1
|
Jackson MA, Burn CC, Hedley J, Brodbelt DC, O'Neill DG. Dental disease in companion rabbits under UK primary veterinary care: Frequency and risk factors. Vet Rec 2024; 194:e3993. [PMID: 38439116 DOI: 10.1002/vetr.3993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Some prior evidence has suggested that lop-eared rabbits and those with brachycephalic skull conformations have a higher dental disease risk. This retrospective cohort study reports the frequency and conformational risk factors for primary-care veterinary diagnosis with dental disease in companion rabbits in the UK. METHODS Anonymised VetCompass clinical records were manually reviewed to confirm dental disease cases. Risk factor analysis used multivariable binary logistic regression modelling. RESULTS From 161,979 rabbits under primary veterinary care in 2019, the 1-year period prevalence of overall dental disease was 15.36% (95% confidence interval [CI]: 14.78-15.96). The prevalence of dental disease affecting incisors was 3.14% (95% CI: 2.87-3.44), and for cheek teeth it was 13.72% (95% CI: 13.17-14.29). Neither lop-eared conformation nor brachycephalic skull conformation was significantly associated with increased odds of dental disease. Dental disease odds increased as age increased and decreased as bodyweight increased. LIMITATIONS This study retrospectively accessed clinical records, so breed names may sometimes be imprecise. CONCLUSION The high overall prevalence of dental disease represents a major welfare concern for all companion rabbits, regardless of conformation. This information can be used to encourage regular routine dental assessment of rabbits of all conformations to promote earlier diagnosis, paying particular attention to older rabbits and those with low bodyweight.
Collapse
Affiliation(s)
- Maria A Jackson
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Charlotte C Burn
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Joanna Hedley
- Beaumont Sainsbury Animal Hospital, Royal Veterinary College, London, UK
| | - Dave C Brodbelt
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Dan G O'Neill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
2
|
Harrison MAA, Morris SL, Rudman GA, Rittenhouse DJ, Monk CH, Sakamuri SSVP, Mehedi Hasan M, Shamima Khatun M, Wang H, Garfinkel LP, Norton EB, Kim S, Kolls JK, Jazwinski SM, Mostany R, Katakam PVG, Engler-Chiurazzi EB, Zwezdaryk KJ. Intermittent cytomegalovirus infection alters neurobiological metabolism and induces cognitive deficits in mice. Brain Behav Immun 2024; 117:36-50. [PMID: 38182037 DOI: 10.1016/j.bbi.2023.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024] Open
Abstract
Risk factors contributing to dementia are multifactorial. Accumulating evidence suggests a role for pathogens as risk factors, but data is largely correlative with few causal relationships. Here, we demonstrate that intermittent murine cytomegalovirus (MCMV) infection of mice, alters blood brain barrier (BBB) permeability and metabolic pathways. Increased basal mitochondrial function is observed in brain microvessels cells (BMV) exposed to intermittent MCMV infection and is accompanied by elevated levels of superoxide. Further, mice score lower in cognitive assays compared to age-matched controls who were never administered MCMV. Our data show that repeated systemic infection with MCMV, increases markers of neuroinflammation, alters mitochondrial function, increases markers of oxidative stress and impacts cognition. Together, this suggests that viral burden may be a risk factor for dementia. These observations provide possible mechanistic insights through which pathogens may contribute to the progression or exacerbation of dementia.
Collapse
Affiliation(s)
- Mark A A Harrison
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70112, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sara L Morris
- Biomedical Sciences Program, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Grace A Rudman
- Department of Environmental Studies, Tulane University School of Liberal Arts, New Orleans, LA 70112, USA
| | - Daniel J Rittenhouse
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Center for Translational Research in Infection & Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Chandler H Monk
- Bioinnovation Program, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Md Mehedi Hasan
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mst Shamima Khatun
- Tulane Center for Translational Research in Infection & Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hanyun Wang
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lucas P Garfinkel
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sangku Kim
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K Kolls
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Center for Translational Research in Infection & Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA; Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Elizabeth B Engler-Chiurazzi
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Kevin J Zwezdaryk
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Beahm DR, Deng Y, DeAngelo TM, Sarpeshkar R. Drug Cocktail Formulation via Circuit Design. IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS 2023; 9:28-48. [PMID: 37397625 PMCID: PMC10312325 DOI: 10.1109/tmbmc.2023.3246928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Electronic circuits intuitively visualize and quantitatively simulate biological systems with nonlinear differential equations that exhibit complicated dynamics. Drug cocktail therapies are a powerful tool against diseases that exhibit such dynamics. We show that just six key states, which are represented in a feedback circuit, enable drug-cocktail formulation: 1) healthy cell number; 2) infected cell number; 3) extracellular pathogen number; 4) intracellular pathogenic molecule number; 5) innate immune system strength; and 6) adaptive immune system strength. To enable drug cocktail formulation, the model represents the effects of the drugs in the circuit. For example, a nonlinear feedback circuit model fits measured clinical data, represents cytokine storm and adaptive autoimmune behavior, and accounts for age, sex, and variant effects for SARS-CoV-2 with few free parameters. The latter circuit model provided three quantitative insights on the optimal timing and dosage of drug components in a cocktail: 1) antipathogenic drugs should be given early in the infection, but immunosuppressant timing involves a tradeoff between controlling pathogen load and mitigating inflammation; 2) both within and across-class combinations of drugs have synergistic effects; 3) if they are administered sufficiently early in the infection, anti-pathogenic drugs are more effective at mitigating autoimmune behavior than immunosuppressant drugs.
Collapse
Affiliation(s)
| | - Yijie Deng
- Thayer School or Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Thomas M DeAngelo
- Thayer School or Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Rahul Sarpeshkar
- Departments of Engineering, Physics, Microbiology & Immunobiology, and Molecular & Systems Biology, Dartmouth College, Hanover, NH 03755 USA
| |
Collapse
|
4
|
Combining accelerometers and direct visual observations to detect sickness and pain in cows of different ages submitted to systemic inflammation. Sci Rep 2023; 13:1977. [PMID: 36737469 PMCID: PMC9898231 DOI: 10.1038/s41598-023-27884-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Cattle suffering from inflammatory infection display sickness and pain-related behaviours. As these behaviours may be transient and last only a few hours, one may miss them. The aim of this study was to assess the benefit of combining continuous monitoring of cow behaviour via collar-attached accelerometers with direct visual observations to detect sickness and pain-related behavioural responses after a systemic inflammatory challenge (intravenous lipopolysaccharide injection) in cows of two different ages, proven by clinical, physiological and blood parameters. Twelve cloned Holstein cows (six 'old' cows aged 10-15 years old and six 'young' cows aged 6 years old) were challenged and either directly observed at five time-points from just before the lipopolysaccharide injection up to 24 h post-injection (hpi) or continuously monitored using collar-attached accelerometers in either control or challenge situations. Direct observations identified specific sickness and pain behaviours (apathy, changes in facial expression and body posture, reduced motivation to feed) expressed partially at 3 hpi and fully at 6 hpi. These signs of sickness and pain behaviours then faded, and quicker for the young cows. Accelerometers detected changes in basic activities (low ingesting, low ruminating, high inactivity) and position (high time standing up) earlier and over a longer period of time than direct observations. The combination of sensors and direct observations improved the detection of behavioural signs of sickness and pain earlier on and over the whole study period, even when direct signs were weak especially in young cows. This system could provide great benefit for better earlier animal care.
Collapse
|
5
|
Oliver VL, Pang DSJ. Pain Recognition in Rodents. Vet Clin North Am Exot Anim Pract 2023; 26:121-149. [PMID: 36402478 DOI: 10.1016/j.cvex.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Available methods for recognizing and assessing pain in rodents have increased over the last 10 years, including the development of validated pain assessment scales. Much of this work has been driven by the needs of biomedical research, and there are specific challenges to applying these scales in the clinical environment. This article provides an introduction to pain assessment scale validation, reviews current methods of pain assessment, highlighting their strengths and weaknesses, and makes recommendations for assessing pain in a clinical environment.
