1
|
Li E, Boujeddaine N, Houtman MJC, Maas RGC, Sluijter JPG, Ecker GF, Stary-Weinzinger A, van Ham WB, van der Heyden MAG. Development of new K ir2.1 channel openers from propafenone analogues. Br J Pharmacol 2025; 182:633-650. [PMID: 39419581 DOI: 10.1111/bph.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSES Reduced inward rectifier potassium channel (Kir2.1) functioning is associated with heart failure and may cause Andersen-Tawil Syndrome, among others characterized by ventricular arrhythmias. Most heart failure or Andersen-Tawil Syndrome patients are treated with β-adrenoceptor antagonists (β-blockers) or sodium channel blockers; however, these do not specifically address the inward rectifier current (IK1) nor aim to improve resting membrane potential stability. Consequently, additional pharmacotherapy for heart failure and Andersen-Tawil Syndrome treatment would be highly desirable. Acute propafenone treatment at low concentrations enhances IK1 current, but it also exerts many off-target effects. Therefore, discovering and exploring new IK1-channel openers is necessary. EXPERIMENTAL APPROACH Effects of propafenone and 10 additional propafenone analogues were analysed. Currents were measured by single-cell patch-clamp electrophysiology. Kir2.1 protein expression levels were determined by western blot analysis and action potential characteristics were further validated in human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMCs). Molecular docking was performed to obtain detailed information on drug-channel interactions. KEY RESULTS Analogues GPV0019, GPV0057 and GPV0576 strongly increased the outward component of IK1 while not affecting the Kir2.1 channel expression levels. GPV0057 did not block IKr at concentrations below 0.5 μmol L-1 nor NaV1.5 current below 1 μmol L-1. Moreover, hiPSC-CMC action potential duration was also not affected by GPV0057 at 0.5 and 1 μmol L-1. Structure analysis indicates a mechanism by which GPV0057 might enhance Kir2.1 channel activation. CONCLUSION AND IMPLICATIONS GPV0057 has a strong efficiency towards increasing IK1, which makes it a good candidate to address IK1 deficiency-associated diseases.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Najla Boujeddaine
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marien J C Houtman
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renee G C Maas
- Department of Cardiology, Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Willem B van Ham
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
van Ham WB, Meijboom EEM, Ligtermoet ML, Monshouwer-Kloots J, Riele ASJMT, Asselbergs FW, van Rooij E, Bourfiss M, van Veen TAB. An hiPSC-CM approach for electrophysiological phenotyping of a patient-specific case of short-coupled TdP. Stem Cell Res Ther 2024; 15:470. [PMID: 39695883 DOI: 10.1186/s13287-024-04074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
INTRODUCTION A healthy young woman, age 26 without prior cardiac complications, experienced an out-of-hospital cardiac arrest caused by ventricular fibrillation (VF), which coincided with a fever. Comprehensive diagnostics including echo, CMR, exercise testing, and genetic sequencing, did not identify any potential cause. This led to the diagnosis of idiopathic VF and installment of an implantable cardioverter defibrillator, which six months later appropriately intervened another VF episode under conditions comparable to the first event. A second diagnostic opinion concluded short-coupled Torsade de Pointes (scTdP), and the patient was started on a verapamil treatment. METHODS From this patient, human induced pluripotent stem cell cardiomyocyte (hiPSC-CM) lines were generated to study cellular electrophysiology. Without a known genetic pathogenic variation, no isogenic control line could be produced, therefore a healthy age- and sex-matched control hiPSC-CM line was used. Cellular electrophysiology was studied in these cardiomyocytes using calcium- and voltage sensitive fluorescent dyes and measurements were carried out at 37 °C and 39 °C, to mimic the condition of hyperthermia in the patient. mRNA expression of electrophysiologically relevant genes were analyzed to identify a potential underlying mechanism. RESULTS Calcium transients measured in patient lines at a physiological temperature indicated the occurrence of early after transients (EATs). Strikingly, at 39 °C the incidence of EATs further increased. Membrane potential data from the patient also revealed shorter action potentials that, combined with the EATs, indicate the premature release of calcium during diastole, which could be responsible for the extrasystoles in the patient. Gene expression profiles were mainly downregulated in the patient but could not clearly aid in unraveling a mechanism behind the occurrence of EATs. Pharmacological screening was performed to evaluate the treatment regimen and to determine a mechanism of action of the EATs. While verapamil, dantrolene, and flecainide did not decrease the incidence of EATs, calcium handling parameters were affected indicating functionality of the drugs. CONCLUSION This patient-specific case of electrophysiological phenotyping resulted in a hypothesis of the possible mechanism behind the scTdP arrhythmias, but also accentuates the applicability of patient-specific hiPSC-CM disease modeling and phenotyping.
Collapse
Affiliation(s)
- Willem B van Ham
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Esmeralda E M Meijboom
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Merel L Ligtermoet
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mimount Bourfiss
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Wilders R. Alleviating the Effects of Short QT Syndrome Type 3 by Allele-Specific Suppression of the KCNJ2 Mutant Allele. Int J Mol Sci 2024; 25:13351. [PMID: 39769116 PMCID: PMC11676537 DOI: 10.3390/ijms252413351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Short QT syndrome type 3 (SQTS3 or SQT3), which is associated with life-threatening cardiac arrhythmias, is caused by heterozygous gain-of-function mutations in the KCNJ2 gene. This gene encodes the pore-forming α-subunit of the ion channel that carries the cardiac inward rectifier potassium current (IK1). These gain-of-function mutations either increase the amplitude of IK1 or attenuate its rectification. The aim of the present in silico study is to test to which extent allele-specific suppression of the KCNJ2 mutant allele can alleviate the effects of SQT3, as recently demonstrated in in vitro studies on specific heterozygous mutations associated with long QT syndrome type 1 and 2 and short QT syndrome type 1. To this end, simulations were carried out with the two most recent comprehensive models of a single human ventricular cardiomyocyte. These simulations showed that suppression of the mutant allele can, at least partially, counteract the effects of the mutation on IK1 and restore the action potential duration for each of the four SQT3 mutations that are known by now. We conclude that allele-specific suppression of the KCNJ2 mutant allele is a promising technique in the treatment of SQT3 that should be evaluated in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Vo QD, Nakamura K, Saito Y, Iida T, Yoshida M, Amioka N, Akagi S, Miyoshi T, Yuasa S. iPSC-Derived Biological Pacemaker-From Bench to Bedside. Cells 2024; 13:2045. [PMID: 39768137 PMCID: PMC11674228 DOI: 10.3390/cells13242045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control. These cells can differentiate into cardiomyocytes capable of autonomous electrical activity, integrating into heart tissue. However, challenges such as achieving cellular maturity, long-term functionality, and immune response remain significant barriers to clinical translation. Future research should focus on refining gene-editing techniques, optimizing differentiation, and developing scalable production processes to enhance the safety and effectiveness of these biological pacemakers. With further advancements, iPSC-derived pacemakers could offer a patient-specific, durable alternative for cardiac rhythm management. This review discusses key advancements in differentiation protocols and preclinical studies, demonstrating their potential in treating dysrhythmias.
Collapse
Affiliation(s)
- Quan Duy Vo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
- Center for Advanced Heart Failure, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (Y.S.); (N.A.)
| | - Toshihiro Iida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Naofumi Amioka
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (Y.S.); (N.A.)
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| |
Collapse
|
5
|
Deidda V, Ventisette I, Langione M, Giammarino L, Pioner JM, Credi C, Carpi F. 3D-Printable Gelatin Methacrylate-Xanthan Gum Hydrogel Bioink Enabling Human Induced Pluripotent Stem Cell Differentiation into Cardiomyocytes. J Funct Biomater 2024; 15:297. [PMID: 39452595 PMCID: PMC11508550 DOI: 10.3390/jfb15100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
We describe the development of a bioink to bioprint human induced pluripotent stem cells (hiPSCs) for possible cardiac tissue engineering using a gelatin methacrylate (GelMA)-based hydrogel. While previous studies have shown that GelMA at a low concentration (5% w/v) allows for the growth of diverse cells, its 3D printability has been found to be limited by its low viscosity. To overcome that drawback, making the hydrogel both compatible with hiPSCs and 3D-printable, we developed an extrudable GelMA-based bioink by adding xanthan gum (XG). The GelMA-XG composite hydrogel had an elastic modulus (~9 kPa) comparable to that of cardiac tissue, and enabled 3D printing with high values of printing accuracy (83%) and printability (0.98). Tests with hiPSCs showed the hydrogel's ability to promote their proliferation within both 2D and 3D cell cultures. The tests also showed that hiPSCs inside hemispheres of the hydrogel were able to differentiate into cardiomyocytes, capable of spontaneous contractions (average frequency of ~0.5 Hz and amplitude of ~2%). Furthermore, bioprinting tests proved the possibility of fabricating 3D constructs of the hiPSC-laden hydrogel, with well-defined line widths (~800 μm).
Collapse
Affiliation(s)
- Virginia Deidda
- Department of Industrial Engineering, University of Florence, 50139 Florence, Italy; (V.D.); (I.V.)
| | - Isabel Ventisette
- Department of Industrial Engineering, University of Florence, 50139 Florence, Italy; (V.D.); (I.V.)
| | - Marianna Langione
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Lucrezia Giammarino
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy;
| | - Josè Manuel Pioner
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| | - Federico Carpi
- Department of Industrial Engineering, University of Florence, 50139 Florence, Italy; (V.D.); (I.V.)
| |
Collapse
|
6
|
Masuda A, Kurashina Y, Tani H, Soma Y, Muramatsu J, Itai S, Tohyama S, Onoe H. Maturation of Human iPSC-Derived Cardiac Microfiber with Electrical Stimulation Device. Adv Healthc Mater 2024; 13:e2303477. [PMID: 38768494 DOI: 10.1002/adhm.202303477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Here an electrical stimulation system is described for maturing microfiber-shaped cardiac tissue (cardiac microfibers, CMFs). The system enables stable culturing of CMFs with electrical stimulation by placing the tissue between electrodes. The electrical stimulation device provides an electric field covering whole CMFs within the stimulation area and can control the beating of the cardiac microfibers. In addition, CMFs under electrical stimulation with different frequencies are examined to evaluate the maturation levels by their sarcomere lengths, electrophysiological characteristics, and gene expression. Sarcomere elongation (14% increase compared to control) is observed at day 10, and a significant upregulation of electrodynamic properties such as gap junction protein alpha 1 (GJA1) and potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) (maximum fourfold increase compared to control) is observed at day 30. These results suggest that electrically stimulated cultures can accelerate the maturation of microfiber-shaped cardiac tissues compared to those without electrical stimulation. This model will contribute to the pathological research of unexplained cardiac diseases and pharmacologic testing by stably constructing matured CMFs.
