1
|
Arce CCM, Machado RAR, Mamin M, Glauser G, Bruno P, Benrey B, Erb M, Robert CAM, Turlings TCJ. The polyvalent sequestration ability of an economically important beetle. Curr Biol 2024; 34:5417-5428.e4. [PMID: 39504964 DOI: 10.1016/j.cub.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Many specialized herbivorous insects sequester single classes of toxic secondary metabolites from their host plants as protection against natural enemies. If and how herbivores can use multiple classes of plant toxins across the large chemical diversity of plants for self-protection is unknown. We show that the polyphagous adults of the beetle Diabrotica virgifera are capable of selectively accumulating benzoxazinoids, cucurbitacins, and glucosinolates but not cyanogenic glycosides. Female beetles transfer the sequestered defense metabolites into their eggs, protecting them against generalist predators. Eggs containing a mixture of toxins are better protected than eggs with individual toxins. This work shows how herbivores can exploit plant chemical diversity to their own benefit as a novel adaptive mechanism that contributes to the structuring of multitrophic interaction networks.
Collapse
Affiliation(s)
- Carla C M Arce
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland.
| | - Ricardo A R Machado
- University of Neuchâtel, Institute of Biology, Experimental Biology, 2000 Neuchâtel, Switzerland
| | - Marine Mamin
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland
| | - Gaétan Glauser
- University of Neuchâtel, Neuchâtel Platform of Analytical Chemistry, 2000 Neuchâtel, Switzerland
| | - Pamela Bruno
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland
| | - Betty Benrey
- University of Neuchâtel, Institute of Biology, E-vol Laboratory, 2000 Neuchâtel, Switzerland
| | - Matthias Erb
- University of Bern, Institute of Plant Sciences, Biotic Interactions Group, 2013 Bern, Switzerland
| | - Christelle A M Robert
- University of Bern, Institute of Plant Sciences, Chemical Ecology Group, 2013 Bern, Switzerland
| | - Ted C J Turlings
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
2
|
Stathaki A, Pantidi G, Thomopoulou M, Koudounas K. β-Glucosidases in specialized metabolism: Towards a new understanding of the gatekeepers of plant chemical arsenal. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102638. [PMID: 39326155 DOI: 10.1016/j.pbi.2024.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Plants produce an exceptional multitude of chemicals to compensate with challenging environments. Despite the structural pluralism of specialized metabolism, often defensive compounds are stored in planta as glycosides and reactive aglycones are conditionally activated by specific β-glucosidases-a large family of enzymes with pluripotent contribution in homeostasis and a pivotal role in plant chemical defense. Typically, these detonating enzymes are characterized by exceptional substrate specificity and, in several cases, even isoenzymes exhibit differentiated molecular or biochemical characteristics. This article focuses on important intrinsic characteristics of plant β-glucosidases detonating defensive compounds and highlights recent studies with novel implications in regulatory mechanisms.
Collapse
Affiliation(s)
- Angeliki Stathaki
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgia Pantidi
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Margarita Thomopoulou
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantinos Koudounas
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
3
|
Ziemke T, Wang P, Duplais C. The fate of a Solanum steroidal alkaloid toxin in the cabbage looper (Trichoplusia ni). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104205. [PMID: 39454684 DOI: 10.1016/j.ibmb.2024.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Plants produce complex chemical defenses against herbivores, resulting in the emergence of detoxification strategies in phytophagous insects. While enzymatic detoxification and target site mutagenesis are well-documented, the quantitative contribution of excretion remains less studied. We focus on the cabbage looper (Trichoplusia ni), a generalist herbivore, to elucidate the detoxification of a steroidal alkaloid, solanidine, produced in potato (Solanum tuberosum). Through larval feeding experiments and chemical analysis of metabolites using high-resolution mass spectrometry, we identify solanidine 3-O-β-glucopyranoside and solanidine 3-phosphate as major metabolization products of solanidine. Glycosylation and phosphorylation reactions have not previously been observed in cabbage looper. Modified solanidine derivatives exhibit reduced lipophilicity, preventing passive transport as predicted by physicochemical analyses, and only solanidine was detected in body tissue. In addition, the metabolism of solanidine in a T. ni mutant strain with midgut cadherin protein knocked out was also investigated to examine the potential role of the cadherin, an important receptor for Bt toxins, in steroidal alkaloid detoxification. T. ni cadherin-knockout strain showed lower solanidine conversion (33.9% ± 2.2) and uptake (27.41 ± 0.49 nmol/g) compared to the wild-type strain (51.3% ± 4.1, 33.66 ± 2.48 nmol/g) but similar excretion kinetics. Although solanidine negatively impacted the feeding performance of both strains the cadherin-knockout does not affect the feeding performance. Our study expands the metabolization enzyme repertoire in cabbage loopers, emphasizing the complexity of detoxification mechanisms in generalist herbivores.
Collapse
Affiliation(s)
- Tobias Ziemke
- Department of Entomology, Cornell AgriTech, Cornell University, 14464, Geneva, NY, USA
| | - Ping Wang
- Department of Entomology, Cornell AgriTech, Cornell University, 14464, Geneva, NY, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, 14464, Geneva, NY, USA.
| |
Collapse
|
4
|
Kristl J, Golenač LP, Sem V. Dynamics of cyanogenic glycosides in apple and plum fruits, products, and byproducts: A concise review. J Food Sci 2024; 89:6839-6862. [PMID: 39349973 DOI: 10.1111/1750-3841.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 11/13/2024]
Abstract
Apples (Malus domestica) and plums (Prunus domestica) are important fruit crops belonging to the Rosaceae family. The edible parts of fruits and seeds contain phytochemicals; however, the seeds are rich in cyanogenic glycosides (CNGs), which release toxic hydrogen cyanide (HCN) upon the loss of plant cell integrity. This review aims to explore the quantitative and qualitative CNG profiles in apples and plums, focusing on their distribution in different parts of the fruit, changes during fruit development, and environmental impacts on their biosynthesis. It also discusses the intricate dynamics of CNGs in processed fruits and waste-derived products and the effects of the processing methods on CNG content. There is considerable variation in the CNG content of fruit crops, as well as in its distribution in fruit parts other than seeds and shifts during fruit maturation. Although several studies have attempted to explain this variability by the influence of cultivars and exogenous factors, there is insufficient evidence to draw reliable conclusions. Furthermore, due to the lack of studies, the dynamics of CNGs during the storage of fresh or preserved fruit remains unaddressed. In the context of reusing plum stones from waste to produce distillates, it is recommended to monitor the HCN content in the products during storage, as it can increase significantly over time. Processing methods influence CNG levels, with strategies like seed separation, soaking, and microwave heating showing promise in reducing cyanide (CN-) presence. The insights from this review will provide direction for future detailed research.
Collapse
Affiliation(s)
- Janja Kristl
- Faculty of Agriculture and Life Sciences, University of Maribor, Maribor, Slovenia
| | | | - Vilma Sem
- Faculty of Agriculture and Life Sciences, University of Maribor, Maribor, Slovenia
| |
Collapse
|
5
|
Rycroft SL, Henry HAL. The roles of root-nodulating bacterial associations and cyanogenesis in the freezing sensitivities of herbaceous legumes. AMERICAN JOURNAL OF BOTANY 2024; 111:e16424. [PMID: 39432397 DOI: 10.1002/ajb2.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 10/23/2024]
Abstract
PREMISE Reduced snow cover and increasing temperature variability can increase freezing stress for herbaceous plants in northern temperate regions. Legumes have emerged as a plant functional group that is highly sensitive to these changes relative to other herbaceous species in these regions. We explored root-nodulating bacterial associations and cyanogenesis as potential mechanisms explaining this relatively low freezing tolerance of legumes. METHODS To examine the influence of bacterial associations, we grew four legume species with or without crushed-nodule inoculum at three severities of freezing, and three concentrations of nitrogen to disambiguate the direct benefits of increased nitrogen from the total bacterial effect. We quantified cyanogenesis via hydrogen cyanide production in both true leaves and cotyledons for nine legume species. RESULTS Root nodulation generally only affected legume survival under low nitrogen, when freezing severity was moderate or low. However, for the frost-surviving plants, the growth advantage provided by nodulation decreased (it was often no longer significant with increasing freezing severity), and greater freezing severity reduced total nodule mass. In contrast, cyanogenesis was only detected in two of the nine species. CONCLUSIONS The diminished performance of nodulated plants in response to freezing could place legumes at a competitive disadvantage and potentially explain their high sensitivity to freezing relative to other herbaceous species in northern temperate regions. Overall, this result has important implications for changes in soil fertility, community composition, and plant productivity in these ecosystems in the context of a changing winter climate.
Collapse
Affiliation(s)
- Samuel L Rycroft
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, N6A 5B7, ON, Canada
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, N6A 5B7, ON, Canada
| |
Collapse
|
6
|
Li F, Shahsavarani M, Handy-Hart CJ, Côté A, Brasseur-Trottier X, Montgomery V, Beech RN, Liu L, Bayen S, Qu Y, De Luca V, Dastmalchi M. Characterization of a vacuolar importer of secologanin in Catharanthus roseus. Commun Biol 2024; 7:939. [PMID: 39097635 PMCID: PMC11298008 DOI: 10.1038/s42003-024-06624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Monoterpenoid indole alkaloid (MIA) biosynthesis in Catharanthus roseus is a paragon of the spatiotemporal complexity achievable by plant specialized metabolism. Spanning a range of tissues, four cell types, and five cellular organelles, MIA metabolism is intricately regulated and organized. This high degree of metabolic differentiation requires inter-cellular and organellar transport, which remains understudied. Here, we have characterized a vacuolar importer of secologanin belonging to the multidrug and toxic compound extrusion (MATE) family, named CrMATE1. Phylogenetic analyses of MATEs suggested a role in alkaloid transport for CrMATE1, and in planta silencing in two varieties of C. roseus resulted in a shift in the secoiridoid and MIA profiles. Subcellular localization of CrMATE1 confirmed tonoplast localization. Biochemical characterization was conducted using the Xenopus laevis oocyte expression system to determine substrate range, directionality, and rate. We can confirm that CrMATE1 is a vacuolar importer of secologanin, translocating 1 mM of substrate within 25 min. The transporter displayed strict directionality and specificity for secologanin and did not accept other secoiridoid substrates. The unique substrate-specific activity of CrMATE1 showcases the utility of transporters as gatekeepers of pathway flux, mediating the balance between a defense arsenal and cellular homeostasis.
