1
|
Moazzam S, Noorjahan N, Jin Y, Nagy JI, Kardami E, Cattini PA. Effect of high fat diet on maternal behavior, brain-derived neurotrophic factor and neural stem cell proliferation in mice expressing human placental lactogen during pregnancy. J Neuroendocrinol 2024; 36:e13258. [PMID: 36989439 DOI: 10.1111/jne.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
Maternal obesity is a serious health concern because it increases risks of neurological disorders, including anxiety and peripartum depression. In mice, a high fat diet (HFD) in pregnancy can negatively affect placental structure and function as well as maternal behavior reflected by impaired nest building and pup-retrieval. In humans, maternal obesity in pregnancy is associated with reduced placental lactogen (PL) gene expression, which has been linked to a higher risk of depression. PL acting predominantly through the prolactin receptor maintains energy homeostasis and is a marker of placenta villous trophoblast differentiation during pregnancy. Impaired neurogenesis and low serum levels of brain-derived neurotrophic factor (BDNF) have also been implicated in depression. Augmented neurogenesis in brain during pregnancy was reported in the subventricular zone (SVZ) of mice at gestation day 7 and linked to increased prolactin receptor signaling. Here, we used transgenic CD-1 mice that express human (h) PL during pregnancy to investigate whether the negative effects of diet on maternal behavior are mitigated in these (CD-1[hGH/PL]) mice. Specifically, we examined the effect of a HFD on nest building prepartum and pup retrieval postpartum, as well as on brain BDNF levels and neurogenesis. In contrast to wild-type CD-1[WT]mice, CD-1[hGH/PL] mice displayed significantly less anxiety-like behavior, and showed no impairment in prepartum nest building or postpartum pup-retrieval when fed a HFD. Furthermore, the HFD decreased prepartum and increased postpartum BDNF levels in CD-1[WT] but not CD-1[hGH/PL] mice. Finally, neurogenesis in the SVZ as well as phosphorylated mitogen-activated protein kinase, indicative of lactogenic signaling, appeared unaffected by pregnancy and diet at gestation day 7 in CD-1[hGH/PL] mice. These observations indicate that CD-1[hGH/PL] mice are resistant to the negative effects of HFD reported for CD-1[WT] mice, including effects on maternal behaviors and BDNF levels, and potentially, neurogenesis. This difference probably reflects a direct or indirect effect of the products of the hGH/PL transgene.
Collapse
Affiliation(s)
- Showall Moazzam
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Noshin Noorjahan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Yan Jin
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
Adamo KB, Goudreau AD, Corson AE, MacDonald ML, O'Rourke N, Tzaneva V. Physically active pregnancies: Insights from the placenta. Physiol Rep 2024; 12:e16104. [PMID: 38872466 PMCID: PMC11176744 DOI: 10.14814/phy2.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Physical activity (PA) positively influences pregnancy, a critical period for health promotion, and affects placental structure and function in ways previously overlooked. Here, we summarize the current body of literature examining the association between PA, placenta biology, and physiology while also highlighting areas where gaps in knowledge exist. PA during pregnancy induces metabolic changes, influencing nutrient availability and transporter expression in the placenta. Hormones and cytokines secreted during PA contribute to health benefits, with intricate interactions in pro- and anti-inflammatory markers. Extracellular vesicles and placental "-omics" data suggest that gestational PA can shape placental biology, affecting gene expression, DNA methylation, metabolite profiles, and protein regulation. However, whether cytokines that respond to PA alter placental proteomic profiles during pregnancy remains to be elucidated. The limited research on placenta mitochondria of physically active gestational parents (gesP), has shown improvements in mitochondrial DNA and antioxidant capacity, but the relationship between PA, placental mitochondrial dynamics, and lipid metabolism remains unexplored. Additionally, PA influences the placenta-immune microenvironment, angiogenesis, and may confer positive effects on neurodevelopment and mental health through placental changes, vascularization, and modulation of brain-derived neurotrophic factor. Ongoing exploration is crucial for unraveling the multifaceted impact of PA on the intricate placental environment.
Collapse
Affiliation(s)
- Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandra D Goudreau
- Department of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Abbey E Corson
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Meaghan L MacDonald
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas O'Rourke
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Velislava Tzaneva
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Mercado L, Rose S, Escalona-Vargas D, Siegel ER, Whittington JR, Preissl H, Helmich M, Eswaran H. Correlation of fetal heart rate dynamics to inflammatory markers and brain-derived neurotrophic factor during pregnancy. J Perinat Med 2024; 52:399-405. [PMID: 38404246 PMCID: PMC11068021 DOI: 10.1515/jpm-2023-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES This study aims to show the relation between biomarkers in maternal and cord-blood samples and fetal heart rate variability (fHRV) metrics through a non-invasive fetal magnetocardiography (fMCG) technique. METHODS Twenty-three women were enrolled for collection of maternal serum and fMCG tracings immediately prior to their scheduled cesarean delivery. The umbilical cord blood was collected for measurement of biomarker levels. The fMCG metrics were then correlated to the biomarker levels from the maternal serum and cord blood. RESULTS Brain-derived neurotrophic factor (BDNF) had a moderate correlation with fetal parasympathetic activity (0.416) and fetal sympathovagal ratios (-0.309; -0.356). Interleukin (IL)-6 also had moderate-sized correlations but with an inverse relationship as compared to BDNF. These correlations were primarily in cord-blood samples and not in the maternal blood. CONCLUSIONS In this small sample-sized exploratory study, we observed a moderate correlation between fHRV and cord-blood BDNF and IL-6 immediately preceding scheduled cesarean delivery at term. These findings need to be validated in a larger population.
Collapse
Affiliation(s)
- Luis Mercado
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Diana Escalona-Vargas
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Julie R. Whittington
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Melissa Helmich
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hari Eswaran
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
4
|
Diniz MS, Hiden U, Falcão-Pires I, Oliveira PJ, Sobrevia L, Pereira SP. Fetoplacental endothelial dysfunction in gestational diabetes mellitus and maternal obesity: A potential threat for programming cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166834. [PMID: 37541330 DOI: 10.1016/j.bbadis.2023.166834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity (MO) increase the risk of adverse fetal outcomes, and the incidence of cardiovascular disease later in life. Extensive research has been conducted to elucidate the underlying mechanisms by which GDM and MO program the offspring to disease. This review focuses on the role of fetoplacental endothelial dysfunction in programming the offspring for cardiovascular disease in GDM and MO pregnancies. We discuss how pre-existing maternal health conditions can lead to vascular dysfunction in the fetoplacental unit and the fetus. We also examine the role of fetoplacental endothelial dysfunction in impairing fetal cardiovascular system development and the involvement of nitric oxide and hydrogen sulfide in mediating fetoplacental vascular dysfunction. Furthermore, we suggest that the L-Arginine-Nitric Oxide and the Adenosine-L-Arginine-Nitric Oxide (ALANO) signaling pathways are pertinent targets for research. Despite significant progress in this area, there are still knowledge gaps that need to be addressed in future research.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, 8063 Graz, Austria; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico.
