1
|
Bodnar RJ, Castillo A, Carata I, Bochner Y, Sarker J, Rayman N, Narine S, Pines R, Limbu B, Sclafani A. Role of glutamatergic signaling in the acquisition and expression of learned sugar preferences in C57BL/6 mice. Physiol Behav 2025; 290:114748. [PMID: 39547434 DOI: 10.1016/j.physbeh.2024.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
C57BL/6 (B6) mice learn to prefer glucose or sucrose to initially isopreferred or even more preferred nonnutritive sweeteners due to the postoral appetite stimulating (appetition) actions of glucose. Recent evidence indicates that specific duodenal neuropod cells transmit the glucose appetition signal to the brain via glutamatergic synaptic connections with vagal afferents. The present study found that intraperitoneal pretreatment with a glutamatergic receptor antagonist cocktail (kynurenic acid (KA)/D-2-amino-3-phosphonopentanoic acid (AP3)) in B6 mice did not block the expression of their learned preference for 8% glucose solution over an initially-preferred 0.1% sucralose + 0.1% saccharin solution. However, acquisition of the glucose preference was blocked by drug treatment during 1-h training sessions with the two sweeteners. Systemic KA/AP3 injections also did not block the expression of the learned preference for a 10.6% sucrose solution over a 0.6% sucralose solution. Drug effects on the acquisition of the sucrose preference were not determined because sucrose, unlike glucose conditioning, required 24-h training trials. The findings that the 1-h training regimen conditioned 8% glucose, but not 10.6% sucrose, preferences suggest that glucose has more potent appetition actions. This was confirmed by the finding that B6 mice learned to prefer 10.6% glucose to 10.6% sucrose after 1-h or 24-h training despite an initial strong sucrose preference. This action can be explained by 10.6% sucrose's digestion in the gut to glucose and fructose with only glucose activating the gut-brain appetition pathway.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA; Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Alexander Castillo
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Ion Carata
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Yerachmiel Bochner
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Joymin Sarker
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Nareesa Rayman
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Shania Narine
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Rachel Pines
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Brian Limbu
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
2
|
Kelly AL, Baugh ME, Ahrens ML, Valle AN, Sullivan RM, Oster ME, Fowler ME, Carter BE, Davy BM, Hanlon AL, DiFeliceantonio AG. Neural and metabolic factors in carbohydrate reward: Rationale, design, and methods for a flavor-nutrient learning paradigm in humans. Contemp Clin Trials 2024; 147:107717. [PMID: 39413990 PMCID: PMC11688656 DOI: 10.1016/j.cct.2024.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Overconsumption of ultra-processed foods (UPFs), which are linked with adverse health outcomes, is a growing public health concern. UPFs deliver highly bioavailable calories rapidly, which may contribute to their reinforcing potential and drive overconsumption. Our primary aim is to test the role of speed of nutrient availability on reward learning. We hypothesize that brain activity in reward related areas and behavioral preferences will be greater to a flavored drink predicting rapidly available calories (CS + Fast) compared with a flavored drink predicting more slowly available (CS + Slow) or no (CS-) calories. Participants (n = 64, aged 18-45 years, will consume 3 novel flavored, isosweet beverages containing 110 kcal of sucrose (CS + Fast), 110 kcal of maltodextrin (CS + Slow), or 0-kcal sucralose (CS-) 6 times in randomized, crossover order. Blood metabolites and indirect calorimetry measures, including metabolic rate and carbohydrate oxidation, will be assessed before and for 1 h after beverage consumption. Behavioral preference for beverages will be assessed in a pre- and post-test. Brain response to each flavor without calories will be assessed via functional magnetic resonance imaging in a post-test. Findings from this study will contribute to the understanding of basic mechanisms that may drive overconsumption of UPFs. Trial registration:clinicaltrials.gov registration #NCT06053294.
Collapse
Affiliation(s)
- Amber L Kelly
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Translational Biology, Medicine, and Health, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Mary Elizabeth Baugh
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Monica L Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA, USA
| | - Abigail N Valle
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Mary E Oster
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Mary E Fowler
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Bridget E Carter
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Brenda M Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA, USA
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Cao Y, Li R, Bai L. Vagal sensory pathway for the gut-brain communication. Semin Cell Dev Biol 2024; 156:228-243. [PMID: 37558522 DOI: 10.1016/j.semcdb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023]
Abstract
The communication between the gut and brain is crucial for regulating various essential physiological functions, such as energy balance, fluid homeostasis, immune response, and emotion. The vagal sensory pathway plays an indispensable role in connecting the gut to the brain. Recently, our knowledge of the vagal gut-brain axis has significantly advanced through molecular genetic studies, revealing a diverse range of vagal sensory cell types with distinct peripheral innervations, response profiles, and physiological functions. Here, we review the current understanding of how vagal sensory neurons contribute to gut-brain communication. First, we highlight recent transcriptomic and genetic approaches that have characterized different vagal sensory cell types. Then, we focus on discussing how different subtypes encode numerous gut-derived signals and how their activities are translated into physiological and behavioral regulations. The emerging insights into the diverse cell types and functional properties of vagal sensory neurons have paved the way for exciting future directions, which may provide valuable insights into potential therapeutic targets for disorders involving gut-brain communication.
Collapse
Affiliation(s)
- Yiyun Cao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Rui Li
- Chinese Institute for Brain Research, Beijing 102206, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Ling Bai
- Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
4
|
Kelly AL, Baugh ME, Oster ME, DiFeliceantonio AG. The impact of caloric availability on eating behavior and ultra-processed food reward. Appetite 2022; 178:106274. [PMID: 35963586 PMCID: PMC9749763 DOI: 10.1016/j.appet.2022.106274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 08/07/2022] [Indexed: 12/19/2022]
Abstract
The food environment has changed rapidly and dramatically in the last 50 years. While industrial food processing has increased the safety and stability of the food supply, a rapid expansion in the scope and scale of food processing in the 1980's has resulted in a market dominated by ultra-processed foods. Here, we use the NOVA definition of category 4 ultra-processed foods (UPFs) as they make up around 58% of total calories consumed in the US and 66% of calories in US children. UPFs are formulated from ingredients with no or infrequent culinary use, contain additives, and have a long shelf-life, spending long periods in contact with packaging materials, allowing for the absorption of compounds from those materials. The full implications of this dietary shift to UPFs on human health and disease outcomes are difficult, if not impossible, to quantify. However, UPF consumption is linked with various forms of cancer, increased cardiovascular disease, and increased all-cause mortality. Understanding food choice is, therefore, a critical problem in health research. Although many factors influence food choice, here we focus on the properties of the foods themselves. UPFs are generally treated as food, not as the highly refined, industrialized substances that they are, whose properties and components must be studied. Here, we examine one property of UPFs, that they deliver useable calories rapidly as a potential factor driving UPF overconsumption. First, we explore evidence that UPFs deliver calories more rapidly. Next, we examine the role of the gut-brain axis and its interplay with canonical reward systems, and last, we describe how speed affects both basic learning processes and drugs of abuse.
Collapse
Affiliation(s)
- Amber L Kelly
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | | | - Mary E Oster
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA; Center for Health Behaviors Research; Department of Human Nutrition Foods and Exercise at Virginia Tech, USA.
| |
Collapse
|
5
|
Abstract
When it comes to food, one tempting substance is sugar. Although sweetness is detected by the tongue, the desire to consume sugar arises from the gut. Even when sweet taste is impaired, animals can distinguish sugars from non-nutritive sweeteners guided by sensory cues arising from the gut epithelium. Here, we review the molecular receptors, cells, circuits and behavioural consequences associated with sugar sensing in the gut. Recent work demonstrates that some duodenal cells, termed neuropod cells, can detect glucose using sodium-glucose co-transporter 1 and release glutamate onto vagal afferent neurons. Based on these and other data, we propose a model in which specific populations of vagal neurons relay these sensory cues to distinct sets of neurons in the brain, including neurons in the caudal nucleus of the solitary tract, dopaminergic reward circuits in the basal ganglia and homeostatic feeding circuits in the hypothalamus, that alter current and future sugar consumption. This emerging model highlights the critical role of the gut in sensing the chemical properties of ingested nutrients to guide appetitive decisions.