Collapse
Affiliation(s)
- Vanessa L Oliver
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Animal Health Unit, VP Research, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada
| | - Daniel S J Pang
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
6
|
McCamy KM, Rees KA, Winzer-Serhan UH. Peripheral immune challenges elicit differential up-regulation of hippocampal cytokine and chemokine mRNA expression in a mouse model of the 15q13.3 microdeletion syndrome. Cytokine 2022; 159:156005. [PMID: 36084604 DOI: 10.1016/j.cyto.2022.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
The human heterozygous 15q13.3 microdeletion is associated with neuropathological disorders, most prominently with epilepsy and intellectual disability. The 1.5 Mb deletion encompasses six genes (FAN1 [MTMR15], MTMR10, TRPM1, KLF13, OTUD7A, and CHRNA7); all but one (TRPM1) are expressed in the brain. The 15q13.3 microdeletion causes highly variable neurological symptoms, and confounding factors may contribute to a more severe phenotype. CHRNA7 and KLF13 are involved in immune system regulation and altered immune responses may contribute to neurological deficits. We used the Df[h15q13]/+ transgenic mouse model with a heterozygous deletion of the orthologous region (Het) to test the hypothesis that the microdeletion increases innate immune responses compared to wild type (WT). Male and female mice were acutely challenged with the bacteriomimetic lipopolysaccharide (LPS, 0.1 mg/kg, i.p.) or the viral mimetic polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg). Hippocampal mRNA expression of pro-inflammatory cytokines and chemokines were determined three hours after injection using quantitative PCR analysis. In controls, expression was not affected by sex or genotype. LPS and Poly(I:C) resulted in significantly increased hippocampal expression of cytokines, chemokines, and interferon-γ (IFNγ), with more robust increases for TNF-α, IL-6, IL-1β, CXCL1, and CCL2 by LPS, higher induction of IFNγ by Poly(I:C), and similar increases of CCL4 and CCL5 by both agents. Generally, Hets exhibited stronger responses than WT mice, and significant effects of genotype or genotype × treatment interactions were detected for CXCL1 and CCL5, and IL-6, IL-1β, and CCL4, respectively, after LPS. Sex differences were detected for some targets. LPS but not Poly(I:C), reduced overnight burrowing independent of sex or genotype, suggesting that LPS induced sickness behavior. Thus, mice carrying the microdeletion have an increased innate immune response following a LPS challenge, but further studies will have to determine the extent and mechanisms of altered immune activation and subsequent contributions to 15q13.3 microdeletion associated deficits.
Collapse
Affiliation(s)
- Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States.
| |
Collapse
|
7
|
Reiber M, Miljanovic N, Schönhoff K, Palme R, Potschka H. Behavioral phenotyping of young Scn1a haploinsufficient mice. Epilepsy Behav 2022; 136:108903. [PMID: 36240579 DOI: 10.1016/j.yebeh.2022.108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Dravet syndrome is a rare, severe, infancy-onset epileptic encephalopathy associated with a high premature mortality. In most patients, Dravet syndrome is caused by a heterozygous loss-of-function mutation in the SCN1A gene encoding the alpha 1 subunit of the sodium channel. Of the variety of SCN1A variants identified in patients with Dravet syndrome, SCN1A missense mutations occur in one-third of cases. The novel Scn1a-A1783V mouse model of Dravet syndrome carries the human Ala1783Val missense variant. Recently, the behavioral phenotype of Scn1a-A1783V haploinsufficient adult mice has been characterized, which may provide a valuable basis for assessment of novel therapeutic approaches. However, there is still limited information on the developmental course of behavioral alterations in the Scn1a-A1783V mouse model, which is of particular relevance for conclusions about face validity and severity classification of the model. Based on reference data from young wildtype mice, we analyzed selected behavioral parameters and fecal corticosterone metabolites in the Scn1a-A1783V mouse model during post-weaning development. Differences in the preference for a sweet saccharin solution between Dravet mice and wildtype mice were observed once mice reached sexual maturity. Nest building behavior was already influenced by the Scn1a genotype during prepubescence. Sexually mature Dravet mice showed a significantly reduced burrowing performance as compared to their wildtype littermates. In the open-field test, pronounced hyperactivity and increased thigmotactic behavior were evident in prepubescent and sexually mature Dravet mice. Analysis of Irwin scores revealed several genotype-dependent changes in handling-associated parameters during the course of adolescence. The information obtained provides insight into the age-dependence of behavioral patterns in the novel Scn1a-A1783V mouse model of Dravet syndrome. In addition, the dataset confirms the suitability of the applied behavioral composite measure scheme for evidence-based assessment of cumulative severity in genetic mouse lines.
Collapse
Affiliation(s)
- Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
8
|
Reiber M, Stirling H, Sprengel R, Gass P, Palme R, Potschka H. Phenotyping Young GluA1 Deficient Mice – A Behavioral Characterization in a Genetic Loss-of-Function Model. Front Behav Neurosci 2022; 16:877094. [PMID: 35722188 PMCID: PMC9204703 DOI: 10.3389/fnbeh.2022.877094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022] Open
Abstract
Alterations of glutamatergic neurotransmission have been implicated in neurodevelopmental and neuropsychiatric disorders. Mice lacking the GluA1 AMPA receptor subunit, encoded by the Gria1 gene, display multiple phenotypical features associated with glutamatergic dysfunction. While the phenotype of adult GluA1 deficient (Gria1–/–) mice has been studied comprehensively, there are relevant gaps in knowledge about the course and the onset of behavioral alterations in the Gria1 knockout mouse model during post-weaning development. Based on former investigations in young wild-type mice, we exposed female and male adolescent Gria1–/– mice to a behavioral home-cage based testing battery designed for the purpose of severity assessment. Data obtained from mice with a constitutive loss of GluA1 were compared with those from wild-type littermates. We identified several genotype-dependent behavioral alterations in young Gria1–/– mice. While the preference for sweetness was not affected by genotype during adolescence, Gria1–/– mice displayed limited burrowing performance, and reached lower nest complexity scores. Analysis of home-cage based voluntary wheel running performance failed to confirm genotype-dependent differences. In contrast, when exposed to the open field test, Gria1–/– mice showed pronounced hyperlocomotion in early and late adolescence, and female Gria1–/– mice exhibited thigmotaxis when prepubescent. We found increased corticosterone metabolite levels in fecal samples of adolescent Gria1–/– mice with females exhibiting increased adrenocortical activity already in prepubescence. Considering the course of behavioral modifications in early and late adolescence, the results do not support a persistent level of distress associated with GluA1 deficiency in the line. In contrast, the laboratory-specific readouts indicate transient, mild impairments of behavioral patterns relevant to animal welfare, and suggest a mild overall burden of the line.
Collapse
Affiliation(s)
- Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
- *Correspondence: Heidrun Potschka,
| |
Collapse
|
9
|
Development of behavioral patterns in young C57BL/6J mice: a home cage-based study. Sci Rep 2022; 12:2550. [PMID: 35169182 PMCID: PMC8847349 DOI: 10.1038/s41598-022-06395-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Evidence exists that behavioral patterns only stabilize once mice reach adulthood. Detailed information about the course of behavioral patterns is of particular relevance for neuroscientific research and for the assessment of cumulative severity in genetically modified mice. The analysis considered five age groups focusing on behavioral assessments in the animals’ familiar home cage environment during the adolescence phase. We confirmed age- and sex-specific differences for several of the behavioral parameters and fecal corticosterone metabolites. Interestingly, an age-dependent decline in saccharin preference was detected in female mice. Regardless of sex, relevant levels of burrowing activity were only observed during later developmental phases. The development of nest complexity following the offer of new material was affected by age in female mice. In female and male mice, an age-dependency was evident for wheel running reaching a peak at P 50. A progressive increase with age was also observed for Open field activity. The data sets provide guidance for behavioral studies and for development of composite measure schemes for evidence-based severity assessment in young mice. Except for the burrowing test, the different behavioral tests can be applied in different age groups during post-weaning development. However, age- and sex-specific characteristics need to be considered.