Collapse
Affiliation(s)
- Fanfan Li
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | | | | | - Audrey Côté
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | | | - Victoria Montgomery
- Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Robin N Beech
- Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Lan Liu
- Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Stéphane Bayen
- Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Yang Qu
- Chemistry, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Vincenzo De Luca
- Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Mehran Dastmalchi
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
7
|
Boter M, Diaz I. Contrasting defence mechanisms against spider mite infestation in cyanogenic and non-cyanogenic legumes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112118. [PMID: 38776983 DOI: 10.1016/j.plantsci.2024.112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Understanding the complex interactions between plants and herbivores is essential for improving crop resistance. Aiming to expand the role of cyanogenesis in plant defence, we investigated the response of the cyanogenic Phaseolus lunatus (lima bean) and the non-cyanogenic Phaseolus vulgaris (common bean) to Tetranychus urticae (spider mite) infestation. Despite mite infesting both legumes, leaf damage infringed by this feeder was reduced in lima bean. Comparative transcriptome analyses revealed that both species exhibited substantial metabolic and transcriptional changes upon infestation, although alterations in P. lunatus were significantly more pronounced. Specific differences in amino acid homeostasis and key genes associated with the cyanogenic pathway were observed in these species, as well as the upregulation of the mandelonitrile lyase gene (PlMNL1) following T. urticae feeding. Concomitantly, the PIMNL1 activity increased. Lima bean plants also displayed an induction of β-cyanoalanine synthase (PlCYSC1), a key enzyme for cyanide detoxification, suggesting an internal regulatory mechanism to manage the toxicity of their defence responses. These findings contribute to our understanding of the legume-herbivore interactions and underscore the potential role of cyanogenesis in the elaboration of specific defensive responses, even within the same genus, which may reflect distinctive evolutionary adaptations or varying metabolic capabilities between species.
Collapse
Affiliation(s)
- Marta Boter
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Madrid 20223, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Madrid 20223, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| |
Collapse
|
8
|
Sullivan KA, Miller JI, Townsend A, Morgan M, Lane M, Pavicic M, Shah M, Cashman M, Jacobson DA. MENTOR: Multiplex Embedding of Networks for Team-Based Omics Research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603821. [PMID: 39091782 PMCID: PMC11291001 DOI: 10.1101/2024.07.17.603821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
While the proliferation of data-driven omics technologies has continued to accelerate, methods of identifying relationships among large-scale changes from omics experiments have stagnated. It is therefore imperative to develop methods that can identify key mechanisms among one or more omics experiments in order to advance biological discovery. To solve this problem, here we describe the network-based algorithm MENTOR - Multiplex Embedding of Networks for Team-Based Omics Research. We demonstrate MENTOR's utility as a supervised learning approach to successfully partition a gene set containing multiple ontological functions into their respective functions. Subsequently, we used MENTOR as an unsupervised learning approach to identify important biological functions pertaining to the host genetic architectures in Populus trichocarpa associated with microbial abundance of multiple taxa. Moreover, as open source software designed with scientific teams in mind, we demonstrate the ability to use the output of MENTOR to facilitate distributed interpretation of omics experiments.
Collapse
Affiliation(s)
- Kyle A. Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - J. Izaak Miller
- Office of Innovative Technologies, University of Tennessee-Knoxville, Knoxville, TN
| | - Alice Townsend
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, TN
| | - Mallory Morgan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Matthew Lane
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, TN
| | - Mirko Pavicic
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Manesh Shah
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mikaela Cashman
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel A. Jacobson
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
9
|
Kitchen SA, Naragon TH, Brückner A, Ladinsky MS, Quinodoz SA, Badroos JM, Viliunas JW, Kishi Y, Wagner JM, Miller DR, Yousefelahiyeh M, Antoshechkin IA, Eldredge KT, Pirro S, Guttman M, Davis SR, Aardema ML, Parker J. The genomic and cellular basis of biosynthetic innovation in rove beetles. Cell 2024; 187:3563-3584.e26. [PMID: 38889727 PMCID: PMC11246231 DOI: 10.1016/j.cell.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.
Collapse
Affiliation(s)
- Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas H Naragon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jean M Badroos
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joani W Viliunas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuriko Kishi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julian M Wagner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David R Miller
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mina Yousefelahiyeh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Igor A Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Taro Eldredge
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacy Pirro
- Iridian Genomes, 613 Quaint Acres Dr., Silver Spring, MD 20904, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steven R Davis
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Xia Y, Zhao J, Saeed M, Hussain N, Chen X, Guo Z, Yong Y, Chen H. Molecular Modification Strategies of Nitrilase for Its Potential Application in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15106-15121. [PMID: 38949086 DOI: 10.1021/acs.jafc.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Some feed source plants will produce secondary metabolites such as cyanogenic glycosides during metabolism, which will produce some poisonous nitrile compounds after hydrolysis and remain in plant tissues. The consumption of feed-source plants without proper treatment affect the health of the animals' bodies. Nitrilases can convert nitriles and have been used in industry as green biocatalysts. However, due to their bottleneck problems, their application in agriculture is still facing challenges. Acid-resistant nitrilase preparations, high-temperature resistance, antiprotease activity, strong activity, and strict reaction specificity urgently need to be developed. In this paper, the application potential of nitrilase in agriculture, especially in feed processing industry was explored, the source properties and catalytic mechanism of nitrilase were reviewed, and modification strategies for nitrilase application in agriculture were proposed to provide references for future research and application of nitrilase in agricultural and especially in the biological feed scene.
Collapse
Affiliation(s)
- Yutong Xia
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Jia Zhao
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
- Department of Poultry Science, Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Nazar Hussain
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Xihua Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Zhongjian Guo
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Yangchun Yong
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|
11
|
Zhao XR, Zhao DT, Zhang LY, Chang JH, Cui JH. Combining transcriptome and metabolome analysis to understand the response of sorghum to Melanaphis sacchari. BMC PLANT BIOLOGY 2024; 24:529. [PMID: 38862926 PMCID: PMC11165916 DOI: 10.1186/s12870-024-05229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The sorghum aphid Melanaphis sacchari (Zehntner) (Homoptera: Aphididae) is an important insect in the late growth phase of sorghum (Sorghum bicolor L.). However, the mechanisms of sorghum response to aphid infestation are unclear. RESULTS In this paper, the mechanisms of aphid resistance in different types of sorghum varieties were revealed by studying the epidermal cell structure and performing a transcriptome and metabolome association analysis of aphid-resistant and aphid-susceptible varieties. The epidermal cell results showed that the resistance of sorghum to aphids was positively correlated with epidermal cell regularity and negatively correlated with the intercellular space and leaf thickness. Transcriptome and metabolomic analyses showed that differentially expressed genes in the resistant variety HN16 and susceptible variety BTX623 were mainly enriched in the flavonoid biosynthesis pathway and differentially expressed metabolites were mainly related to isoflavonoid biosynthesis and flavonoid biosynthesis. The q-PCR results of key genes were consistent with the transcriptome expression results. Meanwhile, the metabolome test results showed that after aphidinfestation, naringenin and genistein were significantly upregulated in the aphid-resistant variety HN16 and aphid-susceptible variety BTX623 while luteolin was only significantly upregulated in BTX623. These results show that naringenin, genistein, and luteolin play important roles in plant resistance to aphid infestation. The results of exogenous spraying tests showed that a 1‰ concentration of naringenin and genistein is optimal for improving sorghum resistance to aphid feeding. CONCLUSIONS In summary, the physical properties of the sorghum leaf structure related to aphid resistance were studied to provide a reference for the breeding of aphid-resistant varieties. The flavonoid biosynthesis pathway plays an important role in the response of sorghum aphids and represents an important basis for the biological control of these pests. The results of the spraying experiment provide insights for developing anti-aphid substances in the future.
Collapse
Affiliation(s)
- Xin-Rui Zhao
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China
| | - Dong-Ting Zhao
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China
| | - Ling-Yu Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China
| | - Jin-Hua Chang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China.
| | - Jiang-Hui Cui
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, 071000, China.
| |
Collapse
|
12
|
Martinez M, Diaz I. Plant Cyanogenic-Derived Metabolites and Herbivore Counter-Defences. PLANTS (BASEL, SWITZERLAND) 2024; 13:1239. [PMID: 38732453 PMCID: PMC11085660 DOI: 10.3390/plants13091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The release of cyanide from cyanogenic precursors is the central core of the plant defences based on the cyanogenesis process. Although cyanide is formed as a coproduct of some metabolic routes, its production is mostly due to the degradation of cyanohydrins originating from cyanogenic glycosides in cyanogenic plants and the 4-OH-ICN route in Brassicaceae. Cyanohydrins are then hydrolysed in a reversible reaction generating cyanide, being both, cyanohydrins and cyanide, toxic compounds with potential defensive properties against pests and pathogens. Based on the production of cyanogenic-derived molecules in response to the damage caused by herbivore infestation, in this review, we compile the actual knowledge of plant cyanogenic events in the plant-pest context. Besides the defensive potential, the mode of action, and the targets of the cyanogenic compounds to combat phytophagous insects and acari, special attention has been paid to arthropod responses and the strategies to overcome the impact of cyanogenesis. Physiological and behavioural adaptations, as well as cyanide detoxification by β-cyanoalanine synthases, rhodaneses, and cyanases are common ways of phytophagous arthropods defences against the cyanide produced by plants. Much experimental work is needed to further understand the complexities and specificities of the defence-counter-defence system to be applied in breeding programs.
