and the parental line of B. napus at 8 and 16 days after pollination (DAP). These numbers were 51 and 5.8 times higher than the number of specific DEGs in NE and parental line of B. napus at 8 and 16 DAP, respectively, suggesting more complex transcriptional changes in AE. Most of DEGs in the terms of cell growth and cell wall formation exhibited down-regulated expression patterns (96(down)/131(all) in AE8, 174(down)/235(all) in AE16), while most of DEGs in the processes of photosynthesis, photorespiration, peroxisome, oxidative stress, and systemic acquired resistance exhibited up-regulated expression patterns (222(up)/304(all) in AE8, 214(up)/287(all) in AE16). This is in accordance with a high level of reactive oxygen species (ROS) in the siliques of B. napus pollinated with B. oleracea. Our data suggest that the disorder of plant hormone metabolism, retardation of cell morphogenesis, and the accumulation of ROS may be associated with hybrid incompatibility between B. napus and B. oleracea.
Collapse
Affiliation(s)
- Fang Yue
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fajing Zheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qinfei Li
- College of Horticulture and Landscape, Southwest University, Chongqing 400715, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chunlei Shu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
36
|
Wang Y, Lei B, Deng H, Liu X, Dong Y, Chen W, Lu X, Chen G, Zhang G, Tang W, Xiao Y. Exogenous Abscisic Acid Affects the Heat Tolerance of Rice Seedlings by Influencing the Accumulation of ROS. Antioxidants (Basel) 2023; 12:1404. [PMID: 37507943 PMCID: PMC10376659 DOI: 10.3390/antiox12071404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Heat stress (HS) has become one of the major abiotic stresses that severely constrain rice growth. Abscisic acid (ABA) plays an important role in plant development and stress response. However, the effect of different concentrations of exogenous ABA on HS tolerance in rice still needs to be further elucidated. Here, we found that high concentrations of exogenous ABA increased HS damage in seedlings, whereas 10-12 M ABA treatment increased fresh and dry weight under HS relative to mock seedlings. Our further data showed that, in response to HS, 10-5 M, ABA-treated seedlings exhibited a lower chlorophyll content, as well as transcript levels of chlorophyll biosynthesis and antioxidant genes, and increased the accumulation of reactive oxygen species (ROS). In addition, the transcript abundance of some heat-, defense-, and ABA-related genes was downregulated on 10-5 M ABA-treated seedlings under HS. In conclusion, high concentrations of exogenous ABA reduced the HS tolerance of rice seedlings, and this negative effect could be achieved by regulating the accumulation of ROS, chlorophyll biosynthesis, and the transcription levels of key genes in seedlings under HS.
Collapse
Affiliation(s)
- Yingfeng Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Bin Lei
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Huabing Deng
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiong Liu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yating Dong
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Wenjuan Chen
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xuedan Lu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Guihua Chen
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Guilian Zhang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Wenbang Tang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yunhua Xiao
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
37
|
Radchuk V, Belew ZM, Gündel A, Mayer S, Hilo A, Hensel G, Sharma R, Neumann K, Ortleb S, Wagner S, Muszynska A, Crocoll C, Xu D, Hoffie I, Kumlehn J, Fuchs J, Peleke FF, Szymanski JJ, Rolletschek H, Nour-Eldin HH, Borisjuk L. SWEET11b transports both sugar and cytokinin in developing barley grains. THE PLANT CELL 2023; 35:2186-2207. [PMID: 36857316 DOI: 10.1093/plcell/koad055] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin. Barley plants harboring a loss-of-function mutation of HvSWEET11b could not set viable grains, while the distribution of sucrose and cytokinin was altered in developing grains of plants in which the gene was knocked down. Sucrose allocation within transgenic grains was disrupted, which is consistent with the changes to the cytokinin gradient across grains, as visualized by magnetic resonance imaging and Fourier transform infrared spectroscopy microimaging. Decreasing HvSWEET11b expression in developing grains reduced overall grain size, sink strength, the number of endopolyploid endosperm cells, and the contents of starch and protein. The control exerted by HvSWEET11b over sugars and cytokinins likely predetermines their synergy, resulting in adjustments to the grain's biochemistry and transcriptome.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Zeinu M Belew
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Simon Mayer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Goetz Hensel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JGUK
| | - Kerstin Neumann
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Christoph Crocoll
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Deyang Xu
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Iris Hoffie