Collapse
Affiliation(s)
- Winston W Liu
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Diego V Bohórquez
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
The Effects of Roux-en-Y Gastric Bypass on Glucose- vs. Fructose-Associated Conditioned Flavor Preference. Physiol Behav 2022; 248:113730. [PMID: 35149056 PMCID: PMC8901435 DOI: 10.1016/j.physbeh.2022.113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/23/2022]
Abstract
In rodents, repeated single-bottle exposures to distinctly flavored isocaloric glucose and fructose solutions, two sugars with different metabolic pathways, eventually lead to a preference for the former. Because Roux-en-Y gastric bypass (RYGB) surgery decreases preference for and intake of sugar solutions in rats, we tested whether RYGB would curtail the conditioning of a preference for a glucose-paired vs. fructose-paired flavor. RYGB (♂ n=11; ♀ n=10) and sham-operated (SHAM; ♂ n=9; ♀ n=10) rats were trained with a single bottle (30 min/day) containing 8% glucose solution flavored with either 0.05% grape or cherry Kool-Aid (Glu/CSG) or 8% fructose solution with the alternative Kool-Aid flavor (Fru/CSF) in an alternating fashion for 8 days. To determine baseline preferences, a 4-day 30-min two-bottle test was used to assess preference for Glu/CSG vs. Fru/CSF before training. After training, 2-day 30-min two-bottle tests assessed preference for the a) Glu/CSG (CSG-flavored 8% glucose solution) vs Fru/CSF (CSF-flavored 8% fructose solution), b) CSG- vs. CSF-flavored mixture of 4% glucose & 4% fructose (isocaloric), c) CSG- vs. CSF-flavored 0.2% saccharin ("sweet", no calories), and d) CSG- vs. CSF-flavored water. During training, only male SHAM rats demonstrated progressively increased intake of Glu/CSG over Fru/CSF, and female SHAM rats displayed a trend. RYGB eliminated any difference in single-bottle intake of these solutions during training, regardless of sex. Like their male and female SHAM counterparts, male RYGB rats displayed a conditioned preference for the CSG-associated stimulus in Tests 1-3. Although female RYGB rats displayed acquisition of the conditioned flavor preference in Test 1, unlike the other groups, when the differential sugar cue between the two solutions was removed in Tests 2 and 3, female rats did not display a CSG preference. When the sugar and sweetener cues were both removed on Test 4, all groups displayed some generalization decrement. Thus, RYGB does not compromise the ability of rats to learn and express a glucose- vs. fructose-associated conditioned flavor preference when the exact CS used in training is presented in testing. The mechanistic basis for the sex difference in the effect of RYGB on the generalization decrement observed in this type of flavor preference learning warrants further study.
Collapse
|
7
|
Buchanan KL, Rupprecht LE, Kaelberer MM, Sahasrabudhe A, Klein ME, Villalobos JA, Liu WW, Yang A, Gelman J, Park S, Anikeeva P, Bohórquez DV. The preference for sugar over sweetener depends on a gut sensor cell. Nat Neurosci 2022; 25:191-200. [PMID: 35027761 PMCID: PMC8825280 DOI: 10.1038/s41593-021-00982-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
Guided by gut sensory cues, humans and animals prefer nutritive sugars over non-caloric sweeteners, but how the gut steers such preferences remains unknown. In the intestine, neuropod cells synapse with vagal neurons to convey sugar stimuli to the brain within seconds. Here, we found that cholecystokinin (CCK)-labeled duodenal neuropod cells differentiate and transduce luminal stimuli from sweeteners and sugars to the vagus nerve using sweet taste receptors and sodium glucose transporters. The two stimulus types elicited distinct neural pathways: while sweetener stimulated purinergic neurotransmission, sugar stimulated glutamatergic neurotransmission. To probe the contribution of these cells to behavior, we developed optogenetics for the gut lumen by engineering a flexible fiberoptic. We showed that preference for sugar over sweetener in mice depends on neuropod cell glutamatergic signaling. By swiftly discerning the precise identity of nutrient stimuli, gut neuropod cells serve as the entry point to guide nutritive choices. Buchanan, Rupprecht, Kaelberer and colleagues show that the preference for sugar over sweetener in mice depends on gut neuropod cells. Akin to other sensor cells, neuropod cells swiftly communicate the precise identity of stimuli to drive food choices.
Collapse
Affiliation(s)
- Kelly L Buchanan
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Duke University School of Medicine, Durham, NC, USA
| | - Laura E Rupprecht
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Department of Medicine, Duke University, Durham, NC, USA
| | - M Maya Kaelberer
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Department of Medicine, Duke University, Durham, NC, USA
| | - Atharva Sahasrabudhe
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marguerita E Klein
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Department of Medicine, Duke University, Durham, NC, USA
| | - Jorge A Villalobos
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Department of Medicine, Duke University, Durham, NC, USA
| | - Winston W Liu
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Duke University School of Medicine, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA
| | - Annabelle Yang
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Trinity College of Arts & Sciences, Duke University, Durham, NC, USA
| | - Justin Gelman
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Trinity College of Arts & Sciences, Duke University, Durham, NC, USA
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Polina Anikeeva
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Departments of Materials Science & Engineering and Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego V Bohórquez
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA. .,Department of Medicine, Duke University, Durham, NC, USA. .,Department of Neurobiology, Duke University, Durham, NC, USA. .,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA. .,MSRB-I, room 221A, 203 Research Drive, Durham, NC, USA.
| |
Collapse
|
8
|
Berthoud HR, Morrison CD, Ackroff K, Sclafani A. Learning of food preferences: mechanisms and implications for obesity & metabolic diseases. Int J Obes (Lond) 2021; 45:2156-2168. [PMID: 34230576 PMCID: PMC8455326 DOI: 10.1038/s41366-021-00894-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Omnivores, including rodents and humans, compose their diets from a wide variety of potential foods. Beyond the guidance of a few basic orosensory biases such as attraction to sweet and avoidance of bitter, they have limited innate dietary knowledge and must learn to prefer foods based on their flavors and postoral effects. This review focuses on postoral nutrient sensing and signaling as an essential part of the reward system that shapes preferences for the associated flavors of foods. We discuss the extensive array of sensors in the gastrointestinal system and the vagal pathways conveying information about ingested nutrients to the brain. Earlier studies of vagal contributions were limited by nonselective methods that could not easily distinguish the contributions of subsets of vagal afferents. Recent advances in technique have generated substantial new details on sugar- and fat-responsive signaling pathways. We explain methods for conditioning flavor preferences and their use in evaluating gut-brain communication. The SGLT1 intestinal sugar sensor is important in sugar conditioning; the critical sensors for fat are less certain, though GPR40 and 120 fatty acid sensors have been implicated. Ongoing work points to particular vagal pathways to brain reward areas. An implication for obesity treatment is that bariatric surgery may alter vagal function.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Karen Ackroff
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Anthony Sclafani
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA.
| |
Collapse
|
9
|
Gutierrez R, Simon SA. Physiology of Taste Processing in the Tongue, Gut, and Brain. Compr Physiol 2021; 11:2489-2523. [PMID: 34558667 DOI: 10.1002/cphy.c210002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gustatory system detects and informs us about the nature of various chemicals we put in our mouth. Some of these have nutritive value (sugars, amino acids, salts, and fats) and are appetitive and avidly ingested, whereas others (atropine, quinine, nicotine) are aversive and rapidly rejected. However, the gustatory system is mainly responsible for evoking the perception of a limited number of qualities that humans taste as sweet, umami, bitter, sour, salty, and perhaps fat [free fatty acids (FFA)] and starch (malto-oligosaccharides). The complex flavors and mouthfeel that we experience while eating food result from the integration of taste, odor, texture, pungency, and temperature. The latter three arise primarily from the somatosensory (trigeminal) system. The sensory organs used for detecting and transducing many chemicals are found in taste buds (TBs) located throughout the tongue, soft palate esophagus, and epiglottis. In parallel with the taste system, the trigeminal nerve innervates the peri-gemmal epithelium to transmit temperature, mechanical stimuli, and painful or cooling sensations such as those produced by changes in temperature as well as from chemicals like capsaicin and menthol, respectively. This article gives an overview of the current knowledge about these TB cells' anatomy and physiology and their trigeminal induced sensations. We then discuss how taste is represented across gustatory cortices using an intermingled and spatially distributed population code. Finally, we review postingestion processing (interoception) and central integration of the tongue-gut-brain interaction, ultimately determining our sensations as well as preferences toward the wholesomeness of nutritious foods. © 2021 American Physiological Society. Compr Physiol 11:1-35, 2021.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
10
|
Lin C, Inoue M, Li X, Bosak NP, Ishiwatari Y, Tordoff MG, Beauchamp GK, Bachmanov AA, Reed DR. Genetics of mouse behavioral and peripheral neural responses to sucrose. Mamm Genome 2021; 32:51-69. [PMID: 33713179 DOI: 10.1007/s00335-021-09858-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Mice of the C57BL/6ByJ (B6) strain have higher consumption of sucrose, and stronger peripheral neural responses to it, than do mice of the 129P3/J (129) strain. To identify quantitative trait loci (QTLs) responsible for this strain difference and to evaluate the contribution of peripheral taste responsiveness to individual differences in sucrose intake, we produced an intercross (F2) of 627 mice, measured their sucrose consumption in two-bottle choice tests, recorded the electrophysiological activity of the chorda tympani nerve elicited by sucrose in a subset of F2 mice, and genotyped the mice with DNA markers distributed in every mouse chromosome. We confirmed a sucrose consumption QTL (Scon2, or Sac) on mouse chromosome (Chr) 4, harboring the Tas1r3 gene, which encodes the sweet taste receptor subunit TAS1R3 and affects both behavioral and neural responses to sucrose. For sucrose consumption, we also detected five new main-effect QTLs, Scon6 (Chr2), Scon7 (Chr5), Scon8 (Chr8), Scon3 (Chr9), and Scon9 (Chr15), and an epistatically interacting QTL pair Scon4 (Chr1) and Scon3 (Chr9). No additional QTLs for the taste nerve responses to sucrose were detected besides Scon2 (Tas1r3) on Chr4. Identification of the causal genes and variants for these sucrose consumption QTLs may point to novel mechanisms beyond peripheral taste sensitivity that could be harnessed to control obesity and diabetes.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Sonora Quest Laboratories, Phoenix, AZ, USA
| | | | - Yutaka Ishiwatari
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Ajinomoto Co., Inc., Tokyo, Japan
| | | | | | - Alexander A Bachmanov
- Monell Chemical Senses Center, Philadelphia, PA, USA. .,GlaxoSmithKline, Collegeville, PA, USA.