Collapse
|
10
|
Porcher L, Bruckmeier S, Burbano SD, Finnell JE, Gorny N, Klett J, Wood SK, Kelly MP. Aging triggers an upregulation of a multitude of cytokines in the male and especially the female rodent hippocampus but more discrete changes in other brain regions. J Neuroinflammation 2021; 18:219. [PMID: 34551810 PMCID: PMC8459490 DOI: 10.1186/s12974-021-02252-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Despite widespread acceptance that neuroinflammation contributes to age-related cognitive decline, studies comparing protein expression of cytokines in the young versus old brains are surprisingly limited in terms of the number of cytokines and brain regions studied. Complicating matters, discrepancies abound-particularly for interleukin 6 (IL-6)-possibly due to differences in sex, species/strain, and/or the brain regions studied. METHODS As such, we clarified how cytokine expression changes with age by using a Bioplex and Western blot to measure multiple cytokines across several brain regions of both sexes, using 2 mouse strains bred in-house as well as rats obtained from NIA. Parametric and nonparametric statistical tests were used as appropriate. RESULTS In the ventral hippocampus of C57BL/6J mice, we found age-related increases in IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, eotaxin, G-CSF, interfeuron δ, KC, MIP-1a, MIP-1b, rantes, and TNFα that are generally more pronounced in females, but no age-related change in IL-5, MCP-1, or GM-CSF. We also find aging is uniquely associated with the emergence of a module (a.k.a. network) of 11 strongly intercorrelated cytokines, as well as an age-related shift from glycosylated to unglycosylated isoforms of IL-10 and IL-1β in the ventral hippocampus. Interestingly, age-related increases in extra-hippocampal cytokine expression are more discreet, with the prefrontal cortex, striatum, and cerebellum of male and female C57BL/6J mice demonstrating robust age-related increase in IL-6 expression but not IL-1β. Importantly, we found this widespread age-related increase in IL-6 also occurs in BALB/cJ mice and Brown Norway rats, demonstrating conservation across species and rearing environments. CONCLUSIONS Thus, age-related increases in cytokines are more pronounced in the hippocampus compared to other brain regions and can be more pronounced in females versus males depending on the brain region, genetic background, and cytokine examined.
Collapse
Affiliation(s)
- Latarsha Porcher
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Sophie Bruckmeier
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Steven D Burbano
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Julie E Finnell
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Jennifer Klett
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Susan K Wood
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Michy P Kelly
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA. .,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA. .,Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Kim J, Yang GS, Lyon D, Kelly DL, Stechmiller J. Metabolomics: Impact of Comorbidities and Inflammation on Sickness Behaviors for Individuals with Chronic Wounds. Adv Wound Care (New Rochelle) 2021; 10:357-369. [PMID: 32723226 PMCID: PMC8165460 DOI: 10.1089/wound.2020.1215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Significance: Approximately 6.5 million people in the United States suffer from chronic wounds. The chronic wound population is typically older and is characterized by a number of comorbidities associated with inflammation. In addition to experiencing wound-related pain, individuals with chronic wounds commonly experience multiple concurrent psychoneurological symptoms such as fatigue and depression, which delay wound healing. However, these distressing symptoms have been relatively overlooked in this population, although their adverse effects on morbidity are well established in other chronic disease populations. Recent Advances: Inflammation is involved in multiple pathways, which activate brain endothelial and innate immune cells that release proinflammatory cytokines, which produce multiple symptoms known as sickness behaviors. Inflammation-based activation of the kynurenine (KYN) pathway and its metabolites is a mechanism associated with chronic illnesses. Critical Issues: Although putative humoral and neuronal routes have been identified, the specific metabolic variations involved in sickness behaviors in chronic wound patients remain unclear. To improve health outcomes in the chronic wound population, clinicians need to have better understanding of the mechanisms underlying sickness behaviors to provide appropriate treatments. Future Directions: This article presents a synthesis of studies investigating associations between inflammation, metabolic pathways, and sickness behaviors in multiple chronic diseases. The presentation of a theoretical framework proposes a mechanism underlying sickness behaviors in the chronic wound population. By mediating the immune system response, dysregulated metabolites in the KYN pathway may play an important role in sickness behaviors in chronic inflammatory conditions. This framework may guide researchers in developing new treatments to reduce the disease burden in the chronic wound population.
Collapse
Affiliation(s)
- Junglyun Kim
- Adult and Gerontological Health Cooperative, University of Minnesota School of Nursing, Minneapolis, Minnesota, USA
| | - Gee Su Yang
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Debra Lyon
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Debra L. Kelly
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Joyce Stechmiller
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| |
Collapse
|
12
|
McGarry N, Murray CL, Garvey S, Wilkinson A, Tortorelli L, Ryan L, Hayden L, Healy D, Griffin EW, Hennessy E, Arumugam M, Skelly DT, Mitchell KJ, Cunningham C. Double stranded RNA drives anti-viral innate immune responses, sickness behavior and cognitive dysfunction dependent on dsRNA length, IFNAR1 expression and age. Brain Behav Immun 2021; 95:413-428. [PMID: 33892139 PMCID: PMC8447494 DOI: 10.1016/j.bbi.2021.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/08/2021] [Accepted: 04/18/2021] [Indexed: 02/08/2023] Open
Abstract
Double stranded RNA is generated during viral replication. The synthetic analogue poly I:C is frequently used to mimic anti-viral innate immune responses in models of psychiatric and neurodegenerative disorders including schizophrenia, autism, Parkinson's disease and Alzheimer's disease. Many studies perform limited analysis of innate immunity despite these responses potentially differing as a function of dsRNA molecular weight and age. Therefore fundamental questions relevant to impacts of systemic viral infection on brain function and integrity remain. Here, we studied innate immune-inducing properties of poly I:C preparations of different lengths and responses in adult and aged mice. High molecular weight (HMW) poly I:C (1-6 kb, 12 mg/kg) produced more robust sickness behavior and more robust IL-6, IFN-I and TNF-α responses than poly I:C of < 500 bases (low MW) preparations. This was partly overcome with higher doses of LMW (up to 80 mg/kg), but neither circulating IFNβ nor brain transcription of Irf7 were significantly induced by LMW poly I:C, despite brain Ifnb transcription, suggesting that brain IFN-dependent gene expression is predominantly triggered by circulating IFNβ binding of IFNAR1. In aged animals, poly I:C induced exaggerated IL-6, IL-1β and IFN-I in the plasma and similar exaggerated brain cytokine responses. This was associated with acute working memory deficits selectively in aged mice. Thus, we demonstrate dsRNA length-, IFNAR1- and age-dependent effects on anti-viral inflammation and cognitive function. The data have implications for CNS symptoms of acute systemic viral infection such as those with SARS-CoV-2 and for models of maternal immune activation.
Collapse
Affiliation(s)
- Niamh McGarry
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Carol L Murray
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Sean Garvey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Abigail Wilkinson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Lucas Tortorelli
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Lucy Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Lorna Hayden
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Daire Healy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Eadaoin W Griffin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Edel Hennessy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Malathy Arumugam
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Donal T Skelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Kevin J Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
13
|
Mcgarry N, Murray CL, Garvey S, Wilkinson A, Tortorelli L, Ryan L, Hayden L, Healy D, Griffin EW, Hennessy E, Arumugam M, Skelly DT, Mitchell KJ, Cunningham C. Double stranded RNA drives innate immune responses, sickness behavior and cognitive impairment dependent on dsRNA length, IFNAR1 expression and age.. [PMID: 33442686 PMCID: PMC7805443 DOI: 10.1101/2021.01.09.426034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Double stranded RNA is generated during viral replication. The synthetic analogue poly I:C is frequently used to mimic anti-viral innate immune responses in models of psychiatric and neurodegenerative disorders including schizophrenia, autism, Parkinson’s disease and Alzheimer’s disease. Many studies perform limited analysis of innate immunity despite these responses potentially differing as a function of dsRNA molecular weight and age. Therefore fundamental questions relevant to impacts of systemic viral infection on brain function and integrity remain. Here, we studied innate immune-inducing properties of poly I:C preparations of different lengths and responses in adult and aged mice. High molecular weight (HMW) poly I:C (1–6kb, 12 mg/kg) produced more robust sickness behavior and more robust IL-6, IFN-I and TNFα responses than poly I:C of <500 bases (low MW) preparations. This was partly overcome with higher doses of LMW (up to 80 mg/kg), but neither circulating IFNβ nor brain transcription of Irf7 were significantly induced by LMW poly I:C, despite brain Ifnb transcription, suggesting that brain IFN-dependent gene expression is predominantly triggered by circulating IFNβ binding of IFNAR1. In aged animals, poly I:C induced exaggerated IL-6, IL-1β and IFN-I in the plasma and similar exaggerated brain cytokine responses. This was associated with acute working memory deficits selectively in aged mice. Thus, we demonstrate dsRNA length-, IFNAR1- and age-dependent effects on anti-viral inflammation and cognitive function. The data have implications for CNS symptoms of acute systemic viral infection such as those with SARS-CoV-2 and for models of maternal immune activation.