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| |
Collapse
|
5
|
Volqvartz T, Andersen HHB, Pedersen LH, Larsen A. Obesity in pregnancy-Long-term effects on offspring hypothalamic-pituitary-adrenal axis and associations with placental cortisol metabolism: A systematic review. Eur J Neurosci 2023; 58:4393-4422. [PMID: 37974556 DOI: 10.1111/ejn.16184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Obesity, affecting one in three pregnant women worldwide, is not only a major obstetric risk factor. The resulting low-grade inflammation may have a long-term impact on the offspring's HPA axis through dysregulation of maternal, placental and fetal corticosteroid metabolism, and children born of obese mothers have increased risk of diabetes and cardiovascular disease. The long-term effects of maternal obesity on offspring neurodevelopment are, however, undetermined and could depend on the specific effects on placental and fetal cortisol metabolism. This systematic review evaluates how maternal obesity affects placental cortisol metabolism and the offspring's HPA axis. Pubmed, Embase and Scopus were searched for original studies on maternal BMI, obesity, and cortisol metabolism and transfer. Fifteen studies were included after the screening of 4556 identified records. Studies were small with heterogeneous exposures and outcomes. Two studies found that maternal obesity reduced placental HSD11β2 activity. In one study, umbilical cord blood cortisol levels were affected by maternal BMI. In three studies, an altered cortisol response was consistently seen among offspring in childhood (n = 2) or adulthood (n = 1). Maternal BMI was not associated with placental HSD11β1 or HSD11β2 mRNA expression, or placental HSD11β2 methylation. In conclusion, high maternal BMI is associated with reduced placental HSD11β2 activity and a dampened cortisol level among offspring, but the data is sparse. Further investigations are needed to clarify whether the HPA axis is affected by prenatal factors including maternal obesity and investigate if adverse effects can be ameliorated by optimising the intrauterine environment.
Collapse
Affiliation(s)
- Tabia Volqvartz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Lars Henning Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Milyutina YP, Arutjunyan AV, Korenevsky AV, Selkov SA, Kogan IY. Neurotrophins: are they involved in immune tolerance in pregnancy? Am J Reprod Immunol 2023; 89:e13694. [PMID: 36792972 DOI: 10.1111/aji.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
In this review, an attempt was made to substantiate the possibility for neurotrophins to be involved in the development of immune tolerance based on data accumulated on neurotrophin content and receptor expression in the trophoblast and immune cells, in particular, in natural killer cells. Numerous research results are reviewed to show that the expression and localization of neurotrophins along with their high-affinity tyrosine kinase receptors and low-affinity p75NTR receptor in the mother-placenta-fetus system indicate the important role of neurotrophins as binding molecules in regulating the crosstalk between the nervous, endocrine, and immune systems in pregnancy. An imbalance between these systems can occur with tumor growth and pathological processes observed in pregnancy complications and fetal development anomalies.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Alexander V Arutjunyan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Andrey V Korenevsky
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Sergey A Selkov
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| |
Collapse
|
7
|
Chen Y, Li S, Zhang T, Yang F, Lu B. Corticosterone antagonist or TrkB agonist attenuates schizophrenia-like behavior in a mouse model combining Bdnf-e6 deficiency and developmental stress. iScience 2022; 25:104609. [PMID: 35789832 PMCID: PMC9250029 DOI: 10.1016/j.isci.2022.104609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yanhui Chen
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyi Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100084, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Corresponding author
| |
Collapse
|
8
|
Lin W, Teng SW, Lin TY, Lovel R, Sung HY, Chang WY, Wu TBC, Chen HY, Wang LM, Shaw SW. Combinatorial Analysis of Circulating Biomarkers and Maternal Characteristics for Preeclampsia Prediction in the First and Third Trimesters in Asia. Diagnostics (Basel) 2022; 12:diagnostics12071533. [PMID: 35885439 PMCID: PMC9320107 DOI: 10.3390/diagnostics12071533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
We aim to establish a prediction model for pregnancy outcomes through a combinatorial analysis of circulating biomarkers and maternal characteristics to effectively identify pregnant women with higher risks of preeclampsia in the first and third trimesters within the Asian population. A total of two hundred and twelve pregnant women were screened for preeclampsia through a multicenter study conducted in four recruiting centers in Taiwan from 2017 to 2020. In addition, serum levels of sFlt-1/PlGF ratio, miR-181a, miR-210 and miR-223 were measured and transformed into multiples of the median. We thus further developed statistically validated algorithmic models by designing combinations of different maternal characteristics and biomarker levels. Through the performance of the training cohort (0.848 AUC, 0.73−0.96 95% CI, 80% sensitivity, 85% specificity, p < 0.001) and the validation cohort (0.852 AUC, 0.74−0.98 95% CI, 75% sensitivity, 87% specificity, p < 0.001) from one hundred and fifty-two women with a combination of miR-210, miR-181a and BMI, we established a preeclampsia prediction model for the first trimester. We successfully identified pregnant women with higher risks of preeclampsia in the first and third trimesters in the Asian population using the established prediction models that utilized combinatorial analysis of circulating biomarkers and maternal characteristics.
Collapse
Affiliation(s)
- Willie Lin
- Meridigen Biotech Co., Ltd., Taipei 114, Taiwan; (W.L.); (T.B.-C.W.)
| | - Sen-Wen Teng
- Department of Obstetrics and Gynecology, Cardinal Tien Hospital, New Taipei 231, Taiwan;
- School of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Tzu-Yi Lin
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ronald Lovel
- Meribank Biotech Co., Ltd., Taipei 114, Taiwan; (R.L.); (H.-Y.S.); (W.-Y.C.); (H.-Y.C.)
| | - Hsin-Yu Sung
- Meribank Biotech Co., Ltd., Taipei 114, Taiwan; (R.L.); (H.-Y.S.); (W.-Y.C.); (H.-Y.C.)
| | - Wen-Ying Chang
- Meribank Biotech Co., Ltd., Taipei 114, Taiwan; (R.L.); (H.-Y.S.); (W.-Y.C.); (H.-Y.C.)
| | - Tang Bo-Chung Wu
- Meridigen Biotech Co., Ltd., Taipei 114, Taiwan; (W.L.); (T.B.-C.W.)
| | - Hsuan-Yu Chen
- Meribank Biotech Co., Ltd., Taipei 114, Taiwan; (R.L.); (H.-Y.S.); (W.-Y.C.); (H.-Y.C.)
| | - Le-Ming Wang
- Department of Obstetrics and Gynecology, Wan Fang Hospital, Taipei 116, Taiwan;
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Steven W. Shaw
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, No. 199, Dun-Hua North Road, Taipei 105, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8251); Fax: +886-3-3288252
| |
Collapse
|
9
|
High maternal BMI and low maternal blood BDNF may determine the limit of detection of amniotic fluid BDNF throughout gestation: Analysis of mother-fetus trios and literature review. PLoS One 2022; 17:e0265186. [PMID: 35271679 PMCID: PMC8912268 DOI: 10.1371/journal.pone.0265186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
Objective An increasing number of studies show the importance of brain-derived neurotrophic factor (BDNF) acting at the feto-placental interface, however, only a few studies describe BDNF levels in amniotic fluid (AF). Methods In this cross-sectional, prospective study, 109 maternal blood-amniotic fluid pairs (including 66 maternal blood-fetal-blood-amniotic fluid trios) were analyzed. BDNF concentrations were measured with a commercially available immunoassay. Results In 71 AF from 109 samples, AF-BDNF concentrations were below the lowest limit of Quantitation (LLoQ) of 1.19 pg/ml (group A), leaving 38 samples with measurable BDNF concentrations (group B). Patients in group A showed significantly higher maternal BMI before pregnancy (mean±SD 26.3± 6.7 (kg/m2) vs. 23.8 ±4.5 (kg/m2) p = 0.04) and lower maternal blood BDNF concentrations than the other group (mean±SD 510.6 ± 554.7 pg/ml vs. mean±SD 910.1± 690.1 pg/ml; p<0.0001). Spearman correlation showed a negative correlation between maternal BMI before pregnancy and maternal BDNF concentrations (r = -0.25, p = 0.01). Conclusion Our study is the first to correlate AF-BDNF samples with the corresponding maternal and fetal blood-BDNF samples. The significant negative correlation between maternal BMI before pregnancy and maternal BDNF and AF-BDNF concentrations below the limit of detection has to be evaluated in further studies.