| | | |
Collapse
|
11
|
Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020; 77:3469-3502. [PMID: 32006052 PMCID: PMC11105013 DOI: 10.1007/s00018-020-03458-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico.
| | - Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
12
|
Minokoshi Y, Nakajima KI, Okamoto S. Homeostatic versus hedonic control of carbohydrate selection. J Physiol 2020; 598:3831-3844. [PMID: 32643799 DOI: 10.1113/jp280066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 11/08/2022] Open
Abstract
Macronutrient intake is associated with cardiometabolic health, ageing and longevity, but the mechanisms underlying its regulation have remained unclear. Most rodents increase carbohydrate selection under certain physiological and pathological conditions such as fasting. When presented with a choice between a basally preferable high-fat diet (HFD) and a high-carbohydrate diet (HCD) such as a high-sucrose diet, fasted mice first eat the HFD and then switch to the HCD during the first few hours of refeeding and continue to eat the HCD up to 24 h in the two-diet choice approach. Such consumption of an HCD after fasting reverses the fasting-induced increase in the plasma concentration of ketone bodies more rapidly than does refeeding with an HFD alone. 5'-AMP-activated protein kinase (AMPK)-regulated neurons in the paraventricular nucleus of the hypothalamus (PVH) that express corticotropin-releasing hormone (CRH) are necessary and sufficient for the fasting-induced selection of carbohydrate over an HFD in mice. These neurons appear to contribute to a fasting-induced increase in the positive valence of carbohydrate without affecting the preference for more palatable and energy-dense diets such as an HFD. Identification of the neural circuits in which AMPK-regulated CRH neurons in the PVH of mice are embedded should shed new light on the physiological and molecular mechanisms responsible for macronutrient selection.
Collapse
Affiliation(s)
- Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,School of Life Science, The Graduate University for Advanced Studies SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Ken-Ichiro Nakajima
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,School of Life Science, The Graduate University for Advanced Studies SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shiki Okamoto
- Second Department of Internal Medicine (Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology), Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan
| |
Collapse
|
13
|
Kure Liu C, Joseph PV, Feldman DE, Kroll DS, Burns JA, Manza P, Volkow ND, Wang GJ. Brain Imaging of Taste Perception in Obesity: a Review. Curr Nutr Rep 2019; 8:108-119. [PMID: 30945140 PMCID: PMC6486899 DOI: 10.1007/s13668-019-0269-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW We summarize neuroimaging findings related to processing of taste (fat, salt, umami, bitter, and sour) in the brain and how they influence hedonic responses and eating behaviors and their role in obesity. RECENT FINDINGS Neuroimaging studies in obese individuals have revealed alterations in reward/motivation, executive control/self-regulation, and limbic/affective circuits that are implicated in food and drug addiction. Psychophysical studies show that sensory properties of food ingredients may be associated with anthropometric and neurocognitive outcomes in obesity. However, few studies have examined the neural correlates of taste and processing of calories and nutrient content in obesity. The literature of neural correlated of bitter, sour, and salty tastes remains sparse in obesity. Most published studies have focused on sweet, followed by fat and umami taste. Studies on calorie processing and its conditioning by preceding taste sensations have started to delineate a dynamic pattern of brain activation associated with appetition. Our expanded understanding of taste processing in the brain from neuroimaging studies is poised to reveal novel prevention and treatment targets to help address overeating and obesity.
Collapse
Affiliation(s)
- Christopher Kure Liu
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Paule Valery Joseph
- Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institute of Nursing Research, National Institutes of Health, 31 Center Drive, Rm 5B03, Bethesda, MD 20892-2178 USA
| | - Dana E. Feldman
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Danielle S. Kroll
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Jamie A. Burns
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
- National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Blvd., Suite 5274, Bethesda, MD 20892-9581 USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| |
Collapse
|
14
|
Qu T, Han W, Niu J, Tong J, de Araujo IE. On the roles of the Duodenum and the Vagus nerve in learned nutrient preferences. Appetite 2019; 139:145-151. [PMID: 31029689 DOI: 10.1016/j.appet.2019.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIM In most species, including humans, food preference is primarily controlled by nutrient value. However, the gut-brain pathways involved in preference learning remain elusive. The aim of the present study, performed in C57BL6/J mice, was to characterize the roles in nutrient preference of two critical elements of gut-brain pathways, i.e. the duodenum and vagal gut innervation. METHODS Adult wild-type C57BL6/J mice from a normal-weight cohort sustained one of the following three procedures: duodenal-jejunal bypass intestinal rerouting (DJB), total subdiaphragmatic vagotomy (SDV), or sham surgery. Mice were assessed in short-term two-bottle preference tests before and after 24 h s exposures to solutions containing one of glutamate, lipids, sodium, or glucose. RESULTS DJB and SDV interfered in preference formation in a nutrient-specific manner: whereas normal preference learning for lipids and glutamate was disrupted by both DJB and SDV, these interventions did not alter the formation of preferences for glucose. Interestingly, sodium preferences were abrogated by DJB but not by SDV. CONCLUSIONS Different macronutrients make use of distinct gut-brain pathways to influence food preferences, thereby mirroring nutrient-specific processes of food digestion. Specifically, whereas both vagal innervation and duodenal sensing appear critical for generating responses to fats and protein, glucose preferences recruit post-duodenal, vagal-independent pathways in pair with the control of glucose homeostasis. Overall, our data suggest that the physiological processes involved in digesting and absorbing fats, amino acids, and glucose overlap with those mediating learned preferences for each of these nutrients.
Collapse
Affiliation(s)
- Taoran Qu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China; The John B Pierce Laboratory, New Haven, CT, USA
| | - Wenfei Han
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingjing Niu
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jenny Tong
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ivan E de Araujo
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Physiology, Yale University School of Arts and Sciences, New Haven, CT, USA.
| |
Collapse
|
15
|
Sclafani A, Ackroff K. Commentary: Sugar Metabolism Regulates Flavor Preferences and Portal Glucose Sensing. Front Integr Neurosci 2019; 13:4. [PMID: 30837848 PMCID: PMC6382677 DOI: 10.3389/fnint.2019.00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| |
Collapse
|
16
|
Zhang L, Han W, Lin C, Li F, de Araujo IE. Sugar Metabolism Regulates Flavor Preferences and Portal Glucose Sensing. Front Integr Neurosci 2018; 12:57. [PMID: 30519164 PMCID: PMC6258782 DOI: 10.3389/fnint.2018.00057] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/06/2018] [Indexed: 11/23/2022] Open
Abstract
In most species, including humans, food preference is primarily controlled by nutrient value. In particular, glucose-containing sugars exert exquisitely strong effects on food choice via gut-generated signals. However, the identity of the visceral signals underlying glucose’s rewarding effects remains uncertain. In particular, it is unknown whether sugar metabolism mediates the formation of preferences for glucose-containing sugars. Using the mouse as a model organism, we made use of a combination of conditioning schedules, gastrointestinal nutrient administration, and chromatographic/electrochemical methods to assess the behavioral and neural effects of activating the gut with either metabolizable glucose or a non-metabolizable glucose analog. We show that mice display much superior preferences for flavors associated with intra-gastric infusions of glucose compared to flavors associated with intra-gastric infusions of the non-metabolizable glucose analog α-methyl-D-glucopyranoside (“MDG,” an activator of intestinal sodium/glucose co-transporters). These effects were unaffected by surgical bypassing of the duodenum, suggesting glucose-specific post-absorptive sensing mechanisms. Consistently, intra-portal infusions of glucose, but not of MDG, induced significant rises in dopamine (DA) levels within brain reward circuits. Our data reveal that the unmatched rewarding effects of glucose-containing sugars cannot be accounted for by metabolism-independent activation of sodium/glucose cotransporters; rather, they point to glucose metabolism as the physiological mechanism underlying the potent reward value of sugar-sweetened flavored beverages. In particular, no circulating “gut factors” need to be invoked to explain the reward value of ingested glucose. Thus, instead of circulating gut hormones, portal-mesenteric sensing of glucose emerges as the preferential physiological pathway for sugar reward.