Collapse
|
14
|
Abstract
Neuroinflammation confers changes in brain function (i.e., behavior) that are hypothesized to be adaptive in the short-term, but detrimental (e.g., depression, anxiety) if they persist. Both peripheral tumor growth (outside of the brain) and natural aging independently cause neuroinflammation in rodents, which is corroborated by clinical studies. Mammary tumor effects on neuroinflammation and behavior, however, are typically studied in young rodents, whereas most breast cancer patients are middle-aged. Therefore, the existing literature likely underestimates the resulting neuroinflammation that may occur in clinical cancer populations. The present study tested the hypothesis that aging exacerbates mammary tumor-induced neuroinflammation in female mice. Aging (16 months and ovariectomized) increased body and spleen masses, whereas tumors grew faster and increased spleen mass in young mice (12 weeks) only. Tumors (IL-6, IL-10, TNFα, MCP-1, CXCL1, IP-10) and aging (IL-10, IFNγ) independently increased circulating inflammatory markers, although these variables were only significantly additive in one case (TNFα). In contrast to our prediction, the interaction between tumors and aging resulted in reduced mRNA and protein expression of select inflammatory markers in the hippocampus of tumor-bearing aged mice relative to aged controls. These results indicate that tumors reduce inflammatory activation in the brains of aged mice, a deficit that is likely disadvantageous. Further understanding of how aging and cancer interact to affect brain function is necessary to provide clinically-relevant results and identify mechanisms underlying persistent behavioral issues hampering adult cancer patients. Tumors grew more slowly in aged mice. Tumors and aging independently increased circulating inflammatory markers. Tumors reduced mRNA and protein expression of inflammatory markers in the hippocampus in aged mice. Reduced inflammatory activation in the brains of aged mice is likely not adaptive.
Collapse
|
15
|
Tappe-Theodor A, King T, Morgan MM. Pros and Cons of Clinically Relevant Methods to Assess Pain in Rodents. Neurosci Biobehav Rev 2019; 100:335-343. [PMID: 30885811 PMCID: PMC6528820 DOI: 10.1016/j.neubiorev.2019.03.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
The primary objective of preclinical pain research is to improve the treatment of pain. Decades of research using pain-evoked tests has revealed much about mechanisms but failed to deliver new treatments. Evoked pain-tests are often limited because they ignore spontaneous pain and motor or disruptive side effects confound interpretation of results. New tests have been developed to focus more closely on clinical goals such as reducing pathological pain and restoring function. The objective of this review is to describe and discuss several of these tests. We focus on: Grimace Scale, Operant Behavior, Wheel Running, Burrowing, Nesting, Home Cage Monitoring, Gait Analysis and Conditioned Place Preference/ Aversion. A brief description of each method is presented along with an analysis of the advantages and limitations. The pros and cons of each test will help researchers identify the assessment tool most appropriate to meet their particular objective to assess pain in rodents. These tests provide another tool to unravel the mechanisms underlying chronic pain and help overcome the translational gap in drug development.
Collapse
Affiliation(s)
- Anke Tappe-Theodor
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Michael M Morgan
- Department of Psychology, Washington State University, Vancouver, WA, USA
| |
Collapse
|
16
|
Walters JL, Zhang X, Talpos JC, Fogle CM, Li M, Chelonis JJ, Paule MG. Sevoflurane exposure has minimal effect on cognitive function and does not alter microglial activation in adult monkeys. Neurotoxicology 2018; 71:159-167. [PMID: 30605762 DOI: 10.1016/j.neuro.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
Postoperative Cognitive Dysfunction (POCD) is a complication that has been observed in a subset of adult and elderly individuals after general anesthesia and surgery. Although the pathogenesis of POCD is largely unknown, a growing body of preclinical research suggests that POCD may be caused by general anesthesia. A significant amount of research has examined the effects of general anesthesia on neurocognitive function in rodents, yet no studies have assessed the adverse effects of general anesthesia on brain function in adult nonhuman primates. Thus, this study sought to determine the effects of an extended exposure to sevoflurane anesthesia on cognitive function and neural inflammation in adult rhesus macaques. Five adult rhesus macaques (16-17 years of age) were exposed to sevoflurane anesthesia for 8 h and, and micro-positron emission tomography (PET)/computed tomography (CT) imaging and a battery of operant tasks were used to assess the effects of anesthesia exposure on 18F-labeled fluoroethoxybenzyl-N-(4-phenoxypyridin-3-yl) acetamide ([18F]-FEPPA) uptake, a biomarker of microglia activation, and aspects of complex cognitive function. Exposure to sevoflurane anesthesia for 8 h did not increase [18F]-FEPPA uptake in the adult monkey brain. Sevoflurane anesthesia significantly decreased accuracy (mean difference = 22.79) on a learning acquisition task 6 days after exposure [t(3) = 6.92, p = 0.006], but this effect did not persist when measured 1 week and 2 weeks after additional exposures. Further, sevoflurane anesthesia had no impact on performance in 4 additional cognitive tasks. These data suggest that exposure to anesthesia alone may not be sufficient to cause persistent POCD in adult populations.
Collapse
Affiliation(s)
- Jennifer L Walters
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR, 72079, United States
| | - Xuan Zhang
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR, 72079, United States
| | - John C Talpos
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR, 72079, United States.
| | - Charles M Fogle
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR, 72079, United States
| | - Mi Li
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR, 72079, United States
| | - John J Chelonis
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR, 72079, United States
| | - Merle G Paule
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR, 72079, United States
| |
Collapse
|
17
|
Matt SM, Zimmerman JD, Lawson MA, Bustamante AC, Uddin M, Johnson RW. Inhibition of DNA Methylation With Zebularine Alters Lipopolysaccharide-Induced Sickness Behavior and Neuroinflammation in Mice. Front Neurosci 2018; 12:636. [PMID: 30279646 PMCID: PMC6153314 DOI: 10.3389/fnins.2018.00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/24/2018] [Indexed: 12/24/2022] Open
Abstract
Activity of DNA methyltransferases (DNMTs), the enzymes that catalyze DNA methylation, is dynamically regulated in the brain. DNMT inhibitors alter DNA methylation globally in the brain and at individual neural plasticity-associated genes, but how DNMT inhibitors centrally influence lipopolysaccharide (LPS)-induced neuroinflammation is not known. We investigated whether the DMNT inhibitor, zebularine, would alter sickness behavior, DNA methylation of the Il-1β promoter and expression of inflammatory genes in hippocampus and microglia. Contrary to our hypothesis that zebularine may exaggerate LPS-induced sickness response and neuroinflammation, adult mice treated with an intracerebroventricular (ICV) injection of zebularine prior to LPS had surprisingly faster recovery of burrowing behavior compared to mice treated with LPS. Further, genes of inflammatory markers, epigenetic regulators, and the microglial sensory apparatus (i.e., the sensome) were differentially expressed by zebularine alone or in combination with LPS. Bisulfite pyrosequencing revealed that ICV zebularine led to decreased DNA methylation of two CpG sites near the Il-1β proximal promoter alone or in combination with LPS. Zebularine treated mice still exhibited decreased DNA methylation 48 h after treatment when LPS-induced sickness behavior as well as hippocampal and microglial gene expression were similar to control mice. Taken together, these data suggest that decreased DNA methylation, specifically of the Il-1β promoter region, with a DNMT inhibitor in the brain disrupts molecular mechanisms of neuroinflammation.
Collapse
Affiliation(s)
- Stephanie M Matt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Animal Sciences Laboratory, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jalisa D Zimmerman
- Animal Sciences Laboratory, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marcus A Lawson
- Animal Sciences Laboratory, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Angela C Bustamante
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Monica Uddin
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Animal Sciences Laboratory, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
18
|
Standard analgesics reverse burrowing deficits in a rat CCI model of neuropathic pain, but not in models of type 1 and type 2 diabetes-induced neuropathic pain. Behav Brain Res 2018; 350:129-138. [DOI: 10.1016/j.bbr.2018.04.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 11/18/2022]
|
19
|
Whittaker AL, Zhu Y, Howarth GS, Loung CS, Bastian SEP, Wirthensohn MG. Effects of commercially produced almond by-products on chemotherapy-induced mucositis in rats. World J Gastrointest Pathophysiol 2017; 8:176-187. [PMID: 29184703 PMCID: PMC5696615 DOI: 10.4291/wjgp.v8.i4.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/20/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To determine if almond extracts reduce the severity of chemotherapy-induced mucositis as determined through biochemical, histological and behavioural markers.