Collapse
|
10
|
Gallo R, Stoccoro A, Cagiano R, Nicolì V, Ricciardi R, Tancredi R, Trovato R, Santorelli FM, Calderoni S, Muratori F, Migliore L, Coppedè F. Correlation among maternal risk factors, gene methylation and disease severity in females with autism spectrum disorder. Epigenomics 2022; 14:175-185. [PMID: 35081728 DOI: 10.2217/epi-2021-0494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To detect early-life environmental factors leading to DNA methylation changes of autism spectrum disorder (ASD)-related genes in young ASD females and reveal epigenetic biomarkers of disease severity. Materials & methods: We investigated blood methylation levels of MECP2, OXTR, BDNF, RELN, BCL2, EN2 and HTR1A genes in 42 ASD females. Results: Maternal gestational weight gain correlated with BDNF methylation levels (Bonferroni-corrected p = 0.034), and lack of folic acid supplementation at periconception resulted in higher disease severity in the ASD children (Bonferroni-corrected p = 0.048). RELN methylation levels were inversely correlated with disease severity (Bonferroni corrected p = 0.042). Conclusion: The present study revealed gene-environment interactions and potential epigenetic biomarkers of disease severity in ASD females.
Collapse
Affiliation(s)
- Roberta Gallo
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Andrea Stoccoro
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Romina Cagiano
- IRCCS Stella Maris Foundation, Calambrone, Pisa, 56128, Italy
| | - Vanessa Nicolì
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Rosanna Ricciardi
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | | | - Rosanna Trovato
- IRCCS Stella Maris Foundation, Calambrone, Pisa, 56128, Italy
| | | | - Sara Calderoni
- IRCCS Stella Maris Foundation, Calambrone, Pisa, 56128, Italy.,Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, Calambrone, Pisa, 56128, Italy.,Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Lucia Migliore
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| |
Collapse
|
11
|
Brain-Derived Neurotrophic Factor Levels in Cord Blood from Growth Restricted Fetuses with Doppler Alteration Compared to Adequate for Gestational Age Fetuses. Medicina (B Aires) 2022; 58:medicina58020178. [PMID: 35208502 PMCID: PMC8878069 DOI: 10.3390/medicina58020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Objectives: Fetal growth restriction (FGR) is a severe obstetric disease characterized by a low fetal size entailing a set of undesired consequences. For instance, previous studies have noticed a worrisome association between FGR with an abnormal neurodevelopment. However, the precise link between FGR and neurodevelopmental alterations are not yet fully understood yet. Brain-derived neurotrophic factor (BDNF) is a critical neurotrophin strongly implicated in neurodevelopmental and other neurological processes. In addition, serum levels of BDNF appears to be an interesting indicator of pathological pregnancies, being correlated with the neonatal brain levels. Therefore, the aim of this study is to analyze the blood levels of BDNF in the cord blood from fetuses with FGR in comparison to those with weight appropriate for gestational age (AGA). Materials and Methods: In this study, 130 subjects were recruited: 91 in group A (AGA fetuses); 39 in group B (16 FGR fetuses with exclusively middle cerebral artery (MCA) pulsatility index (PI) < 5th percentile and 23 with umbilical artery (UA) PI > 95th percentile). Serum levels of BDNF were determined through ELISA reactions in these groups. Results: Our results show a significant decrease in cord blood levels of BDNF in FGR and more prominently in those with UA PI >95th percentile in comparison to AGA. FGR fetuses with exclusively decreased MCA PI below the 5th percentile also show reduced levels of BDNF than AGA, although this difference was not statistically significant. Conclusions: Overall, our study reports a potential pathophysiological link between reduced levels of BDNF and neurodevelopmental alterations in fetuses with FGR. However, further studies should be conducted in those FGR subjects with MCA PI < 5th percentile in order to understand the possible implications of BDNF in this group.
Collapse
|
12
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Pathare-Ingawale P, Chavan-Gautam P. The balance between cell survival and death in the placenta: Do neurotrophins have a role? Syst Biol Reprod Med 2021; 68:3-12. [PMID: 34615417 DOI: 10.1080/19396368.2021.1980132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Neurotrophins (NT) are a closely related family of growth factors, which regulate the nervous system's development, maintenance, and function. Although NTs have been well studied in neuronal cells, they are also expressed in the placenta. Despite their suggested role in regulating fetoplacental development, their precise functional significance in the placenta remains elusive. NT activate two different classes of receptors. These include the Trk, tropomyosin-related kinase family of high-affinity tropomyosin-related kinase receptors, which induces cell survival, and the p75NTR, p75 neurotrophin receptor, a member of the tumor necrosis factor(TNF) receptor superfamily, which induces apoptosis in neuronal cells. Mature NT molecule results from proteolysis of a biologically active precursor form called pro-neurotrophins (pro-NT) by the intracellular proprotein convertase or furin. Pro-NTs have a regulatory role in determining cell survival and apoptosis. Here, we review the literature on the expression and functions of NTs and their receptors in the placenta and discuss their possible role in placental tissue development and apoptosis. The possible implications of imbalance in pro-NT and mature-NT levels for fetoplacental development are also discussed.Abbreviations AGE/ALEs: Advanced glycation/lipoxidation end products; Bax: Bcl 2 Associated X; Bcl-2: B-cell lymphoma 2; BDNF: Brain-derived neurotrophic factor; FAS/FASL: Fas cell surface death receptor/ ligand; IUGR: Intrauterine growth restriction; JNK: c-Jun amino-terminal kinase; MAP: mitogen-activated protein k; mRNA: Messenger ribonucleic acid; NGF: Nerve growth factor; NT: Neurotrophins; NRAGE: Neurotrophin receptor-interacting MAGE homolog; NRIF: Neurotrophin receptor interacting factor; PE: Preeclampsia; PI3k: Phosphoinositide 3- kinase; PLC: Phospholipase C; p75NTR: p75 neurotrophin receptor; Pro-NT: Pro-neurotrophins; PTB: Preterm birth; p53: Tumor protein p53; TNF: Tumor necrosis factor; TRAF: TNFR-associated factors; Trk: Tropomyosin-related kinase; siRNA: small interfering ribonucleic acid.
Collapse
Affiliation(s)
| | - Preeti Chavan-Gautam
- Interdisciplinary School of Health Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
14
|
Bedell S, Hutson J, de Vrijer B, Eastabrook G. Effects of Maternal Obesity and Gestational Diabetes Mellitus on the Placenta: Current Knowledge and Targets for Therapeutic Interventions. Curr Vasc Pharmacol 2021; 19:176-192. [PMID: 32543363 DOI: 10.2174/1570161118666200616144512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023]
Abstract
Obesity and gestational diabetes mellitus (GDM) are becoming more common among pregnant women worldwide and are individually associated with a number of placenta-mediated obstetric complications, including preeclampsia, macrosomia, intrauterine growth restriction and stillbirth. The placenta serves several functions throughout pregnancy and is the main exchange site for the transfer of nutrients and gas from mother to fetus. In pregnancies complicated by maternal obesity or GDM, the placenta is exposed to environmental changes, such as increased inflammation and oxidative stress, dyslipidemia, and altered hormone levels. These changes can affect placental development and function and lead to abnormal fetal growth and development as well as metabolic and cardiovascular abnormalities in the offspring. This review aims to summarize current knowledge on the effects of obesity and GDM on placental development and function. Understanding these processes is key in developing therapeutic interventions with the goal of mitigating these effects and preventing future cardiovascular and metabolic pathology in subsequent generations.