Collapse
Affiliation(s)
- Lingli Zhang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The John B. Pierce Laboratory, Yale University, New Haven, CT, United States
| | - Wenfei Han
- The John B. Pierce Laboratory, Yale University, New Haven, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Chenguanlu Lin
- The John B. Pierce Laboratory, Yale University, New Haven, CT, United States.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Fei Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Developmental and Behavioral Pediatric Department & Child Primary Care Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ivan E de Araujo
- The John B. Pierce Laboratory, Yale University, New Haven, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
17
|
Sclafani A. From appetite setpoint to appetition: 50years of ingestive behavior research. Physiol Behav 2018; 192:210-217. [PMID: 29305256 PMCID: PMC6019132 DOI: 10.1016/j.physbeh.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
I review the main themes of my 50-year research career in ingestive behavior as a graduate student at the University of Chicago and a professor at the City University of New York. A seminar course with my Ph.D. mentor, S. P. Grossman, sparked my interest in the hypothalamic obesity syndrome. I developed a wire knife to dissect the neuropathways and the functional disorder responsible for the syndrome. An elevated appetite setpoint that permitted the overconsumption of palatable foods appeared central to the hypothalamic syndrome. In brain-intact rats, providing an assortment of highly palatable foods (the cafeteria diet) stimulated diet-induced obesity that mimicked elements of hypothalamic obesity. Studies of the determinants of food palatability led to the discovery of a "new" carbohydrate taste (maltodextrin taste) and the confirmation of a fatty taste. In addition to oral taste receptors, gut nutrient sensors stimulated the intake/preference for carbohydrate- and fat-rich foods via an appetition process that stimulates brain reward systems. My research career greatly benefited from many diligent and creative students, collaborators and technicians and research support from my university and the National Institutes of Health.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| |
Collapse
|
18
|
Harris RBS. Source of dietary sucrose influences development of leptin resistance in male and female rats. Am J Physiol Regul Integr Comp Physiol 2018; 314:R598-R610. [PMID: 29351425 PMCID: PMC6425621 DOI: 10.1152/ajpregu.00384.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 01/11/2023]
Abstract
Male rats offered 30% sucrose solution in addition to chow develop leptin resistance without an increase in energy intake or body fat. This study tested whether the leptin resistance was dependent on the physical form of the sucrose. Sprague-Dawley rats were offered a sucrose-free (NS) diet, a 66.6% of energy as sucrose (HS) diet, or the NS diet + 30% sucrose solution (LS). Sucrose intake of LS rats equaled that of HS rats, but total carbohydrate intake exceeded that of HS rats. After 33 days, male and female LS rats were resistant to the inhibitory effect of peripherally administered leptin on food intake. LS rats drank small, frequent meals of sucrose during light and dark periods, whereas HS rats consumed more meals during the dark than the light period and remained responsive to leptin. Diet did not affect daily energy intake or insulin sensitivity. There was a small increase in body fat in the female rats. Leptin sensitivity was restored within 5 days of withdrawal from sucrose in male LS rats. This rapid reversal suggested that leptin resistance was associated with the metabolic impact of drinking sucrose. An experiment was carried out to test whether activity of the hexosamine biosynthetic pathway and glycation of leptin signaling proteins were increased in LS rats, but the results were equivocal. A final experiment determined that female LS rats were leptin-resistant within 18 days of access to sucrose solution and that the small, but significant, increase in body fat was associated with increased adipocyte glucose utilization and insulin responsiveness, which may have been secondary to adipocyte leptin resistance.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Augusta University , Augusta, Georgia
| |
Collapse
|
19
|
The convergence of psychology and neurobiology in flavor-nutrient learning. Appetite 2018; 122:36-43. [DOI: 10.1016/j.appet.2017.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/15/2022]
|
20
|
Hsu TM, McCutcheon JE, Roitman MF. Parallels and Overlap: The Integration of Homeostatic Signals by Mesolimbic Dopamine Neurons. Front Psychiatry 2018; 9:410. [PMID: 30233430 PMCID: PMC6129766 DOI: 10.3389/fpsyt.2018.00410] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Motivated behaviors are often initiated in response to perturbations of homeostasis. Indeed, animals and humans have fundamental drives to procure (appetitive behaviors) and eventually ingest (consummatory behaviors) substances based on deficits in body fluid (e.g., thirst) and energy balance (e.g., hunger). Consumption, in turn, reinforces motivated behavior and is therefore considered rewarding. Over the years, the constructs of homeostatic (within the purview of the hypothalamus) and reward (within the purview of mesolimbic circuitry) have been used to describe need-based vs. need-free consumption. However, many experiments have demonstrated that mesolimbic circuits and "higher-order" brain regions are also profoundly influenced by changes to physiological state, which in turn generate behaviors that are poised to maintain homeostasis. Mesolimbic pathways, particularly dopamine neurons of the ventral tegmental area (VTA) and their projections to nucleus accumbens (NAc), can be robustly modulated by a variety of energy balance signals, including post-ingestive feedback relaying nutrient content and hormonal signals reflecting hunger and satiety. Moreover, physiological states can also impact VTA-NAc responses to non-nutritive rewards, such as drugs of abuse. Coupled with recent evidence showing hypothalamic structures are modulated in anticipation of replenished need, classic boundaries between circuits that convey perturbations in homeostasis and those that drive motivated behavior are being questioned. In the current review, we examine data that have revealed the importance of mesolimbic dopamine neurons and their downstream pathways as a dynamic neurobiological mechanism that provides an interface between physiological state, perturbations to homeostasis, and reward-seeking behaviors.
Collapse
Affiliation(s)
- Ted M Hsu
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - James E McCutcheon
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, United Kingdom
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Dopamine D2 Receptor Signaling in the Nucleus Accumbens Comprises a Metabolic-Cognitive Brain Interface Regulating Metabolic Components of Glucose Reinforcement. Neuropsychopharmacology 2017; 42:2365-2376. [PMID: 28580946 PMCID: PMC5645735 DOI: 10.1038/npp.2017.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Abstract
Appetitive drive is influenced by coordinated interactions between brain circuits that regulate reinforcement and homeostatic signals that control metabolism. Glucose modulates striatal dopamine (DA) and regulates appetitive drive and reinforcement learning. Striatal DA D2 receptors (D2Rs) also regulate reinforcement learning and are implicated in glucose-related metabolic disorders. Nevertheless, interactions between striatal D2R and peripheral glucose have not been previously described. Here we show that manipulations involving striatal D2R signaling coincide with perseverative and impulsive-like responding for sucrose, a disaccharide consisting of fructose and glucose. Fructose conveys orosensory (ie, taste) reinforcement but does not convey metabolic (ie, nutrient-derived) reinforcement. Glucose however conveys orosensory reinforcement but unlike fructose, it is a major metabolic energy source, underlies sustained reinforcement, and activates striatal circuitry. We found that mice with deletion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) exclusively in D2R-expressing cells exhibited preferential D2R changes in the nucleus accumbens (NAc), a striatal region that critically regulates sucrose reinforcement. These changes coincided with perseverative and impulsive-like responding for sucrose pellets and sustained reinforcement learning of glucose-paired flavors. These mice were also characterized by significant glucose intolerance (ie, impaired glucose utilization). Systemic glucose administration significantly attenuated sucrose operant responding and D2R activation or blockade in the NAc bidirectionally modulated blood glucose levels and glucose tolerance. Collectively, these results implicate NAc D2R in regulating both peripheral glucose levels and glucose-dependent reinforcement learning behaviors and highlight the notion that glucose metabolic impairments arising from disrupted NAc D2R signaling are involved in compulsive and perseverative feeding behaviors.
Collapse
|
22
|
Patrono E, Matsumoto J, Nishimaru H, Takamura Y, Chinzorig IC, Ono T, Nishijo H. Rewarding Effects of Operant Dry-Licking Behavior on Neuronal Firing in the Nucleus Accumbens Core. Front Pharmacol 2017; 8:536. [PMID: 28860992 PMCID: PMC5559468 DOI: 10.3389/fphar.2017.00536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/02/2017] [Indexed: 01/26/2023] Open
Abstract
Certain eating behaviors are characterized by a trend of elevated food consumption. However, neural mechanisms mediating the motivation for food consumption are not fully understood. Food impacts the brain-rewarding-system via both oral-sensory and post-ingestive information. Recent studies have reported an important role of visceral gut information in mediating dopamine (DA) release in the brain rewarding system. This is independent of oral sensation, suggesting a role of the gut-brain-DA-axis in feeding behavior. In this study, we investigated the effects of intra-gastric (IG) self-administration of glucose on neuronal firings in the nucleus accumbens (NA) of water-deprived rats. Rats were trained in an operant-licking paradigm. During training, when the light was on for 2 min (light-period), rats were required to lick a spout to acquire the water oral-intake learning, and either an IG self-infusion of 0.4 M glucose (GLU group) or water (H2O group). Rats rested in the dark-period (3 min) following the light-period. Four cycles of the operant-licking paradigm consisting of the light–dark periods were performed per day, for 4 consecutive days. In the test session, the same rats licked the same spout to acquire the IG self-administration of the corresponding solutions, without oral water ingestion (dry licking). Behavioral results indicated IG self-administration of glucose elicits more dry-licking behavior than that of water. Neurophysiological results indicated in the dark period, coefficient of variance (CV) measuring the inter-spike interval variability of putative medial spiny neurons (pMSNs) in the NA was reduced in the H2O group compared to the GLU group, while there was no significant difference in physical behaviors in the dark period between the two groups. Since previous studies reported that DA release increases CV of MSNs, the present results suggest that greater CV of pMSNs in the GLU group reflects greater DA release in the NA and elevated motivation in the GLU group, which might increase lickings in the test session in the GLU group compared to the H2O group.