Collapse
Affiliation(s)
- Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politecnica de Madrid, 28040 Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politecnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
13
|
Çiçek SS, Mangoni A, Hanschen FS, Agerbirk N, Zidorn C. Essentials in the acquisition, interpretation, and reporting of plant metabolite profiles. PHYTOCHEMISTRY 2024; 220:114004. [PMID: 38331135 DOI: 10.1016/j.phytochem.2024.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Plant metabolite profiling reveals the diversity of secondary or specialized metabolites in the plant kingdom with its hundreds of thousands of species. Specialized plant metabolites constitute a vast class of chemicals posing significant challenges in analytical chemistry. In order to be of maximum scientific relevance, reports dealing with these compounds and their source species must be transparent, make use of standards and reference materials, and be based on correctly and traceably identified plant material. Essential aspects in qualitative plant metabolite profiling include: (i) critical review of previous literature and a reasoned sampling strategy; (ii) transparent plant sampling with wild material documented by vouchers in public herbaria and, optimally, seed banks; (iii) if possible, inclusion of generally available reference plant material; (iv) transparent, documented state-of-the art chemical analysis, ideally including chemical reference standards; (v) testing for artefacts during preparative extraction and isolation, using gentle analytical methods; (vi) careful chemical data interpretation, avoiding over- and misinterpretation and taking into account phytochemical complexity when assigning identification confidence levels, and (vii) taking all previous scientific knowledge into account in reporting the scientific data. From the current stage of the phytochemical literature, selected comments and suggestions are given. In the past, proposed revisions of botanical taxonomy were sometimes based on metabolite profiles, but this approach ("chemosystematics" or "chemotaxonomy") is outdated due to the advent of DNA sequence-based phylogenies. In contrast, systematic comparisons of plant metabolite profiles in a known phylogenetic framework remain relevant. This approach, known as chemophenetics, allows characterizing species and clades based on their array of specialized metabolites, aids in deducing the evolution of biosynthetic pathways and coevolution, and can serve in identifying new sources of rare and economically interesting natural products.
Collapse
Affiliation(s)
- Serhat S Çiçek
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts- Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| |
Collapse
|
14
|
Marqués-Gálvez JE, Pandharikar G, Basso V, Kohler A, Lackus ND, Barry K, Keymanesh K, Johnson J, Singan V, Grigoriev IV, Vilgalys R, Martin F, Veneault-Fourrey C. Populus MYC2 orchestrates root transcriptional reprogramming of defence pathway to impair Laccaria bicolor ectomycorrhizal development. THE NEW PHYTOLOGIST 2024; 242:658-674. [PMID: 38375883 DOI: 10.1111/nph.19609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.
Collapse
Affiliation(s)
- José Eduardo Marqués-Gálvez
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Gaurav Pandharikar
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Veronica Basso
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Nathalie D Lackus
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, Würzburg, 97082, Deutschland
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| |
Collapse
|
15
|
Polozsányi Z, Galádová H, Kaliňák M, Jopčík M, Kaliňáková B, Breier A, Šimkovič M. The Antimicrobial Effects of Myrosinase Hydrolysis Products Derived from Glucosinolates Isolated from Lepidium draba. PLANTS (BASEL, SWITZERLAND) 2024; 13:995. [PMID: 38611524 PMCID: PMC11013450 DOI: 10.3390/plants13070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Lepidium draba (hoary cress) is a perennial plant belonging to the Brassicaceae family that produces two dominant glucosinolates (GLSs): glucoraphanin (GRN) and sinalbin (SBN). They represent the stored form, which is converted upon the myrosinase (Myr) hydrolysis activity to active compounds, mainly isothiocyanates (ITCs) such as sulforaphane (SFN) or p-hydroxybenzyl isothiocyanate (pHBITC). Research on ITCs that have proven anticancer, antimicrobial, and chemoprotective properties is usually conducted with pure commercially available compounds. However, these are chemically reactive, making it difficult to use them directly for preventive purposes in dietary supplements. Efforts are currently being made to prepare dietary supplements enriched with GLS and/or Myr. In this study, we report a simple but efficient chromatographic procedure for the isolation and purification of GLSs from MeOH extract from hoary cress based on a combination of ion exchange and gel permeation chromatography on DEAE-Sephadex A-25 and Sephadex LH-20. To obtain the Myr required for efficient hydrolysis of GLSs into antibacterial ITCs, we developed a rapid method for its extraction from the seeds of Lepidium sativum (garden cress). The yields of GLSs were 22.9 ± 1.2 mg GRN (purity 96%) and 10.4 ± 1.1 mg SBN (purity 92%) from 1 g of dry plant material. Both purified GLSs were used as substrates for the Myr. Analysis of the composition of hydrolysis products (HPs) revealed differences in their hydrolysis rates and in the degree of conversion from GLSs to individual ITCs catalyzed by Myr. When GRNs were cleaved, SFNs were formed in an equimolar ratio, but the formation of pHBITCs was only half that of cleaved SBNs. The decrease in pHBITC content is due to its instability compared to SFN. While SFN is stable in aqueous media during the measurement, pHBITC undergoes non-enzymatic hydrolysis to p-hydroxybenzyl alcohol and thiocyanate ions. Testing of the antimicrobial effects of the HPs formed from GRN by Myr under premix or in situ conditions showed inhibition of the growth of model prokaryotic and eukaryotic microorganisms. This observation could serve as the jumping-off point for the design of a two-component mixture, based on purified GLSs and Myr that is, usable in food or the pharmaceutical industry in the future.
Collapse
Affiliation(s)
- Zoltán Polozsányi
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Helena Galádová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Michal Kaliňák
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Martin Jopčík
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 969, 949 01 Nitra, Slovakia
| | - Barbora Kaliňáková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
16
|
Ianiri G, Barone G, Palmieri D, Quiquero M, Gaeta I, De Curtis F, Castoria R. Transcriptomic investigation of the interaction between a biocontrol yeast, Papiliotrema terrestris strain PT22AV, and the postharvest fungal pathogen Penicillium expansum on apple. Commun Biol 2024; 7:359. [PMID: 38519651 PMCID: PMC10960036 DOI: 10.1038/s42003-024-06031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Biocontrol strategies offer a promising alternative to control plant pathogens achieving food safety and security. In this study we apply a RNAseq analysis during interaction between the biocontrol agent (BCA) Papiliotrema terrestris, the pathogen Penicillium expansum, and the host Malus domestica. Analysis of the BCA finds overall 802 upregulated DEGs (differentially expressed genes) when grown in apple tissue, with the majority being involved in nutrients uptake and oxidative stress response. This suggests that these processes are crucial for the BCA to colonize the fruit wounds and outcompete the pathogen. As to P. expansum analysis, 1017 DEGs are upregulated when grown in apple tissue, with the most represented GO categories being transcription, oxidation reduction process, and transmembrane transport. Analysis of the host M. domestica finds a higher number of DEGs in response to the pathogen compared to the BCA, with overexpression of genes involved in host defense signaling pathways in the presence of both of them, and a prevalence of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) only during interaction with P. expansum. This analysis contributes to advance the knowledge on the molecular mechanisms that underlie biocontrol activity and the tritrophic interaction of the BCA with the pathogen and the host.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| | - Giuseppe Barone
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Michela Quiquero
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Ilenia Gaeta
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| |
Collapse
|
17
|
Yang T, Zhao X, Bai J, Lv W, Chen Q, Hu J, Liu G, Zhao Y, Zhou H, Zhao M, Zheng H. Transcriptome analysis of genes involved in the pathogenesis mechanism of potato virus Y in potato cultivar YouJin. Front Microbiol 2024; 15:1353814. [PMID: 38511006 PMCID: PMC10951100 DOI: 10.3389/fmicb.2024.1353814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Potatoes (Solanum tuberosum L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves. Methods PVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar. Result Transcriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant-pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR. Conclusion These results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.
Collapse
Affiliation(s)
- Tianqi Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Xingyue Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinjiang Bai
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenxia Lv
- Inner Mongolia Zhongjia Agricultural Biotechnology Co., Siziwang Banner, China
| | - Qi Chen
- Siziwang Banner Agricultural and Livestock Products Quality and Safety Inspection and Testing Station, Siziwang Banner, China
| | - Jun Hu
- Inner Mongolia Zhongjia Agricultural Biotechnology Co., Siziwang Banner, China
| | - Guangjing Liu
- Inner Mongolia Zhongjia Agricultural Biotechnology Co., Siziwang Banner, China
| | - Yuanzheng Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of the Development and Resource Utilization of Biological Pesticide in Inner Mongolia, Hohhot, China
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of the Development and Resource Utilization of Biological Pesticide in Inner Mongolia, Hohhot, China
| | - Hongli Zheng
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
18
|
Ma LJ, Liu X, Guo L, Luo Y, Zhang B, Cui X, Yang K, Cai J, Liu F, Ma N, Yang FQ, He X, Shi SP, Wan JB. Discovery of plant chemical defence mediated by a two-component system involving β-glucosidase in Panax species. Nat Commun 2024; 15:602. [PMID: 38238334 PMCID: PMC10796634 DOI: 10.1038/s41467-024-44854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024] Open
Abstract
Plants usually produce defence metabolites in non-active forms to minimize the risk of harm to themselves and spatiotemporally activate these defence metabolites upon pathogen attack. This so-called two-component system plays a decisive role in the chemical defence of various plants. Here, we discovered that Panax notoginseng, a valuable medicinal plant, has evolved a two-component chemical defence system composed of a chloroplast-localized β-glucosidase, denominated PnGH1, and its substrates 20(S)-protopanaxadiol ginsenosides. The β-glucosidase and its substrates are spatially separated in cells under physiological conditions, and ginsenoside hydrolysis is therefore activated only upon chloroplast disruption, which is caused by the induced exoenzymes of pathogenic fungi upon exposure to plant leaves. This activation of PnGH1-mediated hydrolysis results in the production of a series of less-polar ginsenosides by selective hydrolysis of an outer glucose at the C-3 site, with a broader spectrum and more potent antifungal activity in vitro and in vivo than the precursor molecules. Furthermore, such β-glucosidase-mediated hydrolysis upon fungal infection was also found in the congeneric species P. quinquefolium and P. ginseng. Our findings reveal a two-component chemical defence system in Panax species and offer insights for developing botanical pesticides for disease management in Panax species.