Collapse
Affiliation(s)
- Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Janine Hutson
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| |
Collapse
|
15
|
Jadhav A, Khaire A, Gundu S, Wadhwani N, Chandhiok N, Gupte S, Joshi S. Placental neurotrophin levels in gestational diabetes mellitus. Int J Dev Neurosci 2021; 81:352-363. [PMID: 33783008 DOI: 10.1002/jdn.10107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Neurotrophins are known to influence the development and maturation of the feto-placental unit and affect fetal growth trajectories. This study reports the levels of nerve growth factor (NGF) and brain-derived growth factor (BDNF) in the placenta of women with gestational diabetes mellitus (GDM). METHODS A total number of 60 women with GDM and 70 women without GDM (non-GDM) were included in the study. Placental NGF and BDNF levels were measured using commercially available ELISA kits. RESULTS Placental NGF levels were lower (p < .05) in women with GDM compared to non-GDM women. Maternal body mass index (BMI), mode of delivery, and the gender of the baby influenced the placental NGF levels. Placental BDNF levels were similar in GDM and non-GDM women. There was an influence of baby gender on the placental BDNF levels while maternal BMI and mode of delivery did not show any effect. In regression models adjusted for maternal age at delivery, gestational age, maternal BMI, mode of delivery, and baby gender, the placental NGF levels in the GDM group were lower (-0.144 pg/ml [95% CI -0.273, 22120.016] p = .028) as compared to the non-GDM group. However, there was no difference in the BDNF levels between the groups. CONCLUSION This study for the first time demonstrates differential effects on neurotrophic factors such as BDNF and NGF in the placenta in pregnancies complicated by GDM. Alterations in the levels of placental neurotrophins in GDM deliveries may affect placental development and fetal brain growth. This has implications for increased risk for neurodevelopmental pathologies in later life.
Collapse
Affiliation(s)
- Anjali Jadhav
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Amrita Khaire
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Shridevi Gundu
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Nisha Wadhwani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Nomita Chandhiok
- Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research (ICMR), New Delhi, India
| | | | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| |
Collapse
|
16
|
Chow R, Wessels JM, Foster WG. Brain-derived neurotrophic factor (BDNF) expression and function in the mammalian reproductive Tract. Hum Reprod Update 2020; 26:545-564. [PMID: 32378708 DOI: 10.1093/humupd/dmaa008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neurotrophins of the nerve growth factor family are soluble polypeptides that are best known for their role in nerve growth, survival and differentiation in the central nervous system. A growing body of literature shows that neurotrophins and their receptors are also expressed throughout the reproductive tract. OBJECTIVE AND RATIONALE Neurotrophins are key regulatory proteins in reproductive physiology during development and throughout adult life. Of the neurotrophins, the literature describing the expression and function of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, neurotrophin receptor kinase-2 (NTRK2), has been expanding rapidly. We therefore conducted a systematic inductive qualitative review of the literature to better define the role of the BDNF in the reproductive tract. We postulate that BDNF and NTRK2 are central regulatory proteins throughout the reproductive system. SEARCH METHODS An electronic search of Medline (PubMed) and Web of Science for articles relating to BDNF and the reproductive system was carried out between January 2018 and February 2019. OUTCOMES In the ovary, BDNF expression and levels have been linked with follicle organisation during ovarian development, follicle recruitment and growth and oocyte maturation. In the endometrium, BDNF is involved in cell proliferation and neurogenesis. In contrast, literature describing the role of BDNF in other reproductive tissues is sparse and BDNF-NTRK2 signalling in the male reproductive tract has been largely overlooked. Whilst estradiol appears to be the primary regulator of BDNF expression, we also identified reports describing binding sites for glucocorticoid and myocyte enhancer factor-2, a calcium-response element through activation of an N-methyl-D-aspartate (NMDA) receptor, and aryl hydrocarbon receptor nuclear transporter protein-4 (ARNT) response elements in promoter regions of the BDNF gene. Expression is also regulated by multiple microRNAs and post-translational processing of precursor proteins and intracellular shuttling. BDNF-NTRK2 signalling is modulated through tissue specific receptor expression of either the full-length or truncated NTRK2 receptor; however, the functional importance remains to be elucidated. Dysregulation of BDNF expression and circulating concentrations have been implicated in several reproductive disorders including premature ovarian failure, endometriosis, pre-eclampsia, intra-uterine growth restriction (IUGR) and several reproductive cancers. WIDER IMPLICATIONS We conclude that BDNF and its receptors are key regulatory proteins central to gonadal development, ovarian regulation and uterine physiology, as well as embryo and placenta development. Furthermore, dysregulation of BDNF-NTRK2 in reproductive diseases suggests their potential role as candidate clinical markers of disease and potential therapeutic targets.
Collapse
Affiliation(s)
- R Chow
- Department of Obstetrics & Gynaecology, McMaster University, Hamilton, Ontario, Canada
| | - J M Wessels
- Department of Obstetrics & Gynaecology, McMaster University, Hamilton, Ontario, Canada
| | - W G Foster
- Department of Obstetrics & Gynaecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Wang F, Xie N, Zhou J, Dai M, Zhang Q, Hardiman PJ, Qu F. Molecular mechanisms underlying altered neurobehavioural development of female offspring of mothers with polycystic ovary syndrome: FOS-mediated regulation of neurotrophins in placenta. EBioMedicine 2020; 60:102993. [PMID: 32949999 PMCID: PMC7501055 DOI: 10.1016/j.ebiom.2020.102993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study explored the mechanisms underlying altered neurobehavioural development of female offspring born to mothers with polycystic ovary syndrome (PCOS). METHODS In total, 20 women with PCOS and 32 healthy women who underwent caesarean deliveries with a single female foetus were recruited. Infants were assessed with Dubowitz scoring. Swan71 cell line with stable FOS overexpression was used to verify the regulatory effects of FOS on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) expression. Learning and memory in female first-generation (F1) and second-generation (F2) offspring in a rat model of PCOS was tested using the Morris water maze at puberty and adulthood. Transcriptome analysis of pubertal hippocampi and hypothalami of female F1 offspring was conducted. FINDINGS Total score and behaviour subscales of Dubowitz scoring were significantly lower in female infants of women with PCOS. FOS and NGF protein levels were downregulated in placental villi of the PCOS group. FOS played a key role in BDNF inhibition and enhancing NGF in Swan71 cells. PCOS female F1 rats exhibited lower target crossing times during puberty when compared to controls. Transcriptome analysis revealed significant changes in hippocampal and hypothalamic neuronal pathways in female F1 rats at puberty. INTERPRETATION FOS regulation of neurotrophins in the placenta negatively affects neurobehavioural development of female offspring of PCOS mothers. FUNDING This study was funded by the National Key R&D Program of China (2018YFC1004900 to F.Q. and F.W.) and the National Natural Science Foundation of China (81874480 to F.Q.; 81873837 to F.W.).
Collapse
Affiliation(s)
- Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ningning Xie
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Minchen Dai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Paul J Hardiman
- Institute for Women's Health, University College London, London NW3 2PF, United Kingdom
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China; Institute for Women's Health, University College London, London NW3 2PF, United Kingdom.
| |
Collapse
|
18
|
Epigenetic signatures associated with maternal body mass index or gestational weight gain: a systematic review. J Dev Orig Health Dis 2020; 12:373-383. [PMID: 32873364 DOI: 10.1017/s2040174420000811] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal body mass index (BMI) and gestational weight gain (GWG) impacts both the mother's and the child's health, and epigenetic modifications have been suggested to mediate some of these effects in offspring. This systematic review aimed to summarize the current literature on associations between maternal BMI and GWG and epigenetic marks. We performed systematic searches in PubMed and EMBASE and manual searches of reference lists. We included 49 studies exploring the association between maternal BMI and/or GWG and DNA methylation or miRNA; 7 performed in maternal tissues, 13 in placental tissue and 38 in different offspring tissues. The most consistent findings were reported for the relationship between maternal BMI, in particular pre-pregnant BMI, and expression of miRNA Let-7d in both maternal blood and placental tissue, methylation of the gene HIF3A in umbilical cord blood and umbilical tissue, and with expression in the miR-210 target gene, BDNF in placental tissue and cord blood. Correspondingly, methylation of BDNF was also found in placental tissue and cord blood. The current evidence suggests that maternal BMI is associated with some epigenetic signatures in the mother, the placenta and her offspring, which could indicate that some of the effects proposed by the Developmental Origins of Health and Disease-hypothesis may be mediated by epigenetic marks. In conclusion, there is a need for large, well-designed studies and meta-analyses that can clarify the relationship between BMI, GWG and epigenetic changes.