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Joerg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Fritz F Peleke
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jedrzej J Szymanski
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Hussam H Nour-Eldin
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| |
Collapse
|
38
|
Zhao J, Deng X, Qian J, Liu T, Ju M, Li J, Yang Q, Zhu X, Li W, Liu CJ, Jin Z, Zhang K. Arabidopsis ABCG14 forms a homodimeric transporter for multiple cytokinins and mediates long-distance transport of isopentenyladenine-type cytokinins. PLANT COMMUNICATIONS 2023; 4:100468. [PMID: 36307987 PMCID: PMC10030318 DOI: 10.1016/j.xplc.2022.100468] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Cytokinins (CKs), primarily trans-zeatin (tZ) and isopentenyladenine (iP) types, play critical roles in plant growth, development, and various stress responses. Long-distance transport of tZ-type CKs meidated by Arabidopsis ATP-binding cassette transporter subfamily G14 (AtABCG14) has been well studied; however, less is known about the biochemical properties of AtABCG14 and its transporter activity toward iP-type CKs. Here we reveal the biochemical properties of AtABCG14 and provide evidence that it is also required for long-distance transport of iP-type CKs. AtABCG14 formed homodimers in human (Homo sapiens) HEK293T, tobacco (Nicotiana tabacum), and Arabidopsis cells. Transporter activity assays of AtABCG14 in Arabidopsis, tobacco, and yeast (Saccharomyces cerevisiae) showed that AtABCG14 may directly transport multiple CKs, including iP- and tZ-type species. AtABCG14 expression was induced by iP in a tZ-type CK-deficient double mutant (cypDM) of CYP735A1 and CYP735A2. The atabcg14 cypDM triple mutant exhibited stronger CK-deficiency phenotypes than cypDM. Hormone profiling, reciprocal grafting, and 2H6-iP isotope tracer experiments showed that root-to-shoot and shoot-to-root long-distance transport of iP-type CKs were suppressed in atabcg14 cypDM and atabcg14. These results suggest that AtABCG14 participates in three steps of the circular long-distance transport of iP-type CKs: xylem loading in the root for shootward transport, phloem unloading in the shoot for shoot distribution, and phloem unloading in the root for root distribution. We found that AtABCG14 displays transporter activity toward multiple CK species and revealed its versatile roles in circular long-distance transport of iP-type CKs. These findings provide new insights into the transport mechanisms of CKs and other plant hormones.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xiaojuan Deng
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jiayun Qian
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Ting Liu
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Min Ju
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Juan Li
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Qin Yang
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xiaoxian Zhu
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Weiqiang Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhigang Jin
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Kewei Zhang
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China.
| |
Collapse
|
39
|
Abstract
Photoirradiation and small organic molecule triggering of appropriately designed caged hormones enable the control and manipulation of the corresponding biological processes with high spatial and temporal resolution. Caged trans-zeatin substituted with nitrobenzene carbonates as photoremovable protecting groups and trans-cyclooctene as the tetrazine-responsive motif have been synthesized. A smooth release of the trapped trans-zeatin molecule has been achieved, permitting targeted perturbation of biological processes, including degradation, glucosylation, and recognition by appropriate enzymes.
Collapse
Affiliation(s)
- Xin Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Lu CK, Liang G. Fe deficiency-induced ethylene synthesis confers resistance to Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 237:1843-1855. [PMID: 36440498 DOI: 10.1111/nph.18638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Although iron (Fe) deficiency is an adverse condition to growth and development of plants, it increases the resistance to pathogens. How Fe deficiency induces the resistance to pathogens is still unclear. Here, we reveal that the inoculation of Botrytis cinerea activates the Fe deficiency response of plants, which further induces ethylene synthesis and then resistance to B. cinerea. FIT and bHLH Ib are a pair of bHLH transcription factors, which control the Fe deficiency response. Both the Fe deficiency-induced ethylene synthesis and resistance are blocked in fit-2 and bhlh4x-1 (a quadruple mutant for four bHLH Ib members). SAM1 and SAM2, two ethylene synthesis-associated genes, are induced by Fe deficiency in a FIT-bHLH Ib-dependent manner. Moreover, SAM1 and SAM2 are required for the increased ethylene and resistance to B. cinerea under Fe-deficient conditions. Our findings suggest that the FIT-bHLH Ib module activates the expression of SAM1 and SAM2, thereby inducing ethylene synthesis and resistance to B. cinerea. This study uncovers that Fe signaling also functions as a part of the plant immune system against pathogens.