Collapse
Affiliation(s)
- Li-Juan Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Liwei Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuan Luo
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xiaoxue Cui
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kuan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ni Ma
- Department of Product Development, Wenshan Sanqi Institute of Science and Technology, Wenshan University, Wenshan, Yunnan, China
| | - Feng-Qing Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, 401331, Chongqing, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China.
- Ministry of Education Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, 650224, Kunming, Yunnan, China.
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
19
|
Godana EA, Zhang X, Yang Q, Hu W, Zhao L, Wang K, Zhang H. Yarrowia lipolytica increased the activities of disease defense related enzymes and anti-fungal compounds in asparagus (Asparagus officinalis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105748. [PMID: 38225091 DOI: 10.1016/j.pestbp.2023.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024]
Abstract
Fungal diseases pose significant threats to the production of asparagus, resulting in economic losses and decreased crop quality. The potential of the yeast Yarrowia lipolytica as a biocontrol agent against Fusarium proliferatum, a common pathogen of asparagus, was investigated in this study. The effects of Y. lipolytica treatment on decay incidence, disease index, and activities of major disease defense-related enzymes were investigated. In addition, we examined the levels of antifungal compounds such as total phenols, flavonoids, and lignin in asparagus plants exposed to Y. lipolytica. The results showed that Y. lipolytica treatment significantly reduced decay incidence and disease index caused by F. proliferatum when compared to the control group. Furthermore, Y. lipolytica-treated plants showed increased activity of disease defense-related enzymes, indicating that defense responses were activated. The activities of all evaluated enzymes were significantly higher in Y. lipolytica-treated asparagus, indicating an improved ability to combat fungal pathogens. Furthermore, Y. lipolytica treatment increased the content of antifungal compounds such as total phenols, flavonoids, and lignin, which are known to possess antimicrobial properties. These findings highlight the potential of Y. lipolytica as a biocontrol agent for fungal diseases in asparagus crops. The ability of Y. lipolytica to reduce disease incidence, boost disease defense-related enzymes, and increase antifungal compound content provides valuable insights into its efficacy as a natural and sustainable approach to disease management. However, further investigations are needed to optimize application methods and determine its efficacy under field conditions.
Collapse
Affiliation(s)
- Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wanying Hu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
20
|
Fernández-Milmanda GL. What to do when your ants go marching: Ant-deprived Tococa produce protoxin phenylacetaldoxime glucoside in response to herbivory. PLANT PHYSIOLOGY 2023; 194:314-316. [PMID: 37675650 DOI: 10.1093/plphys/kiad492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Guadalupe L Fernández-Milmanda
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB, Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
21
|
Wu B, Shi S, Zhang H, Lu B, Nan P, A Y. Anabolic metabolism of autotoxic substance coumarins in plants. PeerJ 2023; 11:e16508. [PMID: 38077428 PMCID: PMC10710134 DOI: 10.7717/peerj.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Background Autotoxicity is an intraspecific manifestation of allelopathy in plant species. The specialized metabolites and their derivatives that cause intraspecific allelopathic inhibition in the plant are known as autotoxic substances. Consequently, autotoxic substances production seriously affects the renewal and stability of ecological communities. Methods This article systematically summarizes the types of autotoxic substances present in different plants. They mainly include phenolic compounds, terpenoids, and nitrogenous organic compounds. Phenolic coumarins are the main autotoxic substances in many plants. Therefore, we also discuss differences in coumarin types and content among plant varieties, developmental stages, and tissue parts, as well as their mechanisms of autotoxicity. In addition, we review the metabolic pathways involved in coumarin biosynthesis, the key enzymes, genes, and transcription factors, as well as factors affecting coumarin biosynthesis. Results Coumarin biosynthesis involves three stages: (1) the formation of the coumarin nucleus; (2) acylation, hydroxylation, and cyclization; (3) structural modification. The key enzymes involved in the coumarin nuclear formation stage include PAL, C4H, 4CL, HCT, CAOMT, COSY, F6'H, and CCoAOMT1, and the key genes involved include BGA, CYP450 and MDR, among others. Ortho-hydroxylation is a key step in coumarin biosynthesis and PS, COSY and S8H are the key enzymes involved in this process. Finally, UGTs are responsible for the glycosylation modification of coumarins, and the MaUGT gene may therefore be involved in coumarin biosynthesis. Conclusion It is important to elucidate the autotoxicity and anabolic mechanisms of coumarins to create new germplasms that produce fewer autotoxic substances.
Collapse
Affiliation(s)
- Bei Wu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shangli Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Huihui Zhang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Baofu Lu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pan Nan
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yun A
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
22
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
23
|
Reglinski T, Wurms KV, Vanneste JL, Ah Chee A, Schipper M, Cornish D, Yu J, McAlinden J, Hedderley D. Kiwifruit Resistance to Sclerotinia sclerotiorum and Pseudomonas syringae pv. actinidiae and Defence Induction by Acibenzolar-S-methyl and Methyl Jasmonate Are Cultivar Dependent. Int J Mol Sci 2023; 24:15952. [PMID: 37958935 PMCID: PMC10647243 DOI: 10.3390/ijms242115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Pathogen susceptibility and defence gene inducibility were compared between the Actinidia arguta cultivar 'Hortgem Tahi' and the two cultivars of A. chinensis 'Hayward' and 'Zesy002'. Plants were treated with acibenzolar-s-methyl (ASM) or methyl jasmonate (MeJA) one week before inoculation with Pseudomonas syringae pv. actinidiae (Psa biovar3) or Sclerotinia sclerotiorum, or secondary induction with chitosan+glucan (Ch-Glu) as a potential pathogen proxy. Defence expression was evaluated by measuring the expression of 18 putative defence genes. 'Hortgem Tahi' was highly susceptible to sclerotinia and very resistant to Psa, whereas 'Zesy002' was highly resistant to both, and 'Hayward' was moderately susceptible to both. Gene expression in 'Hayward' and 'Zesy002' was alike but differed significantly from 'Hortgem Tahi' which had higher basal levels of PR1-i, PR5-i, JIH1, NPR3 and WRKY70 but lower expression of RD22 and PR2-i. Treatment with ASM caused upregulation of NIMIN2, PR1-i, WRKY70, DMR6 and PR5-i in all cultivars and induced resistance to Psa in 'Zesy002' and 'Hayward' but decreased resistance to sclerotinia in 'Zesy002'. MeJA application caused upregulation of LOX2 and downregulation of NIMIN2, DMR6 and PR2-i but did not affect disease susceptibility. The Ch-Glu inducer induced PR-gene families in each cultivar, highlighting its possible effectiveness as an alternative to actual pathogen inoculation. The significance of variations in fundamental and inducible gene expression among the cultivars is explored.
Collapse
Affiliation(s)
- Tony Reglinski
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Kirstin V. Wurms
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Joel L. Vanneste
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Annette Ah Chee
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Magan Schipper
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Deirdre Cornish
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Janet Yu
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Jordan McAlinden
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; (K.V.W.); (J.L.V.); (A.A.C.); (M.S.); (D.C.); (J.Y.); (J.M.)
| | - Duncan Hedderley
- Palmerston North Research Centre, The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| |
Collapse
|
24
|
Díaz-Rueda P, Morales de los Ríos L, Romero LC, García I. Old poisons, new signaling molecules: the case of hydrogen cyanide. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6040-6051. [PMID: 37586035 PMCID: PMC10575699 DOI: 10.1093/jxb/erad317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
The high phenotypic plasticity developed by plants includes rapid responses and adaptations to aggressive or changing environments. To achieve this, they evolved extremely efficient mechanisms of signaling mediated by a wide range of molecules, including small signal molecules. Among them, hydrogen cyanide (HCN) has been largely ignored due to its toxic characteristics. However, not only is it present in living organisms, but it has been shown that it serves several functions in all kingdoms of life. Research using model plants has changed the traditional point of view, and it has been demonstrated that HCN plays a positive role in the plant response to pathogens independently of its toxicity. Indeed, HCN induces a response aimed at protecting the plant from pathogen attack, and the HCN is provided either exogenously (in vitro or by some cyanogenic bacteria species present in the rhizosphere) or endogenously (in reactions involving ethylene, camalexin, or other cyanide-containing compounds). The contribution of different mechanisms to HCN function, including a new post-translational modification of cysteines in proteins, namely S-cyanylation, is discussed here. This work opens up an expanding 'HCN field' of research related to plants and other organisms.