Collapse
Affiliation(s)
- Enrico Patrono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Ikhruud C Chinzorig
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| |
Collapse
|
23
|
Schier LA, Spector AC. Post-oral sugar detection rapidly and chemospecifically modulates taste-guided behavior. Am J Physiol Regul Integr Comp Physiol 2016; 311:R742-R755. [PMID: 27511277 DOI: 10.1152/ajpregu.00155.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Several recent studies have shown that post-oral sugar sensing rapidly stimulates ingestion. Here, we explored the specificity with which early-phase post-oral sugar sensing influenced ingestive motivation. In experiment 1, rats were trained to associate the consumption of 0.3 M sucrose with injections of LiCl (3.0 meq/kg ip, conditioned taste aversion) or given equivalent exposures to the stimuli, but in an unpaired fashion. Then, all rats were subjected to two brief-access tests to assess appetitive and consummatory responses to the taste properties of sucrose (0.01-1.0 M), 0.12 M NaCl, and dH2O (in 10-s trials in randomized blocks). Intraduodenal infusions of either 0.3 M sucrose or equiosmolar 0.15 M NaCl (3.0 ml) were administered, beginning just before each test. For unpaired rats, intraduodenal sucrose specifically enhanced licking for 0.03-1.0 M sucrose, with no effect on trial initiation, relative to intraduodenal NaCl. Rats with an aversion to sucrose suppressed licking responses to sucrose in a concentration-dependent manner, as expected, but the intraduodenal sucrose preload did not appear to further influence licking responses; instead, intraduodenal sucrose attenuated trial initiation. Using a serial taste reactivity (TR) paradigm, however, experiment 2 demonstrated that intraduodenal sucrose preloads suppressed ingestive oromotor responses to intraorally delivered sucrose in rats with a sucrose aversion. Finally, experiment 3 showed that intraduodenal sucrose preloads enhanced preferential licking to some representative tastants tested (sucrose, Polycose, and Intralipid), but not others (NaCl, quinine). Together, the results suggest that the early phase-reinforcing efficacy of post-oral sugar is dependent on the sensory and motivational properties of the ingesta.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
24
|
Abstract
Our understanding of the molecular basis of umami taste and its appetitive qualities has been greatly aided by studies in laboratory rodents. This review describes methods for testing responses to the prototypical umami substance monosodium glutamate (MSG) in rodents. Two techniques, forced exposure to MSG and 2-bottle choice tests with ascending concentrations, were used to evaluate the responses to the taste of umami itself, and 2 other methods used oral or postoral MSG to modify the responses to other flavors. Intake and preference for MSG are enhanced in mice by experience with MSG and with other nutrients with positive postoral effects. In addition, flavor preferences are enhanced in mice and rats by gastric or intestinal MSG infusions via an associative learning process. Even mice with an impaired or absent ability to taste MSG can learn to prefer a flavor added to an MSG solution, supporting the notion that glutamate acts postorally. The more complex flavor of dashi seasoning, which includes umami substances (inosinate, glutamate), is attractive to rodents, but dashi does not condition flavor preferences. Details of the postoral glutamate detection process and the nature of the signal involved in learned preferences are still uncertain but probably involve gastric or intestinal sensors or both and vagal transmission. Some findings suggest that postoral glutamate effects may enhance food preferences in humans, but this requires further study.
Collapse
Affiliation(s)
- Karen Ackroff
- Brooklyn College of the City University of New York, Brooklyn, NY
| | | |
Collapse
|
25
|
MCH receptor deletion does not impair glucose-conditioned flavor preferences in mice. Physiol Behav 2016; 163:239-244. [PMID: 27195455 DOI: 10.1016/j.physbeh.2016.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/06/2016] [Accepted: 05/14/2016] [Indexed: 11/22/2022]
Abstract
The post-oral actions of glucose stimulate intake and condition flavor preferences in rodents. Hypothalamic melanin-concentrating hormone (MCH) neurons are implicated in sugar reward, and this study investigated their involvement in glucose preference conditioning in mice. In Exp. 1 MCH receptor 1 knockout (KO) and C57BL/6 wildtype (WT) mice learned to prefer 8% glucose over an initially more-preferred non-nutritive 0.1% sucralose+saccharin (S+S) solution. In contrast, the KO and WT mice preferred S+S to 8% fructose, which is consistent with this sugar's weak post-oral reinforcing action. In Exp. 2 KO and WT mice were trained to drink a flavored solution (CS+) paired with intragastric (IG) infusion of 16% glucose and a different flavored solution (CS-) paired with IG water. Both groups drank more CS+ than CS- in training and preferred the CS+ to CS- in a 2-bottle test. These results indicate that MCH receptor signaling is not required for flavor preferences conditioned by the post-oral actions of glucose. This contrasts with other findings implicating MCH signaling in other types of sugar reward processing.
Collapse
|
26
|
Circuit organization of sugar reinforcement. Physiol Behav 2016; 164:473-477. [PMID: 27126968 DOI: 10.1016/j.physbeh.2016.04.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/23/2016] [Accepted: 04/23/2016] [Indexed: 12/29/2022]
Abstract
Sugar's potent reinforcing properties arise from the complex interplay between gustatory and nutritive signals. This commentary addresses a unique organizational aspect of the neuronal circuitry that mediates sugar reinforcement in both Drosophila and rodents. Specifically, current evidence supports a general circuit model where separate populations of dopaminergic neurons encode the gustatory and nutritive values of sugar. This arrangement allows animals to prioritize energy seeking over taste quality, and implies that specialized subpopulations of dopamine-containing neurons form a class of evolutionary conserved chemo- and nutrient-sensors.
Collapse
|
27
|
Woods CA, Guttman ZR, Huang D, Kolaric RA, Rabinowitsch AI, Jones KT, Cabeza de Vaca S, Sclafani A, Carr KD. Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal. Physiol Behav 2016; 159:52-63. [PMID: 26988281 DOI: 10.1016/j.physbeh.2016.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/01/2016] [Accepted: 03/12/2016] [Indexed: 12/19/2022]
Abstract
With respect to feeding, insulin is typically thought of as a satiety hormone, acting in the hypothalamus to limit ingestive behavior. However, accumulating evidence suggests that insulin also has the ability to alter dopamine release in the striatum and influence food preferences. With increased access to high calorie foods, Western societies have a high prevalence of obesity, accompanied by insulin insensitivity. Little is known about how insulin is trafficked into the brain following food consumption and whether insulin insensitivity in the periphery is mirrored in the central nervous system. We investigated insulin receptor activation in the ventral striatum of rats receiving water or 16% glucose either orally or intragastrically. We also investigated whether glucose-induced insulin receptor activation was altered in food-restricted (FR) or diet-induced obesity (OB) rat models. Lastly, we examined whether insulin plays a significant role in flavor-nutrient preference learning. Glucose intake stimulated a rapid increase in insulin receptor activity in the ventral striatum of FR and ad libitum (AL) fed rats, but not OB rats. Similarly, both AL and FR, but not OB rats demonstrated significant flavor-nutrient preferences. However AL rats receiving brief inhibition of insulin activity during conditioning failed to acquire a significant flavor-nutrient preference. These findings suggest that impaired insulin receptor activation in the ventral striatum may result in inaccurate valuation of nutritive foods, which could lead to overconsumption of food or the selection of foods that don't accurately meet the body's current physiological needs.
Collapse
Affiliation(s)
- C A Woods
- Center for Neural Science, NYU Graduate School of Arts & Sciences, United States
| | - Z R Guttman
- Center for Neural Science, NYU Graduate School of Arts & Sciences, United States
| | - D Huang
- Dept of Psychiatry, NYU School of Medicine, United States
| | - R A Kolaric
- Dept of Psychiatry, NYU School of Medicine, United States
| | | | - K T Jones
- Dept of Psychiatry, NYU School of Medicine, United States
| | | | - A Sclafani
- Dept of Psychology, Brooklyn College, CUNY, United States
| | - K D Carr
- Center for Neural Science, NYU Graduate School of Arts & Sciences, United States; Dept of Psychiatry, NYU School of Medicine, United States; Dept of Biochemistry and Molecular Pharmacology, NYU School of Medicine, United States
| |
Collapse
|
28
|
Abstract
Intestinal sugar sensing has an appetite-stimulating action that enhances preferences for sweets. Han et al. (2016) report that duodenal-jejunal bypass surgery reduces sweet appetite by reducing sugar-induced dopamine release in the dorsal striatum.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| |
Collapse
|
29
|
Han W, Tellez LA, Niu J, Medina S, Ferreira TL, Zhang X, Su J, Tong J, Schwartz GJ, van den Pol A, de Araujo IE. Striatal Dopamine Links Gastrointestinal Rerouting to Altered Sweet Appetite. Cell Metab 2016; 23:103-12. [PMID: 26698915 PMCID: PMC4715689 DOI: 10.1016/j.cmet.2015.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/04/2015] [Accepted: 10/19/2015] [Indexed: 12/01/2022]
Abstract
Reductions in calorie intake contribute significantly to the positive outcome of bariatric surgeries. However, the physiological mechanisms linking the rerouting of the gastrointestinal tract to reductions in sugar cravings remain uncertain. We show that a duodenal-jejunal bypass (DJB) intervention inhibits maladaptive sweet appetite by acting on dopamine-responsive striatal circuitries. DJB disrupted the ability of recurrent sugar exposure to promote sweet appetite in sated animals, thereby revealing a link between recurrent duodenal sugar influx and maladaptive sweet intake. Unlike ingestion of a low-calorie sweetener, ingestion of sugar was associated with significant dopamine effluxes in the dorsal striatum, with glucose infusions into the duodenum inducing greater striatal dopamine release than equivalent jejunal infusions. Consistently, optogenetic activation of dopamine-excitable cells of the dorsal striatum was sufficient to restore maladaptive sweet appetite in sated DJB mice. Our findings point to a causal link between striatal dopamine signaling and the outcomes of bariatric interventions.