Collapse
Affiliation(s)
- Akari Masuda
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuta Kurashina
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo, 144-0041, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo, 144-0041, Japan
| | - Jumpei Muramatsu
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Shun Itai
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, 1-1 Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo, 144-0041, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
7
|
Clark AP, Krogh-Madsen T, Christini DJ. Stem cell-derived cardiomyocyte heterogeneity confounds electrophysiological insights. J Physiol 2024; 602:5155-5162. [PMID: 38723234 PMCID: PMC11493526 DOI: 10.1113/jp284618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 08/21/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer potential as an in vitro model for studying drug cardiotoxicity and patient-specific cardiovascular disease. The inherent electrophysiological heterogeneity of these cells limits the depth of insights that can be drawn from well-designed experiments. In this review, we provide our perspective on some sources and the consequences of iPSC-CM heterogeneity. We demonstrate the extent of heterogeneity in the literature and explain how such heterogeneity is exacerbated by patch-clamp experimental artifacts in the manual and automated set-up. Finally, we discuss how this heterogeneity, caused by both intrinsic and extrinsic factors, limits our ability to build digital twins of patient-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alexander P Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - David J Christini
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
8
|
Li J, Li M, Nawa Y, Liu Y, Bando K, Hua Y, Sun L, Fujita S, Sawa Y, Fujita K, Liu L. Label-Free Raman Spectroscopy for Assessing Purity and Maturation of hiPSC-Derived Cardiac Tissue. Anal Chem 2024; 96:15765-15772. [PMID: 39291743 PMCID: PMC11447663 DOI: 10.1021/acs.analchem.4c03871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
I. BACKGROUND Human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) have been utilized in drug toxicity evaluation, drug discovery, and treating heart failure patients, showing substantial effects. Ensuring the quality, purity, and maturation of hiPSC-CMs during large-scale production is crucial. There is a growing demand for a novel method to characterize cell molecular profiles without labels and without causing damage. II. METHODS In this study, we employed label-free Raman microscopy to evaluate hiPSC-derived CMs. The study involved the characterization of cell molecular profiles without labels and without causing damage. The correlation between Raman spectroscopy of specific components, such as cytochrome c and myoglobin, and CM purity and maturation following hiPSC differentiation was investigated. Additionally, the validation of this correlation was performed by assessing mixtures of commercially available CMs (iCell cardiomyocytes2) and fibroblasts at various ratios as well as hiPSC-derived CMs with different efficiencies. Furthermore, CMs were matured using rapid pacing of traveling waves, and the Raman profiles of matured CMs were compared to those of immature ones. III. RESULTS Raman spectroscopy indicated that the cytochrome c and myoglobin showed correlation with the purity and maturation of CMs following differentiation of hiPSCs. This correlation was validated through experiments involving different CM-fibroblast mixtures and hiPSC-derived CMs with varying efficiencies. Moreover, matured CMs exhibited markedly different Raman profiles compared to immature ones, indicating the potential of Raman imaging as a tool for assessing CM maturation. IV. CONCLUSIONS We discovered that Raman spectroscopy of certain components, such as cytochrome c and myoglobin, correlates with the CM purity and maturation following hiPSC differentiation. The findings of this study highlight the potential of label-free Raman microscopy as a nondestructive, high-content, and time-efficient method for quality control of hiPSC-derived CMs. This approach could significantly contribute to ensuring the quality and maturity of hiPSC-CMs for various applications in drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Junjun Li
- Laboratory
of Nanophotonics, Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Frontier
of Regenerative Medicine, Osaka University
Graduate School of Medicine, 2-2 Yamada-Oka, Osaka, Suita 565-0871, Japan
| | - Menglu Li
- Laboratory
of Nanophotonics, Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasunori Nawa
- Laboratory
of Nanophotonics, Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
(AIST), Suita, Osaka 565-0871, Japan
| | - Yuting Liu
- Department
of Cardiovascular Surgery, Osaka University
Graduate School of Medicine, Osaka, Suita 565-0871, Japan
| | - Kazuki Bando
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
(AIST), Suita, Osaka 565-0871, Japan
| | - Ying Hua
- Department
of Cardiovascular Surgery, Osaka University
Graduate School of Medicine, Osaka, Suita 565-0871, Japan
| | - Lifu Sun
- Department
of Cardiovascular Surgery, Osaka University
Graduate School of Medicine, Osaka, Suita 565-0871, Japan
| | - Satoshi Fujita
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
(AIST), Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department
of Cardiovascular Surgery, Osaka Police
Hospital, Osaka 543-0035, Japan
- Cuorips
Inc., Nihonbashihoncho
3, Chome-11-5, Chuo City, Tokyo 103-0023, Japan
| | - Katsumasa Fujita
- Laboratory
of Nanophotonics, Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
(AIST), Suita, Osaka 565-0871, Japan
| | - Li Liu
- Laboratory
of Nanophotonics, Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Frontier
of Regenerative Medicine, Osaka University
Graduate School of Medicine, 2-2 Yamada-Oka, Osaka, Suita 565-0871, Japan
| |
Collapse
|
9
|
Correia C, Christoffersson J, Tejedor S, El-Haou S, Matadamas-Guzman M, Nair S, Dönnes P, Musa G, Rohman M, Sundqvist M, Riddle RB, Nugraha B, Bellido IS, Johansson M, Wang QD, Hidalgo A, Jennbacken K, Synnergren J, Später D. Enhancing Maturation and Translatability of Human Pluripotent Stem Cell-Derived Cardiomyocytes through a Novel Medium Containing Acetyl-CoA Carboxylase 2 Inhibitor. Cells 2024; 13:1339. [PMID: 39195229 DOI: 10.3390/cells13161339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) constitute an appealing tool for drug discovery, disease modeling, and cardiotoxicity screening. However, their physiological immaturity, resembling CMs in the late fetal stage, limits their utility. Herein, we have developed a novel, scalable cell culture medium designed to enhance the maturation of hPSC-CMs. This medium facilitates a metabolic shift towards fatty acid utilization and augments mitochondrial function by targeting Acetyl-CoA carboxylase 2 (ACC2) with a specific small molecule inhibitor. Our findings demonstrate that this maturation protocol significantly advances the metabolic, structural, molecular and functional maturity of hPSC-CMs at various stages of differentiation. Furthermore, it enables the creation of cardiac microtissues with superior structural integrity and contractile properties. Notably, hPSC-CMs cultured in this optimized maturation medium display increased accuracy in modeling a hypertrophic cardiac phenotype following acute endothelin-1 induction and show a strong correlation between in vitro and in vivo target engagement in drug screening efforts. This approach holds promise for improving the utility and translatability of hPSC-CMs in cardiac disease modeling and drug discovery.
Collapse
Affiliation(s)
- Cláudia Correia
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Jonas Christoffersson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Sandra Tejedor
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
| | - Saïd El-Haou
- Mechanistic Biology and Profiling, Discovery Sciences, AstraZeneca R&D, Cambridge CB2 0AA, UK
| | - Meztli Matadamas-Guzman
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Syam Nair
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Pierre Dönnes
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
- SciCross AB, 54135 Skövde, Sweden
| | - Gentian Musa
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Mattias Rohman
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Monika Sundqvist
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Rebecca B Riddle
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Bramasta Nugraha
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Ioritz Sorzabal Bellido
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca R&D, Cambridge CB2 0AA, UK
| | - Markus Johansson
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
| | - Qing-Dong Wang
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Alejandro Hidalgo
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157 Huddinge, Sweden
| | - Karin Jennbacken
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Daniela Später
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157 Huddinge, Sweden
| |
Collapse
|
10
|
Satsuka A, Ribeiro AJS, Kawagishi H, Yanagida S, Hirata N, Yoshinaga T, Kurokawa J, Sugiyama A, Strauss DG, Kanda Y. Contractility assessment using aligned human iPSC-derived cardiomyocytes. J Pharmacol Toxicol Methods 2024; 128:107530. [PMID: 38917571 DOI: 10.1016/j.vascn.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Cardiac safety assessment, such as lethal arrhythmias and contractility dysfunction, is critical during drug development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been shown to be useful in predicting drug-induced proarrhythmic risk through international validation studies. Although cardiac contractility is another key function, fit-for-purpose hiPSC-CMs in evaluating drug-induced contractile dysfunction remain poorly understood. In this study, we investigated whether alignment of hiPSC-CMs on nanopatterned culture plates can assess drug-induced contractile changes more efficiently than non-aligned monolayer culture. METHODS Aligned hiPSC-CMs were obtained by culturing on 96-well culture plates with a ridge-groove-ridge nanopattern on the bottom surface, while non-aligned hiPSC-CMs were cultured on regular 96-well plates. Next-generation sequencing and qPCR experiments were performed for gene expression analysis. Contractility of the hiPSC-CMs was assessed using an imaging-based motion analysis system. RESULTS When cultured on nanopatterned plates, hiPSC-CMs exhibited an aligned morphology and enhanced expression of genes encoding proteins that regulate contractility, including myosin heavy chain, calcium channel, and ryanodine receptor. Compared to cultures on regular plates, the aligned hiPSC-CMs also showed both enhanced contraction and relaxation velocity. In addition, the aligned hiPSC-CMs showed a more physiological response to positive and negative inotropic agents, such as isoproterenol and verapamil. DISCUSSION Taken together, the aligned hiPSC-CMs exhibited enhanced structural and functional properties, leading to an improved capacity for contractility assessment compared to the non-aligned cells. These findings suggest that the aligned hiPSC-CMs can be used to evaluate drug-induced cardiac contractile changes.
Collapse
Affiliation(s)
- Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Silver Spring, MD 20903, USA
| | - Hiroyuki Kawagishi
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Takashi Yoshinaga
- Advanced Biosignal Safety Assessment, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
| |
Collapse
|
11
|
Iwoń Z, Krogulec E, Tarnowska I, Łopianiak I, Wojasiński M, Dobrzyń A, Jastrzębska E. Maturation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) on polycaprolactone and polyurethane nanofibrous mats. Sci Rep 2024; 14:12975. [PMID: 38839879 PMCID: PMC11153585 DOI: 10.1038/s41598-024-63905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Investigating the potential of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) in in vitro heart models is essential to develop cardiac regenerative medicine. iPSC-CMs are immature with a fetal-like phenotype relative to cardiomyocytes in vivo. Literature indicates methods for enhancing the structural maturity of iPSC-CMs. Among these strategies, nanofibrous scaffolds offer more accurate mimicry of the functioning of cardiac tissue structures in the human body. However, further research is needed on the use of nanofibrous mats to understand their effects on iPSC-CMs. Our research aimed to evaluate the suitability of poly(ε-caprolactone) (PCL) and polyurethane (PU) nanofibrous mats with different elasticities as materials for the maturation of iPSC-CMs. Analysis of cell morphology and orientation and the expression levels of selected genes and proteins were performed to determine the effect of the type of nanofibrous mats on the maturation of iPSC-CMs after long-term (10-day) culture. Understanding the impact of 3D structural properties in in vitro cardiac models on induced pluripotent stem cell-derived cardiomyocyte maturation is crucial for advancing cardiac tissue engineering and regenerative medicine because it can help optimize conditions for obtaining more mature and functional human cardiomyocytes.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Ewelina Krogulec
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Inez Tarnowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Iwona Łopianiak
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
12
|
Clark AP, Wei S, Fullerton K, Krogh-Madsen T, Christini DJ. Single-cell ionic current phenotyping explains stem cell-derived cardiomyocyte action potential morphology. Am J Physiol Heart Circ Physiol 2024; 326:H1146-H1154. [PMID: 38488520 PMCID: PMC11380975 DOI: 10.1152/ajpheart.00063.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/14/2024]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising tool to study arrhythmia-related factors, but the variability of action potential (AP) recordings from these cells limits their use as an in vitro model. In this study, we use recently published brief (10 s), dynamic voltage-clamp (VC) data to provide mechanistic insights into the ionic currents contributing to AP heterogeneity; we call this approach rapid ionic current phenotyping (RICP). Features of this VC data were correlated to AP recordings from the same cells, and we used computational models to generate mechanistic insights into cellular heterogeneity. This analysis uncovered several interesting links between AP morphology and ionic current density: both L-type calcium and sodium currents contribute to upstroke velocity, rapid delayed rectifier K+ current is the main determinant of the maximal diastolic potential, and an outward current in the activation range of slow delayed rectifier K+ is the main determinant of AP duration. Our analysis also identified an outward current in several cells at 6 mV that is not reproduced by iPSC-CM mathematical models but contributes to determining AP duration. RICP can be used to explain how cell-to-cell variability in ionic currents gives rise to AP heterogeneity. Because of its brief duration (10 s) and ease of data interpretation, we recommend the use of RICP for single-cell patch-clamp experiments that include the acquisition of APs.NEW & NOTEWORTHY We present rapid ionic current phenotyping (RICP), a current quantification approach based on an optimized voltage-clamp protocol. The method captures a rich snapshot of the ionic current dynamics, providing quantitative information about multiple currents (e.g., ICa,L, IKr) in the same cell. The protocol helped to identify key ionic determinants of cellular action potential heterogeneity in iPSC-CMs. This included unexpected results, such as the critical role of IKr in establishing the maximum diastolic potential.