Collapse
Affiliation(s)
- Pablo Díaz-Rueda
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| | | | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| |
Collapse
|
25
|
Lileikis T, Nainienė R, Bliznikas S, Uchockis V. Dietary Ruminant Enteric Methane Mitigation Strategies: Current Findings, Potential Risks and Applicability. Animals (Basel) 2023; 13:2586. [PMID: 37627377 PMCID: PMC10451764 DOI: 10.3390/ani13162586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This review examines the current state of knowledge regarding the effectiveness of different dietary ruminant enteric methane mitigation strategies and their modes of action together with the issues discussed regarding the potential harms/risks and applicability of such strategies. By investigating these strategies, we can enhance our understanding of the mechanisms by which they influence methane production and identify promising approaches for sustainable mitigation of methane emissions. Out of all nutritional strategies, the use of 3-nitrooxypropanol, red seaweed, tannins, saponins, essential oils, nitrates, and sulfates demonstrates the potential to reduce emissions and receives a lot of attention from the scientific community. The use of certain additives as pure compounds is challenging under certain conditions, such as pasture-based systems, so the potential use of forages with sufficient amounts of plant secondary metabolites is also explored. Additionally, improved forage quality (maturity and nutrient composition) might help to further reduce emissions. Red seaweed, although proven to be very effective in reducing emissions, raises some questions regarding the volatility of the main active compound, bromoform, and challenges regarding the cultivation of the seaweed. Other relatively new methods of mitigation, such as the use of cyanogenic glycosides, are also discussed in this article. Together with nitrates, cyanogenic glycosides pose serious risks to animal health, but research has proven their efficacy and safety when control measures are taken. Furthermore, the risks of nitrate use can be minimized by using probiotics. Some of the discussed strategies, namely monensin or halogenated hydrocarbons (as pure compounds), demonstrate efficacy but are unlikely to be implemented widely because of legal restrictions.
Collapse
Affiliation(s)
- Tomas Lileikis
- Department of Animal Nutrition and Feedstuffs, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Rasa Nainienė
- Department of Animal Breeding and Reproduction, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Saulius Bliznikas
- Analytical Laboratory, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Virginijus Uchockis
- Department of Animal Nutrition and Feedstuffs, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| |
Collapse
|
26
|
Jeong E, Kim W, Son S, Yang S, Gwon D, Hong J, Cho Y, Jang CY, Steinegger M, Lim YW, Kang KB. Qualitative metabolomics-based characterization of a phenolic UDP-xylosyltransferase with a broad substrate spectrum from Lentinus brumalis. Proc Natl Acad Sci U S A 2023; 120:e2301007120. [PMID: 37399371 PMCID: PMC10334773 DOI: 10.1073/pnas.2301007120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.
Collapse
Affiliation(s)
- Eunah Jeong
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon57922, Korea
| | - Seungju Son
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
| | - Sungyeon Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
| | - Dasom Gwon
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Jihee Hong
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Yoonhee Cho
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
| | - Chang-Young Jang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Korea
| | - Young Woon Lim
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
- Institute of Microbiology, Seoul National University, Seoul08826, Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| |
Collapse
|
27
|
Chappell J. Anticipating the unexpected. THE NEW PHYTOLOGIST 2023; 239:456-458. [PMID: 37060279 DOI: 10.1111/nph.18899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Joe Chappell
- Pharmaceutical Sciences, University of Kentucky, 789 S Limestone Street, Lexington, KY, 40536-0596, USA
| |
Collapse
|
28
|
Razzaq MK, Hina A, Abbasi A, Karikari B, Ashraf HJ, Mohiuddin M, Maqsood S, Maqsood A, Haq IU, Xing G, Raza G, Bhat JA. Molecular and genetic insights into secondary metabolic regulation underlying insect-pest resistance in legumes. Funct Integr Genomics 2023; 23:217. [PMID: 37392308 DOI: 10.1007/s10142-023-01141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.
Collapse
Affiliation(s)
- Muhammad Khuram Razzaq
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiman Hina
- Ministry of Agriculture (MOA) National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Mohiuddin
- Environmental Management Consultants (EMC) Private Limited, Islamabad, 44000, Pakistan
| | - Sumaira Maqsood
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Aqsa Maqsood
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Guangnan Xing
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Faisalabad, Pakistan
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
29
|
Lacchini E, Erffelinck ML, Mertens J, Marcou S, Molina-Hidalgo FJ, Tzfadia O, Venegas-Molina J, Cárdenas PD, Pollier J, Tava A, Bak S, Höfte M, Goossens A. The saponin bomb: a nucleolar-localized β-glucosidase hydrolyzes triterpene saponins in Medicago truncatula. THE NEW PHYTOLOGIST 2023; 239:705-719. [PMID: 36683446 DOI: 10.1111/nph.18763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/09/2023] [Indexed: 06/15/2023]
Abstract
Plants often protect themselves from their own bioactive defense metabolites by storing them in less active forms. Consequently, plants also need systems allowing correct spatiotemporal reactivation of such metabolites, for instance under pathogen or herbivore attack. Via co-expression analysis with public transcriptomes, we determined that the model legume Medicago truncatula has evolved a two-component system composed of a β-glucosidase, denominated G1, and triterpene saponins, which are physically separated from each other in intact cells. G1 expression is root-specific, stress-inducible, and coregulated with that of the genes encoding the triterpene saponin biosynthetic enzymes. However, the G1 protein is stored in the nucleolus and is released and united with its typically vacuolar-stored substrates only upon tissue damage, partly mediated by the surfactant action of the saponins themselves. Subsequently, enzymatic removal of carbohydrate groups from the saponins creates a pool of metabolites with an increased broad-spectrum antimicrobial activity. The evolution of this defense system benefited from both the intrinsic condensation abilities of the enzyme and the bioactivity properties of its substrates. We dub this two-component system the saponin bomb, in analogy with the mustard oil and cyanide bombs, commonly used to describe the renowned β-glucosidase-dependent defense systems for glucosinolates and cyanogenic glucosides.
Collapse
Affiliation(s)
- Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Marie-Laure Erffelinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Jan Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Shirley Marcou
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, B-9000, Belgium
| | - Francisco Javier Molina-Hidalgo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Oren Tzfadia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Jhon Venegas-Molina
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Pablo D Cárdenas
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Aldo Tava
- CREA Research Centre for Animal Production and Aquaculture, Lodi, 26900, Italy
| | - Søren Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| | - Monica Höfte
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, B-9000, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| |
Collapse
|
30
|
Chatterjee A, Puri S, Sharma PK, Deepa PR, Chowdhury S. Nature-inspired Enzyme engineering and sustainable catalysis: biochemical clues from the world of plants and extremophiles. Front Bioeng Biotechnol 2023; 11:1229300. [PMID: 37409164 PMCID: PMC10318364 DOI: 10.3389/fbioe.2023.1229300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
The use of enzymes to accelerate chemical reactions for the synthesis of industrially important products is rapidly gaining popularity. Biocatalysis is an environment-friendly approach as it not only uses non-toxic, biodegradable, and renewable raw materials but also helps to reduce waste generation. In this context, enzymes from organisms living in extreme conditions (extremozymes) have been studied extensively and used in industries (food and pharmaceutical), agriculture, and molecular biology, as they are adapted to catalyze reactions withstanding harsh environmental conditions. Enzyme engineering plays a key role in integrating the structure-function insights from reference enzymes and their utilization for developing improvised catalysts. It helps to transform the enzymes to enhance their activity, stability, substrates-specificity, and substrate-versatility by suitably modifying enzyme structure, thereby creating new variants of the enzyme with improved physical and chemical properties. Here, we have illustrated the relatively less-tapped potentials of plant enzymes in general and their sub-class of extremozymes for industrial applications. Plants are exposed to a wide range of abiotic and biotic stresses due to their sessile nature, for which they have developed various mechanisms, including the production of stress-response enzymes. While extremozymes from microorganisms have been extensively studied, there are clear indications that plants and algae also produce extremophilic enzymes as their survival strategy, which may find industrial applications. Typical plant enzymes, such as ascorbate peroxidase, papain, carbonic anhydrase, glycoside hydrolases and others have been examined in this review with respect to their stress-tolerant features and further improvement via enzyme engineering. Some rare instances of plant-derived enzymes that point to greater exploration for industrial use have also been presented here. The overall implication is to utilize biochemical clues from the plant-based enzymes for robust, efficient, and substrate/reaction conditions-versatile scaffolds or reference leads for enzyme engineering.
Collapse
Affiliation(s)
| | | | | | - P. R. Deepa
- *Correspondence: P. R. Deepa, ; Shibasish Chowdhury,
| | | |
Collapse
|
31
|
Lee SH, Jeon SH, Park JY, Kim DS, Kim JA, Jeong HY, Kang JW. Isolation and Evaluation of the Antagonistic Activity of Cnidium officinale Rhizosphere Bacteria against Phytopathogenic fungi ( Fusarium solani). Microorganisms 2023; 11:1555. [PMID: 37375057 DOI: 10.3390/microorganisms11061555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cnidium officinale Makino, a perennial crop in the Umbeliperae family, is one of Korea's representative forest medicinal plants. However, the growing area of C. officinale has been reduced by plant disease and soil sickness caused by fusarium wilt. This study isolated rhizosphere bacteria from C. officinale, and their antagonistic activity was evaluated against Fusarium solani. Particularly, four isolated strains, namely, PT1, ST7, ST8, and SP4, showed a significant antagonistic activity against F. solani. An in planta test showed that the mortality rates of shoots were significantly low in the PT1-inoculated group. The fresh and dry weights of the inoculated plants were also higher than that of the other groups. The 16S rRNA gene sequencing identified the strain PT1 as Leclercia adecarboxylata, and downstream studies confirmed the production of antagonism-related enzymes such as siderophore and N-acetyl-β-glucosaminidase. The phosphorous solubilizing ability and secretion of related enzymes were also analyzed. The results showed that PT1 strain could be utilized as promising plant growth-promoting rhizobacteria (PGPR) and biocontrol agents (BCAs).
