1
|
Durand E, Laguerre M, Bourlieu-Lacanal C, Lecomte J, Villeneuve P. Navigating the complexity of lipid oxidation and antioxidation: A review of evaluation methods and emerging approaches. Prog Lipid Res 2024; 97:101317. [PMID: 39694099 DOI: 10.1016/j.plipres.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Lipid oxidative degradation contributes to the deterioration of food quality and poses potential health risks. A promising approach to counteract this is the use of plant-based antioxidants. However, accurately evaluating the antioxidant capacity and effectiveness of these compounds remains a challenge. While many rapid in vitro tests are available, they must be categorized according to their specific responses to avoid overinterpreting results. This review opens with an overview of current knowledge on lipid autoxidation and recent findings that highlight the challenges in measuring antioxidant capacity. We then examine various methods, addressing their limitations in accurately anticipating outcomes in complex compartmentalized lipid systems. The aim is to clarify the gap between predictions and real-world efficacy in final products. Additionally, the review compares the strengths and weaknesses of methods used to evaluate antioxidant capacity and assess oxidation degrees in complex environments, such as those found in food and cosmetics. Finally, new analytical techniques for multiproduct detection are introduced, paving the way for a more 'omic' and spatiotemporally defined approach.
Collapse
Affiliation(s)
- Erwann Durand
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Mickael Laguerre
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | | | - Jérôme Lecomte
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France.
| |
Collapse
|
2
|
Basler S, Sievi NA, Schmidt F, Fricke K, Arvaji A, Herth J, Baur DM, Sinues P, Ulrich S, Kohler M. Molecular breath profile of acute COPD exacerbations. J Breath Res 2024; 19:016011. [PMID: 39637433 DOI: 10.1088/1752-7163/ad9ac4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) show high variability in individual susceptibility and promote disease progression; thus, accurate diagnosis and treatment is essential. Unravelling the molecular metabolic changes during AECOPD in breath could promote understanding of AECOPD and its treatment. Our objective was to investigate the metabolic breath profiles during AECOPD for biomarker detection. We conducted real-time breath analysis in patients with COPD during AECOPD and during subsequent stable phase. Molecular breath patterns were compared between AECOPD and stable phase by dimension reduction techniques and paired t-tests. Pathway enrichment analyses were performed to investigate underlying metabolic pathways. Partial least-squares discriminant analysis and XGboost were utilised to build a prediction model to differentiate AECOPD from stable state. 35 patients (60% male) with a mean age of 65 (10.2) yr with AECOPD were included. AECOPD could be predicted with a high sensitivity of 82.5% (95% confidence interval of 68.8%-93.8%) and an excellent discriminative power (AUC = 0.86). Metabolic changes in the linoleate, tyrosine, and tryptophan pathways during AECOPD were predominant. Significant metabolic changes occur during COPD exacerbations, predominantly in the linoleate, tyrosine, and tryptophan pathways, which are all linked to inflammation. Real-time exhaled breath analysis enables a good prediction of AECOPD compared to stable state and thus could enhance precision of AECOPD diagnosis and efficacy in clinical practice.
Collapse
Affiliation(s)
- Sarah Basler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Noriane A Sievi
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Felix Schmidt
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Kai Fricke
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Arvaji
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Jonas Herth
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Diego M Baur
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Pablo Sinues
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- University Children's Hospital Basel, Basel, Switzerland
| | - Silvia Ulrich
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
France Štiglic A, Stajnko A, Sešek Briški A, Snoj Tratnik J, Mazej D, Jerin A, Skitek M, Horvat M, Marc J, Falnoga I. Associations between APOE genotypes, urine 8-isoprostane and blood trace elements in middle-aged mothers (CROME study). ENVIRONMENT INTERNATIONAL 2024; 193:109034. [PMID: 39447471 DOI: 10.1016/j.envint.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND There is almost no data on the combined associations between apolipoprotein E gene (APOE) genotypes, trace elements (TEs), and lipid peroxidation in vivo. The aim of our study was to evaluate the association between APOE genotypes and TE levels in blood (B-TEs) and erythrocytes (E-TEs), and 8-isoprostane in urine (U-8-isoprostane) in women with low exposure to potentially toxic TEs and with adequate supply of essential TEs. METHODS B-TEs, E-TEs and U-8-isoprostane were determined in 172 healthy women of childbearing age (30.1-51.4 years) using ICP-MS and ELISA competitive assay, respectively. All women were divided into three APOE genotype groups according to the presence of the ɛ4 allele, ɛ2 allele or ɛ3 homozygotic allele. The associations between B-TEs, E-TE, U-8-isoprostane, and the APOE genotype groups were estimated by multiple variable linear regression models with relevant explanatory variables (e.g., age, BMI, and seafood). RESULTS All TE and U-8-isoprostane levels were inside the reference ranges for the healthy population. In the multiple variable linear regression models, our results showed that urine 8-isoprostane levels increased by up to 43.3% in the APOE4 group compared to the APOE3 group and a negligible negative modifying effect for essential TEs. However, the APOE genotype groups were associated also with some TEs. A clear positive association was found between the APOE2 and APOE4 groups (vs. APOE3) with B-molybdenum. CONCLUSIONS Our study suggests that the APOE4 genotype played an important role in 8-isoprostane variability in a population with an adequate supply of essential and with low exposure to potentially toxic TEs. Adequate copper, zinc and selenium status seemed to be protective against, while the levels of nonessential TEs were probably too low to play a decisive role in 8-isoprostane formation. The observed impact of the APOE2 and APOE4 groups on increased B-molybdenum opens a new research topic.
Collapse
Affiliation(s)
- Alenka France Štiglic
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Alenka Sešek Briški
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia.