Collapse
|
19
|
Neto J, da Silva DS, da Silva IV, Thill J, Pochmann D, Brito C, Elsner V. Relationship between levels of physical activity and brain derived neurotrophic factor in peripheral blood of monozygotic twins. COMPARATIVE EXERCISE PHYSIOLOGY 2020. [DOI: 10.3920/cep190061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies involving monozigotic (MZ) twins are of great importance for the understanding of genetic and environmental influences without the development of individual pathologies and pathways associated with lifestyle. In this context, discordance has recently been suggested in the levels of the brain-derived neurotrophic factor (BDNF) in MZ twins, which may be associated with the practice of physical activity (PA). The objective was to verify the relationship between the peripheral levels of BDNF and PA in MZ twins. This transversal and quantitative study included 11 pairs of MZ twins that answered the International Physical Activity Questionnaire (IPAQ), a brief anamnesis and were submitted to a blood collection (15 ml) for BDNF levels analysis, measured through ELISA kit according to the manufacturer’s instructions. The study was approved by the Ethics Committee of Centro Universitário Metodista IPA (no. 1.746.954). There was no statistically significant relationship between BDNF and PA levels in sedentary and physically active MZ twins (P=0.431). PA practice does not seem to influence BDNF levels in these individuals.
Collapse
Affiliation(s)
- J.P. Neto
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
- Curso de Fisioterapia, Centro Universitário Anhanguera, Porto Alegre, RS, Brazil
| | - D. Santos da Silva
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
| | - I.R. Vital da Silva
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
| | - J. Thill
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
| | - D. Pochmann
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
| | - C. Brito
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
| | - V.R. Elsner
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
Effects of Maternal Resveratrol on Maternal High-Fat Diet/Obesity with or without Postnatal High-Fat Diet. Int J Mol Sci 2020; 21:ijms21103428. [PMID: 32408716 PMCID: PMC7279178 DOI: 10.3390/ijms21103428] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023] Open
Abstract
To examine the effects of maternal resveratrol in rats borne to dams with gestational high-fat diet (HFD)/obesity with or without postnatal high-fat diet. We first tested the effects of maternal resveratrol intake on placenta and male fetus brain in rats borne to dams with gestational HFD/obesity. Then, we assessed the possible priming effect of a subsequent insult, male offspring were weaned onto either a rat chow or a HFD. Spatial learning and memory were assessed by Morris water maze test. Blood pressure and peripheral insulin resistance were examined. Maternal HFD/obesity decreased adiponectin, phosphorylation alpha serine/threonine-protein kinase (pAKT), sirtuin 1 (SIRT1), and brain-derived neurotrophic factor (BDNF) in rat placenta, male fetal brain, and adult male offspring dorsal hippocampus. Maternal resveratrol treatment restored adiponectin, pAKT, and BDNF in fetal brain. It also reduced body weight, peripheral insulin resistance, increased blood pressure, and alleviated cognitive impairment in adult male offspring with combined maternal HFD and postnatal HFD. Maternal resveratrol treatment restored hippocampal pAKT and BDNF in rats with combined maternal HFD and postnatal HFD in adult male offspring dorsal hippocampus. Maternal resveratrol intake protects the fetal brain in the context of maternal HFD/obesity. It effectively reduced the synergistic effects of maternal HFD/obesity and postnatal HFD on metabolic disturbances and cognitive impairment in adult male offspring. Our data suggest that maternal resveratrol intake may serve as an effective therapeutic strategy in the context of maternal HFD/obesity.
Collapse
|
21
|
Differential expression of several factors involved in placental development in normal and abnormal condition. Placenta 2020; 95:1-8. [PMID: 32339142 DOI: 10.1016/j.placenta.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The placenta, a temporary organ that forms during pregnancy, is the largest fetal organ and the first to develop. It is recognized as an organ that plays a vital role as a metabolic and physical barrier in the fetoplacental unit; throughout fetal development it acts as the lungs, gut, kidneys, and liver of the fetus. When its two components, the fetal and the maternal one, successfully interact, pregnancy proceeds healthily. However, in some cases there may be pregnancy disorders, such as preeclampsia (PE) and gestational diabetes mellitus (GDM), which can lead to a different outcome for the mother and the newborn. In recent years, several studies have been conducted to try to understand how the expression of factors involved in the development of the placenta varies under pathological conditions compared with normal conditions. The purpose of this review is to summarize recent discoveries in this field.
Collapse
|
22
|
Khambadkone SG, Cordner ZA, Tamashiro KLK. Maternal stressors and the developmental origins of neuropsychiatric risk. Front Neuroendocrinol 2020; 57:100834. [PMID: 32084515 PMCID: PMC7243665 DOI: 10.1016/j.yfrne.2020.100834] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
The maternal environment during pregnancy is critical for fetal development and perinatal perturbations can prime offspring disease risk. Here, we briefly review evidence linking two well-characterized maternal stressors - psychosocial stress and infection - to increased neuropsychiatric risk in offspring. In the current climate of increasing obesity and globalization of the Western-style diet, maternal overnutrition emerges as a pressing public health concern. We focus our attention on recent epidemiological and animal model evidence showing that, like psychosocial stress and infection, maternal overnutrition can also increase offspring neuropsychiatric risk. Using lessons learned from the psychosocial stress and infection literature, we discuss how altered maternal and placental physiology in the setting of overnutrition may contribute to abnormal fetal development and resulting neuropsychiatric outcomes. A better understanding of converging pathophysiological pathways shared between stressors may enable development of interventions against neuropsychiatric illnesses that may be beneficial across stressors.
Collapse
Affiliation(s)
- Seva G Khambadkone
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zachary A Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Reijnders IF, Mulders AGMGJ, van der Windt M, Steegers EAP, Steegers-Theunissen RPM. The impact of periconceptional maternal lifestyle on clinical features and biomarkers of placental development and function: a systematic review. Hum Reprod Update 2020; 25:72-94. [PMID: 30407510 DOI: 10.1093/humupd/dmy037] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Worldwide, placenta-related complications contribute to adverse pregnancy outcomes, such as pre-eclampsia, fetal growth restriction and preterm birth, with implications for the future health of mothers and offspring. The placenta develops in the periconception period and forms the interface between mother and embryo/fetus. An unhealthy periconceptional maternal lifestyle, such as smoking, alcohol and under- and over-nutrition, can detrimentally influence placental development and function. OBJECTIVE AND RATIONALE The impact of maternal lifestyle on placental health is largely unknown. Therefore, we aim to summarize the evidence of the impact of periconceptional maternal lifestyle on clinical features and biomarkers of placental development and function throughout pregnancy. SEARCH METHODS A comprehensive search in Medline, Embase, Pubmed, The Cochrane Library Web of Science and Google Scholar was conducted. The search strategy included keywords related to the maternal lifestyle, smoking, alcohol, caffeine, nutrition (including folic acid supplement intake) and body weight. For placental markers throughout pregnancy, keywords related to ultrasound imaging, serum biomarkers and histological characteristics were used. We included randomized controlled trials and observational studies published between January 2000 and March 2017 and restricted the analysis to singleton pregnancies and maternal periconceptional lifestyle. Methodological quality was scored using the ErasmusAGE tool. A protocol of this systematic review has been registered in PROSPERO International prospective register of systematic reviews (PROSPERO 2016:CRD42016045596). OUTCOMES Of 2593 unique citations found, 82 studies were included. The median quality score was 5 (range: 0-10). The findings revealed that maternal smoking was associated with lower first-trimester placental vascularization flow indices, higher second- and third-trimester resistance of the uterine and umbilical arteries and lower resistance of the middle cerebral artery. Although a negative impact of smoking on placental weight was expected, this was less clear. Alcohol use was associated with a lower placental weight. One study described higher second- and third-trimester placental growth factor (PlGF) levels after periconceptional alcohol use. None of the studies looked at caffeine intake. Adequate nutrition in the first trimester, periconceptional folic acid supplement intake and strong adherence to a Mediterranean diet, were all associated with a lower resistance of the uterine and umbilical arteries in the second and third trimester. A low caloric intake resulted in a lower placental weight, length, breadth, thickness, area and volume. Higher maternal body weight was associated with a larger placenta measured by ultrasound in the second and third trimester of pregnancy or weighed at birth. In addition, higher maternal body weight was associated with decreased PlGF-levels. WIDER IMPLICATIONS Evidence of the impact of periconceptional maternal lifestyle on placental health was demonstrated. However, due to poorly defined lifestyle exposures and time windows of investigation, unstandardized measurements of placenta-related outcomes and small sample sizes of the included studies, a cautious interpretation of the effect estimates is indicated. We suggest that future research should focus more on physiological consequences of unhealthy lifestyle during the critical periconception window. Moreover, we foresee that new evidence will support the development of lifestyle interventions to improve the health of mothers and their offspring from the earliest moment in life.