METHODS Intestinal mucositis is a debilitating condition characterized by inflammation and ulceration of the gastrointestinal mucosa experienced by cancer patients undergoing chemotherapy. Certain bioactive plant products have shown promise in accelerating mucosal repair and alleviating clinical symptoms. This study evaluated almond extracts for their potential to reduce the severity of chemotherapy-induced mucositis in Dark Agouti rats. Female Dark Agouti rats were gavaged (days 3-11) with either PBS, almond hull or almond blanched water extract at two doses, and were injected intraperitoneally with 5-fluorouracil (5-FU-150 mg/kg) or saline on day 9 to induce mucositis. Burrowing behavior, histological parameters and myeloperoxidase activity were assessed.
RESULTS Bodyweight was significantly reduced in rats that received 5-FU compared to saline-treated controls (P < 0.05). Rats administered 5-FU significantly increased jejunal and ileal MPO levels (1048%; P < 0.001 and 409%; P < 0.001), compared to healthy controls. Almond hull extract caused a pro-inflammatory response in rats with mucositis as evidenced by increased myeloperoxidase activity in the jejunum when compared to 5-FU alone (rise 50%, 1088 ± 96 U/g vs 723 ± 135 U/g, P = 0.02). Other extract-related effects on inflammatory activity were minimal. 5-FU significantly increased histological severity score compared to healthy controls confirming the presence of mucositis (median of 9.75 vs 0; P < 0.001). The extracts had no ameliorating effect on histological severity score in the jejunum or ileum. Burrowing behavior was significantly reduced in all chemotherapy-treated groups (P = 0.001). The extracts failed to normalize burrowing activity to baseline levels.
CONCLUSION Almond extracts at these dosages offer little beneficial effect on mucositis severity. Burrowing provides a novel measure of affective state in studies of chemotherapy-induced mucositis.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Ying Zhu
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Chi S Loung
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Susan E P Bastian
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Michelle G Wirthensohn
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
20
|
Flannery LE, Henry RJ, Kerr DM, Finn DP, Roche M. FAAH, but not MAGL, inhibition modulates acute TLR3-induced neuroimmune signaling in the rat, independent of sex. J Neurosci Res 2017; 96:989-1001. [PMID: 28726298 DOI: 10.1002/jnr.24120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
Toll-like receptor (TLR)3 is a key component of the innate immune response to viral infection. The present study firstly examined whether sex differences exist in TLR3-induced inflammatory, endocrine, and sickness responses. The data revealed that TLR3-induced expression of interferon- or NFkB-inducible genes (IFN-α/β, IP-10, or TNF-α), either peripherally (spleen) or centrally (hypothalamus), did not differ between male and female rats, with the exception of TLR3-induced IFN-α expression in the spleen of female, but not male, rats 8 hr post TLR3 activation. Furthermore, TLR3 activation increased plasma corticosterone levels, induced fever, and reduced locomotor activity and body weight - effects independent of sex. Thus, the acute-phase inflammatory, endocrine, and sickness responses to TLR3 activation exhibit minimal sex-related differences. A further aim of this study was to examine whether enhancing endocannabinoid tone - namely, 2-arachidonylglycerol (2-AG) or N-arachidonoylethanolamine (AEA), exhibited similar effects on TLR3-induced inflammatory responses in male versus female rats. Systemic administration of the monoacylglycerol lipase (MAGL) inhibitor MJN110 and subsequent increases in 2-AG levels did not alter the TLR3-induced increase in IP-10, IRF7, or TNF-α expression in the spleen or the hypothalamus of male or female rats. In contrast, the fatty acid amide hydrolase (FAAH) inhibitor URB597 increased levels of AEA and related N-acylethanolamines, an effect associated with the attenuation of TLR3-induced inflammatory responses in the hypothalamus, but not the spleen, of male and female rats. These data support a role for FAAH, but not MAGL, substrates in the modulation of TLR3-induced neuroinflammatory responses, effects independent of sex.
Collapse
Affiliation(s)
- Lisa E Flannery
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - David P Finn
- NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| |
Collapse
|
21
|
Shattuck EC, Muehlenbein MP. Towards an integrative picture of human sickness behavior. Brain Behav Immun 2016; 57:255-262. [PMID: 27165989 DOI: 10.1016/j.bbi.2016.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022] Open
Abstract
Sickness behavior, a coordinated set of behavioral changes during infection and elicited by the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), is well studied in non-human animals. Over the last two decades, several papers have expanded this research to include humans. However, these studies use a variety of research designs, and typically focus on a single cytokine and only a few of the many behavioral changes constituting sickness behavior. Therefore, our understanding of human sickness behavior remains equivocal. To generate a more holistic, integrative picture of this phenomenon, a meta-analysis of the human sickness behavior literature was conducted. Full model results show that both IL-6 and IL-1β have significant relationships with sickness behavior, and the strength of these relationships is affected by a number of study parameters, such as type of immune stimulus and inclusion of controls. In addition to research design heterogeneity, other issues to address in future studies include an unequal focus on different cytokines and different sickness behaviors.
Collapse
Affiliation(s)
- Eric C Shattuck
- Laboratory for Evolutionary Medicine, Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, United States.
| | - Michael P Muehlenbein
- Laboratory for Evolutionary Medicine, Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
22
|
White JD, Eimerbrink MJ, Hayes HB, Hardy A, Van Enkevort EA, Peterman JL, Chumley MJ, Boehm GW. Hippocampal Aβ expression, but not phosphorylated tau, predicts cognitive deficits following repeated peripheral poly I:C administration. Behav Brain Res 2016; 313:219-225. [PMID: 27449203 DOI: 10.1016/j.bbr.2016.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is marked by the accumulation of the amyloid-beta (Aβ) peptide, and increases in phosphorylation of the microtubule associated protein, tau. Changes in these proteins are considered responsible, in part, for the progressive neuronal degeneration and cognitive deficits seen in AD. We examined the effect of repeated consecutive peripheral poly I:C injections on cognitive deficits, central Aβ, and phosphorylated tau accumulation, following three treatment durations: 7, 14, and 21 days. Forty-eight hours after the final injection, animals were trained in a contextual fear-conditioning paradigm, and tested 24h later. Immediately after testing, the hippocampus was collected to quantify Aβ and phosphorylated tau accumulation. Results showed that, although poly I:C-induced Aβ was significantly elevated at all time points examined, poly I:C only disrupted cognition after 14 and 21 days of administration. Moreover, elevations in phosphorylated tau were not seen until the 14-day time point. Interestingly, phosphorylated tau expression then declined at the 21-day time point. Finally, we demonstrated that Aβ levels are a stronger predictor of cognitive dysfunction, explaining 37% of the variance, whereas phosphorylated tau levels only accounted for 0.2%. Taken together, these results support the hypothesis that inflammation-induced elevation in Aβ disrupts cognition, independently of phosphorylated tau, and suggest that long-term administration of poly I:C may provide a model to investigate the contribution of long-term inflammation toward the development of Alzheimer's-like pathology.