Collapse
Affiliation(s)
- Wenfei Han
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, China; The John B. Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Luis A Tellez
- The John B. Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jingjing Niu
- The John B. Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sara Medina
- The John B. Pierce Laboratory, New Haven, CT 06519, USA
| | - Tatiana L Ferreira
- The John B. Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Mathematics, Computing and Cognition Center, Federal University of ABC, Santo André 09210, Brazil
| | - Xiaobing Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jiansheng Su
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, China
| | - Jenny Tong
- Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Gary J Schwartz
- Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Anthony van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ivan E de Araujo
- The John B. Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Physiology, Yale University School of Arts and Sciences, New Haven, CT 06511, USA.
| |
Collapse
|
30
|
|
31
|
Steinbusch L, Labouèbe G, Thorens B. Brain glucose sensing in homeostatic and hedonic regulation. Trends Endocrinol Metab 2015; 26:455-66. [PMID: 26163755 DOI: 10.1016/j.tem.2015.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/21/2022]
Abstract
Glucose homeostasis as well as homeostatic and hedonic control of feeding is regulated by hormonal, neuronal, and nutrient-related cues. Glucose, besides its role as a source of metabolic energy, is an important signal controlling hormone secretion and neuronal activity, hence contributing to whole-body metabolic integration in coordination with feeding control. Brain glucose sensing plays a key, but insufficiently explored, role in these metabolic and behavioral controls, which when deregulated may contribute to the development of obesity and diabetes. The recent introduction of innovative transgenic, pharmacogenetic, and optogenetic techniques allows unprecedented analysis of the complexity of central glucose sensing at the molecular, cellular, and neuronal circuit levels, which will lead to a new understanding of the pathogenesis of metabolic diseases.
Collapse
Affiliation(s)
- Laura Steinbusch
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
32
|
Wald HS, Myers KP. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet. Physiol Behav 2015; 151:102-10. [PMID: 26150317 DOI: 10.1016/j.physbeh.2015.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 07/02/2015] [Indexed: 12/11/2022]
Abstract
Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity.
Collapse
Affiliation(s)
- Hallie S Wald
- Program in Neuroscience, Bucknell University, Lewisburg, PA, USA
| | - Kevin P Myers
- Department of Psychology, Bucknell University, Lewisburg, PA, USA; Program in Neuroscience, Bucknell University, Lewisburg, PA, USA; Program in Animal Behavior, Bucknell University, Lewisburg, PA, USA.
| |
Collapse
|
33
|
McCutcheon JE. The role of dopamine in the pursuit of nutritional value. Physiol Behav 2015; 152:408-15. [PMID: 25957911 DOI: 10.1016/j.physbeh.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 01/16/2023]
Abstract
Acquiring enough food to meet energy expenditure is fundamental for all organisms. Thus, mechanisms have evolved to allow foods with high nutritional value to be readily detected, consumed, and remembered. Although taste is often involved in these processes, there is a wealth of evidence supporting the existence of taste-independent nutrient sensing. In particular, post-ingestive mechanisms arising from the arrival of nutrients in the gut are able to drive food intake and behavioural conditioning. The physiological mechanisms underlying these effects are complex but are believed to converge on mesolimbic dopamine signalling to translate post-ingestive sensing of nutrients into reward and reinforcement value. Discerning the role of nutrition is often difficult because food stimulates sensory systems and post-ingestive pathways in concert. In this mini-review, I discuss the various methods that may be used to study post-ingestive processes in isolation including sham-feeding, non-nutritive sweeteners, post-ingestive infusions, and pharmacological and genetic methods. Using this structure, I present the evidence that dopamine is sensitive to nutritional value of certain foods and examine how this affects learning about food, the role of taste, and the implications for human obesity.
Collapse
Affiliation(s)
- James Edgar McCutcheon
- Dept. of Cell Physiology and Pharmacology, Maurice Shock Medical Sciences Building, University of Leicester, University Road, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
34
|
Routh VH, Hao L, Santiago AM, Sheng Z, Zhou C. Hypothalamic glucose sensing: making ends meet. Front Syst Neurosci 2014; 8:236. [PMID: 25540613 PMCID: PMC4261699 DOI: 10.3389/fnsys.2014.00236] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/26/2014] [Indexed: 01/12/2023] Open
Abstract
The neuroendocrine system governs essential survival and homeostatic functions. For example, growth is needed for development, thermoregulation maintains optimal core temperature in a changing environment, and reproduction ensures species survival. Stress and immune responses enable an organism to overcome external and internal threats while the circadian system regulates arousal and sleep such that vegetative and active functions do not overlap. All of these functions require a significant portion of the body's energy. As the integrator of the neuroendocrine system, the hypothalamus carefully assesses the energy status of the body in order to appropriately partition resources to provide for each system without compromising the others. While doing so the hypothalamus must ensure that adequate glucose levels are preserved for brain function since glucose is the primary fuel of the brain. To this end, the hypothalamus contains specialized glucose sensing neurons which are scattered throughout the nuclei controlling distinct neuroendocrine functions. We hypothesize that these neurons play a key role in enabling the hypothalamus to partition energy to meet these peripheral survival needs without endangering the brain's glucose supply. This review will first describe the varied mechanisms underlying glucose sensing in neurons within discrete hypothalamic nuclei. We will then evaluate the way in which peripheral energy status regulates glucose sensitivity. For example, during energy deficit such as fasting specific hypothalamic glucose sensing neurons become sensitized to decreased glucose. This increases the gain of the information relay when glucose availability is a greater concern for the brain. Finally, changes in glucose sensitivity under pathological conditions (e.g., recurrent insulin-hypoglycemia, diabetes) will be addressed. The overall goal of this review is to place glucose sensing neurons within the context of hypothalamic control of neuroendocrine function.
Collapse
Affiliation(s)
- Vanessa H Routh
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University Newark, NJ, USA
| | - Lihong Hao
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University Newark, NJ, USA ; Department of Pharmacology and Physiology and Graduate School of the Biomedical Sciences, New Jersey Medical School, Rutgers University Newark, NJ, USA
| | - Ammy M Santiago
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University Newark, NJ, USA ; Department of Pharmacology and Physiology and Graduate School of the Biomedical Sciences, New Jersey Medical School, Rutgers University Newark, NJ, USA
| | - Zhenyu Sheng
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University Newark, NJ, USA
| | - Chunxue Zhou
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University Newark, NJ, USA ; Department of Pharmacology and Physiology and Graduate School of the Biomedical Sciences, New Jersey Medical School, Rutgers University Newark, NJ, USA
| |
Collapse
|
35
|
Hebebrand J, Albayrak Ö, Adan R, Antel J, Dieguez C, de Jong J, Leng G, Menzies J, Mercer JG, Murphy M, van der Plasse G, Dickson SL. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci Biobehav Rev 2014; 47:295-306. [DOI: 10.1016/j.neubiorev.2014.08.016] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 01/18/2023]
|
36
|
Sclafani A, Zukerman S, Ackroff K. Fructose- and glucose-conditioned preferences in FVB mice: strain differences in post-oral sugar appetition. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1448-57. [PMID: 25320345 DOI: 10.1152/ajpregu.00312.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies indicate that, unlike glucose, fructose has little or no post-oral preference conditioning actions in C57BL/6J (B6) mice. The present study determined whether this is also the case for FVB mice, which overconsume fructose relative to B6 mice. In experiment 1, FVB mice strongly preferred a noncaloric 0.1% sucralose + 0.1% saccharin (S+S) solution to 8% fructose in a 2-day choice test but switched their preference to fructose after separate experience with the two sweeteners. Other FVB mice displayed a stronger preference for 8% glucose over S+S. In a second experiment, ad libitum-fed FVB mice trained 24 h/day acquired a significant preference for a flavor (CS+) paired with intragastric (IG) self-infusions of 16% fructose over a different flavor (CS-) paired with IG water infusions. IG fructose infusions also conditioned flavor preferences in food-restricted FVB mice trained 1 h/day. IG infusions of 16% glucose conditioned stronger preferences in FVB mice trained 24- or 1 h/day. Thus, fructose has post-oral flavor conditioning effects in FVB mice, but these effects are less pronounced than those produced by glucose. Further studies of the differential post-oral conditioning effects of fructose and glucose in B6 and FVB mice should enhance our understanding of the physiological processes involved in sugar reward.
Collapse
Affiliation(s)
- Anthony Sclafani
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| | - Steven Zukerman
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| | - Karen Ackroff
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| |
Collapse
|
37
|
Ackroff K, Sclafani A. Rapid post-oral stimulation of intake and flavor conditioning in rats by glucose but not a non-metabolizable glucose analog. Physiol Behav 2014; 133:92-8. [PMID: 24811140 DOI: 10.1016/j.physbeh.2014.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/29/2014] [Indexed: 01/24/2023]
Abstract
Mice adapted to drink a flavored saccharin solution (CS-) paired with intragastric (IG) self-infusions of water rapidly increase their intake of a new flavored solution (CS+) that is paired with IG glucose self-infusions. The present study extends this method to examine post-oral glucose appetition in rats. Food-restricted rats were trained to consume a CS- flavor (e.g., grape saccharin) paired with IG water in 5 daily 1-h tests. In the next 3 tests, they drank a CS+ (e.g., cherry saccharin) paired with IG glucose. Rats infused with 8% glucose increased intake significantly on CS+ Test 1, but those infused with 16% glucose showed only a small increase in intake, which may reflect a counteracting satiating effect. Both groups further increased CS+ intakes in Tests 2 and 3, and preferred (81%) the CS+ to the CS- in a two-bottle test without infusions. A second experiment investigated rats' responses to IG alpha-methyl-d-glucopyranoside (MDG), a non-metabolizable sugar analog which stimulates CS+ intake and preference in mice. The rats reduced their intake of the MDG-paired CS+ flavor over sessions, and preferred the CS- to the CS+ in the choice test. The glucose data show that rats, like mice, rapidly detect the sugar's positive post-oral effects that can stimulate intake within the first hour of exposure. The MDG avoidance may indicate a greater sensitivity to its post-oral inhibitory effects in rats than in mice, or perhaps slower clearance of MDG in rats. The test protocol described here can be used to investigate the peripheral and central processes involved in stimulation of intake by post-oral nutrients in rats.