Collapse
Affiliation(s)
- Seok Hui Lee
- Department of Forestry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su Hong Jeon
- Department of Forestry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun Young Park
- Department of Forestry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dae Sol Kim
- Department of Forestry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Ah Kim
- Forest Medicinal Resource Research Center, NIFoS, Yeongju 36040, Republic of Korea
| | - Hui Yeong Jeong
- Forest Medicinal Resource Research Center, NIFoS, Yeongju 36040, Republic of Korea
| | - Jun Won Kang
- Department of Forestry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
32
|
Kitchen SA, Naragon TH, Brückner A, Ladinsky MS, Quinodoz SA, Badroos JM, Viliunas JW, Wagner JM, Miller DR, Yousefelahiyeh M, Antoshechkin IA, Eldredge KT, Pirro S, Guttman M, Davis SR, Aardema ML, Parker J. The genomic and cellular basis of biosynthetic innovation in rove beetles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542378. [PMID: 37398185 PMCID: PMC10312436 DOI: 10.1101/2023.05.29.542378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
How evolution at the cellular level potentiates change at the macroevolutionary level is a major question in evolutionary biology. With >66,000 described species, rove beetles (Staphylinidae) comprise the largest metazoan family. Their exceptional radiation has been coupled to pervasive biosynthetic innovation whereby numerous lineages bear defensive glands with diverse chemistries. Here, we combine comparative genomic and single-cell transcriptomic data from across the largest rove beetle clade, Aleocharinae. We retrace the functional evolution of two novel secretory cell types that together comprise the tergal gland-a putative catalyst behind Aleocharinae's megadiversity. We identify key genomic contingencies that were critical to the assembly of each cell type and their organ-level partnership in manufacturing the beetle's defensive secretion. This process hinged on evolving a mechanism for regulated production of noxious benzoquinones that appears convergent with plant toxin release systems, and synthesis of an effective benzoquinone solvent that weaponized the total secretion. We show that this cooperative biosynthetic system arose at the Jurassic-Cretaceous boundary, and that following its establishment, both cell types underwent ∼150 million years of stasis, their chemistry and core molecular architecture maintained almost clade-wide as Aleocharinae radiated globally into tens of thousands of lineages. Despite this deep conservation, we show that the two cell types have acted as substrates for the emergence of adaptive, biochemical novelties-most dramatically in symbiotic lineages that have infiltrated social insect colonies and produce host behavior-manipulating secretions. Our findings uncover genomic and cell type evolutionary processes underlying the origin, functional conservation and evolvability of a chemical innovation in beetles.
Collapse
|
33
|
Kannan P, Shafreen M M, Achudhan AB, Gupta A, Saleena LM. A review on applications of β-glucosidase in food, brewery, pharmaceutical and cosmetic industries. Carbohydr Res 2023; 530:108855. [PMID: 37263146 DOI: 10.1016/j.carres.2023.108855] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/19/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
β-glucosidases hydrolyse glycosidic bonds to release non-reducing terminal glucosyl residues from glycosides and oligosaccharides via catalytic mechanisms. It is very well known that the β-glucosidase enzyme is used in biorefineries for cellulose degradation, where β-glucosidases is the rate-limiting enzyme for the final glucose production from cellobiose. The β-glucosidase enzyme is used as a catalyst in other industrial sectors, including pharmaceuticals, breweries, dairy, and food processing. With the aid of β-glucosidase enzymes, cyanogenic glycosides and plant glycosides are transformed into sugar moiety and aglycones. These aglycone compounds are employed as aromatic compounds in the food processing and brewing industries. They are also used as medications and dietary supplements based on their pharmacological qualities. Applications of aglycones and the microbiological sources of β-glucosidase in aglycone production have been discussed in this review.
Collapse
Affiliation(s)
- Priya Kannan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Mohiraa Shafreen M
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Arunmozhi Bharathi Achudhan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Annapurna Gupta
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Lilly M Saleena
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
34
|
Yang M, Ma Y, Si X, Liu X, Geng X, Wen X, Li G, Zhang L, Yang C, Zhang Z. Analysis of the Glycoside Hydrolase Family 1 from Wild Jujube Reveals Genes Involved in the Degradation of Jujuboside A. Genes (Basel) 2023; 14:1135. [PMID: 37372316 DOI: 10.3390/genes14061135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Jujubosides are the major medicinal ingredients of Ziziphi Spinosae Semen (the seed of wild jujube). To date, a complete understanding of jujuboside's metabolic pathways has not been attained. This study has systematically identified 35 β-glucosidase genes belonging to the glycoside hydrolase family 1 (GH1) using bioinformatic methods based on the wild jujube genome. The conserved domains and motifs of the 35 putative β-glucosidases, along with the genome locations and exon-intron structures of 35 β-glucosidase genes were revealed. The potential functions of the putative proteins encoded by the 35 β-glucosidase genes are suggested based on their phylogenetic relationships with Arabidopsis homologs. Two wild jujube β-glucosidase genes were heterologously expressed in Escherichia coli, and the recombinant proteins were able to convert jujuboside A (JuA) into jujuboside B (JuB). Since it has been previously reported that JuA catabolites, including JuB and other rare jujubosides, may play crucial roles in the jujuboside's pharmacological activity, it is suggested that these two proteins can be used to enhance the utilization potential of jujubosides. This study provides new insight into the metabolism of jujubosides in wild jujube. Furthermore, the characterization of β-glucosidase genes is expected to facilitate investigations involving the cultivation and breeding of wild jujube.
Collapse
Affiliation(s)
- Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yimian Ma
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xupeng Si
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Geng
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xin Wen
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoqiong Li
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liping Zhang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chengmin Yang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zheng Zhang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
35
|
Matsuda H, Yamazaki Y, Moriyoshi E, Nakayasu M, Yamazaki S, Aoki Y, Takase H, Okazaki S, Nagano AJ, Kaga A, Yazaki K, Sugiyama A. Apoplast-Localized β-Glucosidase Elevates Isoflavone Accumulation in the Soybean Rhizosphere. PLANT & CELL PHYSIOLOGY 2023; 64:486-500. [PMID: 36718526 DOI: 10.1093/pcp/pcad012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 05/17/2023]
Abstract
Plant specialized metabolites (PSMs) are often stored as glycosides within cells and released from the roots with some chemical modifications. While isoflavones are known to function as symbiotic signals with rhizobia and to modulate the soybean rhizosphere microbiome, the underlying mechanisms of root-to-soil delivery are poorly understood. In addition to transporter-mediated secretion, the hydrolysis of isoflavone glycosides in the apoplast by an isoflavone conjugate-hydrolyzing β-glucosidase (ICHG) has been proposed but not yet verified. To clarify the role of ICHG in isoflavone supply to the rhizosphere, we have isolated two independent mutants defective in ICHG activity from a soybean high-density mutant library. In the root apoplastic fraction of ichg mutants, the isoflavone glycoside contents were significantly increased, while isoflavone aglycone contents were decreased, indicating that ICHG hydrolyzes isoflavone glycosides into aglycones in the root apoplast. When grown in a field, the lack of ICHG activity considerably reduced isoflavone aglycone contents in roots and the rhizosphere soil, although the transcriptomes showed no distinct differences between the ichg mutants and wild-types (WTs). Despite the change in isoflavone contents and composition of the root and rhizosphere of the mutants, root and rhizosphere bacterial communities were not distinctive from those of the WTs. Root bacterial communities and nodulation capacities of the ichg mutants did not differ from the WTs under nitrogen-deficient conditions either. Taken together, these results indicate that ICHG elevates the accumulation of isoflavones in the soybean rhizosphere but is not essential for isoflavone-mediated plant-microbe interactions.
Collapse
Affiliation(s)
- Hinako Matsuda
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| | - Yumi Yamazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| | - Eiko Moriyoshi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| | - Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| | - Shinichi Yamazaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Seiryo 2-1, Sendai, 980-8573 Japan
| | - Yuichi Aoki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Seiryo 2-1, Sendai, 980-8573 Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Aoba 6-3-09, Aramaki-aza Aoba-ku, Sendai, 980-8579 Japan
| | - Hisabumi Takase
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Sogabecho Nanjo Otani 1-1, Kameoka, 621-8555 Japan
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, 183-8509 Japan
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, 183-8509 Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Seta Oe-cho Yokotani 1-5, Otsu, 520-2194 Japan
- Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka, 997-0017 Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, 305-8518 Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| |
Collapse
|
36
|
Chagas RS, Otsuka FAM, Pineda MAR, Salinas RK, Marana SR. Mechanism of imidazole inhibition of a GH1 β-glucosidase. FEBS Open Bio 2023; 13:912-925. [PMID: 36906930 PMCID: PMC10153361 DOI: 10.1002/2211-5463.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
Imidazole is largely employed in recombinant protein purification, including GH1 β-glucosidases, but its effect on the enzyme activity is rarely taken into consideration. Computational docking suggested that imidazole interacts with residues forming the active site of the GH1 β-glucosidase from Spodoptera frugiperda (Sfβgly). We confirmed this interaction by showing that imidazole reduces the activity of Sfβgly, which does not result from enzyme covalent modification or promotion of transglycosylation reactions. Instead, this inhibition occurs through a partial competitive mechanism. Imidazole binds to the Sfβgly active site, reducing the substrate affinity by about threefold, whereas the rate constant of product formation remains unchanged. The binding of imidazole within the active site was further confirmed by enzyme kinetic experiments in which imidazole and cellobiose competed to inhibit the hydrolysis of p-nitrophenyl β-glucoside. Finally, imidazole interaction in the active site was also demonstrated by showing that it hinders access of carbodiimide to the Sfβgly catalytic residues, protecting them from chemical inactivation. In conclusion, imidazole binds in the Sfβgly active site, generating a partial competitive inhibition. Considering that GH1 β-glucosidases share conserved active sites, this inhibition phenomenon is probably widespread among these enzymes, and this should be taken into account when considering the characterization of their recombinant forms.