Collapse
Affiliation(s)
- Alexander P Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States
| | - Siyu Wei
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - Kristin Fullerton
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States
| | - Trine Krogh-Madsen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, United States
| | - David J Christini
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| |
Collapse
|
13
|
Berndt A, Lee J, Nguyen A, Jin Z, Moghadasi A, Gibbs C, Wait S, Evitts K, Asencio A, Bremner S, Zuniga S, Chavan V, Williams A, Smith A, Moussavi-Harami F, Regnier M, Young J, Mack D, Nance E, Boyle P. Far-red and sensitive sensor for monitoring real time H 2O 2 dynamics with subcellular resolution and in multi-parametric imaging applications. RESEARCH SQUARE 2024:rs.3.rs-3974015. [PMID: 38699332 PMCID: PMC11065073 DOI: 10.21203/rs.3.rs-3974015/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
H2O2 is a key oxidant in mammalian biology and a pleiotropic signaling molecule at the physiological level, and its excessive accumulation in conjunction with decreased cellular reduction capacity is often found to be a common pathological marker. Here, we present a red fluorescent Genetically Encoded H2O2 Indicator (GEHI) allowing versatile optogenetic dissection of redox biology. Our new GEHI, oROS-HT, is a chemigenetic sensor utilizing a HaloTag and Janelia Fluor (JF) rhodamine dye as fluorescent reporters. We developed oROS-HT through a structure-guided approach aided by classic protein structures and recent protein structure prediction tools. Optimized with JF635, oROS-HT is a sensor with 635 nm excitation and 650 nm emission peaks, allowing it to retain its brightness while monitoring intracellular H2O2 dynamics. Furthermore, it enables multi-color imaging in combination with blue-green fluorescent sensors for orthogonal analytes and low auto-fluorescence interference in biological tissues. Other advantages of oROS-HT over alternative GEHIs are its fast kinetics, oxygen-independent maturation, low pH sensitivity, lack of photo-artifact, and lack of intracellular aggregation. Here, we demonstrated efficient subcellular targeting and how oROS-HT can map inter and intracellular H2O2 diffusion at subcellular resolution. Lastly, we used oROS-HT with other green fluorescence reporters to investigate the transient effect of the anti-inflammatory agent auranofin on cellular redox physiology and calcium levels via multi-parametric, dual-color imaging.
Collapse
|
14
|
Ryan T, Roberts JD. Stem cell models of inherited arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:420-430. [PMID: 39196215 DOI: 10.1038/s44161-024-00451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 08/29/2024]
Abstract
Inherited arrhythmias are a heterogeneous group of conditions that confer risk of sudden death. Many inherited arrhythmias have been linked to pathogenic genetic variants that result in ion channel dysfunction, although current genetic testing panels fail to identify variants in many patients, potentially secondary to their underlying substrates being oligogenic or polygenic. Here we review the current state of knowledge surrounding the cellular mechanisms of inherited arrhythmias generated from stem cell models with a focus on integrating genetic and mechanistic data. The utility and limitations of human induced pluripotent stem cell models in disease modeling and drug development are also explored with a particular focus on examples of pharmacogenetics and precision medicine. We submit that progress in understanding inherited arrhythmias is likely to be made by using human induced pluripotent stem cells to model probable polygenic cases as well as to interrogate the diverse and potentially complex molecular networks implicated by genome-wide association studies.
Collapse
Affiliation(s)
- Tammy Ryan
- McMaster University, Hamilton, Ontario, Canada.
| | - Jason D Roberts
- McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Zheng S, Ye L. Hemodynamic Melody of Postnatal Cardiac and Pulmonary Development in Children with Congenital Heart Diseases. BIOLOGY 2024; 13:234. [PMID: 38666846 PMCID: PMC11048247 DOI: 10.3390/biology13040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Hemodynamics is the eternal theme of the circulatory system. Abnormal hemodynamics and cardiac and pulmonary development intertwine to form the most important features of children with congenital heart diseases (CHDs), thus determining these children's long-term quality of life. Here, we review the varieties of hemodynamic abnormalities that exist in children with CHDs, the recently developed neonatal rodent models of CHDs, and the inspirations these models have brought us in the areas of cardiomyocyte proliferation and maturation, as well as in alveolar development. Furthermore, current limitations, future directions, and clinical decision making based on these inspirations are highlighted. Understanding how CHD-associated hemodynamic scenarios shape postnatal heart and lung development may provide a novel path to improving the long-term quality of life of children with CHDs, transplantation of stem cell-derived cardiomyocytes, and cardiac regeneration.
Collapse
Affiliation(s)
- Sixie Zheng
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China;
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China;
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China
| |
Collapse
|
16
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Dallas ML, Bell D. Advances in ion channel high throughput screening: where are we in 2023? Expert Opin Drug Discov 2024; 19:331-337. [PMID: 38108110 DOI: 10.1080/17460441.2023.2294948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Automated Patch Clamp (APC) technology has become an integral element in ion channel research, drug discovery and development pipelines to overcome the use of the highly time-consuming manual patch clamp (MPC) procedures. This automated technology offers increased throughput and promises a new model in obtaining ion channel recordings, which has significant relevance to the development of novel therapies and safety profiling of candidate therapeutic compounds. AREAS COVERED This article reviews the recent innovations in APC technology, including platforms, and highlights how they have facilitated usage in both industry and academia. The review also provides an overview of the ion channel research endeavors and how APC platforms have contributed to the understanding of ion channel research, pharmacological tools and therapeutics. Furthermore, the authors provide their opinion on the challenges and goals for APC technology going forward to accelerate academic research and drug discovery across a host of therapeutic areas. EXPERT OPINION It is clear that APC technology has progressed drug discovery programs, specifically in the field of neuroscience and cardiovascular research. The challenge for the future is to keep pace with fundamental research and improve translation of the large datasets obtained.
Collapse
Affiliation(s)
- Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, UK
| | | |
Collapse
|
18
|
Nakanishi-Koakutsu M, Miki K, Naka Y, Sasaki M, Wakimizu T, Napier SC, Okubo C, Narita M, Nishikawa M, Hata R, Chonabayashi K, Hotta A, Imahashi K, Nishimoto T, Yoshida Y. CD151 expression marks atrial- and ventricular- differentiation from human induced pluripotent stem cells. Commun Biol 2024; 7:231. [PMID: 38418926 PMCID: PMC10901864 DOI: 10.1038/s42003-024-05809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Current differentiation protocols for human induced pluripotent stem cells (hiPSCs) produce heterogeneous cardiomyocytes (CMs). Although chamber-specific CM selection using cell surface antigens enhances biomedical applications, a cell surface marker that accurately distinguishes between hiPSC-derived atrial CMs (ACMs) and ventricular CMs (VCMs) has not yet been identified. We have developed an approach for obtaining functional hiPSC-ACMs and -VCMs based on CD151 expression. For ACM differentiation, we found that ACMs are enriched in the CD151low population and that CD151 expression is correlated with the expression of Notch4 and its ligands. Furthermore, Notch signaling inhibition followed by selecting the CD151low population during atrial differentiation leads to the highly efficient generation of ACMs as evidenced by gene expression and electrophysiology. In contrast, for VCM differentiation, VCMs exhibiting a ventricular-related gene signature and uniform action potentials are enriched in the CD151high population. Our findings enable the production of high-quality ACMs and VCMs appropriate for hiPSC-derived chamber-specific disease models and other applications.
Collapse
Affiliation(s)
- Misato Nakanishi-Koakutsu
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Takeda-CiRA Joint program (T-CiRA), Fujisawa, 251-8555, Japan
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kenji Miki
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
- Center for Organ Engineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, 02114, USA.
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita, 565-0871, Japan.
| | - Yuki Naka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Takeda-CiRA Joint program (T-CiRA), Fujisawa, 251-8555, Japan
| | - Masako Sasaki
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Takeda-CiRA Joint program (T-CiRA), Fujisawa, 251-8555, Japan
| | - Takayuki Wakimizu
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Takeda-CiRA Joint program (T-CiRA), Fujisawa, 251-8555, Japan
| | - Stephanie C Napier
- Takeda-CiRA Joint program (T-CiRA), Fujisawa, 251-8555, Japan
- Global Advanced Platform, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Japan
| | - Chikako Okubo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Megumi Narita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Misato Nishikawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Reo Hata
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Kazuhisa Chonabayashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Takeda-CiRA Joint program (T-CiRA), Fujisawa, 251-8555, Japan
| | - Kenichi Imahashi
- Takeda-CiRA Joint program (T-CiRA), Fujisawa, 251-8555, Japan
- Global Advanced Platform, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Japan
| | - Tomoyuki Nishimoto
- Takeda-CiRA Joint program (T-CiRA), Fujisawa, 251-8555, Japan
- Orizuru Therapeutics Incorporated, Fujisawa, 251-8555, Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
- Takeda-CiRA Joint program (T-CiRA), Fujisawa, 251-8555, Japan.
| |
Collapse
|
19
|
Sidorov VY, Sidorova TN, Samson PC, Reiserer RS, Britt CM, Neely MD, Ess KC, Wikswo JP. Contractile and Genetic Characterization of Cardiac Constructs Engineered from Human Induced Pluripotent Stem Cells: Modeling of Tuberous Sclerosis Complex and the Effects of Rapamycin. Bioengineering (Basel) 2024; 11:234. [PMID: 38534508 DOI: 10.3390/bioengineering11030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The implementation of three-dimensional tissue engineering concurrently with stem cell technology holds great promise for in vitro research in pharmacology and toxicology and modeling cardiac diseases, particularly for rare genetic and pediatric diseases for which animal models, immortal cell lines, and biopsy samples are unavailable. It also allows for a rapid assessment of phenotype-genotype relationships and tissue response to pharmacological manipulation. Mutations in the TSC1 and TSC2 genes lead to dysfunctional mTOR signaling and cause tuberous sclerosis complex (TSC), a genetic disorder that affects multiple organ systems, principally the brain, heart, skin, and kidneys. Here we differentiated healthy (CC3) and tuberous sclerosis (TSP8-15) human induced pluripotent stem cells (hiPSCs) into cardiomyocytes to create engineered cardiac tissue constructs (ECTCs). We investigated and compared their mechano-elastic properties and gene expression and assessed the effects of rapamycin, a potent inhibitor of the mechanistic target of rapamycin (mTOR). The TSP8-15 ECTCs had increased chronotropy compared to healthy ECTCs. Rapamycin induced positive inotropic and chronotropic effects (i.e., increased contractility and beating frequency, respectively) in the CC3 ECTCs but did not cause significant changes in the TSP8-15 ECTCs. A differential gene expression analysis revealed 926 up- and 439 down-regulated genes in the TSP8-15 ECTCs compared to their healthy counterparts. The application of rapamycin initiated the differential expression of 101 and 31 genes in the CC3 and TSP8-15 ECTCs, respectively. A gene ontology analysis showed that in the CC3 ECTCs, the positive inotropic and chronotropic effects of rapamycin correlated with positively regulated biological processes, which were primarily related to the metabolism of lipids and fatty and amino acids, and with negatively regulated processes, which were predominantly associated with cell proliferation and muscle and tissue development. In conclusion, this study describes for the first time an in vitro TSC cardiac tissue model, illustrates the response of normal and TSC ECTCs to rapamycin, and provides new insights into the mechanisms of TSC.