Collapse
Affiliation(s)
- J D White
- Department of Psychology, Texas Christian University, United States
| | - M J Eimerbrink
- Department of Psychology, Texas Christian University, United States
| | - H B Hayes
- Department of Biology, Texas Christian University, United States
| | - A Hardy
- Department of Biology, Texas Christian University, United States
| | - E A Van Enkevort
- Department of Psychology, Texas Christian University, United States
| | - J L Peterman
- Department of Psychology, Texas Christian University, United States
| | - M J Chumley
- Department of Biology, Texas Christian University, United States
| | - G W Boehm
- Department of Psychology, Texas Christian University, United States.
| |
Collapse
|
23
|
Hill SE, Boehm GW, Prokosch ML. Vulnerability to Disease as a Predictor of Faster Life History Strategies. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2016. [DOI: 10.1007/s40750-015-0040-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Eimerbrink MJ, Kranjac D, St Laurent C, White JD, Weintraub MK, Pendry RJ, Madigan R, Hodges SL, Sadler LN, Chumley MJ, Boehm GW. Pre-treatment of C57BL6/J mice with the TLR4 agonist monophosphoryl lipid A prevents LPS-induced sickness behaviors and elevations in dorsal hippocampus interleukin-1β, independent of interleukin-4 expression. Behav Brain Res 2016; 302:171-4. [PMID: 26778788 DOI: 10.1016/j.bbr.2016.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/05/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022]
Abstract
Peripheral administration of lipopolysaccharide (LPS) elevates production of pro-inflammatory cytokines, and motivates the expression of sickness behaviors. In this study, we tested the ability of an LPS-derived adjuvant, monophosphoryl lipid A (MPLA), to prevent LPS-induced sickness behaviors in a burrowing paradigm. Testing occurred over a three-day period. Animals received a single injection of either MPLA or saline the first two days of testing. On day three, animals received either LPS or saline. Tissue from the dorsal hippocampus was collected for qRT-PCR to assess expression of IL-1β and IL-4. Results indicate that, during the pre-treatment phase, administration of MPLA induces an immune response sufficient to trigger sickness behaviors. However, we observed that animals pre-treated with MPLA for two days were resistant to LPS-induced sickness behaviors on day three. Results from the qRT-PCR analysis indicated that LPS-treated animals pre-treated with MPLA expressed significantly less IL-1β compared to LPS-treated animals pre-treated with saline. However, we did not observe a significant difference in IL-4 expression between groups. Therefore, results indicate that under the given parameters of the study, MPLA pre-treatment protects against LPS-induced sickness behaviors, at least in part, by decreasing expression of the pro-inflammatory cytokine IL-1β.
Collapse
Affiliation(s)
- M J Eimerbrink
- Department of Psychology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA
| | - D Kranjac
- Department of Psychology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA
| | - C St Laurent
- Department of Psychology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA
| | - J D White
- Department of Psychology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA
| | - M K Weintraub
- Department of Psychology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA
| | - R J Pendry
- Department of Psychology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA
| | - R Madigan
- Department of Psychology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA
| | - S L Hodges
- Department of Psychology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA
| | - L N Sadler
- Department of Psychology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA
| | - M J Chumley
- Department of Biology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA
| | - G W Boehm
- Department of Psychology, Neurobiology of Aging Collaborative, Texas Christian University, Fort Worth, TX 76129, USA.
| |
Collapse
|
25
|
Henry RJ, Kerr DM, Finn DP, Roche M. For whom the endocannabinoid tolls: Modulation of innate immune function and implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:167-80. [PMID: 25794989 DOI: 10.1016/j.pnpbp.2015.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) mediate the innate immune response to pathogens and are critical in the host defence, homeostasis and response to injury. However, uncontrolled and aberrant TLR activation can elicit potent effects on neurotransmission and neurodegenerative cascades and has been proposed to trigger the onset of certain neurodegenerative disorders and elicit detrimental effects on the progression and outcome of established disease. Over the past decade, there has been increasing evidence demonstrating that the endocannabinoid system can elicit potent modulatory effects on inflammatory processes, with clinical and preclinical evidence demonstrating beneficial effects on disease severity and symptoms in several inflammatory conditions. This review examines the evidence supporting a modulatory effect of endocannabinoids on TLR-mediated immune responses both peripherally and centrally, and the implications for psychiatric disorders such as depression and schizophrenia.
Collapse
Affiliation(s)
- Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
26
|
Cerebral Response to Peripheral Challenge with a Viral Mimetic. Neurochem Res 2015; 41:144-55. [PMID: 26526143 DOI: 10.1007/s11064-015-1746-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
Abstract
It has been well established that peripheral inflammation resulting from microbial infections profoundly alters brain function. This review focuses on experimental systems that model cerebral effects of peripheral viral challenge. The most common models employ the induction of the acute phase response via intraperitoneal injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC). The ensuing transient surge of blood-borne inflammatory mediators induces a "mirror" inflammatory response in the brain characterized by the upregulated expression of a plethora of genes encoding cytokines, chemokines and other inflammatory/stress proteins. These inflammatory mediators modify the activity of neuronal networks leading to a constellation of behavioral traits collectively categorized as the sickness behavior. Sickness behavior is an important protective response of the host that has evolved to enhance survival and limit the spread of infections within a population. However, a growing body of clinical data indicates that the activation of inflammatory pathways in the brain may constitute a serious comorbidity factor for neuropathological conditions. Such comorbidity has been demonstrated using the PIC paradigm in experimental models of Alzheimer's disease, prion disease and seizures. Also, prenatal or perinatal PIC challenge has been shown to disrupt normal cerebral development of the offspring resulting in phenotypes consistent with neuropsychiatric disorders, such as schizophrenia and autism. Remarkably, recent studies indicate that mild peripheral PIC challenge may be neuroprotective in stroke. Altogether, the PIC challenge paradigm represents a unique heuristic model to elucidate the immune-to-brain communication pathways and to explore preventive strategies for neuropathological disorders.
Collapse
|
27
|
Wang HL, Ma RH, Fang H, Xue ZG, Liao QW. Impaired Spatial Learning Memory after Isoflurane Anesthesia or Appendectomy in Aged Mice is Associated with Microglia Activation. J Cell Death 2015; 8:9-19. [PMID: 26380557 PMCID: PMC4560456 DOI: 10.4137/jcd.s30596] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 12/18/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) has been one of the most common problems in elderly patients following surgery. But the specific mechanism of POCD is still not clear. To further understand the reason of these postoperative behavioral deficits, we evaluated the spatial learning memory of both adult (3 months) and aged (18 months) male mice, 3 or 28 days after isoflurane (Iso) exposure for two hours or appendectomy (App). Hippocampal microglia activation and IL-1β, TNF-α, and IFN-γ expression were also evaluated at day 3, day 14 and day 28 after Iso exposure or appendectomy. Results showed that spatial learning memory of aged, but not adult, mice was impaired after Iso exposure or appendectomy, accompanied with more hippocampal microglia activation and IL-1β, TNF-α, and IFN-γ overexpression. These findings suggest that the cognitive deficits of elderly patients who have undergone surgeries are quite possibly caused by hippocampal microglia overactivation and the subsequent inflammation.
Collapse
Affiliation(s)
- Hui-Lin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rui-Hua Ma
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China. ; Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhang-Gang Xue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing-Wu Liao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Shattuck EC, Muehlenbein MP. Human sickness behavior: Ultimate and proximate explanations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:1-18. [DOI: 10.1002/ajpa.22698] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/27/2014] [Accepted: 12/28/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Eric C. Shattuck
- Evolutionary Physiology and Ecology Laboratory; Department of Anthropology; Indiana University; Bloomington IN
| | - Michael P. Muehlenbein
- Evolutionary Physiology and Ecology Laboratory; Department of Anthropology; Indiana University; Bloomington IN
| |
Collapse
|
29
|
Peripheral administration of poly I:C leads to increased hippocampal amyloid-beta and cognitive deficits in a non-transgenic mouse. Behav Brain Res 2014; 266:183-7. [PMID: 24631395 DOI: 10.1016/j.bbr.2014.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a progressive disorder characterized by neuronal and behavioral deterioration. Two hallmark pathologies of AD are amyloid-beta (Aβ) plaques and neurofibrillary tangles, and the presence of such pathology can limit cell-to-cell communication, leading to cognitive deficits, and neuronal cell death. Although Aβ plaques were originally thought to cause the cognitive deficits, more simple forms of Aβ, such as monomers, dimers, tetramers and oligomers, have also been shown to be neurotoxic. Moreover, chronic inflammation has also been implicated in the onset and progression of these AD-related pathologies. The current study was designed to further our understanding of peripheral inflammation-induced AD-like pathology, by administering polyinosinic:polycytidylic acid (poly I:C), a viral mimetic. Mice were administered intraperitoneal injections of poly I:C or saline once daily for 7 consecutive days. Hippocampal tissue from animals receiving poly I:C contained significantly higher levels of the Aβ₁₋₄₂ peptide. Even after ensuring that potential sickness behavior could not confound cognitive testing, we found that animals administered poly I:C displayed significant cognitive deficits in the hippocampus-dependent contextual fear conditioning paradigm. These results confirm our hypothesis that peripheral inflammation can lead to increased levels of hippocampal-Aβ and associated cognitive deficits.