Collapse
Affiliation(s)
- Ignatia F Reijnders
- Department of Obstetrics and Gynaecology, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
| | - Annemarie G M G J Mulders
- Department of Obstetrics and Gynaecology, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
| | - Melissa van der Windt
- Department of Obstetrics and Gynaecology, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynaecology, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
24
|
Maternal Obesity Programs Offspring Development and Resveratrol Potentially Reprograms the Effects of Maternal Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051610. [PMID: 32131513 PMCID: PMC7084214 DOI: 10.3390/ijerph17051610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Maternal obesity during pregnancy is a now a public health burden that may be the culprit underlying the ever-increasing rates of adult obesity worldwide. Understanding the association between maternal obesity and adult offspring’s obesity would inform policy and practice regarding offspring health through available resources and interventions. This review first summarizes the programming effects of maternal obesity and discusses the possible underlying mechanisms. We then summarize the current evidence suggesting that maternal consumption of resveratrol is helpful in maternal obesity and alleviates its consequences. In conclusion, maternal obesity can program offspring development in an adverse way. Maternal resveratrol could be considered as a potential regimen in reprogramming adverse outcomes in the context of maternal obesity.
Collapse
|
25
|
Rosenfeld CS. The placenta-brain-axis. J Neurosci Res 2020; 99:271-283. [PMID: 32108381 DOI: 10.1002/jnr.24603] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
All mammalian species depend on the placenta, a transient organ, for exchange of gases, nutrients, and waste between the mother and conceptus. Besides serving as a conduit for such exchanges, the placenta produces hormones and other factors that influence maternal physiology and fetal development. To meet all of these adaptations, the placenta has evolved to become the most structurally diverse organ within all mammalian taxa. However, commonalities exist as to how placental responses promote survival against in utero threats and can alter the trajectory of fetal development, in particular the brain. Increasing evidence suggests that reactions of the placenta to various in utero stressors may lead to long-standing health outcomes, otherwise considered developmental origin of health and disease effects. Besides transferring nutrients and gases, the placenta produces neurotransmitters, including serotonin, dopamine, norepinephrine/epinephrine, that may circulate and influence brain development. Neurobehavioral disorders, such as autism spectrum disorders, likely trace their origins back to placental disturbances. This intimate relationship between the placenta and brain has led to coinage of the term, the placenta-brain-axis. This axis will be the focus herein, including how conceptus sex might influence it, and technologies employed to parse out the effects of placental-specific transcript expression changes on later neurobehavioral disorders. Ultimately, the placenta might provide a historical record of in utero threats the fetus confronted and a roadmap to understand how placenta responses to such encounters impacts the placental-brain-axis. Improved early diagnostic and preventative approaches may thereby be designed to mitigate such placental disruptions.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA.,Genetics Area Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
26
|
Nichols AR, Rundle AG, Factor-Litvak P, Insel BJ, Hoepner L, Rauh V, Perera F, Widen EM. Prepregnancy obesity is associated with lower psychomotor development scores in boys at age 3 in a low-income, minority birth cohort. J Dev Orig Health Dis 2020; 11:49-57. [PMID: 31486358 PMCID: PMC6934918 DOI: 10.1017/s2040174419000412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whether maternal obesity and gestational weight gain (GWG) are associated with early-childhood development in low-income, urban, minority populations, and whether effects differ by child sex remain unknown. This study examined the impact of prepregnancy BMI and GWG on early childhood neurodevelopment in the Columbia Center for Children's Environmental Health Mothers and Newborns study. Maternal prepregnancy weight was obtained by self-report, and GWG was assessed from participant medical charts. At child age 3 years, the Psychomotor Development Index (PDI) and Mental Development Index (MDI) of the Bayley Scales of Infant Intelligence were completed. Sex-stratified linear regression models assessed associations between prepregnancy BMI and pregnancy weight gain z-scores with child PDI and MDI scores, adjusting for covariates. Of 382 women, 48.2% were normal weight before pregnancy, 24.1% overweight, 23.0% obese, and 4.7% underweight. At 3 years, mean scores on the PDI and MDI were higher among girls compared to boys (PDI: 102.3 vs. 97.2, P = 0.0002; MDI: 92.8 vs. 88.3, P = 0.0001). In covariate-adjusted models, maternal obesity was markedly associated with lower PDI scores in boys [b = -7.81, 95% CI: (-13.08, -2.55), P = 0.004], but not girls. Maternal BMI was not associated with MDI in girls or boys, and GWG was not associated with PDI or MDI among either sex (all-P > 0.05). We found that prepregnancy obesity was associated with lower PDI scores at 3 years in boys, but not girls. The mechanisms underlying this sex-specific association remain unclear, but due to elevated obesity exposure in urban populations, further investigation is warranted.
Collapse
Affiliation(s)
- Amy R Nichols
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Andrew G Rundle
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori Hoepner
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental and Occupational Health Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth M Widen
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Saenen ND, Martens DS, Neven KY, Alfano R, Bové H, Janssen BG, Roels HA, Plusquin M, Vrijens K, Nawrot TS. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin Epigenetics 2019; 11:124. [PMID: 31530287 PMCID: PMC6749657 DOI: 10.1186/s13148-019-0688-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/27/2019] [Indexed: 01/04/2023] Open
Abstract
According to the "Developmental Origins of Health and Disease" (DOHaD) concept, the early-life environment is a critical period for fetal programming. Given the epidemiological evidence that air pollution exposure during pregnancy adversely affects newborn outcomes such as birth weight and preterm birth, there is a need to pay attention to underlying modes of action to better understand not only these air pollution-induced early health effects but also its later-life consequences. In this review, we give an overview of air pollution-induced placental molecular alterations observed in the ENVIRONAGE birth cohort and evaluate the existing evidence. In general, we showed that prenatal exposure to air pollution is associated with nitrosative stress and epigenetic alterations in the placenta. Adversely affected CpG targets were involved in cellular processes including DNA repair, circadian rhythm, and energy metabolism. For miRNA expression, specific air pollution exposure windows were associated with altered miR-20a, miR-21, miR-146a, and miR-222 expression. Early-life aging markers including telomere length and mitochondrial DNA content are associated with air pollution exposure during pregnancy. Previously, we proposed the air pollution-induced telomere-mitochondrial aging hypothesis with a direct link between telomeres and mitochondria. Here, we extend this view with a potential co-interaction of different biological mechanisms on the level of placental oxidative stress, epigenetics, aging, and energy metabolism. Investigating the placenta is an opportunity for future research as it may help to understand the fundamental biology underpinning the DOHaD concept through the interactions between the underlying modes of action, prenatal environment, and disease risk in later life. To prevent lasting consequences from early-life exposures of air pollution, policy makers should get a basic understanding of biomolecular consequences and transgenerational risks.