Collapse
Affiliation(s)
- Veniamin Y Sidorov
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Tatiana N Sidorova
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Philip C Samson
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
| | - Ronald S Reiserer
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
| | - Clayton M Britt
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin C Ess
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Lee JD, Nguyen A, Jin ZR, Moghadasi A, Gibbs CE, Wait SJ, Evitts KM, Asencio A, Bremner SB, Zuniga S, Chavan V, Williams A, Smith N, Regnier M, Young JE, Mack D, Nance E, Boyle PM, Berndt A. Far-red and sensitive sensor for monitoring real time H 2O 2 dynamics with subcellular resolution and in multi-parametric imaging applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579232. [PMID: 38370715 PMCID: PMC10871219 DOI: 10.1101/2024.02.06.579232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
H2O2 is a key oxidant in mammalian biology and a pleiotropic signaling molecule at the physiological level, and its excessive accumulation in conjunction with decreased cellular reduction capacity is often found to be a common pathological marker. Here, we present a red fluorescent Genetically Encoded H2O2 Indicator (GEHI) allowing versatile optogenetic dissection of redox biology. Our new GEHI, oROS-HT, is a chemigenetic sensor utilizing a HaloTag and Janelia Fluor (JF) rhodamine dye as fluorescent reporters. We developed oROS-HT through a structure-guided approach aided by classic protein structures and recent protein structure prediction tools. Optimized with JF635, oROS-HT is a sensor with 635 nm excitation and 650 nm emission peaks, allowing it to retain its brightness while monitoring intracellular H2O2 dynamics. Furthermore, it enables multi-color imaging in combination with blue-green fluorescent sensors for orthogonal analytes and low auto-fluorescence interference in biological tissues. Other advantages of oROS-HT over alternative GEHIs are its fast kinetics, oxygen-independent maturation, low pH sensitivity, lack of photo-artifact, and lack of intracellular aggregation. Here, we demonstrated efficient subcellular targeting and how oROS-HT can map inter and intracellular H2O2 diffusion at subcellular resolution. Lastly, we used oROS-HT with the green fluorescent calcium indicator Fluo-4 to investigate the transient effect of the anti-inflammatory agent auranofin on cellular redox physiology and calcium levels via multi-parametric, dual-color imaging.
Collapse
Affiliation(s)
- Justin Daho Lee
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Amanda Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Zheyu Ruby Jin
- Department of Chemical Engineering, University of Washington, Seattle WA, USA
| | - Aida Moghadasi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chelsea E. Gibbs
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sarah J. Wait
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kira M. Evitts
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Anthony Asencio
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle WA, USA
| | - Samantha B Bremner
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shani Zuniga
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Vedant Chavan
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Andy Williams
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Netta Smith
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle WA, USA
| | - Jessica E. Young
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David Mack
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth Nance
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle WA, USA
| | - Patrick M. Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle WA, USA
| | - Andre Berndt
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Abrasheva VO, Kovalenko SG, Slotvitsky M, Romanova SА, Aitova AA, Frolova S, Tsvelaya V, Syunyaev RA. Human sodium current voltage-dependence at physiological temperature measured by coupling a patch-clamp experiment to a mathematical model. J Physiol 2024; 602:633-661. [PMID: 38345560 DOI: 10.1113/jp285162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
Voltage-gated Na+ channels are crucial to action potential propagation in excitable tissues. Because of the high amplitude and rapid activation of the Na+ current, voltage-clamp measurements are very challenging and are usually performed at room temperature. In this study, we measured Na+ current voltage-dependence in stem cell-derived cardiomyocytes at physiological temperature. While the apparent activation and inactivation curves, measured as the dependence of current amplitude on voltage, fall within the range reported in previous studies, we identified a systematic error in our measurements. This error is caused by the deviation of the membrane potential from the command potential of the amplifier. We demonstrate that it is possible to account for this artifact using computer simulation of the patch-clamp experiment. We obtained surprising results through patch-clamp model optimization: a half-activation of -11.5 mV and a half-inactivation of -87 mV. Although the half-activation deviates from previous research, we demonstrate that this estimate reproduces the conduction velocity dependence on extracellular potassium concentration. KEY POINTS: Voltage-gated Na+ currents play a crucial role in excitable tissues including neurons, cardiac and skeletal muscle. Measurement of Na+ current is challenging because of its high amplitude and rapid kinetics, especially at physiological temperature. We have used the patch-clamp technique to measure human Na+ current voltage-dependence in human induced pluripotent stem cell-derived cardiomyocytes. The patch-clamp data were processed by optimization of the model accounting for voltage-clamp experiment artifacts, revealing a large difference between apparent parameters of Na+ current and the results of the optimization. We conclude that actual Na+ current activation is extremely depolarized in comparison to previous studies. The new Na+ current model provides a better understanding of action potential propagation; we demonstrate that it explains propagation in hyperkalaemic conditions.
Collapse
Affiliation(s)
| | - Sandaara G Kovalenko
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Mihail Slotvitsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Serafima А Romanova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - Aleria A Aitova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Sheida Frolova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - Valeria Tsvelaya
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | | |
Collapse
|
22
|
Chapotte-Baldacci CA, Pierre M, Djemai M, Pouliot V, Chahine M. Biophysical properties of Na V1.5 channels from atrial-like and ventricular-like cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep 2023; 13:20685. [PMID: 38001331 PMCID: PMC10673932 DOI: 10.1038/s41598-023-47310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Generating atrial-like cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) is crucial for modeling and treating atrial-related diseases, such as atrial arrythmias including atrial fibrillations. However, it is essential to obtain a comprehensive understanding of the electrophysiological properties of these cells. The objective of the present study was to investigate the molecular, electrical, and biophysical properties of several ion channels, especially NaV1.5 channels, in atrial hiPSC cardiomyocytes. Atrial cardiomyocytes were obtained by the differentiation of hiPSCs treated with retinoic acid (RA). The quality of the atrial specification was assessed by qPCR, immunocytofluorescence, and western blotting. The electrophysiological properties of action potentials (APs), Ca2+ dynamics, K+ and Na+ currents were investigated using patch-clamp and optical mapping approaches. We evaluated mRNA transcript and protein expressions to show that atrial cardiomyocytes expressed higher atrial- and sinoatrial-specific markers (MYL7, CACNA1D) and lower ventricular-specific markers (MYL2, CACNA1C, GJA1) than ventricular cardiomyocytes. The amplitude, duration, and steady-state phase of APs in atrial cardiomyocytes decreased, and had a shape similar to that of mature atrial cardiomyocytes. Interestingly, NaV1.5 channels in atrial cardiomyocytes exhibited lower mRNA transcripts and protein expression, which could explain the lower current densities recorded by patch-clamp. Moreover, Na+ currents exhibited differences in activation and inactivation parameters. These differences could be explained by an increase in SCN2B regulatory subunit expression and a decrease in SCN1B and SCN4B regulatory subunit expressions. Our results show that a RA treatment made it possible to obtain atrial cardiomyocytes and investigate differences in NaV1.5 channel properties between ventricular- and atrial-like cells.
Collapse
Affiliation(s)
- Charles-Albert Chapotte-Baldacci
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Marion Pierre
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Mohammed Djemai
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Valérie Pouliot
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada.
| |
Collapse
|
23
|
Shiti A, Arbil G, Shaheen N, Huber I, Setter N, Gepstein L. Utilizing human induced pluripotent stem cells to study atrial arrhythmias in the short QT syndrome. J Mol Cell Cardiol 2023; 183:42-53. [PMID: 37579942 PMCID: PMC10589759 DOI: 10.1016/j.yjmcc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Among the monogenic inherited causes of atrial fibrillation is the short QT syndrome (SQTS), a rare channelopathy causing atrial and ventricular arrhythmias. One of the limitations in studying the mechanisms and optimizing treatment of SQTS-related atrial arrhythmias has been the lack of relevant human atrial tissues models. OBJECTIVE To generate a unique model to study SQTS-related atrial arrhythmias by combining the use of patient-specific human induced pluripotent stem cells (hiPSCs), atrial-specific differentiation schemes, two-dimensional tissue modeling, optical mapping, and drug testing. METHODS AND RESULTS SQTS (N588K KCNH2 mutation), isogenic-control, and healthy-control hiPSCs were coaxed to differentiate into atrial cardiomyocytes using a retinoic-acid based differentiation protocol. The atrial identity of the cells was confirmed by a distinctive pattern of MLC2v downregulation, connexin 40 upregulation, shorter and triangular-shaped action potentials (APs), and expression of the atrial-specific acetylcholine-sensitive potassium current. In comparison to the healthy- and isogenic control cells, the SQTS-hiPSC atrial cardiomyocytes displayed abbreviated APs and refractory periods along with an augmented rapidly activating delayed-rectifier potassium current (IKr). Optical mapping of a hiPSC-based atrial tissue model of the SQTS displayed shortened APD and altered biophysical properties of spiral waves induced in this model, manifested by accelerated spiral-wave frequency and increased rotor curvature. Both AP shortening and arrhythmia irregularities were reversed by quinidine and vernakalant treatment, but not by sotalol. CONCLUSIONS Patient-specific hiPSC-based atrial cellular and tissue models of the SQTS were established, which provide examples on how this type of modeling can shed light on the pathogenesis and pharmacological treatment of inherited atrial arrhythmias.
Collapse
Affiliation(s)
- Assad Shiti
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gil Arbil
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Naim Shaheen
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Irit Huber
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noga Setter
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel; Cardiolology Department, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
24
|
Zhang X, Aggarwal P, Broeckel U, Abassi YA. Enhancing the functional maturity of hiPSC-derived cardiomyocytes to assess inotropic compounds. J Pharmacol Toxicol Methods 2023; 123:107282. [PMID: 37419294 DOI: 10.1016/j.vascn.2023.107282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) present an attractive in vitro platform to model safety and toxicity assessments-notably screening pro-arrhythmic compounds. The utility of the platform is stymied by a hiPSC-CM contractile apparatus and calcium handling mechanism akin to fetal phenotypes, evidenced by a negative force-frequency relationship. As such, hiPSC-CMs are limited in their ability to assess compounds that modulate contraction mediated by ionotropic compounds (Robertson, Tran, & George, 2013). To address this limitation, we utilize Agilent's xCELLigence Real-Time Cell Analyzer ePacer (RTCA ePacer) to enhance hiPSC-CM functional maturity. A continuous, progressive increase of electrical pacing is applied to hiPSC-CMs for up to 15 days. Contraction and viability are recorded by measurement of impedance using the RTCA ePacer. Our data confirms hiPSC-CMs inherently demonstrate a negative impedance amplitude frequency that is reversed after long-term electrical pacing. The data also indicate positive inotropic compounds increase the contractility of paced cardiomyocytes and calcium handling machinery is improved. Increased expression of genes critical to cardiomyocyte maturation further underscores the maturity of paced cells. In summary, our data suggest the application of continuous electrical pacing can functionally mature hiPSC-CMs, enhancing cellular response to positive inotropic compounds and improving calcium handling. SUMMARY: Long-term electrical stimulation of hiPSC-CM leads to functional maturation enabling predictive assessment of inotropic compounds.