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Aleš Jerin
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milan Skitek
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Janja Marc
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Oger C, Pavlíčková T, Bultel-Poncé V, Guy A, Galano JM, Jahn U, Durand T. An update of isoprostanoid nomenclature. Prog Lipid Res 2024; 96:101301. [PMID: 39284419 DOI: 10.1016/j.plipres.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) play numerous roles in living organisms but are also prone to rapid aerobic oxidation, resulting in the production of a wide range of isomeric metabolites called oxylipins. Among these, isoprostanes, discovered in the 1990s, are formed non-enzymatically from ω-3 and ω-6 PUFAs with 16 to 22 carbon atoms. Over nearly 35 years of research, two nomenclature systems for isoprostanes have been proposed and have evolved. However, as research progresses, certain aspects of the current nomenclature remain unclear and require further clarification to ensure precise identification of each metabolite and its corresponding parent PUFA. Therefore, we propose an update to the current nomenclature system, along with practical guidelines for assessing isoprostanoid diversity and identifying their PUFA origins.
Collapse
Affiliation(s)
- Camille Oger
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM UMR 5247, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293 Montpellier, Cedex 5, France.
| | - Tereza Pavlíčková
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM UMR 5247, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293 Montpellier, Cedex 5, France; Institute of Organic Chemistry and Biochemistry of the Czech Academy of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Valérie Bultel-Poncé
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM UMR 5247, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293 Montpellier, Cedex 5, France
| | - Alexandre Guy
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM UMR 5247, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293 Montpellier, Cedex 5, France
| | - Jean-Marie Galano
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM UMR 5247, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293 Montpellier, Cedex 5, France
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Thierry Durand
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM UMR 5247, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293 Montpellier, Cedex 5, France
| |
Collapse
|
5
|
Kheirouri S, Alizadeh M, Keramati M. High use of non-hydrogenated plant source oils and mayonnaise sauce increase the risk of Parkinson disease. Nutr Neurosci 2024; 27:849-856. [PMID: 37997257 DOI: 10.1080/1028415x.2023.2277974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Objectives: This study aimed to assess the contribution of edible/cooking oils and mayonnaise sauce in the severity, motor and non-motor symptoms, and risk of Parkinson's disease (PD).Methods: In this study, 120 patients with PD and 50 healthy individuals participated. The frequency and quantity of edible/cooking oils including animal and plant source oils (hydrogenated and nonhydrogenated) and mayonnaise sauce used by participants were determined using a food frequency questionnaire. The severity of PD was determined by the Unified Parkinson's Disease Rating Scale (UPDRS).Results: Patients with PD had lower use of hydrogenated plant-based oil (HPO) (p < 0.001) and animal oils (p < 0.001) but had higher use of non-hydrogenated plant-based oil (NHPO) (p < 0.001), olive oil (p = 0.02), and mayonnaise sauce (p < 0.001) compared with the healthy subjects. Use of each unit HPO reduced 4% the odds of PD (p = 0.01). The odds of PD increased 20% by each unit increase in NHPO usage (p = 0.001), 49% by olive oil (p = 0.02), and 127% by mayonnaise sauce (p = 0.004) intake. According to receiver operator characteristics curve analysis, mayonnaise sauce and NHPO had the largest area under the curve in predicting PD. Intake of animal oil was positively correlated with total score of UPDRS (p = 0.05) and motor symptoms (p = 0.04). Intake of butter was positively correlated with total score of UPDRS (p = 0.047), nonmotor aspects of experiences of daily living (p = 0.02), and motor examination (p = 0.02).Discussion: The findings indicate that high intake of HPO reduces, while high intake of NHPO, olive oil, and mayonnaise sauce increases the odds of PD.
Collapse
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Keramati
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Smirnova EO, Lantsova NV, Hamberg M, Toporkova YY, Grechkin AN. The versatile CYP74 clan enzyme CYP440A19 from the European lancelet Branchiostoma lanceolatum biosynthesizes novel macrolactone, epoxydiene, and related oxylipins. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159507. [PMID: 38740178 DOI: 10.1016/j.bbalip.2024.159507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The present work reports the detection and cloning of a new CYP74 clan gene of the European lancelet (Branchiostoma lanceolatum) and the biochemical characterization of the recombinant protein CYP440A19. CYP440A19 possessed epoxyalcohol synthase (EAS) activity towards the 13-hydroperoxides of linoleic and α-linolenic acids, which were converted into oxiranylcarbinols, i.e., (11S,12R,13S)-11-hydroxy-12,13-epoxy derivatives. The conversion of 9-hydroperoxides produced distinct products. Linoleic acid 9(S)-hydroperoxide (9-HPOD) was mainly converted into 9,14-diol (10E,12E)-9,14-dihydroxy-10,12-octadecadienoic acid and macrolactone 9(S),10(R)-epoxy-11(E)-octadecen-13(S)-olide. In addition, (8Z)-colneleic acid was formed. Brief incubations of the enzyme with 9-HPOD in a biphasic system of hexane-water enabled the isolation of the short-lived 9,10-epoxydiene (9S,10R,11E,13E)-9,10-epoxy-11,13-octadecadienoic acid. The structure and stereochemistry of the epoxyalcohols, macrolactone, (8Z)-colneleic acid (Me), and 9,10-epoxydiene (Me) were confirmed by 1H-NMR, 1H-1H-COSY, 1H-13C-HSQC, and 1H-13C-HMBC spectroscopy. Macrolactone and cis-9,10-epoxydiene are novel products. The 9-hydroperoxide of α-linolenic acid was mainly converted into macrolactone 9(S),10(R)-epoxy-11(E),15(Z)-octadecadiene-13(S)-olide and a minority of divinyl ethers, particularly (8Z)-colnelenic acid. The versatility of enzyme catalysis, as well as the diversity of CYP74s and other enzymes involved in oxylipin biosynthesis, demonstrates the complexity of the lipoxygenase pathway in lancelets.