Collapse
Affiliation(s)
- Cheng Kai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
Shohat H, Cheriker H, Cohen A, Weiss D. Tomato ABA-IMPORTING TRANSPORTER 1.1 inhibits seed germination under high salinity conditions. PLANT PHYSIOLOGY 2023; 191:1404-1415. [PMID: 36449559 PMCID: PMC9922386 DOI: 10.1093/plphys/kiac545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 05/27/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a central role in the regulation of seed maturation and dormancy. ABA also restrains germination under abiotic-stress conditions. Here, we show in tomato (Solanum lycopersicum) that the ABA importer ABA-IMPORTING TRANSPORTER 1.1 (AIT1.1/NPF4.6) has a role in radicle emergence under salinity conditions. AIT1.1 expression was upregulated following seed imbibition, and CRISPR/Cas9-derived ait1.1 mutants exhibited faster radicle emergence, increased germination and partial resistance to ABA. AIT1.1 was highly expressed in the endosperm, but not in the embryo, and ait1.1 isolated embryos did not show resistance to ABA. On the other hand, loss of AIT1.1 activity promoted the expression of endosperm-weakening-related genes, and seed-coat scarification eliminated the promoting effect of ait1.1 on radicle emergence. Therefore, we propose that imbibition-induced AIT1.1 expression in the micropylar endosperm mediates ABA-uptake into micropylar cells to restrain endosperm weakening. While salinity conditions strongly inhibited wild-type M82 seed germination, high salinity had a much weaker effect on ait1.1 germination. We suggest that AIT1.1 evolved to inhibit germination under unfavorable conditions, such as salinity. Unlike other ABA mutants, ait1.1 exhibited normal seed longevity, and therefore, the ait1.1 allele may be exploited to improve seed germination in crops.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Hadar Cheriker
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Amir Cohen
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
42
|
Ma B, Zhang L, He Z. Understanding the regulation of cereal grain filling: The way forward. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:526-547. [PMID: 36648157 DOI: 10.1111/jipb.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
During grain filling, starch and other nutrients accumulate in the endosperm; this directly determines grain yield and grain quality in crops such as rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum). Grain filling is a complex trait affected by both intrinsic and environmental factors, making it difficult to explore the underlying genetics, molecular regulation, and the application of these genes for breeding. With the development of powerful genetic and molecular techniques, much has been learned about the genes and molecular networks related to grain filling over the past decades. In this review, we highlight the key factors affecting grain filling, including both biological and abiotic factors. We then summarize the key genes controlling grain filling and their roles in this event, including regulators of sugar translocation and starch biosynthesis, phytohormone-related regulators, and other factors. Finally, we discuss how the current knowledge of valuable grain filling genes could be integrated with strategies for breeding cereal varieties with improved grain yield and quality.
Collapse
Affiliation(s)
- Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
43
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
44
|
Wang Y, Yan X, Xu M, Qi W, Shi C, Li X, Ma J, Tian D, Shou J, Wu H, Pan J, Li B, Wang C. Transmembrane kinase 1-mediated auxin signal regulates membrane-associated clathrin in Arabidopsis roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:82-99. [PMID: 36114789 DOI: 10.1111/jipb.13366] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the major endocytic pathway in eukaryotic cells that directly regulates abundance of plasma membrane proteins. Clathrin triskelia are composed of clathrin heavy chains (CHCs) and light chains (CLCs), and the phytohormone auxin differentially regulates membrane-associated CLCs and CHCs, modulating the endocytosis and therefore the distribution of auxin efflux transporter PIN-FORMED2 (PIN2). However, the molecular mechanisms by which auxin regulates clathrin are still poorly understood. Transmembrane kinase (TMKs) family proteins are considered to contribute to auxin signaling and plant development; it remains unclear whether they are involved in PIN transport by CME. We assessed TMKs involvement in the regulation of clathrin by auxin, using genetic, pharmacological, and cytological approaches including live-cell imaging and immunofluorescence. In tmk1 mutant seedlings, auxin failed to rapidly regulate abundance of both CHC and CLC and to inhibit PIN2 endocytosis, leading to an impaired asymmetric distribution of PIN2 and therefore auxin. Furthermore, TMK3 and TMK4 were shown not to be involved in regulation of clathrin by auxin. In summary, TMK1 is essential for auxin-regulated clathrin recruitment and CME. TMK1 therefore plays a critical role in the establishment of an asymmetric distribution of PIN2 and an auxin gradient during root gravitropism.