Collapse
|
25
|
Clark AP, Wei S, Fullerton K, Krogh-Madsen T, Christini DJ. Rapid ionic current phenotyping (RICP) identifies mechanistic underpinnings of iPSC-CM AP heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553521. [PMID: 37645815 PMCID: PMC10461967 DOI: 10.1101/2023.08.16.553521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
As a renewable, easily accessible, human-derived in vitro model, human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) are a promising tool for studying arrhythmia-related factors, including cardiotoxicity and congenital proarrhythmia risks. An oft-mentioned limitation of iPSC-CMs is the abundant cell-to-cell variability in recordings of their electrical activity. Here, we develop a new method, rapid ionic current phenotyping (RICP), that utilizes a short (10 s) voltage clamp protocol to quantify cell-to-cell heterogeneity in key ionic currents. We correlate these ionic current dynamics to action potential recordings from the same cells and produce mechanistic insights into cellular heterogeneity. We present evidence that the L-type calcium current is the main determinant of upstroke velocity, rapid delayed rectifier K+ current is the main determinant of the maximal diastolic potential, and an outward current in the excitable range of slow delayed rectifier K+ is the main determinant of action potential duration. We measure an unidentified outward current in several cells at 6 mV that is not recapitulated by iPSC-CM mathematical models but contributes to determining action potential duration. In this way, our study both quantifies cell-to-cell variability in membrane potential and ionic currents, and demonstrates how the ionic current variability gives rise to action potential heterogeneity. Based on these results, we argue that iPSC-CM heterogeneity should not be viewed simply as a problem to be solved but as a model system to understand the mechanistic underpinnings of cellular variability.
Collapse
Affiliation(s)
- Alexander P Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Siyu Wei
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Kristin Fullerton
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - David J Christini
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
26
|
Boogerd CJ, Perini I, Kyriakopoulou E, Han SJ, La P, van der Swaan B, Berkhout JB, Versteeg D, Monshouwer-Kloots J, van Rooij E. Cardiomyocyte proliferation is suppressed by ARID1A-mediated YAP inhibition during cardiac maturation. Nat Commun 2023; 14:4716. [PMID: 37543677 PMCID: PMC10404286 DOI: 10.1038/s41467-023-40203-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/18/2023] [Indexed: 08/07/2023] Open
Abstract
The inability of adult human cardiomyocytes to proliferate is an obstacle to efficient cardiac regeneration after injury. Understanding the mechanisms that drive postnatal cardiomyocytes to switch to a non-regenerative state is therefore of great significance. Here we show that Arid1a, a subunit of the switching defective/sucrose non-fermenting (SWI/SNF) chromatin remodeling complex, suppresses postnatal cardiomyocyte proliferation while enhancing maturation. Genome-wide transcriptome and epigenome analyses revealed that Arid1a is required for the activation of a cardiomyocyte maturation gene program by promoting DNA access to transcription factors that drive cardiomyocyte maturation. Furthermore, we show that ARID1A directly binds and inhibits the proliferation-promoting transcriptional coactivators YAP and TAZ, indicating ARID1A sequesters YAP/TAZ from their DNA-binding partner TEAD. In ischemic heart disease, Arid1a expression is enhanced in cardiomyocytes of the border zone region. Inactivation of Arid1a after ischemic injury enhanced proliferation of border zone cardiomyocytes. Our study illuminates the pivotal role of Arid1a in cardiomyocyte maturation, and uncovers Arid1a as a crucial suppressor of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
| | - Ilaria Perini
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eirini Kyriakopoulou
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Su Ji Han
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Phit La
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Britt van der Swaan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jari B Berkhout
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
27
|
Clark AP, Clerx M, Wei S, Lei CL, de Boer TP, Mirams GR, Christini DJ, Krogh-Madsen T. Leak current, even with gigaohm seals, can cause misinterpretation of stem cell-derived cardiomyocyte action potential recordings. Europace 2023; 25:euad243. [PMID: 37552789 PMCID: PMC10445319 DOI: 10.1093/europace/euad243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/18/2023] [Indexed: 08/10/2023] Open
Abstract
AIMS Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have become an essential tool to study arrhythmia mechanisms. Much of the foundational work on these cells, as well as the computational models built from the resultant data, has overlooked the contribution of seal-leak current on the immature and heterogeneous phenotype that has come to define these cells. The aim of this study is to understand the effect of seal-leak current on recordings of action potential (AP) morphology. METHODS AND RESULTS Action potentials were recorded in human iPSC-CMs using patch clamp and simulated using previously published mathematical models. Our in silico and in vitro studies demonstrate how seal-leak current depolarizes APs, substantially affecting their morphology, even with seal resistances (Rseal) above 1 GΩ. We show that compensation of this leak current is difficult due to challenges with obtaining accurate measures of Rseal during an experiment. Using simulation, we show that Rseal measures (i) change during an experiment, invalidating the use of pre-rupture values, and (ii) are polluted by the presence of transmembrane currents at every voltage. Finally, we posit that the background sodium current in baseline iPSC-CM models imitates the effects of seal-leak current and is increased to a level that masks the effects of seal-leak current on iPSC-CMs. CONCLUSION Based on these findings, we make recommendations to improve iPSC-CM AP data acquisition, interpretation, and model-building. Taking these recommendations into account will improve our understanding of iPSC-CM physiology and the descriptive ability of models built from such data.
Collapse
Affiliation(s)
- Alexander P Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Michael Clerx
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Siyu Wei
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Chon Lok Lei
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gary R Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - David J Christini
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Trine Krogh-Madsen
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, Box 75, Room C501D, New York, 10065 NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, Box 75, Room C501D, New York, 10065 NY, USA
| |
Collapse
|
28
|
Bourque K, Jones-Tabah J, Pétrin D, Martin RD, Tanny JC, Hébert TE. Comparing the signaling and transcriptome profiling landscapes of human iPSC-derived and primary rat neonatal cardiomyocytes. Sci Rep 2023; 13:12248. [PMID: 37507481 PMCID: PMC10382583 DOI: 10.1038/s41598-023-39525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
The inaccessibility of human cardiomyocytes significantly hindered years of cardiovascular research efforts. To overcome these limitations, non-human cell sources were used as proxies to study heart function and associated diseases. Rodent models became increasingly acceptable surrogates to model the human heart either in vivo or through in vitro cultures. More recently, due to concerns regarding animal to human translation, including cross-species differences, the use of human iPSC-derived cardiomyocytes presented a renewed opportunity. Here, we conducted a comparative study, assessing cellular signaling through cardiac G protein-coupled receptors (GPCRs) in rat neonatal cardiomyocytes (RNCMs) and human induced pluripotent stem cell-derived cardiomyocytes. Genetically encoded biosensors were used to explore GPCR-mediated nuclear protein kinase A (PKA) and extracellular signal-regulated kinase 1/ 2 (ERK1/2) activities in both cardiomyocyte populations. To increase data granularity, a single-cell analytical approach was conducted. Using automated high content microscopy, our analyses of nuclear PKA and ERK1/2 signaling revealed distinct response clusters in rat and human cardiomyocytes. In line with this, bulk RNA-seq revealed key differences in the expression patterns of GPCRs, G proteins and downstream effector expression levels. Our study demonstrates that human stem cell-derived models of the cardiomyocyte offer distinct advantages for understanding cellular signaling in the heart.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
29
|
Altrocchi C, Van Ammel K, Steemans M, Kreir M, Tekle F, Teisman A, Gallacher DJ, Lu HR. Evaluation of chronic drug-induced electrophysiological and cytotoxic effects using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Front Pharmacol 2023; 14:1229960. [PMID: 37492082 PMCID: PMC10364322 DOI: 10.3389/fphar.2023.1229960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction: Cardiotoxicity is one of the leading causes of compound attrition during drug development. Most in vitro screening platforms aim at detecting acute cardio-electrophysiological changes and drug-induced chronic functional alterations are often not studied in the early stage of drug development. Therefore, we developed an assay using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that evaluates both drug-induced acute and delayed electrophysiological and cytotoxic effects of reference compounds with clinically known cardiac outcomes. Methods: hiPSC-CMs were seeded in 48-well multielectrode array (MEA) plates and were treated with four doses of reference compounds (covering and exceeding clinical free plasma peak concentrations -fCmax values) and MEA recordings were conducted for 4 days. Functional-electrophysiological (field-potentials) and viability (impedance) parameters were recorded with a MEA machine. Results: To assess this platform, we tested tyrosine-kinase inhibitors with high-cardiac risk profile (sunitinib, vandetanib and nilotinib) and low-cardiac risk (erlotinib), as well as known classic cardiac toxic drugs (doxorubicin and BMS-986094), ion-channel trafficking inhibitors (pentamidine, probucol and arsenic trioxide) and compounds without known clinical cardiotoxicity (amoxicillin, cetirizine, captopril and aspirin). By evaluating the effects of these compounds on MEA parameters, the assay was mostly able to recapitulate different drug-induced cardiotoxicities, represented by a prolongation of the field potential, changes in beating rate and presence of arrhythmic events in acute (<2 h) or delayed phase ≥24 h, and/or reduction of impedance during the delayed phase (≥24 h). Furthermore, a few reference compounds were tested in hiPSC-CMs using fluorescence- and luminescence-based plate reader assays, confirming the presence or absence of cytotoxic effects, linked to changes of the impedance parameters measured in the MEA assay. Of note, some cardiotoxic effects could not be identified at acute time points (<2 h) but were clearly detected after 24 h, reinforcing the importance of chronic drug evaluation. Discussion: In conclusion, the evaluation of chronic drug-induced cardiotoxicity using a hiPSC-CMs in vitro assay can contribute to the early de-risking of compounds and help optimize the drug development process.
Collapse
Affiliation(s)
- C. Altrocchi
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - K. Van Ammel
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - M. Steemans
- A Division of Janssen Pharmaceutica NV, Cell Health Assessment Group, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - M. Kreir
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - F. Tekle
- A Division of Janssen Pharmaceutica NV, Statistics and Decision Sciences, Global Development, Janssen R&D, Beerse, Belgium
| | - A. Teisman
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - D. J. Gallacher
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - H. R. Lu
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| |
Collapse
|
30
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
31
|
Salameh S, Ogueri V, Posnack NG. Adapting to a new environment: postnatal maturation of the human cardiomyocyte. J Physiol 2023; 601:2593-2619. [PMID: 37031380 PMCID: PMC10775138 DOI: 10.1113/jp283792] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
The postnatal mammalian heart undergoes remarkable developmental changes, which are stimulated by the transition from the intrauterine to extrauterine environment. With birth, increased oxygen levels promote metabolic, structural and biophysical maturation of cardiomyocytes, resulting in mature muscle with increased efficiency, contractility and electrical conduction. In this Topical Review article, we highlight key studies that inform our current understanding of human cardiomyocyte maturation. Collectively, these studies suggest that human atrial and ventricular myocytes evolve quickly within the first year but might not reach a fully mature adult phenotype until nearly the first decade of life. However, it is important to note that fetal, neonatal and paediatric cardiac physiology studies are hindered by a number of limitations, including the scarcity of human tissue, small sample size and a heavy reliance on diseased tissue samples, often without age-matched healthy controls. Future developmental studies are warranted to expand our understanding of normal cardiac physiology/pathophysiology and inform age-appropriate treatment strategies for cardiac disease.