Collapse
Affiliation(s)
- Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia.
| | - Natalia V Lantsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Mats Hamberg
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia.
| |
Collapse
|
7
|
Roux C, Madru C, Millan Navarro D, Jan G, Mazzella N, Moreira A, Vedrenne J, Carassou L, Morin S. Impact of urban pollution on freshwater biofilms: Oxidative stress, photosynthesis and lipid responses. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134523. [PMID: 38723485 DOI: 10.1016/j.jhazmat.2024.134523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Urban ecosystems are subjected to multiple anthropogenic stresses, which impact aquatic communities. Artificial light at night (ALAN) for instance can significantly alter the composition of algal communities as well as the photosynthetic cycles of autotrophic organisms, possibly leading to cellular oxidative stress. The combined effects of ALAN and chemical contamination could increase oxidative impacts in aquatic primary producers, although such combined effects remain insufficiently explored. To address this knowledge gap, a one-month experimental approach was implemented under controlled conditions to elucidate effects of ALAN and dodecylbenzyldimethylammonium chloride (DDBAC) on aquatic biofilms. DDBAC is a biocide commonly used in virucidal products, and is found in urban aquatic ecosystems. The bioaccumulation of DDBAC in biofilms exposed or not to ALAN was analyzed. The responses of taxonomic composition, photosynthetic activity, and fatty acid composition of biofilms were examined. The results indicate that ALAN negatively affects photosynthetic yield and chlorophyll production of biofilms. Additionally, exposure to DDBAC at environmental concentrations induces lipid peroxidation, with an increase of oxylipins. This experimental study provides first insights on the consequences of ALAN and DDBAC for aquatic ecosystems. It also opens avenues for the identification of new biomarkers that could be used to monitor urban pollution impacts in natural environments.
Collapse
Affiliation(s)
- Caroline Roux
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France.
| | - Cassandre Madru
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | | | - Gwilherm Jan
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Nicolas Mazzella
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon 33140, France
| | - Aurélie Moreira
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon 33140, France
| | - Jacky Vedrenne
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Laure Carassou
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Soizic Morin
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| |
Collapse
|
8
|
Cardona E, Segret E, Heraud C, Roy J, Vigor C, Gros V, Reversat G, Sancho-Zubeldia B, Oger C, Durbec A, Bertrand-Michel J, Surget A, Galano JM, Corraze G, Cachelou Y, Marchand Y, Durand T, Cachelou F, Skiba-Cassy S. Adverse effects of excessive dietary arachidonic acid on survival, PUFA-derived enzymatic and non-enzymatic oxylipins, stress response in rainbow trout fry. Sci Rep 2024; 14:12376. [PMID: 38811794 PMCID: PMC11137042 DOI: 10.1038/s41598-024-63173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Arachidonic acid (C20: 4n-6, AA) plays a fundamental role in fish physiology, influencing growth, survival and stress resistance. However, imbalances in dietary AA can have detrimental effects on fish health and performance. Optimal AA requirements for rainbow trout have not been established. This study aimed to elucidate the effects of varying dietary AA levels on survival, growth, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic capacity, oxylipin profiles, lipid peroxidation, and stress resistance of rainbow trout fry. Over a period of eight weeks, 4000 female rainbow trout fry at the resorptive stage (0.12 g) from their first feeding were fed diets with varying levels of AA (0.6%, 1.1% or 2.5% of total fatty acids) while survival and growth metrics were closely monitored. The dietary trial was followed by an acute confinement stress test. Notably, while the fatty acid profiles of the fish reflected dietary intake, those fed an AA-0.6% diet showed increased expression of elongase5, highlighting their inherent ability to produce LC-PUFAs from C18 PUFAs and suggesting potential AA or docosapentaenoic acidn-6 (DPAn-6) biosynthesis. However, even with this biosynthetic capacity, the trout fed reduced dietary AA had higher mortality rates. The diet had no effect on final weight (3.38 g on average for the three diets). Conversely, increased dietary AA enhanced eicosanoid production from AA, suggesting potential inflammatory and oxidative consequences. This was further evidenced by an increase in non-enzymatic lipid oxidation metabolites, particularly in the AA-2.5% diet group, which had higher levels of phytoprostanes and isoprostanes, markers of cellular oxidative damage. Importantly, the AA-1.1% diet proved to be particularly beneficial for stress resilience. This was evidenced by higher post-stress turnover rates of serotonin and dopamine, neurotransmitters central to the fish's stress response. In conclusion, a dietary AA intake of 1.1% of total fatty acids appears to promote overall resilience in rainbow trout fry.
Collapse
Affiliation(s)
- Emilie Cardona
- Viviers de Rébénacq, 64260, Rébénacq, France.
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France.
| | | | - Cécile Heraud
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | - Jerome Roy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Valérie Gros
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | | | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Anaelle Durbec
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, 31077, Toulouse, France
| | - Justine Bertrand-Michel
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, 31077, Toulouse, France
| | - Anne Surget
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Geneviève Corraze
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | | | | | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | | | - Sandrine Skiba-Cassy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| |
Collapse
|
9
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
10
|
Elloumi A, Mas-Normand L, Bride J, Reversat G, Bultel-Poncé V, Guy A, Oger C, Demion M, Le Guennec JY, Durand T, Vigor C, Sánchez-Illana Á, Galano JM. From MS/MS library implementation to molecular networks: Exploring oxylipin diversity with NEO-MSMS. Sci Data 2024; 11:193. [PMID: 38351090 PMCID: PMC10864323 DOI: 10.1038/s41597-024-03034-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Oxylipins, small polar molecules derived from the peroxidation of polyunsaturated fatty acids (PUFAs), serve as biomarkers for many diseases and play crucial roles in human physiology and inflammation. Despite their significance, many non-enzymatic oxygenated metabolites of PUFAs (NEO-PUFAs) remain poorly reported, resulting in a lack of public datasets of experimental data and limiting their dereplication in further studies. To overcome this limitation, we constructed a high-resolution tandem mass spectrometry (MS/MS) dataset comprising pure NEO-PUFAs (both commercial and self-synthesized) and in vitro free radical-induced oxidation of diverse PUFAs. By employing molecular networking techniques with this dataset and the existent ones in public repositories, we successfully mapped a wide range of NEO-PUFAs, expanding the strategies for annotating oxylipins, and NEO-PUFAs and offering a novel workflow for profiling these molecules in biological samples.