Collapse
Affiliation(s)
- Yutong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weiyang Qi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chunjie Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dan Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianxin Shou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
45
|
Shimizu T, Kanno Y, Watanabe S, Seo M. Arabidopsis NPF5.1 regulates ABA homeostasis and seed germination by mediating ABA uptake into the seed coat. PLANT SIGNALING & BEHAVIOR 2022; 17:2095488. [PMID: 35848501 PMCID: PMC9298153 DOI: 10.1080/15592324.2022.2095488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid (ABA) is a plant hormone that induces seed dormancy during seed development and inhibits seed germination after imbibition. Although ABA is synthesized in the seed coat (testa), endosperm, and embryo, the physiological roles of the hormone derived from each tissue are not fully understood. We found that the gene encoding an Arabidopsis ABA importer, NPF5.1, was expressed in the seed coat during seed development. Dry seeds of loss-of-function npf5.1 mutants contained significantly higher levels of dihydrophaseic acid (DPA), an inactive ABA metabolite, than the wild type. The npf5.1 mutant also had a slight increase in ABA content. An increase in DPA was prominent in the fraction containing the seed coat and endosperm. Seed germination of the npf5.1 mutant was similar to the wild type in the presence of ABA or the gibberellin biosynthesis inhibitor paclobutrazol. However, a mutation in NPF5.1 suppressed the paclobutrazol-resistant germination of npf4.6, a mutant impaired in an ABA importer expressed in the embryo. These results suggest that ABA uptake into the seed coat mediated by NPF5.1 is important for ABA homeostasis during seed development and for regulating seed germination.
Collapse
Affiliation(s)
- Takafumi Shimizu
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Graduate school of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Research Institute of Innovative Technology for the Earth (RITE), Kizugawa, Kyoto, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| |
Collapse
|
46
|
Knocking Out the Transcription Factor OsNAC092 Promoted Rice Drought Tolerance. BIOLOGY 2022; 11:biology11121830. [PMID: 36552339 PMCID: PMC9776343 DOI: 10.3390/biology11121830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Environmental drought stress threatens rice production. Previous studies have reported that related NAC (NAM, ATAF1/2, and CUC) transcription factors play an important role in drought stress. Herein, we identified and characterized OsNAC092, encoding an NAC transcription factor that is highly expressed and induced during drought tolerance. OsNAC092 knockout lines created using the clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) system exhibited increased drought resistance in rice. RNA sequencing showed that the knockout of OsNAC092 caused a global expression change, and differential gene expression is chiefly associated with "response to light stimulus," "MAPK signaling pathway," "plant hormone signal transduction," "response to oxidative stress," "photosynthesis," and "water deprivation." In addition, the antioxidants and enzyme activities of the redox response were significantly increased. OsNAC092 mutant rice exhibited a higher ability to scavenge more ROS and maintained a high GSH/GSSG ratio and redox level under drought stress, which could protect cells from oxidant stress, revealing the importance of OsNAC092 in the rice's response to abiotic stress. Functional analysis of OsNAC092 will be useful to explore many rice resistance genes in molecular breeding to aid in the development of modern agriculture.