Collapse
Affiliation(s)
- Karen Ackroff
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|
38
|
Zukerman S, Ackroff K, Sclafani A. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am J Physiol Regul Integr Comp Physiol 2013; 305:R840-53. [PMID: 23926132 PMCID: PMC3798804 DOI: 10.1152/ajpregu.00297.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/03/2013] [Indexed: 01/06/2023]
Abstract
Post-oral sugar actions enhance the intake of and preference for sugar-rich foods, a process referred to as appetition. Here, we investigated the role of intestinal sodium glucose cotransporters (SGLTs) in sugar appetition in C57BL/6J mice using sugars and nonmetabolizable sugar analogs that differ in their affinity for SGLT1 and SGLT3. In experiments 1 and 2, food-restricted mice were trained (1 h/day) to consume a flavored saccharin solution [conditioned stimulus (CS-)] paired with intragastric (IG) self-infusions of water and a different flavored solution (CS+) paired with infusions of 8 or 12% sugars (glucose, fructose, and galactose) or sugar analogs (α-methyl-D-glucopyranoside, MDG; 3-O-methyl-D-glucopyranoside, OMG). Subsequent two-bottle CS+ vs. CS- choice tests were conducted without coinfusions. Infusions of the SGLT1 ligands glucose, galactose, MDG, and OMG stimulated CS+ licking above CS- levels. However, only glucose, MDG, and galactose conditioned significant CS+ preferences, with the SGLT3 ligands (glucose, MDG) producing the strongest preferences. Fructose, which is not a ligand for SGLTs, failed to stimulate CS+ intake or preference. Experiment 3 revealed that IG infusion of MDG+phloridzin (an SGLT1/3 antagonist) blocked MDG appetition, whereas phloridzin had minimal effects on glucose-induced appetition. However, adding phloretin (a GLUT2 antagonist) to the glucose+phloridzin infusion blocked glucose appetition. Taken together, these findings suggest that humoral signals generated by intestinal SGLT1 and SGLT3, and to a lesser degree, GLUT2, mediate post-oral sugar appetition in mice. The MDG results indicate that sugar metabolism is not essential for the post-oral intake-stimulating and preference-conditioning actions of sugars in mice.
Collapse
Affiliation(s)
- Steven Zukerman
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, New York; and Cognition, Brain, and Behavior Doctoral Subprogram, Graduate School, City University of New York, New York, New York
| | | | | |
Collapse
|
39
|
Enantiomer-specific selection of amino acids. Amino Acids 2013; 45:1353-64. [PMID: 24072505 DOI: 10.1007/s00726-013-1595-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.
Collapse
|
40
|
Abstract
Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.
Collapse
Affiliation(s)
- Xueying Ren
- The John B Pierce Laboratory, 290 Congress Avenue, New Haven, CT, 06519, USA
| | | | | |
Collapse
|
41
|
Tellez LA, Ren X, Han W, Medina S, Ferreira JG, Yeckel CW, de Araujo IE. Glucose utilization rates regulate intake levels of artificial sweeteners. J Physiol 2013; 591:5727-44. [PMID: 24060992 DOI: 10.1113/jphysiol.2013.263103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is well established that animals including humans attribute greater reinforcing value to glucose-containing sugars compared to their non-caloric counterparts, generally termed 'artificial sweeteners'. However, much remains to be determined regarding the physiological signals and brain systems mediating the attribution of greater reinforcing value to sweet solutions that contain glucose. Here we show that disruption of glucose utilization in mice produces an enduring inhibitory effect on artificial sweetener intake, an effect that did not depend on sweetness perception or aversion. Indeed, such an effect was not observed in mice presented with a less palatable, yet caloric, glucose solution. Consistently, hungry mice shifted their preferences away from artificial sweeteners and in favour of glucose after experiencing glucose in a hungry state. Glucose intake was found to produce significantly greater levels of dopamine efflux compared to artificial sweetener in dorsal striatum, whereas disrupting glucose oxidation suppressed dorsal striatum dopamine efflux. Conversely, inhibiting striatal dopamine receptor signalling during glucose intake in sweet-naïve animals resulted in reduced, artificial sweetener-like intake of glucose during subsequent gluco-deprivation. Our results demonstrate that glucose oxidation controls intake levels of sweet tastants by modulating extracellular dopamine levels in dorsal striatum, and suggest that glucose utilization is one critical physiological signal involved in the control of goal-directed sweetener intake.
Collapse
Affiliation(s)
- Luis A Tellez
- I. E de Araujo: The John B. Pierce Laboratory & Yale University School of Medicine, 290 Congress Avenue, New Haven, CT 06519, USA. or
| | | | | | | | | | | | | |
Collapse
|
42
|
Sensory-specific appetition: Postingestive detection of glucose rapidly promotes continued consumption of a recently encountered flavor. Physiol Behav 2013; 121:125-33. [DOI: 10.1016/j.physbeh.2013.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 01/02/2023]
|
43
|
de Araujo IE, Lin T, Veldhuizen MG, Small DM. Metabolic regulation of brain response to food cues. Curr Biol 2013; 23:878-83. [PMID: 23643837 DOI: 10.1016/j.cub.2013.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/06/2013] [Accepted: 04/02/2013] [Indexed: 11/20/2022]
Abstract
Identification of energy sources depends upon the ability to form associations between food cues and nutritional value. As such, cues previously paired with calories elicit neuronal activation in the nucleus accumbens (NAcc), which reflects the reinforcing value of food. The identity of the physiological signals regulating this response remains elusive. Using fMRI, we examined brain response to noncaloric versions of flavors that had been consumed in previous days with either 0 or 112.5 calories from undetected maltodextrin. We report a small but perceptually meaningful increase in liking for the flavor that had been paired with calories and find that change in liking was associated with changes in insular responses to this beverage. In contrast, NAcc and hypothalamic response to the calorie-paired flavor was unrelated to liking but was strongly associated with the changes in plasma glucose levels produced by ingestion of the beverage when consumed previously with calories. Importantly, because each participant ingested the same caloric dose, the change in plasma glucose depended upon individual differences in glucose metabolism. We conclude that glucose metabolism is a critical signal regulating NAcc and hypothalamic response to food cues, and that this process operates independently from the ability of calories to condition liking.
Collapse
|
44
|
Myers KP. Rats acquire stronger preference for flavors consumed towards the end of a high-fat meal. Physiol Behav 2013; 110-111:179-89. [PMID: 23313407 DOI: 10.1016/j.physbeh.2013.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/14/2012] [Accepted: 01/06/2013] [Indexed: 02/02/2023]
Abstract
Rats learn to prefer flavors associated with postingestive effects of nutrients. The physiological signals underlying this postingestive reward are unknown. We have previously shown that rats readily learn to prefer a flavor that was consumed early in a multi-flavored meal when glucose is infused intragastrically (IG), suggesting rapid postingestive reward onset. The present experiments investigate the timing of postingestive fat reward, by providing distinctive flavors in the first and second halves of meals accompanied by IG fat infusion. Learning stronger preference for the earlier or later flavor would indicate when the rewarding postingestive effects are sensed. Rats consumed sweetened, calorically-dilute flavored solutions accompanied by IG high-fat infusion (+ sessions) or water (- sessions). Each session included an "Early" flavor for 8min followed by a "Late" flavor for 8min. Learned preferences were then assessed in two-bottle tests (no IG infusion) between Early(+) vs. Early(-), Late(+) vs. Late(-), Early(+) vs. Late(+), and Early(-) vs. Late(-). Rats only preferred Late(+), not Early(+), relative to their respective (-) flavors. In a second experiment rats trained with a higher fat concentration learned to prefer Early(+) but more strongly preferred Late(+). Learned preferences were evident when rats were tested deprived or recently satiated. Unlike with glucose, ingested fat appears to produce a slower-onset rewarding signal, detected later in a meal or after its termination, becoming more strongly associated with flavors towards the end of the meal. This potentially contributes to enhanced liking for dessert foods, which persists even when satiated.