Collapse
Affiliation(s)
- Anis Elloumi
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Lindsay Mas-Normand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Jamie Bride
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Marie Demion
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Jean-Yves Le Guennec
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Ángel Sánchez-Illana
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France.
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Spain.
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France.
| |
Collapse
|
11
|
Jing J, Ouyang L, Zhang H, Liang K, Ma R, Ge X, Tang T, Zhao S, Xue T, Shen J, Ma J, Li Z, Wu J, Yang Y, Zhao W, Zheng L, Qian Z, Sun S, Ge Y, Chen L, Li C, Yao B. Omega-3 polyunsaturated fatty acids and its metabolite 12-HEPE rescue busulfan disrupted spermatogenesis via target to GPR120. Cell Prolif 2024; 57:e13551. [PMID: 37743695 PMCID: PMC10849791 DOI: 10.1111/cpr.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Busulfan is an antineoplastic, which is always accompanied with the abnormal of spermatogonia self-renewal and differentiation. It has been demonstrated that the omega-3 polyunsaturated fatty acids (PUFAs) benefits mature spermatozoa. However, whether omega-3 can protect endogenous spermatogonia and the detailed mechanisms are still unclear. Evaluate of spermatogenesis function (in vivo) were examined by histopathological analysis, immunofluorescence staining, and western blotting. The levels of lipid metabolites in testicular tissue were determined via liquid chromatography. We investigated the effect of lipid metabolites on Sertoli cells provided paracrine factors to regulate spermatogonia proliferation and differentiation using co-culture system. In our study, we showed that omega-3 PUFAs significantly improved the process of sperm production and elevated the quantity of both undifferentiated Lin28+ spermatogonia and differentiated c-kit+ spermatogonia in a mouse model where spermatogenic function was disrupted by busulfan. Mass spectrometry revealed an increase in the levels of several omega-3 metabolites in the testes of mice fed with omega-3 PUFAs. The eicosapentaenoic acid metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) up-regulated bone morphogenic protein 4 (BMP4) expression through GPR120-ERK1/2 pathway activation in Sertoli cells and restored spermatogonia proliferation and differentiation. Our study provides evidence that omega-3 PUFAs metabolite 12-HEPE effectively protects spermatogonia and reveals that GPR120 might be a tractable pharmacological target for fertility in men received chemotherapy or severe spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Jun Jing
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Lei Ouyang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
| | - Hong Zhang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Kuan Liang
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
| | - Rujun Ma
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Xie Ge
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Ting Tang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Shanmeizi Zhao
- School of Life ScienceNanjing Normal UniversityNanjingChina
| | - Tongmin Xue
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Reproductive Medical Center, Clinical Medical College (Northern Jiangsu People's Hospital)Yangzhou UniversityYangzhouChina
| | - Jiaming Shen
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Jinzhao Ma
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Zhou Li
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Jing Wu
- Core Laboratory, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Yang Yang
- Basic Medical Laboratory, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Wei Zhao
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Lu Zheng
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Zhang Qian
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Shanshan Sun
- School of Life ScienceNanjing Normal UniversityNanjingChina
| | - Yifeng Ge
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Li Chen
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Bing Yao
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
- School of Life ScienceNanjing Normal UniversityNanjingChina
| |
Collapse
|
12
|
Mersni M, Zhou B, Reversat G, Khouja ML, Guy A, Oger C, Galano JM, Durand T, Messaoud C, Vigor C. Phytoprostanes and phytofurans: Bioactive compounds in aerial parts of Acacia cyanophylla Lindl. Fitoterapia 2024; 172:105717. [PMID: 37931720 DOI: 10.1016/j.fitote.2023.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The relevance of oxylipins as biomarkers of oxidative stress has been established in recent years. Phytoprostanes and phytofurans are plant metabolites derived from peroxidation of α-linolenic acid (ALA) induced by ROS. Previous findings have suggested new valuable biological properties for these new active compounds in the frame of diverse pathophysiological situations and health constraints. Lipidomic profiling of different aerial parts of the same Acacia cyanophylla Lindl. specimen, was evaluated for the first time here, using LC-MS/MS technology. Analysis revealed the existence of six PhytoPs and three PhytoFs. Stems have the highest amount of these metabolites with 179.35 ng/g and 320.79 ng/g respectively. This first complete profile paves the way to explore Acacia cyanophylla Lindl. as a source of plant oxylipins for therapeutic or pharmaceutical uses.
Collapse
Affiliation(s)
- Marwa Mersni
- University of Carthage, National Institute of Applied Sciences and Technology (INSAT), UR17ES22 Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, Centre Urbain Nord, BP 676, 1080 Tunis Cedex, Tunisia; Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Bingqing Zhou
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Guillaume Reversat
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Mohamed Larbi Khouja
- University of Carthage, National Institute of Research in Rural Engineering, Waters and Forests, BP 10, Ariana 2080, Tunisia
| | - Alexandre Guy
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Camille Oger
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Jean-Marie Galano
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Thierry Durand
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Chokri Messaoud
- University of Carthage, National Institute of Applied Sciences and Technology (INSAT), UR17ES22 Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, Centre Urbain Nord, BP 676, 1080 Tunis Cedex, Tunisia
| | - Claire Vigor
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France.