Collapse
|
30
|
Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J Neurosci Methods 2014; 234:139-46. [PMID: 24525328 DOI: 10.1016/j.jneumeth.2014.02.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/26/2022]
Abstract
The assessment of pain, distress and suffering, as well as evaluation of the efficacy of stress-reduction strategies, is crucial in animal experimentation but can be challenging in laboratory mice. Nest building and burrowing performance, observed in the home cage, have proved to be valuable and easy-to-use tools to assess brain damage or malfunction as well as neurodegenerative diseases. Both behaviors are used as parameters in models of psychiatric disorders or to monitor sickness behavior following infection. Their use has been proposed in more realistic and clinically relevant preclinical models of disease, and reduction of these behaviors seems to be especially useful as an early sign of dysfunction and to monitor disease progression. Finally, both behaviors are reduced by pain and stress. Therefore, in combination with specific disease markers, changes in nest building and burrowing performance may help provide a global picture of a mouse's state, and thus aid monitoring to ensure well-being in animal experimentation.
Collapse
Affiliation(s)
- Paulin Jirkof
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Sternwartstr. 6, CH-8091 Zurich, Switzerland.
| |
Collapse
|
31
|
Pyter LM, El Mouatassim Bih S, Sattar H, Prendergast BJ. Peripheral tumors alter neuroinflammatory responses to lipopolysaccharide in female rats. Brain Res 2014; 1552:55-63. [PMID: 24457042 DOI: 10.1016/j.brainres.2014.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/05/2014] [Accepted: 01/14/2014] [Indexed: 01/07/2023]
Abstract
Cancer is associated with an increased prevalence of depression. Peripheral tumors induce inflammatory cytokine production in the brain and depressive-like behaviors. Mounting evidence indicates that cytokines are part of a pathway by which peripheral inflammation causes depression. Neuroinflammatory responses to immune challenges can be exacerbated (primed) by prior immunological activation associated with aging, early-life infection, and drug exposure. This experiment tested the hypothesis that peripheral tumors likewise induce neuroinflammatory sensitization or priming. Female rats with chemically-induced mammary carcinomas were injected with either saline or lipopolysaccharide (LPS, 250μg/kg; i.p.), and expression of mRNAs involved in the pathway linking inflammation and depression (interleukin-1beta [Il-1β], CD11b, IκBα, indolamine 2,3-deoxygenase [Ido]) was quantified by qPCR in the hippocampus, hypothalamus, and frontal cortex, 4 or 24h post-treatment. In the absence of LPS, hippocampal Il-1β and CD11b mRNA expression were elevated in tumor-bearing rats, whereas Ido expression was reduced. Moreover, in saline-treated rats basal hypothalamic Il-1β and CD11b expression were positively correlated with tumor weight; heavier tumors, in turn, were characterized by more inflammatory, necrotic, and granulation tissue. Tumors exacerbated CNS proinflammatory gene expression in response to LPS: CD11b was greater in hippocampus and frontal cortex of tumor-bearing relative to tumor-free rats, IκBα was greater in hippocampus, and Ido was greater in hypothalamus. Greater neuroinflammatory responses in tumor-bearing rats were accompanied by attenuated body weight gain post-LPS. The data indicate that neuroinflammatory pathways are potentiated, or primed, in tumor-bearing rats, which may exacerbate future negative behavioral consequences.
Collapse
MESH Headings
- Animals
- CD11b Antigen/biosynthesis
- CD11b Antigen/genetics
- Depression/etiology
- Depression/genetics
- Depression/immunology
- Down-Regulation/drug effects
- Endotoxemia/genetics
- Endotoxemia/immunology
- Endotoxemia/psychology
- Endotoxins/toxicity
- Enzyme Induction/drug effects
- Female
- Frontal Lobe/drug effects
- Frontal Lobe/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Inflammation/chemically induced
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/psychology
- Interleukin-1beta/biosynthesis
- Interleukin-1beta/genetics
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/psychology
- RNA, Messenger/biosynthesis
- RNA, Neoplasm
- Rats
- Rats, Wistar
- Tumor Burden/drug effects
- Weight Gain
Collapse
Affiliation(s)
- Leah M Pyter
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Sarah El Mouatassim Bih
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| | - Husain Sattar
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice. J Neuroinflammation 2013; 10:114. [PMID: 24044641 PMCID: PMC3848770 DOI: 10.1186/1742-2094-10-114] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/06/2013] [Indexed: 01/20/2023] Open
Abstract
Background Aging is associated with low-grade neuroinflammation that includes basal increases in proinflammatory cytokines and expression of inflammatory markers on microglia. Exercise can reduce neuroinflammation following infection in aged animals, but whether exercise modulates basal changes in microglia activation is unknown. Therefore, we evaluated changes in basal microglia activation in cells isolated from the hippocampus and remaining brain following running-wheel access. Methods Adult (4 months) and aged (22 months) male and female BALB/c mice were housed with or without running wheels for 10 weeks. Microglia were isolated from the hippocampus or remaining brain. Flow cytometry was used to determine microglia (CD11b+ and CD45low) that co-labeled with CD86, CD206, and MHC II. Results Aged mice showed a greater proportion of CD86 and MHC II positive microglia. In aged females, access to a running wheel decreased proportion of CD86+ and MHC II+ microglia in the hippocampus whereas aged males in the running group showed a decrease in the proportion of CD86+ microglia in the brain and an increase in the proportion of MHC II+ microglia in hippocampus and brain. Conclusion Overall, these data indicate that running-wheel access modulates microglia activation, but these effects vary by age, sex, and brain region.
Collapse
|
33
|
Khalil OS, Forrest CM, Pisar M, Smith RA, Darlington LG, Stone TW. Prenatal activation of maternal TLR3 receptors by viral-mimetic poly(I:C) modifies GluN2B expression in embryos and sonic hedgehog in offspring in the absence of kynurenine pathway activation. Immunopharmacol Immunotoxicol 2013; 35:581-93. [PMID: 23981041 DOI: 10.3109/08923973.2013.828745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the immune system during pregnancy is believed to lead to psychiatric and neurological disorders in the offspring, but the molecular changes responsible are unknown. Polyinosinic:polycytidylic acid (poly(I:C)) is a viral-mimetic double-stranded RNA complex which activates Toll-Like-Receptor-3 and can activate the metabolism of tryptophan through the oxidative kynurenine pathway to compounds that modulate activity of glutamate receptors. The aim was to determine whether prenatal administration of poly(I:C) affects the expression of neurodevelopmental proteins in the offspring and whether such effects were mediated via the kynurenine pathway. Pregnant rats were treated with poly(I:C) during late gestation and the offspring were allowed to develop to postnatal day 21 (P21). Immunoblotting of the brains at P21 showed decreased expression of sonic hedgehog, a key protein in dopaminergic neuronal maturation. Expression of α-synuclein was decreased, while tyrosine hydroxylase was increased. Disrupted in Schizophrenia-1 (DISC-1) and 5-HT2C receptor levels were unaffected, as were the dependence receptors Unc5H1, Unc5H3 and Deleted in Colorectal Cancer (DCC), the inflammation-related transcription factor NFkB and the inducible oxidative enzyme cyclo-oxygenase-2 (COX-2). An examination of embryo brains 5 h after maternal poly(I:C) showed increased expression of GluN2B, with reduced doublecortin and DCC but no change in NFkB. Despite altered protein expression, there were no changes in the kynurenine pathway. The results show that maternal exposure to poly(I:C) alters the expression of proteins in the embryos and offspring which may affect the development of dopaminergic function. The oxidation of tryptophan along the kynurenine pathway is not involved in these effects.