Collapse
Affiliation(s)
- Kevin P Myers
- Department of Psychology, Programs in Animal Behavior and Neuroscience, Bucknell University, Lewisburg, PA 17837, USA.
| |
Collapse
|
45
|
Zukerman S, Ackroff K, Sclafani A. Post-oral glucose stimulation of intake and conditioned flavor preference in C57BL/6J mice: a concentration-response study. Physiol Behav 2012. [PMID: 23200639 DOI: 10.1016/j.physbeh.2012.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a recent study, intragastric (IG) self-infusion of 16% glucose stimulated 1-h intake and conditioned a preference for a flavored saccharin solution in C57BL/6J mice (Zukerman et al., 2011). Experiment 1 of the present study presents a concentration-response analysis of IG glucose-induced intake stimulation monitored by recording licking response every min of the 1h/day sessions. Separate groups of food-restricted mice consumed a flavored saccharin solution (the CS-) paired with IG self-infusions of water (Test 0) followed by a different flavored solution (the CS+) paired with IG self-infusions of 2, 4, 8, 16, or 32% glucose (Tests 1-3). Following additional CS- and CS+ training sessions, a two-bottle CS+ vs. CS- choice test was conducted without infusions. Self-infusions of 8%, 16% or 32% glucose stimulated CS+ licking within 12 min of the first test session and even earlier in subsequent test sessions, and also conditioned significant CS+ preferences in the two-bottle test. The stimulation of early licking and CS+ preference increased as a function of glucose concentration. The amount of glucose solute self-infused increased with sugar concentration as did post-infusion blood glucose levels. The 2% glucose infusion did not stimulate CS+ intake and the 2% and 4% infusions failed to produce a CS+ preference in the 1-h test. Experiment 2 revealed that intraperitoneal self-infusions of 8% glucose, unlike IG glucose self-infusions, failed to stimulate CS+ licking or preference despite producing maximal increases in blood glucose levels. Taken together, these and other findings suggest that glucose rapidly produces concentration-dependent intestinal signals that stimulate intake and condition flavor preferences while post-oral satiation signals limit total amounts consumed.
Collapse
Affiliation(s)
- Steven Zukerman
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, 11210, USA
| | | | | |
Collapse
|
46
|
Zukerman S, Ackroff K, Sclafani A. WITHDRAWN: Post-oral glucose stimulation of intake and conditioned flavor preference in C57BL/6J mice: A concentration-response study. Physiol Behav 2012:S0031-9384(12)00332-0. [PMID: 23582635 DOI: 10.1016/j.physbeh.2012.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/29/2012] [Indexed: 11/16/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Steven Zukerman
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY, USA 11210; Cognition, Brain, and Behavior Doctoral Subprogram, The Graduate School, City University of New York, New York, NY 10016, USA
| | | | | |
Collapse
|
47
|
Abstract
Peripheral and central glucose sensing play a major role in the regulation of food intake. Peripheral sensing occurs at duodenal and portal levels, although the importance of these sensing sites is still controversial. The present study aimed to compare the respective influence of these sensing pathways on the eating patterns; plasma concentrations of glucose, insulin and glucagon-like peptide-1 (GLP-1); and brain activity in juvenile pigs. In Experiment 1, we characterised the changes in the microstructure as a result of a 30-min meal in eight conscious animals after duodenal or portal glucose infusion in comparison with saline infusion. In Experiment 2, glucose, insulin and GLP-1 plasma concentrations were measured during 2 h after duodenal or portal glucose infusions in four anaesthetised animals. In Experiment 3, single photon emission computed tomography brain imaging was performed in five anaesthetised animals receiving duodenal or portal glucose or saline infusions. Both duodenal and portal glucose decreased the amount of food consumed, as well as the ingestion speed, although this effect appeared earlier with the portal infusion. Significant differences of glucose and GLP-1 plasma concentrations between treatments were found at the moment of brain imaging. Both duodenal and portal glucose infusions activated the dorsolateral prefrontal cortex and primary somatosensory cortex. Only duodenal glucose infusion was able to induce activation of the prepyriform area, orbitofrontal cortex, caudate and putamen, as well as deactivation of the anterior prefrontal cortex and anterior entorhinal cortex, whereas only portal glucose infusion induced a significant activation of the insular cortex. We demonstrated that duodenal and portal glucose infusions led to the modulation of brain areas that are known to regulate eating behaviour, which probably explains the decrease of food intake after both stimulations. These stimulation pathways induced specific systemic and central responses, suggesting that different brain processing matrices are involved.
Collapse
Affiliation(s)
- J Boubaker
- Institut National de la Recherche Agronomique, ADNC, Saint-Gilles, France
| | | | | | | |
Collapse
|
48
|
Sclafani A. Gut-brain nutrient signaling. Appetition vs. satiation. Appetite 2012; 71:454-8. [PMID: 22664300 DOI: 10.1016/j.appet.2012.05.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/12/2012] [Accepted: 05/17/2012] [Indexed: 01/09/2023]
Abstract
Multiple hormonal and neural signals are generated by ingested nutrients that limit meal size and suppress postmeal eating. However, the availability of sugar-rich and fat-rich foods can override these satiation/satiety signals and lead to overeating and obesity. The palatable flavor of these foods is one factor that promotes overeating, but sugar and fat also have postoral actions that can stimulate eating and increase food preferences. This is revealed in conditioning studies in which rodents consume flavored solutions paired with intragastric sugar or fat infusions. The significant flavor preferences and increased intake produced by the nutrient infusions appear to involve stimulatory gut-brain signals, referred to here as appetition signals, that are distinct from the satiation signals that suppress feeding. Newly developed rapid conditioning protocols may facilitate the study of postoral appetition processes.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate School, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| |
Collapse
|
49
|
Clouard C, Jouhanneau M, Meunier-Salaün MC, Malbert CH, Val-Laillet D. Exposures to conditioned flavours with different hedonic values induce contrasted behavioural and brain responses in pigs. PLoS One 2012; 7:e37968. [PMID: 22685528 PMCID: PMC3368353 DOI: 10.1371/journal.pone.0037968] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/27/2012] [Indexed: 11/18/2022] Open
Abstract
This study investigated the behavioural and brain responses towards conditioned flavours with different hedonic values in juvenile pigs. Twelve 30-kg pigs were given four three-day conditioning sessions: they received three different flavoured meals paired with intraduodenal (i.d.) infusions of 15% glucose (F(Glu)), lithium chloride (F(LiCl)), or saline (control treatment, F(NaCl)). One and five weeks later, the animals were subjected to three two-choice feeding tests without reinforcement to check the acquisition of a conditioned flavour preference or aversion. In between, the anaesthetised pigs were subjected to three (18)FDG PET brain imaging coupled with an olfactogustatory stimulation with the conditioned flavours. During conditioning, the pigs spent more time lying inactive, and investigated their environment less after the F(LiCl) than the F(NaCl) or F(Glu) meals. During the two-choice tests performed one and five weeks later, the F(NaCl) and F(Glu) foods were significantly preferred over the F(LICl) food even in the absence of i.d. infusions. Surprisingly, the F(NaCl) food was also preferred over the F(Glu) food during the first test only, suggesting that, while LiCl i.d. infusions led to a strong flavour aversion, glucose infusions failed to induce flavour preference. As for brain imaging results, exposure to aversive or less preferred flavours triggered global deactivation of the prefrontal cortex, specific activation of the posterior cingulate cortex, as well as asymmetric brain responses in the basal nuclei and the temporal gyrus. In conclusion, postingestive visceral stimuli can modulate the flavour/food hedonism and further feeding choices. Exposure to flavours with different hedonic values induced metabolism differences in neural circuits known to be involved in humans in the characterization of food palatability, feeding motivation, reward expectation, and more generally in the regulation of food intake.
Collapse
Affiliation(s)
- Caroline Clouard
- INRA, UR1341 ADNC (Alimentation & Adaptations Digestives, Nerveuses et Comportementales), Saint Gilles, France
- INRA, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Saint Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Rennes, France
| | - Mélanie Jouhanneau
- INRA, UR1341 ADNC (Alimentation & Adaptations Digestives, Nerveuses et Comportementales), Saint Gilles, France
- INRA, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Saint Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Rennes, France
| | - Marie-Christine Meunier-Salaün
- INRA, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Saint Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Rennes, France
| | - Charles-Henri Malbert
- INRA, UR1341 ADNC (Alimentation & Adaptations Digestives, Nerveuses et Comportementales), Saint Gilles, France
| | - David Val-Laillet
- INRA, UR1341 ADNC (Alimentation & Adaptations Digestives, Nerveuses et Comportementales), Saint Gilles, France
| |
Collapse
|
50
|
Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1119-33. [PMID: 22442194 PMCID: PMC3362145 DOI: 10.1152/ajpregu.00038.2012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
The discovery of taste and nutrient receptors (chemosensors) in the gut has led to intensive research on their functions. Whereas oral sugar, fat, and umami taste receptors stimulate nutrient appetite, these and other chemosensors in the gut have been linked to digestive, metabolic, and satiating effects that influence nutrient utilization and inhibit appetite. Gut chemosensors may have an additional function as well: to provide positive feedback signals that condition food preferences and stimulate appetite. The postoral stimulatory actions of nutrients are documented by flavor preference conditioning and appetite stimulation produced by gastric and intestinal infusions of carbohydrate, fat, and protein. Recent findings suggest an upper intestinal site of action, although postabsorptive nutrient actions may contribute to flavor preference learning. The gut chemosensors that generate nutrient conditioning signals remain to be identified; some have been excluded, including sweet (T1R3) and fatty acid (CD36) sensors. The gut-brain signaling pathways (neural, hormonal) are incompletely understood, although vagal afferents are implicated in glutamate conditioning but not carbohydrate or fat conditioning. Brain dopamine reward systems are involved in postoral carbohydrate and fat conditioning but less is known about the reward systems mediating protein/glutamate conditioning. Continued research on the postoral stimulatory actions of nutrients may enhance our understanding of human food preference learning.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | | |
Collapse
|