| |
Collapse
|
13
|
Harwood JL. Polyunsaturated Fatty Acids: Conversion to Lipid Mediators, Roles in Inflammatory Diseases and Dietary Sources. Int J Mol Sci 2023; 24:ijms24108838. [PMID: 37240183 DOI: 10.3390/ijms24108838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important components of the diet of mammals. Their role was first established when the essential fatty acids (EFAs) linoleic acid and α-linolenic acid were discovered nearly a century ago. However, most of the biochemical and physiological actions of PUFAs rely on their conversion to 20C or 22C acids and subsequent metabolism to lipid mediators. As a generalisation, lipid mediators formed from n-6 PUFAs are pro-inflammatory while those from n-3 PUFAs are anti-inflammatory or neutral. Apart from the actions of the classic eicosanoids or docosanoids, many newly discovered compounds are described as Specialised Pro-resolving Mediators (SPMs) which have been proposed to have a role in resolving inflammatory conditions such as infections and preventing them from becoming chronic. In addition, a large group of molecules, termed isoprostanes, can be generated by free radical reactions and these too have powerful properties towards inflammation. The ultimate source of n-3 and n-6 PUFAs are photosynthetic organisms which contain Δ-12 and Δ-15 desaturases, which are almost exclusively absent from animals. Moreover, the EFAs consumed from plant food are in competition with each other for conversion to lipid mediators. Thus, the relative amounts of n-3 and n-6 PUFAs in the diet are important. Furthermore, the conversion of the EFAs to 20C and 22C PUFAs in mammals is rather poor. Thus, there has been much interest recently in the use of algae, many of which make substantial quantities of long-chain PUFAs or in manipulating oil crops to make such acids. This is especially important because fish oils, which are their main source in human diets, are becoming limited. In this review, the metabolic conversion of PUFAs into different lipid mediators is described. Then, the biological roles and molecular mechanisms of such mediators in inflammatory diseases are outlined. Finally, natural sources of PUFAs (including 20 or 22 carbon compounds) are detailed, as well as recent efforts to increase their production.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
14
|
Ofosu J, Nartey MA, Mo X, Ye J, Zhang Y, Zeng C, Zhang M, Fang Y, Zhou G. Ram sperm cryopreservation disrupts metabolism of unsaturated fatty acids. Theriogenology 2023; 204:8-17. [PMID: 37030173 DOI: 10.1016/j.theriogenology.2023.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
In ram sperm, metabolites are important components of the plasma membrane, energy metabolism cycle, and precursors for other membrane lipids, and they may have important roles in maintaining plasma membrane integrity, energy metabolism, and regulation of cryotolerance. In this study, the ejaculates from 6 Dorper rams were pooled and sperm were systematically investigated by metabolomics at various steps of cryopreservation (37 °C, fresh [F]; from 37 to 4 °C, cooling [C]; and from 4 to -196 to 37 °C, frozen-thawed [FT]) to identify differential metabolites (DM). There were 310 metabolites identified, of which 86 were considered DMs. Regarding the DMs, there were 23 (0 up and 23 down), 25 (12 up and 13 down), and 38 (7 up and 31 down) identified during cooling (C vs F), freezing (FT vs C), and cryopreservation (FT vs F), respectively. Furthermore, some key polyunsaturated fatty acids (FAs), particularly, linoleic acid (LA), docosahexaenoic acid (DHA), and arachidonic acid (AA) were down-regulated during cooling and cryopreservation. Significant DMs were enriched in several metabolic pathways including biosynthesis of unsaturated FAs, LA metabolism, mammalian target of rapamycin (mTOR), forkhead box transcription factors (FoxO), adenosine monophosphate-activated protein kinase (AMPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signaling pathways, regulation of lipolysis in adipocytes, and FA biosynthesis. This was apparently the first report to compare metabolomics profiles of ram sperm during cryopreservation and provided new knowledge to improve this process.
Collapse
Affiliation(s)
- Jones Ofosu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Moses Addo Nartey
- Department of Animal and Health Science, University of Energy and Natural Resources, Ghana
| | - Xianhong Mo
- College of Chemistry and Life Science, Chifeng University, Chifeng, 024000, PR China
| | - Jiangfeng Ye
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yan Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changjun Zeng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ming Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China.
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
15
|
Biagini D, Ghimenti S, Lenzi A, Bonini A, Vivaldi F, Oger C, Galano JM, Balas L, Durand T, Salvo P, Di Francesco F, Lomonaco T. Salivary lipid mediators: Key indexes of inflammation regulation in heart failure disease. Free Radic Biol Med 2023; 201:55-65. [PMID: 36940734 DOI: 10.1016/j.freeradbiomed.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature death and disability in humans and their incidence continues to increase. Oxidative stress and inflammation have been recognized as key pathophysiological factors in cardiovascular events. The targeted modulation of the endogenous mechanisms of inflammation, rather than its simple suppression, will become key in treating chronic inflammatory diseases. A comprehensive characterization of the signalling molecules involved in inflammation, such as endogenous lipid mediators, is thus needed. Here, we propose a powerful MS-based platform for the simultaneous quantitation of sixty salivary lipid mediators in CVD samples. Saliva, which represents a non-invasive and painless alternative to blood, was collected from patients suffering from acute and chronic heart failure (AHF and CHF, respectively), obesity and hypertension. Of all the patients, those with AHF and hypertension showed higher levels of isoprostanoids, which are key indexes of oxidant insult. Compared to the obese population, AHF patients showed lower levels (p < 0.02) of antioxidant omega-3 fatty acids, in line with the "malnutrition-inflammation complex syndrome" typical of HF patients. At hospital admission, AHF patients showed significantly higher levels (p < 0.001) of omega-3 DPA and lower levels (p < 0.04) of lipoxin B4 than CHF patients, suggesting a lipid rearrangement typical of the failing heart during acute decompensation. If confirmed, our results highlight the potential use of lipid mediators as predictive markers of re-acutisation episodes, thus providing opportunities for preventive intervention and a reduction in hospitalizations.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy; Department of Biology, University of Pisa, Via San Zeno 35-39, Pisa, 56100, Italy