Collapse
Affiliation(s)
- Omari S Khalil
- Institute for Neuroscience and Psychology, University of Glasgow, West Medical Building , Glasgow , United Kingdom and
| | | | | | | | | | | |
Collapse
|
34
|
Gibney SM, McGuinness B, Prendergast C, Harkin A, Connor TJ. Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun 2013. [PMID: 23201589 DOI: 10.1016/j.bbi.2012.11.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this study we characterised the ability of the viral mimetic poly I:C to induce a neuroinflammatory response and induce symptoms of depression and anxiety in rats. Furthermore, the ability of poly I:C to deplete central tryptophan and serotonin via induction of indolamine 2,3 dioxygenase (IDO), and also the ability of poly I:C to impact upon expression of the neurotrophin BDNF and its receptor TrkB were examined as potential mechanisms to link inflammation to depression. Poly I:C induced a neuroinflammatory response characterised by increased expression of IL-1β, IL-6, TNF-α and CD11b in frontal cortex and hippocampus. In the first 24h following poly I:C administration rats displayed sickness behaviour characterised by reduced locomotor activity and weight gain. Anhedonia measured using the saccharin preference test was used as an indicator of depressive behaviour, and poly I:C induced depressive behaviour that persisted for up to 72h following administration. Anxiety was measured using the open field test and anxious behaviour was observed 24h following poly I:C, a time-point when sickness behaviour had resolved. These behavioural changes were accompanied by decreased expression of BDNF and TrkB in hippocampus and frontal cortex. In addition, poly I:C increased central IDO expression and increased concentrations of tryptophan, and its metabolite kynurenine. However this activation of the kynurenine pathway did not result in reduced central serotonin concentrations. These findings suggest that depressive and anxiety-like behaviours elicited by poly I:C are associated with a reduction in BDNF signalling, and activation of the kynurenine pathway, but not a reduction in serotonin.
Collapse
Affiliation(s)
- Sinead M Gibney
- Neuroimmunology Research Group, Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
35
|
Effects of minocycline on spatial learning, hippocampal neurogenesis and microglia in aged and adult mice. Behav Brain Res 2012; 242:17-24. [PMID: 23274840 DOI: 10.1016/j.bbr.2012.12.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 11/23/2022]
Abstract
Age-related priming of microglia and release of inflammatory cytokines, such as interleukin-1β (IL-1β) and interleuekin-6 (IL-6) have been associated with deficits in cognitive function. The present study assessed whether treatment with minocycline could improve spatial cognition in aged mice, and whether these improvements in behavior were associated with reduced microglia activation and an enhancement in hippocampal neurogenesis. Adult (3 months) and aged (22 months) male BALB/c mice received minocycline in their drinking water or control mice received distilled water for 20 days. Mice received BrdU to label dividing cells on days 8-17. Spatial learning was measured using the water maze. Immunohistochemistry was conducted to measure number of BrdU positive neurons and number and size of microglia by detection of Iba-1 in the dentate gyrus molecular layer. Further, hippocampal samples were collected to measure changes in IL-1β, IL-6, and CD74 expression. The data show that aged mice have increased hippocampal expression of IL-1β, IL-6, and CD74 relative to adults. Minocycline treatment significantly improved acquisition of the water maze in aged mice but not adults. Minocycline reduced the average size of Iba-1 positive cells and total Iba-1 counts, but did not affect hippocampal cytokine gene expression. Minocycline increased neurogenesis in adults but not aged mice. Collectively, the data indicate that treatment with minocycline may recover some aspects of cognitive decline associated with aging, but the effect appears to be unrelated to adult hippocampal neurogenesis.
Collapse
|
36
|
Hart AD, Wyttenbach A, Hugh Perry V, Teeling JL. Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 2012; 26:754-65. [PMID: 22155499 PMCID: PMC3381227 DOI: 10.1016/j.bbi.2011.11.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022] Open
Abstract
Subtle regional differences in microglial phenotype exist in the adult mouse brain. We investigated whether these differences were amplified during ageing and following systemic challenge with lipopolysaccharide (LPS). We studied microglial morphology and phenotype in young (4mo) and aged (21mo) C57/BL6 mice using immunohistochemistry and quantified the expression levels of surface molecules on microglia in white and grey matter along the rostral-caudal neuraxis. We detected significant regional, age dependent differences in microglial phenotypes, with the microglia of white matter and caudal areas of the CNS exhibiting greater upregulation of CD11b, CD68, CD11c, F4/80 and FcγRI than grey matter and rostral CNS areas. Upregulation of CD11c with age was restricted to the white matter, as was the appearance of multinucleated giant cells. Systemic LPS caused a subtle upregulation of FcγRI after 24 h, but the other markers examined were not affected. Burrowing behaviour and static rod assays were used to assess hippocampal and cerebellar integrity. Aged mice exhibited exaggerated and prolonged burrowing deficits following systemic LPS injection, while in the absence of an inflammatory challenge aged mice performed significantly worse than young mice in the static rod test. Taken together, these findings show that the effects of age on microglial phenotype and functional integrity vary significantly between CNS compartments, as do, albeit to a lesser extent, the effects of systemic LPS.
Collapse
Affiliation(s)
- Adam D. Hart
- Corresponding author. Address: Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK. Fax: +44(0) 2380 795332.
| | | | | | | |
Collapse
|
37
|
Forrest CM, Khalil OS, Pisar M, Smith RA, Darlington LG, Stone TW. Prenatal activation of Toll-like receptors-3 by administration of the viral mimetic poly(I:C) changes synaptic proteins, N-methyl-D-aspartate receptors and neurogenesis markers in offspring. Mol Brain 2012; 5:22. [PMID: 22681877 PMCID: PMC3496691 DOI: 10.1186/1756-6606-5-22] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/25/2012] [Indexed: 12/30/2022] Open
Abstract
Background There is mounting evidence for a neurodevelopmental basis for disorders such as autism and schizophrenia, in which prenatal or early postnatal events may influence brain development and predispose the young to develop these and related disorders. We have now investigated the effect of a prenatal immune challenge on brain development in the offspring. Pregnant rats were treated with the double-stranded RNA polyinosinic:polycytidylic acid (poly(I:C); 10 mg/kg) which mimics immune activation occurring after activation of Toll-like receptors-3 (TLR3) by viral infection. Injections were made in late gestation (embryonic days E14, E16 and E18), after which parturition proceeded naturally and the young were allowed to develop up to the time of weaning at postnatal day 21 (P21). The brains of these animals were then removed to assess the expression of 13 different neurodevelopmental molecules by immunoblotting. Results Measurement of cytokine levels in the maternal blood 5 hours after an injection of poly(I:C) showed significantly increased levels of monocyte chemoattractant protein-1 (MCP-1), confirming immune activation. In the P21 offspring, significant changes were detected in the expression of GluN1 subunits of NMDA receptors, with no difference in GluN2A or GluN2B subunits or the postsynaptic density protein PSD-95 and no change in the levels of the related small GTPases RhoA or RhoB, or the NMDA receptor modulator EphA4. Among presynaptic molecules, a significant increase in Vesicle Associated Membrane Protein-1 (VAMP-1; synaptobrevin) was seen, with no change in synaptophysin or synaptotagmin. Proliferating Cell Nuclear Antigen (PCNA), as well as the neurogenesis marker doublecortin were unchanged, although Sox-2 levels were increased, suggesting possible changes in the rate of new cell differentiation. Conclusions The results reveal the induction by prenatal poly(I:C) of selective molecular changes in the brains of P21 offspring, affecting primarily molecules associated with neuronal development and synaptic transmission. These changes may contribute to the behavioural abnormalities that have been reported in adult animals after exposure to poly(I:C) and which resemble symptoms seen in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Caroline M Forrest
- Institute for Neuroscience and Psychology, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Over the years it has become evident that the immune system can affect the function of the central nervous system (CNS), including altering cognitive processes. The impact of immune activation on the CNS is particularly important for aged individuals, as the brain's resident immune cells, microglia, acquire a pro-inflammatory profile. The low-grade chronic neuroinflammation that develops with normal aging likely contributes to the susceptibility to cognitive deficits and a host of age-related pathologies. Understanding why microglia show increased inflammatory activity (i.e., neuroinflammation) and identifying effective treatments to reduce microglia activation is expected to have beneficial effects on cognitive performance and measures of neural plasticity. However, microglia also promote regeneration after injury. Therefore, effective treatments must dampen inflammatory activity while preserving microglia's neuroprotective function. Discovering factors that induce neuroinflammation and investigating potential preventative therapies is expected to uncover the ways of maintaining normal microglia activity in the aged brain.
Collapse
Affiliation(s)
- Rachel A Kohman
- Department of Psychology, University of Illinois at Urbana-Champaign, Beckman Institute, Urbana, IL, USA.
| |
Collapse
|