Collapse
Affiliation(s)
- Rafael S. Chagas
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil
| | - Felipe A. M. Otsuka
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil
| | - Mario A. R. Pineda
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil
| | - Roberto K. Salinas
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil
| | - Sandro R. Marana
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil
| |
Collapse
|
37
|
Boter M, Diaz I. Cyanogenesis, a Plant Defence Strategy against Herbivores. Int J Mol Sci 2023; 24:ijms24086982. [PMID: 37108149 PMCID: PMC10138981 DOI: 10.3390/ijms24086982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Plants and phytophagous arthropods have coevolved in a long battle for survival. Plants respond to phytophagous feeders by producing a battery of antiherbivore chemical defences, while herbivores try to adapt to their hosts by attenuating the toxic effect of the defence compounds. Cyanogenic glucosides are a widespread group of defence chemicals that come from cyanogenic plants. Among the non-cyanogenic ones, the Brassicaceae family has evolved an alternative cyanogenic pathway to produce cyanohydrin as a way to expand defences. When a plant tissue is disrupted by an herbivore attack, cyanogenic substrates are brought into contact with degrading enzymes that cause the release of toxic hydrogen cyanide and derived carbonyl compounds. In this review, we focus our attention on the plant metabolic pathways linked to cyanogenesis to generate cyanide. It also highlights the role of cyanogenesis as a key defence mechanism of plants to fight against herbivore arthropods, and we discuss the potential of cyanogenesis-derived molecules as alternative strategies for pest control.
Collapse
Affiliation(s)
- Marta Boter
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
38
|
Kolkman JM, Moreta DE, Repka A, Bradbury P, Nelson RJ. Brown midrib mutant and genome-wide association analysis uncover lignin genes for disease resistance in maize. THE PLANT GENOME 2023; 16:e20278. [PMID: 36533711 DOI: 10.1002/tpg2.20278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 05/10/2023]
Abstract
Brown midrib (BMR) maize (Zea mays L.) harbors mutations that result in lower lignin levels and higher feed digestibility, making it a desirable silage market class for ruminant nutrition. Northern leaf blight (NLB) epidemics in upstate New York highlighted the disease susceptibility of commercially grown BMR maize hybrids. We found the bm1, bm2, bm3, and bm4 mutants in a W64A genetic background to be more susceptible to foliar fungal (NLB, gray leaf spot [GLS], and anthracnose leaf blight [ALB]) and bacterial (Stewart's wilt) diseases. The bm1, bm2, and bm3 mutants showed enhanced susceptibility to anthracnose stalk rot (ASR), and the bm1 and bm3 mutants were more susceptible to Gibberella ear rot (GER). Colocalization of quantitative trait loci (QTL) and correlations between stalk strength and disease traits in recombinant inbred line families suggest possible pleiotropies. The role of lignin in plant defense was explored using high-resolution, genome-wide association analysis for resistance to NLB in the Goodman diversity panel. Association analysis identified 100 single and clustered single-nucleotide polymorphism (SNP) associations for resistance to NLB but did not implicate natural functional variation at bm1-bm5. Strong associations implicated a suite of diverse candidate genes including lignin-related genes such as a β-glucosidase gene cluster, hct11, knox1, knox2, zim36, lbd35, CASP-like protein 8, and xat3. The candidate genes are targets for breeding quantitative resistance to NLB in maize for use in silage and nonsilage purposes.
Collapse
Affiliation(s)
- Judith M Kolkman
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
| | - Danilo E Moreta
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853, USA
| | - Ace Repka
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
| | | | - Rebecca J Nelson
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853, USA
| |
Collapse
|
39
|
Gao YQ, Jimenez-Sandoval P, Tiwari S, Stolz S, Wang J, Glauser G, Santiago J, Farmer EE. Ricca's factors as mobile proteinaceous effectors of electrical signaling. Cell 2023; 186:1337-1351.e20. [PMID: 36870332 PMCID: PMC10098372 DOI: 10.1016/j.cell.2023.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as β-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stéphanie Stolz
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jing Wang
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
40
|
Li Y, Yang H, Li Z, Li S, Li J. Advances in the Biosynthesis and Molecular Evolution of Steroidal Saponins in Plants. Int J Mol Sci 2023; 24:ijms24032620. [PMID: 36768941 PMCID: PMC9917158 DOI: 10.3390/ijms24032620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Steroidal saponins are an important type of plant-specific metabolite that are essential for plants' responses to biotic and abiotic stresses. Because of their extensive pharmacological activities, steroidal saponins are also important industrial raw materials for the production of steroidal drugs. In recent years, more and more studies have explored the biosynthesis of steroidal saponins in plants, but most of them only focused on the biosynthesis of their molecular skeleton, diosgenin, and their subsequent glycosylation modification mechanism needs to be further studied. In addition, the biosynthetic regulation mechanism of steroidal saponins, their distribution pattern, and their molecular evolution in plants remain unclear. In this review, we summarized and discussed recent studies on the biosynthesis, molecular regulation, and function of steroidal saponins. Finally, we also reviewed the distribution and molecular evolution of steroidal saponins in plants. The elucidation of the biosynthesis, regulation, and molecular evolutionary mechanisms of steroidal saponins is crucial to provide new insights and references for studying their distribution, diversity, and evolutionary history in plants. Furthermore, a deeper understanding of steroidal saponin biosynthesis will contribute to their industrial production and pharmacological applications.
Collapse
Affiliation(s)
| | | | | | | | - Jiaru Li
- Correspondence: ; Tel.: +86-27-6875-3599
| |
Collapse
|
41
|
Singh G, Agrawal H, Bednarek P. Specialized metabolites as versatile tools in shaping plant-microbe associations. MOLECULAR PLANT 2023; 16:122-144. [PMID: 36503863 DOI: 10.1016/j.molp.2022.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plants are rich repository of a large number of chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes including responses against changing abiotic conditions and interactions with various co-existing organisms. One of the strikingly affirmed functions of these specialized metabolites is their involvement in plants' life-long interactions with complex multi-kingdom microbiomes including both beneficial and harmful microorganisms. Recent developments in genomic and molecular biology tools not only help to generate well-curated information about regulatory and structural components of biosynthetic pathways of plant specialized metabolites but also to create and screen mutant lines defective in their synthesis. In this review, we have comprehensively surveyed the function of these specialized metabolites and discussed recent research findings demonstrating the responses of various microbes on tested mutant lines having defective biosynthesis of particular metabolites. In addition, we attempt to provide key clues about the impact of these metabolites on the assembly of the plant microbiome by summarizing the major findings of recent comparative metagenomic analyses of available mutant lines under customized and natural microbial niches. Subsequently, we delineate benchmark initiatives that aim to engineer or manipulate the biosynthetic pathways to produce specialized metabolites in heterologous systems but also to diversify their immune function. While denoting the function of these metabolites, we also discuss the critical bottlenecks associated with understanding and exploiting their function in improving plant adaptation to the environment.
Collapse
Affiliation(s)
- Gopal Singh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
42
|
Yadav M, Singh IK, Singh A. Dhurrin: A naturally occurring phytochemical as a weapon against insect herbivores. PHYTOCHEMISTRY 2023; 205:113483. [PMID: 36279963 DOI: 10.1016/j.phytochem.2022.113483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Dhurrin, a cyanogenic glucoside, is a plant defensive chemical synthesized from aliphatic amino acids and consists of β-d-glucopyranose linked to α-hydroxy nitrile. It is catabolized by the consecutive action of hydroxynitrilase and β-glucosidase to release hydrogen cyanide on tissue disruption during herbivory. These phytoanticipins are widely distributed across various monocot and dicot plants such as Sorghum, Macadamia, Ostrya sp., and many other plant species with ornamental, pharmaceutical, medicinal, and food value. Although repellent properties of dhurrin against herbivores are often reported, less is known about its distribution, metabolism, mode of action against insects, and application for pest control. Herein, we highlight recent updates on dhurrin distribution, biosynthesis, and catabolism along with the cyanide detoxification pathway. Additionally, this article focuses on biological activities of dhurrin against various herbivores and opportunities to explore the utilization of dhurrin as a natural pest control agent and a substitute for chemically synthesized pesticides.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
43
|
Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14588-14599. [PMID: 36376030 DOI: 10.1021/acs.jafc.2c06518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oat is classified as a whole grain and contains high contents of protein, lipids, carbohydrates, vitamins, minerals, and phytochemicals (such as polyphenols, flavonoids, and saponins). In recent years, studies have focused on the effects of oat consumption on reducing the risk of a variety of diseases. Reports have indicated that an oat diet exerts certain biological functions, such as preventing cardiovascular diseases, reducing blood glucose, and promoting intestinal health, along with antiallergy, antioxidation, and cancer preventive effects. At present, cancer is the second leading cause of death worldwide. The natural products of oat are an important breakthrough for developing new strategies of cancer prevention, and their ability to interact with multiple cellular targets helps to combat the complexity of cancer pathogenesis. In addition, the comprehensive study of the cancer prevention activity and potential mechanism of oat nutrients and phytochemicals has become a research hotspot. In this Review, we focused on the potential functions of peptides, dietary fiber, and phytochemicals in oats on cancer prevention and further revealed novel mechanisms and prospects for clinical application. These findings might provide a novel approach to deeply understand the functions and mechanisms for cancer prevention of oat consumption.