| | - Federico Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247 CNRS, University of Montpellier, ENSCN, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247 CNRS, University of Montpellier, ENSCN, France
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247 CNRS, University of Montpellier, ENSCN, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247 CNRS, University of Montpellier, ENSCN, France
| | - Pietro Salvo
- Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| |
Collapse
|
16
|
Arcusa R, Carillo JÁ, Cerdá B, Durand T, Gil-Izquierdo Á, Medina S, Galano JM, Zafrilla MP, Marhuenda J. Ability of a Polyphenol-Rich Nutraceutical to Reduce Central Nervous System Lipid Peroxidation by Analysis of Oxylipins in Urine: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Antioxidants (Basel) 2023; 12:antiox12030721. [PMID: 36978969 PMCID: PMC10045327 DOI: 10.3390/antiox12030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Isoprostanes (IsoPs) are lipid peroxidation biomarkers that reveal the oxidative status of the organism without specifying which organs or tissues it occurs in. Similar compounds have recently been identified that can assess central nervous system (CNS) lipid peroxidation status, usually oxidated by reactive oxygen species. These compounds are the neuroprostanes (NeuroPs) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the F2t-dihomo-isoprotanes derived from adrenic acid (AdA). The aim of the present investigation was to evaluate whether the long-term nutraceutical consumption of high polyphenolic contents (600 mg) from fruits (such as berries) and vegetables shows efficacy against CNS lipid peroxidation in urine biomarkers. A total of 92 subjects (47 females, 45 males, age 34 ± 11 years old, weight 73.10 ± 14.29 kg, height 1.72 ± 9 cm, body mass index (BMI) 24.40 ± 3.43 kg/m2) completed a randomized, cross-over, double-blind study after an intervention of two periods of 16 weeks consuming either extract (EXT) or placebo (PLA) separated by a 4-week washout period. The results showed significant reductions in three AdA-derived metabolites, namely, 17-epi-17-F2t-dihomo-IsoPs (Δ −1.65 ng/mL; p < 0.001), 17-F2t-dihomo-IsoPs (Δ −0.17 ng/mL; p < 0.015), and ent-7(RS)-7-F2t-dihomo-IsoPs (Δ −1.97 ng/mL; p < 0.001), and one DHA-derived metabolite, namely, 4-F4t-NeuroP (Δ −7.94 ng/mL; p < 0.001), after EXT consumption, which was not observed after PLA consumption. These data seem to show the effectiveness of the extract for preventing CNS lipid peroxidation, as determined by measurements of oxylipins in urine through Ultra-High-Performance Liquid Chromatography triple quadrupole tandem mass spectrometry (UHPLC-QqQ-ESI-MS/MS).
Collapse
Affiliation(s)
- Raúl Arcusa
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| | - Juan Ángel Carillo
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| | - Begoña Cerdá
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, Université de Montpellier, ENSCM 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France; (T.D.); (J.-M.G.)
| | - Ángel Gil-Izquierdo
- Research Group on Quality Safety and Bioactivity of Plant Foods, Food Science and Technology Department, CEBAS-CSIC, 30100 Murcia, Spain; (Á.G.-I.); (S.M.)
| | - Sonia Medina
- Research Group on Quality Safety and Bioactivity of Plant Foods, Food Science and Technology Department, CEBAS-CSIC, 30100 Murcia, Spain; (Á.G.-I.); (S.M.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, Université de Montpellier, ENSCM 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France; (T.D.); (J.-M.G.)
| | - María Pilar Zafrilla
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
- Correspondence: ; Tel.: +34-685-607-716
| | - Javier Marhuenda
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| |
Collapse
|
17
|
Barros Santos MC, Barouh N, Lullien-Pellerin V, Micard V, Villeneuve P, Zhou B, Oger C, Vigor C, Durand T, Ferreira MSL, Bourlieu-Lacanal C, Ryan EP. Rice Bran Lipidome Identifies Novel Phospholipids, Glycolipids, and Oxylipins with Roles in Lipid Metabolism of Hypercholesterolemic Children. Mol Nutr Food Res 2023; 67:e2200111. [PMID: 36461912 DOI: 10.1002/mnfr.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/25/2022] [Indexed: 12/07/2022]
Abstract
SCOPE The purpose of the study is to characterize the chemical diversity in rice bran (RB) lipidome and determines whether daily RB consumption for 4 weeks may modulate plasma lipid profiles in children. METHODS AND RESULTS Untargeted and targeted lipidomics via ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-MS/MS) are applied to identify bioactive RB lipids from a collection of 17 rice varieties. To determine the impact of RB (Calrose-USA variety) supplementation on plasma lipid profile, a secondary analysis of plasma lipidome is conducted on data recorded in a clinical study (NCT01911390, n = 18 moderately hypercholesterolemic children) before and after 4 weeks of dietary intervention with a control or RB supplemented (15 g day-1 ) snack. Untargeted lipidomic reveals 118 lipids as the core of lipidome across all varieties among which phospholipids are abundant and oxylipins present. Phytoprostanes and phytofurans are quantified and characterized. Lipidome analysis of the children plasma following RB consumption reveals the presence of polar lipids and oxylipins alongside putative modulations in endocannabinoids associated with RB consumption. CONCLUSION The investigation of novel polar lipids, oxylipins, phytoprostanes, and phytofurans in RB extracts provides support for new health-promoting properties interesting for people at risk for cardiometabolic disease.