Collapse
Affiliation(s)
- N. D. Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - D. S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - K. Y. Neven
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - R. Alfano
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - H. Bové
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - B. G. Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - H. A. Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - M. Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - K. Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - T. S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
28
|
Behura SK, Kelleher AM, Spencer TE. Evidence for functional interactions between the placenta and brain in pregnant mice. FASEB J 2019; 33:4261-4272. [PMID: 30521381 PMCID: PMC6404589 DOI: 10.1096/fj.201802037r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
The placenta plays a pivotal role in the development of the fetal brain and also influences maternal brain function, but our understanding of communication between the placenta and brain remains limited. Using a gene expression and network analysis approach, we provide evidence that the placenta transcriptome is tightly interconnected with the maternal brain and fetal brain in d 15 pregnant C57BL/6J mice. Activation of serotonergic synapse signaling and inhibition of neurotrophin signaling were identified as potential mediators of crosstalk between the placenta and maternal brain and fetal brain, respectively. Genes encoding specific receptors and ligands were predicted to affect functional interactions between the placenta and brain. Paralogous genes, such as sex comb on midleg homolog 1/scm-like with 4 mbt domains 2 and polycomb group ring finger (Pcgf) 2/ Pcgf5, displayed antagonistic regulation between the placenta and brain. Additionally, conditional ablation of forkhead box a2 ( Foxa2) in the glands of the uterus altered the transcriptome of the d 15 placenta, which provides novel evidence of crosstalk between the uterine glands and placenta. Furthermore, expression of cathepsin 6 and monocyte to macrophage differentiation associated 2 was significantly different in the fetal brain of Foxa2 conditional knockout mice compared with control mice. These findings provide a better understanding of the intricacies of uterus-placenta-brain interactions during pregnancy and provide a foundation and model system for their exploration.-Behura, S. K., Kelleher, A. M., Spencer, T. E. Evidence for functional interactions between the placenta and brain in pregnant mice.
Collapse
Affiliation(s)
- Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA; and
| | - Andrew M. Kelleher
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
29
|
Xiao D, Qu Y, Huang L, Wang Y, Li X, Mu D. Association between maternal overweight or obesity and cerebral palsy in children: A meta-analysis. PLoS One 2018; 13:e0205733. [PMID: 30325944 PMCID: PMC6191132 DOI: 10.1371/journal.pone.0205733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/01/2018] [Indexed: 01/23/2023] Open
Abstract
CONTEXT There is no consensus regarding the association between maternal obesity or overweight and cerebral palsy (CP) in children. OBJECTIVES To investigate whether maternal obesity or overweight is associated with CP and identify the factors that explain the differences in the study results. DATA SOURCES We conducted a meta-analysis of studies published in English with titles or abstracts that discussed the relationships between maternal obesity or overweight and CP before August 23, 2017, using Ovid Medline, EMBASE and Web of Science. STUDY SELECTION Of 2699 initially identified studies, 8 studies that addressed the association between maternal obesity and CP met our final inclusion criteria. DATA EXTRACTION Information from the individual studies was abstracted using standardized forms by 2 independent observers who were blinded to the authors' names and journal titles. DATA SYNTHESIS According to a random effects model, maternal overweight was significantly associated with CP in offspring [RR = 1.29 (95% CI, 1.04-1.60), heterogeneity (I2 = 45.5%, P = 0.103)]; maternal obesity was significantly associated with CP in offspring [RR = 1.45 (95% CI, 1.25-1.69), heterogeneity (I2 = 24.1%, P = 0.253)]; and maternal obesity III was significantly associated with CP in offspring [RR = 2.25 (95% CI, 1.82-2.79), heterogeneity (I2 = 0%, P = 0.589)]. However, maternal underweight was not significantly associated with CP in offspring [RR = 1.11 (95% CI, 0.88-1.38), low heterogeneity (I2 = 0%, P = 0.435)]. Factors that explained the differences in the meta-analysis results included study design, study location, and whether individual studies adjusted for potential confounders. CONCLUSION This study suggests that maternal obesity and overweight increase the risk of CP in offspring. Further studies are required to confirm these results and determine the influence of variables across studies.
Collapse
Affiliation(s)
- Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lan Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xihong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
30
|
Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab 2018; 15:8-19. [PMID: 29773464 PMCID: PMC6066743 DOI: 10.1016/j.molmet.2018.04.007] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The early life environment experienced by an individual in utero and during the neonatal period is a major factor in shaping later life disease risk-including susceptibility to develop obesity, diabetes, and cardiovascular disease. The incidence of metabolic disease is different between males and females. How the early life environment may underlie these sex differences is an area of active investigation. SCOPE OF REVIEW The purpose of this review is to summarize our current understanding of how the early life environment influences metabolic disease risk in a sex specific manner. We also discuss the possible mechanisms responsible for mediating these sexually dimorphic effects and highlight the results of recent intervention studies in animal models. MAJOR CONCLUSIONS Exposure to states of both under- and over-nutrition during early life predisposes both sexes to develop metabolic disease. Females seem particularly susceptible to develop increased adiposity and disrupted glucose homeostasis as a result of exposure to in utero undernutrition or high sugar environments, respectively. The male placenta is particularly vulnerable to damage by adverse nutritional states and this may underlie some of the metabolic phenotypes observed in adulthood. More studies investigating both sexes are needed to understand how changes to the early life environment impact differently on the long-term health of male and female individuals.
Collapse
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Cambridge, CB2 0QQ, United Kingdom
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program & Diabetes and Obesity Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, 90027, USA; Inserm, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille, 59045, France
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
31
|
Stuart TJ, O’Neill K, Condon D, Sasson I, Sen P, Xia Y, Simmons RA. Diet-induced obesity alters the maternal metabolome and early placenta transcriptome and decreases placenta vascularity in the mouse. Biol Reprod 2018; 98:795-809. [PMID: 29360948 PMCID: PMC6454478 DOI: 10.1093/biolre/ioy010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/19/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is associated with an increased risk of obesity and metabolic disease in offspring. Increasing evidence suggests that the placenta plays an active role in fetal programming. In this study, we used a mouse model of diet-induced obesity to demonstrate that the abnormal metabolic milieu of maternal obesity sets the stage very early in pregnancy by altering the transcriptome of placenta progenitor cells in the preimplantation (trophectoderm [TE]) and early postimplantation (ectoplacental cone [EPC]) placenta precursors, which is associated with later changes in placenta development and function. Sphingolipid metabolism was markedly altered in the plasma of obese dams very early in pregnancy as was expression of genes related to sphingolipid processing in the early placenta. Upregulation of these pathways inhibits angiogenesis and causes endothelial dysfunction. The expression of many other genes related to angiogenesis and vascular development were disrupted in the TE and EPC. Other key changes in the maternal metabolome in obese dams that are likely to influence placenta and fetal development include a marked decrease in myo and chiro-inositol. These early metabolic and gene expression changes may contribute to phenotypic changes in the placenta, as we found that exposure to a high-fat diet decreased placenta microvessel density at both mid and late gestation. This is the first study to demonstrate that maternal obesity alters the transcriptome at the earliest stages of murine placenta development.