Collapse
|
47
|
Wang Y, Xiang L, Wang F, Wang Z, Bian Y, Gu C, Wen X, Kengara FO, Schäffer A, Jiang X, Xing B. Positively Charged Microplastics Induce Strong Lettuce Stress Responses from Physiological, Transcriptomic, and Metabolomic Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16907-16918. [PMID: 36354282 DOI: 10.1021/acs.est.2c06054] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) can enter plants through the foliar pathway and are potential hazards to ecosystems and human health. However, studies related to the molecular mechanisms underlying the impact of foliar exposure to differently charged MPs to leafy vegetables are limited. Because the surfaces of MPs in the environment are often charged, we explored the uptake pathways, accumulation concentration of MPs, physiological responses, and molecular mechanisms of lettuce foliarly exposed to MPs carrying positive (MP+) and negative charges (MP-). MPs largely accumulated in the lettuce leaves, and stomatal uptake and cuticle entry could be the main pathways for MPs to get inside lettuce leaves. More MP+ entered lettuce leaves and induced physiological, transcriptomic, and metabolomic changes, including a decrease in biomass and photosynthetic pigments, an increase in reactive oxygen species and antioxidant activities, a differential expression of genes, and a change of metabolite profiles. In particular, MP+ caused the upregulation of circadian rhythm-related genes, and this may play a major role in the greater physiological toxicity of MP+ to lettuce, compared to MP-. These findings provide direct evidence that MPs can enter plant leaves following foliar exposure and a molecular-scale perspective on the response of leafy vegetables to differently charged MPs.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Wen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | | | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
Zhan H, Lu M, Luo Q, Tan F, Zhao Z, Liu M, He Y. OsCPD1 and OsCPD2 are functional brassinosteroid biosynthesis genes in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111482. [PMID: 36191635 DOI: 10.1016/j.plantsci.2022.111482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), member of the CYP90A family of cytochrome P450 (CYP450) monooxygenase, is an essential component of brassinosteroids (BRs) biosynthesis pathway. Compared with a single CPD/CYP90A1 in Arabidopsis thaliana, two highly homologous CPD genes, OsCPD1/CYP90A3 and OsCPD2/CYP90A4, are present in rice genome. There is still no genetic evidence so far about the requirement of OsCPD1 and OsCPD2 in rice BR biosynthesis. In this study, we reported the functional characterization of OsCPD genes using CRISPR/Cas9 gene editing technology. The overall growth and development of oscpd1 and oscpd2 single knock-out mutants was indistinguishable from the wild-type, whereas, the oscpd1 oscpd2 double mutant displayed multiple and obvious BR-related defects. Cytological analyses further indicated the defective cell elongation in oscpd1 oscpd2 double mutant. The oscpd double mutants had a lower endogenous BR level and could be restored by the application of the brassinolide (BL). Moreover, overexpression of OsCPD1 and OsCPD2 led to a typical BR enhanced phenotype, with enlarged leaf angle and increased grain size. Taken together, our results provide direct genetic evidence that OsCPD1 and OsCPD2 play essential and redundant roles in maintenance of plant architecture by modulating BR biosynthesis in rice.
Collapse
Affiliation(s)
- Huadong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingmin Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Tan
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziwei Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingqian Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yubing He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
49
|
The monitoring of plant physiology and ecology:from materials to flexible devices. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Liu H, Song S, Zhang H, Li Y, Niu L, Zhang J, Wang W. Signaling Transduction of ABA, ROS, and Ca 2+ in Plant Stomatal Closure in Response to Drought. Int J Mol Sci 2022; 23:ijms232314824. [PMID: 36499153 PMCID: PMC9736234 DOI: 10.3390/ijms232314824] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Drought is a global threat that affects agricultural production. Plants have evolved several adaptive strategies to cope with drought. Stomata are essential structures for plants to control water status and photosynthesis rate. Stomatal closure is an efficient way for plants to reduce water loss and improve survivability under drought conditions. The opening and closure of stomata depend on the turgor pressure in guard cells. Three key signaling molecules, including abscisic acid (ABA), reactive oxygen species (ROS), and calcium ion (Ca2+), play pivotal roles in controlling stomatal closure. Plants sense the water-deficit signal mainly via leaves and roots. On the one hand, ABA is actively synthesized in root and leaf vascular tissues and transported to guard cells. On the other hand, the roots sense the water-deficit signal and synthesize CLAVATA3/EMBRYO-SURROUNDING REGION RELATED 25 (CLE25) peptide, which is transported to the guard cells to promote ABA synthesis. ABA is perceived by pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) receptors, which inactivate PP2C, resulting in activating the protein kinases SnRK2s. Many proteins regulating stomatal closure are activated by SnRK2s via protein phosphorylation. ABA-activated SnRK2s promote apoplastic ROS production outside of guard cells and transportation into the guard cells. The apoplastic H2O2 can be directly sensed by a receptor kinase, HYDROGEN PEROXIDE-INDUCED CA2+ INCREASES1 (HPCA1), which induces activation of Ca2+ channels in the cytomembrane of guard cells, and triggers an increase in Ca2+ in the cytoplasm of guard cells, resulting in stomatal closure. In this review, we focused on discussing the signaling transduction of ABA, ROS, and Ca2+ in controlling stomatal closure in response to drought. Many critical genes are identified to have a function in stomatal closure under drought conditions. The identified genes in the process can serve as candidate genes for genetic engineering to improve drought resistance in crops. The review summarizes the recent advances and provides new insights into the signaling regulation of stomatal closure in response to water-deficit stress and new clues on the improvement of drought resistance in crops.
Collapse
|