Collapse
Affiliation(s)
- Millena Cristina Barros Santos
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- UMR IATE, UM/INRAE/Institut Agro, Montpellier, F-34060, France
| | - Nathalie Barouh
- CIRAD, UMR Qualisud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | | | - Valérie Micard
- UMR IATE, UM/INRAE/Institut Agro, Montpellier, F-34060, France
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Bingqing Zhou
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, F-34090, France
| | - Camille Oger
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, F-34090, France
| | - Claire Vigor
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, F-34090, France
| | - Thierry Durand
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, F-34090, France
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
18
|
Damiani T, Bonciarelli S, Thallinger GG, Koehler N, Krettler CA, Salihoğlu AK, Korf A, Pauling JK, Pluskal T, Ni Z, Goracci L. Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions. Anal Chem 2023; 95:287-303. [PMID: 36625108 PMCID: PMC9835057 DOI: 10.1021/acs.analchem.2c04406] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tito Damiani
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Praha 6, Czech Republic
| | - Stefano Bonciarelli
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gerhard G. Thallinger
- Institute
of Biomedical Informatics, Graz University
of Technology, 8010 Graz, Austria,
| | - Nikolai Koehler
- LipiTUM,
Chair of Experimental Bioinformatics, Technical
University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | | | - Arif K. Salihoğlu
- Department
of Physiology, Faculty of Medicine and Institute of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ansgar Korf
- Bruker Daltonics
GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Josch K. Pauling
- LipiTUM,
Chair of Experimental Bioinformatics, Technical
University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | - Tomáš Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Praha 6, Czech Republic
| | - Zhixu Ni
- Center of
Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy,
| | - Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy,
| |
Collapse
|
19
|
Moretti E, Signorini C, Noto D, Corsaro R, Micheli L, Durand T, Oger C, Galano JM, Collodel G. F 4-Neuroprostane Effects on Human Sperm. Int J Mol Sci 2023; 24:ijms24020935. [PMID: 36674450 PMCID: PMC9861396 DOI: 10.3390/ijms24020935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Swim-up selected human sperm were incubated with 7 ng F4-neuroprostanes (F4-NeuroPs) for 2 and 4 h. Sperm motility and membrane mitochondrial potential (MMP) were evaluated. The percentage of reacted acrosome was assessed by pisum sativum agglutinin (PSA). Chromatin integrity was detected using the acridine orange (AO) assay and localization of the ryanodine receptor was performed by immunofluorescence analysis. Sperm progressive motility (p = 0.02) and the percentage of sperm showing a strong MMP signal (p = 0.012) significantly increased after 2 h F4-NeuroP incubation compared to control samples. The AO assay did not show differences in the percentage of sperm with dsDNA between treated or control samples. Meanwhile, a significantly higher number of sperm with reacted acrosomes was highlighted by PSA localization after 4 h F4-NeuroP incubation. Finally, using an anti-ryanodine antibody, the immunofluorescence signal was differentially distributed at 2 and 4 h: a strong signal was evident in the midpiece and postacrosomal sheath (70% of sperm) at 2 h, whereas a dotted one appeared at 4 h (53% of sperm). A defined concentration of F4-NeuroPs in seminal fluid may induce sperm capacitation via channel ions present in sperm cells, representing an aid during in vitro sperm preparation that may increase the positive outcome of assisted fertilization.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, 53100 Siena, Italy
- Correspondence:
| | - Daria Noto
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, 53100 Siena, Italy
| | - Lucia Micheli
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pole Chimie Balard Recherche, UMR 5247, CNRS, Université de Montpellier, ENSCM, 34090 Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pole Chimie Balard Recherche, UMR 5247, CNRS, Université de Montpellier, ENSCM, 34090 Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pole Chimie Balard Recherche, UMR 5247, CNRS, Université de Montpellier, ENSCM, 34090 Montpellier, France
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, 53100 Siena, Italy
| |
Collapse
|
20
|
Havaux M. Review of Lipid Biomarkers and Signals of Photooxidative Stress in Plants. Methods Mol Biol 2023; 2642:111-128. [PMID: 36944875 DOI: 10.1007/978-1-0716-3044-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The degree of unsaturation of plant lipids is high, making them sensitive to oxidation. They thus constitute primary targets of reactive oxygen species and oxidative stress. Moreover, the hydroperoxides generated during lipid peroxidation decompose in a variety of secondary products which can propagate oxidative stress or trigger signaling mechanisms. Both primary and secondary products of lipid oxidation are helpful markers of oxidative stress in plants. This chapter describes a number of methods that have been developed to measure those biomarkers and signals, with special emphasis on the monitoring of photooxidative stress. Depending on their characteristics, those lipid markers provide information not only on the oxidation status of plant tissues but also on the origin of lipid peroxidation, the localization of the damage, or the type of reactive oxygen species involved.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, Bioscience and Biotechnology Institute of Aix-Marseille, CEA/Cadarache, Saint-Paul-lez-Durance, France.
| |
Collapse
|
21
|
Bagayoko S, Meunier E. Emerging roles of ferroptosis in infectious diseases. FEBS J 2022; 289:7869-7890. [PMID: 34670020 DOI: 10.1111/febs.16244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023]
Abstract
In living organisms, lipid peroxidation is a continuously occurring cellular process and therefore involved in various physiological and pathological contexts. Among the broad variety of lipids, polyunsaturated fatty acids (PUFA) constitute a major target of oxygenation either when released as mediators by phospholipases or when present in membranous phospholipids. The last decade has seen the characterization of an iron- and lipid peroxidation-dependent cell necrosis, namely, ferroptosis, that involves the accumulation of peroxidized PUFA-containing phospholipids. Further studies could link ferroptosis in a very large body of (physio)-pathological processes, including cancer, neurodegenerative, and metabolic diseases. In this review, we mostly focus on the emerging involvement of lipid peroxidation-driven ferroptosis in infectious diseases, and the immune consequences. We also discuss the putative ability of microbial virulence factors to exploit or to dampen ferroptosis regulatory pathways to their own benefit.