Collapse
Affiliation(s)
- Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
44
|
Biochemical characterization of the β-glucosidase Glu1B from Coptotermes formosanus produced in Pichia pastoris. Enzyme Microb Technol 2022; 163:110155. [DOI: 10.1016/j.enzmictec.2022.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
45
|
Chen W, Dong Y, Zheng L, Lai Y, Li F, Zhou L, Wang B, You M, He W. An inducible gene from glycoside hydrolase one family of Plutella xylostella decreases larval survival when feeding on host plant. Front Physiol 2022; 13:1013092. [PMID: 36338470 PMCID: PMC9632345 DOI: 10.3389/fphys.2022.1013092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Glycoside hydrolase family 1 (GH1) members exhibit a broad substrate spectrum and play important roles in insect-plant interactions, such as the defensive β-glucosidase and β-thioglucosidase (so-called myrosinase). However, knowledge about the expression profiling and function of glycoside hydrolase family 1 members in a specialist pest of crucifers Plutella xylostella is still limited. In this study, 13 putative glycoside hydrolase family 1 members of P. xylostella were identified based on the sequence characteristics, while no myrosinase activity was detectable in P. xylostella using gas chromatography-mass spectrometry (GC-MS). Expression profiling of these glycoside hydrolase family 1 members identified the midgut-specific gene Px008848 that is induced by host plant. Further experiments revealed that the in vitro expressed Px008848 protein had β-glucosidase activity and the survival rate of the larvae feeding on wounded Arabidopsis thaliana leaves declined when leaves were treated with purified Px008848 protein. When CRISPR/Cas9-based homozygous mutant larvae of Px008848 and wild-type larvae were respectively transferred onto the A. thaliana, the larval survival rate of the mutant larvae was significantly higher than that of the wild-type individuals. Our work showed that certain insect glycoside hydrolase family 1 gene may have negative effect on the development of larvae feeding on the host plant, which broadened our understandings on the evolutionary function of this gene family in the insect-plant interaction.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ganzhou Key Laboratory of Greenhouse Vegetable/College of Life Sciences, Gannan Normal University, Ganzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhong Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ganzhou Key Laboratory of Greenhouse Vegetable/College of Life Sciences, Gannan Normal University, Ganzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingfang Lai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feifei Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Beibei Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Minsheng You, ; Weiyi He,
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Minsheng You, ; Weiyi He,
| |
Collapse
|
46
|
Zhang WY, Tian T, Peng LJ, Zhou HY, Zhang H, Chen H, Yang FQ. A Paper-Based Analytical Device Integrated with Smartphone: Fluorescent and Colorimetric Dual-Mode Detection of β-Glucosidase Activity. BIOSENSORS 2022; 12:893. [PMID: 36291030 PMCID: PMC9599113 DOI: 10.3390/bios12100893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In this work, indoxyl-glucoside was used as the substrate to develop a cost-effective, paper-based analytical device for the fluorescent and colorimetric dual-mode detection of β-glucosidase activity through a smartphone. The β-glucosidase can hydrolyze the colorless substrate indoxyl-glucoside to release indoxyl, which will be self-oxidized to generate green products in the presence of oxygen. Meanwhile, the green products emit bright blue-green fluorescence under ultraviolet-visible light irradiation at 365 nm. Fluorescent or colorimetric images were obtained by a smartphone, and the red-green-blue channels were analyzed by the Adobe Photoshop to quantify the β-glucosidase activity. Under the optimum conditions, the relative fluorescent and colorimetric signals have a good linear relationship with the activity of β-glucosidase, in the range of 0.01-1.00 U/mL and 0.25-5.00 U/mL, and the limits of detection are 0.005 U/mL and 0.0668 U/mL, respectively. The activities of β-glucosidase in a crude almond sample measured by the fluorescent and colorimetric methods were 23.62 ± 0.53 U/mL and 23.86 ± 0.25 U/mL, respectively. In addition, the spiked recoveries of normal human serum and crude almond samples were between 87.5% and 118.0%. In short, the paper-based device, combined with a smartphone, can provide a simple, environmentally friendly, and low-cost method for the fluorescent and colorimetric dual-mode detection of β-glucosidase activity.
Collapse
Affiliation(s)
- Wei-Yi Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Tao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Li-Jing Peng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hang-Yu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hao Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
47
|
Jeckel AM, Beran F, Züst T, Younkin G, Petschenka G, Pokharel P, Dreisbach D, Ganal-Vonarburg SC, Robert CAM. Metabolization and sequestration of plant specialized metabolites in insect herbivores: Current and emerging approaches. Front Physiol 2022; 13:1001032. [PMID: 36237530 PMCID: PMC9552321 DOI: 10.3389/fphys.2022.1001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Herbivorous insects encounter diverse plant specialized metabolites (PSMs) in their diet, that have deterrent, anti-nutritional, or toxic properties. Understanding how they cope with PSMs is crucial to understand their biology, population dynamics, and evolution. This review summarizes current and emerging cutting-edge methods that can be used to characterize the metabolic fate of PSMs, from ingestion to excretion or sequestration. It further emphasizes a workflow that enables not only to study PSM metabolism at different scales, but also to tackle and validate the genetic and biochemical mechanisms involved in PSM resistance by herbivores. This review thus aims at facilitating research on PSM-mediated plant-herbivore interactions.
Collapse
Affiliation(s)
- Adriana Moriguchi Jeckel
- Laboratory of Chemical Ecology, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Franziska Beran
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Gordon Younkin
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Georg Petschenka
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Prayan Pokharel
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Domenic Dreisbach
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Stephanie Christine Ganal-Vonarburg
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
48
|
Shao Z, Liu N, Wang W, Zhu L. β-Glucosidases as dominant dose-dependent regulators of Oryza sativa L. in response to typical organic pollutant exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119709. [PMID: 35841992 DOI: 10.1016/j.envpol.2022.119709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Understanding the metabolic defense and compensation to maintain homeostasis is crucial for assessing the potential health risk of organic pollutants in crops. Currently, limited understanding is available regarding the targeted metabolic pathways and response mechanism under contaminant stress. This study showed that ciprofloxacin (CIP) at the environmental concentrations (1, 5, 25, 50 mg/L) did not significantly inhibit growth or cause severe oxidative damage to rice (Oryza sativa L.). Instead, the increment in CIP concentration induced a series of sequential metabolic disorders, which were characterized predominantly by primary and secondary metabolic disturbances, including phenylpropanoid biosynthesis, the carbohydrate, lipid and amino acid metabolism. After CIP in vivo exceeded a certain threshold level (>0.29 mg/g dry weight), β-glucosidases (BGLUs) mediated the transition from the activation of the genes related to phenylpropanoid biosynthesis to the inhibition of the genes related to carbohydrate metabolism in rice. In particular, starch and sucrose metabolism showed the most profound perturbation stressed by environmental concentrations of CIP (5 mg/L) and other tested organic pollutants (10 μg/L of tricyclazole, thiamethoxam, polybrominated diphenyl ethers, and polychlorinated biphenyls). Besides, the key genes encoding endoglucanase and BGLU were significantly downregulated (|log2FC| > 3.0) under 100 μg/L of other tested organic pollutants, supporting the transition from the activation of secondary defense metabolism to the disruption of primary energy metabolism. Thus, in addition to bioaccumulation, changes in BGLU activity and starch and sucrose metabolism can reflect the potential adverse effects of pollutants on rice. This study explained the stepwise metabolic and transcriptional responses of rice to organic pollutants, which provided a new reference for the comprehensive evaluation of their environmental risks.
Collapse
Affiliation(s)
- Zexi Shao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Na Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
49
|
Ma Q, Xu Y, Xiao H, Mariga AM, Chen Y, Zhang X, Wang L, Li D, Li L, Luo Z. Rethinking of botanical volatile organic compounds applied in food preservation: Challenges in acquisition, application, microbial inhibition and stimulation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Božunović J, Milutinović M, Aničić N, Skorić M, Matekalo D, Živković S, Dragićević M, Filipović B, Banjanac T, Petrović L, Mišić D. Functional Characterization of Genes Coding for Novel β-D-Glucosidases Involved in the Initial Step of Secoiridoid Glucosides Catabolism in Centaurium erythraea Rafn. FRONTIERS IN PLANT SCIENCE 2022; 13:914138. [PMID: 35812935 PMCID: PMC9260424 DOI: 10.3389/fpls.2022.914138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Secoiridoid glucosides (SGs) are monoterpenoids derived from the iridoid cyclopentane-C-pyran skeleton with β-D glucose linked at C1 position. Coordinated metabolic processes, such as biosynthesis and catabolism of SGs, ensure constitutive presence of these bitter tasting compounds in plant tissues, which plays a decisive role in the defense against pathogens and herbivores. These compounds are susceptible to hydrolysis mediated by enzymes β-glucosidases, and the resulting aglycones are subsequently directed toward different metabolic pathways in plants. Function of two β-D-glucosidases (named CeBGlu1 and CeBGlu2) from centaury (Centaurium erythraea Rafn; fam. Gentianaceae), belonging to the glycoside hydrolase 1 (GH1) family, was confirmed using in vitro assays with recombinant proteins, following their heterologous expression in E. coli and His-tag affinity purification. Although they show slightly differential substrate preference, both isoforms display high specificity toward SGs and the organ-specific distribution of transcripts was positively correlated with the content of SGs in diploid and tetraploid C. erythraea plants. Transient overexpression of CeBGlu1 and CeBGlu2 in C. erythraea leaves induced changes in metabolite profiles. The effectiveness of transgene overexpression has been altered by plant ploidy. UHPLC/DAD/(±)HESI - MS2 profiling of leaves of diploid and tetraploid C. erythraea genotypes revealed that the amounts of major SGs; sweroside, swertiamarin, and gentiopicrin was decreased in agroinfiltrated leaves, especially when CeBGlu1 and CeBGlu2 were co-expressed with transgene silencing suppressor p19. The work demonstrates that in planta metabolic engineering adopting transient overexpression of CeBGlu1 and CeBGlu2 is a suitable tool for the modulation of SGs content and glucosides/aglycones ratio, which might have substantial effects on overall phytochemistry of C. erythraea.
Collapse
Affiliation(s)
| | | | | | | | - Dragana Matekalo
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|