Collapse
Affiliation(s)
- Shatha Salameh
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Vanessa Ogueri
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University, Washington, DC, USA
| |
Collapse
|
32
|
Tamargo-Rubio I, Simpson AB, Hoogerland JA, Fu J. Human induced pluripotent stem cell-derived liver-on-a-chip for studying drug metabolism: the challenge of the cytochrome P450 family. Front Pharmacol 2023; 14:1223108. [PMID: 37448965 PMCID: PMC10338083 DOI: 10.3389/fphar.2023.1223108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The liver is the primary organ responsible for the detoxification and metabolism of drugs. To date, a lack of preclinical models that accurately emulate drug metabolism by the human liver presents a significant challenge in the drug development pipeline, particularly for predicting drug efficacy and toxicity. In recent years, emerging microfluidic-based organ-on-a-chip (OoC) technologies, combined with human induced pluripotent stem cell (hiPSC) technology, present a promising avenue for the complete recapitulation of human organ biology in a patient-specific manner. However, hiPSC-derived organoids and liver-on-a-chip models have so far failed to sufficiently express cytochrome P450 monooxygenase (CYP450) enzymes, the key enzymes involved in first-pass metabolism, which limits the effectiveness and translatability of these models in drug metabolism studies. This review explores the potential of innovative organoid and OoC technologies for studying drug metabolism and discusses their existing drawbacks, such as low expression of CYP450 genes. Finally, we postulate potential approaches for enhancing CYP450 expression in the hope of paving the way toward developing novel, fully representative liver drug-metabolism models.
Collapse
Affiliation(s)
- Isabel Tamargo-Rubio
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anna Bella Simpson
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Joanne A. Hoogerland
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
Ahmad FS, Jin Y, Grassam-Rowe A, Zhou Y, Yuan M, Fan X, Zhou R, Mu-u-min R, O'Shea C, Ibrahim AM, Hyder W, Aguib Y, Yacoub M, Pavlovic D, Zhang Y, Tan X, Lei M, Terrar DA. Generation of cardiomyocytes from human-induced pluripotent stem cells resembling atrial cells with ability to respond to adrenoceptor agonists. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220312. [PMID: 37122218 PMCID: PMC10150206 DOI: 10.1098/rstb.2022.0312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/07/2022] [Indexed: 05/02/2023] Open
Abstract
Atrial fibrillation (AF) is the most common chronic arrhythmia presenting a heavy disease burden. We report a new approach for generating cardiomyocytes (CMs) resembling atrial cells from human-induced pluripotent stem cells (hiPSCs) using a combination of Gremlin 2 and retinoic acid treatment. More than 40% of myocytes showed rod-shaped morphology, expression of CM proteins (including ryanodine receptor 2, α-actinin-2 and F-actin) and striated appearance, all of which were broadly similar to the characteristics of adult atrial myocytes (AMs). Isolated myocytes were electrically quiescent until stimulated to fire action potentials with an AM profile and an amplitude of approximately 100 mV, arising from a resting potential of approximately -70 mV. Single-cell RNA sequence analysis showed a high level of expression of several atrial-specific transcripts including NPPA, MYL7, HOXA3, SLN, KCNJ4, KCNJ5 and KCNA5. Amplitudes of calcium transients recorded from spontaneously beating cultures were increased by the stimulation of α-adrenoceptors (activated by phenylephrine and blocked by prazosin) or β-adrenoceptors (activated by isoproterenol and blocked by CGP20712A). Our new approach provides human AMs with mature characteristics from hiPSCs which will facilitate drug discovery by enabling the study of human atrial cell signalling pathways and AF. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Faizzan S. Ahmad
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Cure8bio, Inc, 395 Fulton Street, Westbury, NY 11590, USA
| | - Yongcheng Jin
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
- Shaanxi Institute for Pediatric Diseases, Department of Cardiology, Xi'an Children's Hospital, Xi'an 710003, People's Republic of China
| | - Meng Yuan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Rui Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Razik Mu-u-min
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ayman M. Ibrahim
- Aswan Heart Centre, Aswan 1242770, Egypt
- Department of Zoology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Wajiha Hyder
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan 1242770, Egypt
- National Heart and Lung Institute, Heart Science Centre, Imperial College London, Middlesex SW3 6LY, UK
| | - Magdi Yacoub
- Aswan Heart Centre, Aswan 1242770, Egypt
- National Heart and Lung Institute, Heart Science Centre, Imperial College London, Middlesex SW3 6LY, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yanmin Zhang
- Shaanxi Institute for Pediatric Diseases, Department of Cardiology, Xi'an Children's Hospital, Xi'an 710003, People's Republic of China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
34
|
Eckhardt LL, Nickel AC. The Changing Complexities of Opioid-Related Sudden Death. J Am Coll Cardiol 2023; 81:2269-2271. [PMID: 37286257 DOI: 10.1016/j.jacc.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/09/2023]
Affiliation(s)
- Lee L Eckhardt
- University of Wisconsin-Madison, Cellular and Molecular Arrhythmia Research, Program, Division of CVM, Madison, Wisconsin, USA.
| | - Andrew C Nickel
- University of Wisconsin-Madison, Cellular and Molecular Arrhythmia Research, Program, Division of CVM, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Dark N, Cosson MV, Tsansizi LI, Owen TJ, Ferraro E, Francis AJ, Tsai S, Bouissou C, Weston A, Collinson L, Abi-Gerges N, Miller PE, MacLeod KT, Ehler E, Mitter R, Harding SE, Smith JC, Bernardo AS. Generation of left ventricle-like cardiomyocytes with improved structural, functional, and metabolic maturity from human pluripotent stem cells. CELL REPORTS METHODS 2023; 3:100456. [PMID: 37159667 PMCID: PMC10163040 DOI: 10.1016/j.crmeth.2023.100456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/23/2023] [Accepted: 03/25/2023] [Indexed: 05/11/2023]
Abstract
Decreased left ventricle (LV) function caused by genetic mutations or injury often leads to debilitating and fatal cardiovascular disease. LV cardiomyocytes are, therefore, a potentially valuable therapeutical target. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are neither homogeneous nor functionally mature, which reduces their utility. Here, we exploit cardiac development knowledge to instruct differentiation of hPSCs specifically toward LV cardiomyocytes. Correct mesoderm patterning and retinoic acid pathway blocking are essential to generate near-homogenous LV-specific hPSC-CMs (hPSC-LV-CMs). These cells transit via first heart field progenitors and display typical ventricular action potentials. Importantly, hPSC-LV-CMs exhibit increased metabolism, reduced proliferation, and improved cytoarchitecture and functional maturity compared with age-matched cardiomyocytes generated using the standard WNT-ON/WNT-OFF protocol. Similarly, engineered heart tissues made from hPSC-LV-CMs are better organized, produce higher force, and beat more slowly but can be paced to physiological levels. Together, we show that functionally matured hPSC-LV-CMs can be obtained rapidly without exposure to current maturation regimes.
Collapse
Affiliation(s)
| | | | - Lorenza I. Tsansizi
- The Francis Crick Institute, London, UK
- NHLI, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andreia S. Bernardo
- The Francis Crick Institute, London, UK
- NHLI, Imperial College London, London, UK
| |
Collapse
|
36
|
Zhou J, Cui B, Wang X, Wang H, Zheng J, Guo F, Sun Y, Fan H, Shen J, Su J, Wang J, Zhao H, Tang Y, Gong T, Sun N, Liang P. Overexpression of KCNJ2 enhances maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:92. [PMID: 37061738 PMCID: PMC10105952 DOI: 10.1186/s13287-023-03312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/07/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Although human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising cell resource for cardiovascular research, these cells exhibit an immature phenotype that hampers their potential applications. The inwardly rectifying potassium channel Kir2.1, encoded by the KCNJ2 gene, has been thought as an important target for promoting electrical maturation of iPSC-CMs. However, a comprehensive characterization of morphological and functional changes in iPSC-CMs overexpressing KCNJ2 (KCNJ2 OE) is still lacking. METHODS iPSC-CMs were generated using a 2D in vitro monolayer differentiation protocol. Human KCNJ2 construct with green fluorescent protein (GFP) tag was created and overexpressed in iPSC-CMs via lentiviral transduction. The mixture of iPSC-CMs and mesenchymal cells was cocultured with decellularized natural heart matrix for generation of 3D human engineered heart tissues (EHTs). RESULTS We showed that mRNA expression level of KCNJ2 in iPSC-CMs was dramatically lower than that in human left ventricular tissues. KCNJ2 OE iPSC-CMs yielded significantly increased protein expression of Kir2.1 and current density of Kir2.1-encoded IK1. The larger IK1 linked to a quiescent phenotype that required pacing to elicit action potentials in KCNJ2 OE iPSC-CMs, which can be reversed by IK1 blocker BaCl2. KCNJ2 OE also led to significantly hyperpolarized maximal diastolic potential (MDP), shortened action potential duration (APD) and increased maximal upstroke velocity. The enhanced electrophysiological maturation in KCNJ2 OE iPSC-CMs was accompanied by improvements in Ca2+ signaling, mitochondrial energy metabolism and transcriptomic profile. Notably, KCNJ2 OE iPSC-CMs exhibited enlarged cell size and more elongated and stretched shape, indicating a morphological phenotype toward structural maturation. Drug testing using hERG blocker E-4031 revealed that a more stable MDP in KCNJ2 OE iPSC-CMs allowed for obtaining significant drug response of APD prolongation in a concentration-dependent manner. Moreover, KCNJ2 OE iPSC-CMs formed more mature human EHTs with better tissue structure and cell junction. CONCLUSIONS Overexpression of KCNJ2 can robustly enhance maturation of iPSC-CMs in electrophysiology, Ca2+ signaling, metabolism, transcriptomic profile, cardiomyocyte structure and tissue engineering, thus providing more accurate cellular model for elucidating cellular and molecular mechanisms of cardiovascular diseases, screening drug-induced cardiotoxicity, and developing personalized and precision cardiovascular medicine.
Collapse
Affiliation(s)
- Jingjun Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Baiping Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Hongkun Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Junnan Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Fengfeng Guo
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Yaxun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Hangping Fan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jiaxi Shen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jun Su
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jue Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Haige Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yiquan Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Tingyu Gong
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214028, Jiangsu, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
| |
Collapse
|
37
|
Melgari D, Calamaio S, Frosio A, Prevostini R, Anastasia L, Pappone C, Rivolta I. Automated Patch-Clamp and Induced Pluripotent Stem Cell-Derived Cardiomyocytes: A Synergistic Approach in the Study of Brugada Syndrome. Int J Mol Sci 2023; 24:ijms24076687. [PMID: 37047659 PMCID: PMC10095337 DOI: 10.3390/ijms24076687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The development of high-throughput automated patch-clamp technology is a recent breakthrough in the field of Brugada syndrome research. Brugada syndrome is a heart disorder marked by abnormal electrocardiographic readings and an elevated risk of sudden cardiac death due to arrhythmias. Various experimental models, developed either in animals, cell lines, human tissue or computational simulation, play a crucial role in advancing our understanding of this condition, and developing effective treatments. In the perspective of the pathophysiological role of ion channels and their pharmacology, automated patch-clamp involves a robotic system that enables the simultaneous recording of electrical activity from multiple single cells at once, greatly improving the speed and efficiency of data collection. By combining this approach with the use of patient-derived cardiomyocytes, researchers are gaining a more comprehensive view of the underlying mechanisms of heart disease. This has led to the development of more effective treatments for those affected by cardiovascular conditions.