Collapse
Affiliation(s)
- Tami J Stuart
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathleen O’Neill
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Condon
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Issac Sasson
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Payel Sen
- Epigenetics Center, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yunwei Xia
- College of Arts and Sciences, Cornell University, Ithaca, New York, USA
| | - Rebecca A Simmons
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Zhu C, Han TL, Zhao Y, Zhou X, Mao X, Qi H, Baker PN, Zhang H. A mouse model of pre-pregnancy maternal obesity combined with offspring exposure to a high-fat diet resulted in cognitive impairment in male offspring. Exp Cell Res 2018; 368:159-166. [PMID: 29698637 DOI: 10.1016/j.yexcr.2018.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cognitive impairment is a brain dysfunction characterized by neuropsychological deficits in attention, working memory, and executive function. Maternal obesity and consumption of a high-fat diet (HFD) in the offspring has been suggested to have detrimental consequences for offspring cognitive function through its effect on the hippocampus and prefrontal cortex. Therefore, our study aimed to investigate the effects of maternal obesity and offspring HFD exposure on the brain metabolome of the offspring. METHODS In our pilot study, a LepRdb/+ mouse model was used to model pre-pregnancy maternal obesity and the c57bl/6 wildtype was used as a control group. Offspring were fed either a HFD or a low-fat control diet (LFD) after weaning (between 8 and 10 weeks). The Mirrors water maze was performed between 28 and 30 weeks to measure cognitive function. Fatty acid metabolomic profiles of the prefrontal cortex and hippocampus from the offspring at 30-32 weeks were analyzed using gas chromatography-mass spectrometry. RESULTS The memory of male offspring from obese maternal mice, consuming a HFD post-weaning, was significantly impaired when compared to the control offspring mice. No significant differences were observed in female offspring. In male mice, the fatty acid metabolites in the prefrontal cortex were most affected by maternal obesity, whereas, the fatty acid metabolites in the hippocampus were most affected by the offspring's diet. Hexadecanoic acid and octadecanoic acid were significantly affected in both the hippocampus and pre-frontal cortex, as a result of maternal obesity and a HFD in the offspring. CONCLUSION Our findings suggest that the combination of maternal obesity and HFD in the offspring can result in spatial cognitive deficiency in the male offspring, by influencing the fatty acid metabolite profiles in the prefrontal cortex and hippocampus. Further research is needed to validate the results of our pilot study.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Obstetrics and Gynecology, Xin Qiao Hospital, The Second Medical College of Army Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yalan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xun Mao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Philip N Baker
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Liggins Institute, University of Auckland, Auckland, New Zealand; College of Medicine, Biological Sciences and Psychology, University of Leicester, UK
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
33
|
Gandhi K, Li C, German N, Skobowiat C, Carrillo M, Kallem RR, Larumbe E, Martinez S, Chuecos M, Ventolini G, Nathanielsz P, Schlabritz-Loutsevitch N. Effect of maternal high-fat diet on key components of the placental and hepatic endocannabinoid system. Am J Physiol Endocrinol Metab 2018; 314:E322-E333. [PMID: 29138223 PMCID: PMC5966752 DOI: 10.1152/ajpendo.00119.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023]
Abstract
Maternal obesity in pregnancy has been linked to a spectrum of adverse developmental changes. Involvement of eCBs in obesity is well characterized. However, information regarding eCB physiology in obesity associated with pregnancy is sparse. This study evaluated fetomaternal hepatic, systemic, and placental eCB molecular changes in response to maternal consumption of a HFD. From ≥9 mo before conception, nonpregnant baboons ( Papio spp.) were fed a diet of either 45 (HFD; n = 11) or 12% fat or a control diet (CTR; n = 11), and dietary intervention continued through pregnancy. Maternal and fetal venous plasma samples were evaluated using liquid chromatography-mass spectrometry to quantify AEA and 2-AG. Placental, maternal and fetal hepatic tissues were analyzed using RT-PCR, Western blot, and immunohistochemistry. mRNA and protein expression of endocannabinoid receptors (CB1R and CB2R), FAAH, DAGL, MAGL, and COX-2 were determined. Statistical analyses were performed with the nonparametric Scheirer-Ray-Hare extension of the Kruskal-Wallis test to analyze the effects of diet (HFD vs. CTR), fetal sex (male vs. female), and the diet × sex interaction. Fetal weight was influenced by fetal sex but not by maternal diet. The increase in maternal weight in animals fed the HFD vs. the CTR diet approached significance ( P = 0.055). Maternal circulating 2-AG concentrations increased, and fetal circulating concentrations decreased in the HFD group, independently of fetal sex. CB1R receptor expression was detected in syncytiotrophoblasts (HFD) and the fetal endothelium (CTR and HFD). Placental CB2R protein expression was higher in males and lower in female fetuses in the HFD group. Fetal hepatic CB2R, FAAH, COX-2 (for both fetal sexes), and DAGLα (in male fetuses) protein expression decreased in the HFD group compared with the CTR group. We conclude that consumption of a HFD during pregnancy results in fetal systemic 2-AG and hepatic eCB deficiency.
Collapse
Affiliation(s)
- Kushal Gandhi
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Cun Li
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
- Texas Biomedical Research Institute and Southwest National Primate Research Center , San Antonio, Texas
| | - Nadezhda German
- School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | | | - Maira Carrillo
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Raja Reddy Kallem
- School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Eneko Larumbe
- Clinical Research Institute, Texas Tech University Health Sciences , Lubbock, Texas
| | - Stacy Martinez
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Marcel Chuecos
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Gary Ventolini
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Peter Nathanielsz
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
- Texas Biomedical Research Institute and Southwest National Primate Research Center , San Antonio, Texas
| | - Natalia Schlabritz-Loutsevitch
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| |
Collapse
|
34
|
Prince CS, Maloyan A, Myatt L. Tropomyosin Receptor Kinase B Agonist, 7,8-Dihydroxyflavone, Improves Mitochondrial Respiration in Placentas From Obese Women. Reprod Sci 2017; 25:452-462. [PMID: 28677406 DOI: 10.1177/1933719117716776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal obesity negatively impacts the placenta, being associated with increased inflammation, decreased mitochondrial respiration, decreased expression of brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TRKB). TRKB induction by 7,8-dihydroxyflavone (7,8-DHF) improves energy expenditure in an obesity animal model. We hypothesized that TRKB activation would improve mitochondrial respiration in trophoblasts from placentas of obese women. Placentas were collected from lean (pre-pregnancy BMI < 25) and obese (pre-pregnancy BMI > 30) women at term following cesarean section delivery without labor. Cytotrophoblasts were isolated and plated, permitting syncytialization. At 72 hours, syncytiotrophoblasts (STs) were treated for 1 hour with 7,8-DHF (10 nM-10 M), TRKB antagonists (ANA-12 (10 nM-1 M), Cyclotraxin B (1 nM-1M)), or vehicle. Mitochondrial respiration was measured using the XF24 Extracellular Flux Analyzer. TRKB, MAPK, and PGC1α were measured using Western blotting. Maternal obesity was associated with decreased mitochondrial respiration in STs; however, 7,8-DHF increased basal, ATP-coupled, maximal, spare capacity, and nonmitochondrial respiration. A 10 μM dose of 7,8-DHF reduced spare capacity in STs from lean women, with no effect on other respiration parameters. 7,8-DHF had no effect on TRKB phosphorylation; however, there was a concentration-dependent decrease of p38 MAPK phosphorylation and increase of PGC1α in STs from obese, but not in lean women. TRKB antagonism attenuated ATP-coupled respiration, maximal respiration, and spare capacity in STs from lean and obese women. 7,8-DHF improves mitochondrial respiration in STs from obese women, suggesting that the obese phenotype in the placenta can be rescued by TRKB activation.
Collapse
Affiliation(s)
- Calais S Prince
- 1 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, TX, USA
| | - Alina Maloyan
- 1 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, TX, USA.,2 Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- 1 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, TX, USA.,3 Deparment of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
35
|
|