Collapse
Affiliation(s)
- Dario Melgari
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Serena Calamaio
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Anthony Frosio
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Rachele Prevostini
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Ilaria Rivolta
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, Italy
| |
Collapse
|
38
|
Small Extracellular Vesicles Derived from Induced Pluripotent Stem Cells in the Treatment of Myocardial Injury. Int J Mol Sci 2023; 24:ijms24054577. [PMID: 36902008 PMCID: PMC10003569 DOI: 10.3390/ijms24054577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of myocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action. iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous substances and mediate the interaction between iPSCs and target cells. In recent years, more and more studies have focused on the therapeutic effect of iPSCs-sEVs in myocardial injury. IPSCs-sEVs may be a new cell-free-based treatment for myocardial injury, including myocardial infarction, myocardial ischemia-reperfusion injury, coronary heart disease, and heart failure. In the current research on myocardial injury, the extraction of sEVs from mesenchymal stem cells induced by iPSCs was widely used. Isolation methods of iPSCs-sEVs for the treatment of myocardial injury include ultracentrifugation, isodensity gradient centrifugation, and size exclusion chromatography. Tail vein injection and intraductal administration are the most widely used routes of iPSCs-sEV administration. The characteristics of sEVs derived from iPSCs which were induced from different species and organs, including fibroblasts and bone marrow, were further compared. In addition, the beneficial genes of iPSC can be regulated through CRISPR/Cas9 to change the composition of sEVs and improve the abundance and expression diversity of them. This review focused on the strategies and mechanisms of iPSCs-sEVs in the treatment of myocardial injury, which provides a reference for future research and the application of iPSCs-sEVs.
Collapse
|
39
|
Barndt RJ, Liu Q, Tang Y, Haugh MP, Cui J, Chan SY, Wu H. Metabolic Maturation Exaggerates Abnormal Calcium Handling in a Lamp2 Knockout Human Pluripotent Stem Cell-Derived Cardiomyocyte Model of Danon Disease. Biomolecules 2022; 13:69. [PMID: 36671453 PMCID: PMC9855424 DOI: 10.3390/biom13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Danon disease (DD) is caused by mutations of the gene encoding lysosomal-associated membrane protein type 2 (LAMP2), which lead to impaired autophagy, glycogen accumulation, and cardiac hypertrophy. However, it is not well understood why a large portion of DD patients develop arrhythmia and sudden cardiac death. In the current study, we generated LAMP2 knockout (KO) human iPSC-derived cardiomyocytes (CM), which mimic the LAMP2 dysfunction in DD heart. Morphologic analysis demonstrated the sarcomere disarrangement in LAMP2 KO CMs. In functional studies, LAMP2 KO CMs showed near-normal calcium handling at base level. However, treatment of pro-maturation medium (MM) exaggerated the disease phenotype in the KO cells as they exhibited impaired calcium recycling and increased irregular beating events, which recapitulates the pro-arrhythmia phenotypes of DD patients. Further mechanistic study confirmed that MM treatment significantly enhanced the autophagic stress in the LAMP2 KO CMs, which was accompanied by an increase of both cellular and mitochondrial reactive oxygen species (ROS) levels. Excess ROS accumulation in LAMP2 KO CMs resulted in the over-activation of calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) and arrhythmogenesis, which was partially rescued by the treatment of ROS scavenger. In summary, our study has revealed ROS induced CaMKIIδ overactivation as a key mechanism that promotes cardiac arrhythmia in DD patients.
Collapse
Affiliation(s)
- Robert J. Barndt
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Ying Tang
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael P. Haugh
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
| | - Jeffery Cui
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Haodi Wu
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
40
|
Vučković S, Dinani R, Nollet EE, Kuster DWD, Buikema JW, Houtkooper RH, Nabben M, van der Velden J, Goversen B. Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling. STEM CELL RESEARCH & THERAPY 2022; 13:332. [PMID: 35870954 PMCID: PMC9308297 DOI: 10.1186/s13287-022-03021-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/25/2022] [Indexed: 12/02/2022]
Abstract
Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have emerged as a powerful tool for disease modeling, though their immature nature currently limits translation into clinical practice. Maturation strategies increasingly pay attention to cardiac metabolism because of its pivotal role in cardiomyocyte development and function. Moreover, aberrances in cardiac metabolism are central to the pathogenesis of cardiac disease. Thus, proper modeling of human cardiac disease warrants careful characterization of the metabolic properties of iPSC-CMs. Methods Here, we examined the effect of maturation protocols on healthy iPSC-CMs applied in 23 studies and compared fold changes in functional metabolic characteristics to assess the level of maturation. In addition, pathological metabolic remodeling was assessed in 13 iPSC-CM studies that focus on hypertrophic cardiomyopathy (HCM), which is characterized by abnormalities in metabolism. Results Matured iPSC-CMs were characterized by mitochondrial maturation, increased oxidative capacity and enhanced fatty acid use for energy production. HCM iPSC-CMs presented varying degrees of metabolic remodeling ranging from compensatory to energy depletion stages, likely due to the different types of mutations and clinical phenotypes modeled. HCM further displayed early onset hypertrophy, independent of the type of mutation or disease stage. Conclusions Maturation strategies improve the metabolic characteristics of iPSC-CMs, but not to the level of the adult heart. Therefore, a combination of maturation strategies might prove to be more effective. Due to early onset hypertrophy, HCM iPSC-CMs may be less suitable to detect early disease modifiers in HCM and might prove more useful to examine the effects of gene editing and new drugs in advanced disease stages. With this review, we provide an overview of the assays used for characterization of cardiac metabolism in iPSC-CMs and advise on which metabolic assays to include in future maturation and disease modeling studies.
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03021-9.
Collapse
|
41
|
Al-Maswary AA, O’Reilly M, Holmes AP, Walmsley AD, Cooper PR, Scheven BA. Exploring the neurogenic differentiation of human dental pulp stem cells. PLoS One 2022; 17:e0277134. [PMID: 36331951 PMCID: PMC9635714 DOI: 10.1371/journal.pone.0277134] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) have increasingly gained interest as a potential therapy for nerve regeneration in medicine and dentistry, however their neurogenic potential remains a matter of debate. This study aimed to characterize hDPSC neuronal differentiation in comparison with the human SH-SY5Y neuronal stem cell differentiation model. Both hDPSCs and SH-SY5Y could be differentiated to generate typical neuronal-like cells following sequential treatment with all-trans retinoic acid (ATRA) and brain-derived neurotrophic factor (BDNF), as evidenced by significant expression of neuronal proteins βIII-tubulin (TUBB3) and neurofilament medium (NF-M). Both cell types also expressed multiple neural gene markers including growth-associated protein 43 (GAP43), enolase 2/neuron-specific enolase (ENO2/NSE), synapsin I (SYN1), nestin (NES), and peripherin (PRPH), and exhibited measurable voltage-activated Na+ and K+ currents. In hDPSCs, upregulation of acetylcholinesterase (ACHE), choline O-acetyltransferase (CHAT), sodium channel alpha subunit 9 (SCN9A), POU class 4 homeobox 1 (POU4F1/BRN3A) along with a downregulation of motor neuron and pancreas homeobox 1 (MNX1) indicated that differentiation was more guided toward a cholinergic sensory neuronal lineage. Furthermore, the Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 significantly impaired hDPSC neuronal differentiation and was associated with reduction of the ERK1/2 phosphorylation. In conclusion, this study demonstrates that extracellular signal-regulated kinase/Mitogen-activated protein kinase (ERK/MAPK) is necessary for sensory cholinergic neuronal differentiation of hDPSCs. hDPSC-derived cholinergic sensory neuronal-like cells represent a novel model and potential source for neuronal regeneration therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Maswary
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail: , (AAA-M); (BAS)
| | - Molly O’Reilly
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - A. Damien Walmsley
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul R. Cooper
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Ben A. Scheven
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail: , (AAA-M); (BAS)
| |
Collapse
|
42
|
van Ham WB, Cornelissen CM, van Veen TAB. Uremic toxins in chronic kidney disease highlight a fundamental gap in understanding their detrimental effects on cardiac electrophysiology and arrhythmogenesis. Acta Physiol (Oxf) 2022; 236:e13888. [PMID: 36148604 PMCID: PMC9787632 DOI: 10.1111/apha.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) have an estimated 700-800 and 523 million cases worldwide, respectively, with CVD being the leading cause of death in CKD patients. The pathophysiological interplay between the heart and kidneys is defined as the cardiorenal syndrome (CRS), in which worsening of kidney function is represented by increased plasma concentrations of uremic toxins (UTs), culminating in dialysis patients. As there is a high incidence of CVD in CKD patients, accompanied by arrhythmias and sudden cardiac death, knowledge on electrophysiological remodeling would be instrumental for understanding the CRS. While the interplay between both organs is clearly of importance in CRS, the involvement of UTs in pro-arrhythmic remodeling is only poorly investigated, especially regarding the mechanistic background. Currently, the clinical approach against potential arrhythmic events is mainly restricted to symptom treatment, stressing the need for fundamental research on UT in relation to electrophysiology. This review addresses the existing knowledge of UTs and cardiac electrophysiology, and the experimental research gap between fundamental research and clinical research of the CRS. Clinically, mainly absorbents like ibuprofen and AST-120 are studied, which show limited safe and efficient usability. Experimental research shows disturbances in cardiac electrical activation and conduction after inducing CKD or exposure to UTs, but are scarcely present or focus solely on already well-investigated UTs. Based on UTs data derived from CKD patient cohort studies, a clinically relevant overview of physiological and pathological UTs concentrations is created. Using this, future experimental research is stimulated to involve electrophysiologically translatable animals, such as rabbits, or in vitro engineered heart tissues.
Collapse
Affiliation(s)
- Willem B. van Ham
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carlijn M. Cornelissen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Toon A. B. van Veen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
43
|
Caballero D, Reis RL, Kundu SC. Boosting the Clinical Translation of Organ-on-a-Chip Technology. Bioengineering (Basel) 2022; 9:549. [PMID: 36290517 PMCID: PMC9598310 DOI: 10.3390/bioengineering9100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Organ-on-a-chip devices have become a viable option for investigating critical physiological events and responses; this technology has matured substantially, and many systems have been reported for disease modeling or drug screening over the last decade. Despite the wide acceptance in the academic community, their adoption by clinical end-users is still a non-accomplished promise. The reasons behind this difficulty can be very diverse but most likely are related to the lack of predictive power, physiological relevance, and reliability necessary for being utilized in the clinical area. In this Perspective, we briefly discuss the main attributes of organ-on-a-chip platforms in academia and how these characteristics impede their easy translation to the clinic. We also discuss how academia, in conjunction with the industry, can contribute to boosting their adoption by proposing novel design concepts, fabrication methods, processes, and manufacturing materials, improving their standardization and versatility, and simplifying their manipulation and reusability.
Collapse
Affiliation(s)
- David Caballero
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704-553 Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704-553 Braga, Portugal
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704-553 Braga, Portugal
| |
Collapse
|
44
|
Clark AP, Wei S, Kalola D, Krogh‐Madsen T, Christini DJ. An in silico-in vitro pipeline for drug cardiotoxicity screening identifies ionic pro-arrhythmia mechanisms. Br J Pharmacol 2022; 179:4829-4843. [PMID: 35781252 PMCID: PMC9489646 DOI: 10.1111/bph.15915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/25/2022] [Accepted: 06/24/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Before advancing to clinical trials, new drugs are screened for their pro-arrhythmic potential using a method that is overly conservative and provides limited mechanistic insight. The shortcomings of this approach can lead to the mis-classification of beneficial drugs as pro-arrhythmic. EXPERIMENTAL APPROACH An in silico-in vitro pipeline was developed to circumvent these shortcomings. A computational human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model was used as part of a genetic algorithm to design experiments, specifically electrophysiological voltage clamp (VC) protocols, to identify which of several cardiac ion channels were blocked during in vitro drug studies. Such VC data, along with dynamically clamped action potentials (AP), were acquired from iPSC-CMs before and after treatment with a control solution or a low- (verapamil), intermediate- (cisapride or quinine) or high-risk (quinidine) drug. KEY RESULTS Significant AP prolongation (a pro-arrhythmia marker) was seen in response to quinidine and quinine. The VC protocol identified block of IKr (a source of arrhythmias) by all strong IKr blockers, including cisapride, quinidine and quinine. The protocol also detected block of ICaL by verapamil and Ito by quinidine. Further demonstrating the power of the approach, the VC data uncovered a previously unidentified If block by quinine, which was confirmed with experiments using a HEK-293 expression system and automated patch-clamp. CONCLUSION AND IMPLICATIONS We developed an in silico-in vitro pipeline that simultaneously identifies pro-arrhythmia risk and mechanism of ion channel-blocking drugs. The approach offers a new tool for evaluating cardiotoxicity during preclinical drug screening.
Collapse
Affiliation(s)
| | - Siyu Wei
- Department of Physiology and PharmacologySUNY Downstate Medical CenterBrooklynNew YorkUSA
| | - Darshan Kalola
- Computational Biology Summer ProgramWeill Cornell Medicine & Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Trine Krogh‐Madsen
- Department of Physiology & BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Institute for Computational BiomedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - David J. Christini
- Department of Biomedical EngineeringCornell UniversityIthacaNew YorkUSA
- Department of Physiology and PharmacologySUNY Downstate Medical CenterBrooklynNew YorkUSA
| |
Collapse
|
45
|
Xu Y, Yang Y, Chandrashekar A, Gada KD, Masotti M, Baggetta AM, Connolly JG, Kawano T, Plant LD. Hypoxia inhibits the cardiac I K1 current through SUMO targeting Kir2.1 activation by PIP 2. iScience 2022; 25:104969. [PMID: 36060074 PMCID: PMC9437851 DOI: 10.1016/j.isci.2022.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/07/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide. Most deaths are sudden and occur secondary to the occlusion of coronary arteries resulting in a rapid decrease in cellular oxygen levels. Acute hypoxia is proarrhythmic, leading to disordered electrical signals, conduction block, and uncoordinated beating of the myocardium. Although acute hypoxia is recognized to perturb the electrophysiology of heart muscle, the mechanistic basis for the effect has remained elusive, hampering the development of targeted therapeutic interventions. Here, we show that acute hypoxia activates the redox-sensitive SUMO pathway in cardiomyocytes, causing rapid inhibition of the inward-rectifying K+ channel, Kir2.1. We find that SUMOylation decreases the activation of Kir2.1 channels by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). These data provide a mechanistic basis for the proarrhythmic effects of acute hypoxia and offer a framework for understanding the central role of PIP2 in mediating the sequelae of hypoxia and SUMOylation in cardiovascular disease.
Collapse
Affiliation(s)
- Yu Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Yuchen Yang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Kirin D. Gada
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Meghan Masotti
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Austin M. Baggetta
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jenna G. Connolly
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Takeharu Kawano
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Leigh D. Plant
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| |
Collapse
|
46
|
Afzal J, Liu Y, Du W, Suhail Y, Zong P, Feng J, Ajeti V, Sayyad WA, Nikolaus J, Yankova M, Deymier AC, Yue L, Kshitiz. Cardiac ultrastructure inspired matrix induces advanced metabolic and functional maturation of differentiated human cardiomyocytes. Cell Rep 2022; 40:111146. [PMID: 35905711 DOI: 10.1016/j.celrep.2022.111146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 12/21/2022] Open
Abstract
The vast potential of human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) in preclinical models of cardiac pathologies, precision medicine, and drug screening remains to be fully realized because hiPSC-CMs are immature without adult-like characteristics. Here, we present a method to accelerate hiPSC-CM maturation on a substrate, cardiac mimetic matrix (CMM), mimicking adult human heart matrix ligand chemistry, rigidity, and submicron ultrastructure, which synergistically mature hiPSC-CMs rapidly within 30 days. hiPSC-CMs matured on CMM exhibit systemic transcriptomic maturation toward an adult heart state, are aligned with high strain energy, metabolically rely on oxidative phosphorylation and fatty acid oxidation, and display enhanced redox handling capability, efficient calcium handling, and electrophysiological features of ventricular myocytes. Endothelin-1-induced pathological hypertrophy is mitigated on CMM, highlighting the role of a native cardiac microenvironment in withstanding hypertrophy progression. CMM is a convenient model for accelerated development of ventricular myocytes manifesting highly specialized cardiac-specific functions.
Collapse
Affiliation(s)
- Junaid Afzal
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Wenqiang Du
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Pengyu Zong
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Jianlin Feng
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Visar Ajeti
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Wasim A Sayyad
- Department of Cell Biology, Yale University, New Haven, CT 06510, USA
| | - Joerg Nikolaus
- West Campus Imaging Core, Yale University, New Haven, CT 06477, USA
| | - Maya Yankova
- Electron Microscopy Core, University of Connecticut Health, Farmington, CT 06032, USA
| | - Alix C Deymier
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Lixia Yue
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA; Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA.
| |
Collapse
|
47
|
In vitro maturation of human pluripotent stem cell-derived cardiomyocyte: A promising approach for cell therapy. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.2.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
48
|
Rosholm KR, Badone B, Karatsiompani S, Nagy D, Seibertz F, Voigt N, Bell DC. Adventures and Advances in Time Travel With Induced Pluripotent Stem Cells and Automated Patch Clamp. Front Mol Neurosci 2022; 15:898717. [PMID: 35813069 PMCID: PMC9258620 DOI: 10.3389/fnmol.2022.898717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023] Open
Abstract
In the Hollywood blockbuster “The Curious Case of Benjamin Button” a fantastical fable unfolds of a man’s life that travels through time reversing the aging process; as the tale progresses, the frail old man becomes a vigorous, vivacious young man, then man becomes boy and boy becomes baby. The reality of cellular time travel, however, is far more wondrous: we now have the ability to both reverse and then forward time on mature cells. Four proteins were found to rewind the molecular clock of adult cells back to their embryonic, “blank canvas” pluripotent stem cell state, allowing these pluripotent stem cells to then be differentiated to fast forward their molecular clocks to the desired adult specialist cell types. These four proteins – the “Yamanaka factors” – form critical elements of this cellular time travel, which deservedly won Shinya Yamanaka the Nobel Prize for his lab’s work discovering them. Human induced pluripotent stem cells (hiPSCs) hold much promise in our understanding of physiology and medicine. They encapsulate the signaling pathways of the desired cell types, such as cardiomyocytes or neurons, and thus act as model cells for defining the critical ion channel activity in healthy and disease states. Since hiPSCs can be derived from any patient, highly specific, personalized (or stratified) physiology, and/or pathophysiology can be defined, leading to exciting developments in personalized medicines and interventions. As such, hiPSC married with high throughput automated patch clamp (APC) ion channel recording platforms provide a foundation for significant physiological, medical and drug discovery advances. This review aims to summarize the current state of affairs of hiPSC and APC: the background and recent advances made; and the pros, cons and challenges of these technologies. Whilst the authors have yet to finalize a fully functional time traveling machine, they will endeavor to provide plausible future projections on where hiPSC and APC are likely to carry us. One future projection the authors are confident in making is the increasing necessity and adoption of these technologies in the discovery of the next blockbuster, this time a life-enhancing ion channel drug, not a fantastical movie.
Collapse
Affiliation(s)
- Kadla R. Rosholm
- Sophion Bioscience A/S, Ballerup, Denmark
- *Correspondence: Kadla R. Rosholm,
| | | | | | - David Nagy
- Sophion Bioscience Inc., Woburn, MA, United States
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
49
|
Eckhardt LL. Arrhythmogenesis and Prolonged Repolarization From Synthetic Opioids: Finally Sorted? J Am Heart Assoc 2022; 11:e025778. [PMID: 35658484 PMCID: PMC9238742 DOI: 10.1161/jaha.122.025778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lee L Eckhardt
- Department of Medicine University of Wisconsin-Madison Madison WI
| |
Collapse
|
50
|
Lu HR, Kreir M, Karel VA, Tekle F, Geyskens D, Teisman A, Gallacher DJ. Identifying Acute Cardiac Hazard in Early Drug Discovery Using a Calcium Transient High-Throughput Assay in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2022; 13:838435. [PMID: 35547580 PMCID: PMC9083324 DOI: 10.3389/fphys.2022.838435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Early identification of cardiac risk is essential for reducing late-stage attrition in drug development. We adapted the previously published cardiac hazard risk-scoring system using a calcium transient assay in human stem cell-derived CMs for the identification of cardiac risks recorded from the new hiPSC-CM line and investigated its predictivity and translational value based on the screening of a large number of reference and proprietary compounds. Methods: Evaluation of 55 reference drugs provided the translation of various pharmacological effects into a single hazard label (no, low, high, or very high hazard) using a Ca2+-sensitive fluorescent dye assay recorded by -by FDSS/µCell Functional Drug Screening System (Hamamatsu on hiPSC-CM line (FCDI iCell Cardiomyocytes2). Results: Application of the adapted hazard scoring system in the Ca2+ transient assay, using a second hiPS-CM line, provided comparable scoring results and predictivity of hazard, to the previously published scoring approach, with different pharmacological drug classes, as well as screening new chemical entities (NCE's) using a single hazard label from four different scoring levels (no, low, high, or very high hazard). The scoring system results also showed minimal variability across three different lots of hiPSC-CMs, indicating good reproducibility of the cell line. The predictivity values (sensitivity and specificity) for drug-induced acute cardiac risk for QT-interval prolongation and Torsade de pointes (TdPs) were >95% and statistical modeling confirmed the prediction of proarrhythmic risk. The outcomes of the NCEs also showed consistency with findings in other well-established in vitro and in vivo cardiac risk assays. Conclusion: Evaluation of a large list of reference compounds and internal NCEs has confirmed the applicability of the adaptations made to the previously published novel scoring system for the hiPSC-CMs. The validation also established the predictivity for drug-induced cardiac risks with good translation to other established preclinical in vitro and in vivo assays, confirming the application of this novel scoring system in different stem cell-CM lines for early cardiac hazard identification.
Collapse
Affiliation(s)
- Hua Rong Lu
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Mohamed Kreir
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Van Ammel Karel
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Fetene Tekle
- Discovery and Nonclinical Safety Statistics, Statistics and Decision Sciences, Quantitative Sciences, Janssen R&D, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Danny Geyskens
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| |
Collapse
|