Collapse
Affiliation(s)
- Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, France
| |
Collapse
|
22
|
Savchenko T, Degtyaryov E, Radzyukevich Y, Buryak V. Therapeutic Potential of Plant Oxylipins. Int J Mol Sci 2022; 23:14627. [PMID: 36498955 PMCID: PMC9741157 DOI: 10.3390/ijms232314627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
For immobile plants, the main means of protection against adverse environmental factors is the biosynthesis of various secondary (specialized) metabolites. The extreme diversity and high biological activity of these metabolites determine the researchers' interest in plants as a source of therapeutic agents. Oxylipins, oxygenated derivatives of fatty acids, are particularly promising in this regard. Plant oxylipins, which are characterized by a diversity of chemical structures, can exert protective and therapeutic properties in animal cells. While the therapeutic potential of some classes of plant oxylipins, such as jasmonates and acetylenic oxylipins, has been analyzed thoroughly, other oxylipins are barely studied in this regard. Here, we present a comprehensive overview of the therapeutic potential of all major classes of plant oxylipins, including derivatives of acetylenic fatty acids, jasmonates, six- and nine-carbon aldehydes, oxy-, epoxy-, and hydroxy-derivatives of fatty acids, as well as spontaneously formed phytoprostanes and phytofurans. The presented analysis will provide an impetus for further research investigating the beneficial properties of these secondary metabolites and bringing them closer to practical applications.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Puschchino State Institute of Natural Sciences, Prospect Nauki st., 3, 142290 Pushchino, Russia
| | - Yaroslav Radzyukevich
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vlada Buryak
- Faculty of Biotechnology, Moscow State University, Leninskie Gory 1, str. 51, 119991 Moscow, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
23
|
Yen TH, Chang CW, Tsai HR, Fu JF, Yen HC. Immunosuppressive therapies attenuate paraquat-induced renal dysfunction by suppressing inflammatory responses and lipid peroxidation. Free Radic Biol Med 2022; 191:249-260. [PMID: 36031164 DOI: 10.1016/j.freeradbiomed.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
Abstract
Although paraquat (PQ) induces oxidative damage and inflammatory responses in the lungs, the mechanism underlying PQ-induced acute kidney injury in patients is unclear. Immunosuppressive therapy with glucocorticoids and the immunosuppressant cyclophosphamide (CP) has been employed to treat patients with PQ poisoning. This study examined whether PQ could concurrently cause renal injury, inflammatory responses, and oxidative damage in the kidneys, and whether CP and dexamethasone (DEX) could suppress PQ-induced alterations. Mice were assigned to eight groups: Control, PQ, DEX, PQ plus DEX, CP, PQ plus CP, DEX plus CP, and PQ plus DEX with CP. DEX, CP, and DEX plus CP reversed PQ-induced renal injury, as indicated by urinary albumin-to-creatinine ratios and urea nitrogen levels in serum. The treatments also attenuated PQ-induced renal infiltration of leukocytes and macrophages and induction of the Il6, Tnf, Icam, Cxcl2, Tlr4, and Tlr9 genes encoding the inflammatory mediators in the kidneys. However, DEX only partially suppressed the macrophage infiltration, whereas DEX plus CP provided stronger protection than DEX or CP alone for the induction of Il6 and Cxcl2. Moreover, through the detection of F2-isoprostanes (F2-IsoPs) and isofurans in the kidneys and lungs and F2-IsoPs in the plasma and urine, the therapies were found to suppress PQ-induced lipid peroxidation, although DEX was less effective. Finally, PQ decreased ubiquinol-9:ubiquinone-9 ratios in the kidneys. This effect of PQ was not found under CP treatment, but the ratio was lower than that of the control group. Our findings suggest that the suppression of PQ-induced inflammatory responses by DEX and CP in the kidneys can mitigate oxidative damage and acute kidney injury.
Collapse
Affiliation(s)
- Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Poison Center, Kidney Research Center, And Center for Tissue Engineering, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Wei Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huei-Ru Tsai
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Poison Center, Kidney Research Center, And Center for Tissue Engineering, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jen-Fen Fu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiu-Chuan Yen
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Lara-Guzmán ÓJ, Rivera DA, Corrales-Agudelo V, Salazar-Jaramillo L, Gil-Izquierdo Á, Medina S, Oger C, Durand T, Galano JM, Escobar JS, Muñoz-Durango K, Sierra JA. Dietary antioxidant intake is inversely associated with 2,3-dinor oxylipin metabolites, the major excreted oxylipins in overweight and obese subjects. Free Radic Biol Med 2022; 190:42-54. [PMID: 35933054 DOI: 10.1016/j.freeradbiomed.2022.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 10/16/2022]
Abstract
Cardiometabolic disease risk factors, including obesity, insulin resistance, high blood pressure, and dyslipidemia, are associated with elevated oxidative stress biomarkers like oxylipins. Increased adiposity by itself induces various isomers of this oxidized lipid family, while dietary polyphenols show benefits in its regulation. Previously, we showed that specific co-abundant microorganisms characterized the gut microbiota of Colombians and associated differentially with diet, lifestyle, obesity, and cardiometabolic health status, which led us to hypothesize that urinary oxylipins would reflect the intensity of oxidative metabolism linked to gut microbiota dysbiosis. Thus, we selected a convenience sample of 105 participants (age: 40.2 ± 11.9 years, 47.6% women), grouped according to microbiota, cardiometabolic health status, and body mass index (BMI); and evaluated 33 urinary oxylipins by HPLC-QqQ-MS/MS (e.g., isoprostanes, prostaglandins, and metabolites), paired with anthropometry and blood chemistry information and dietary antioxidants estimated from a 24-h food recall. In general, oxylipins did not show differences among individuals who differed in gut microbiota. While the unmetabolized oxylipin levels were not associated with BMI, the total content of oxylipin metabolites was highest in obese and cardiometabolically abnormal subjects (e.g., insulin resistant), mainly by prostaglandin-D (2,3-dinor-11β-PGF2α) and 15-F2t-IsoPs (2,3-dinor-15-F2t-IsoP and 2,3-dinor-15-epi-15-F2t-IsoP) metabolites. The total polyphenol intake in this cohort was 1070 ± 627 mg/day. After adjusting for body weight, the polyphenol intake was significantly higher in lean than overweight and showed an inverse association with dinor-oxylipin levels in principal component analysis. These results suggest that the 2,3-dinor-oxylipins could be more specific biomarkers associated with BMI than their parent oxylipins and that are sensitive to be regulated by dietary antioxidants.
Collapse
Affiliation(s)
- Óscar J Lara-Guzmán
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia
| | - Diego A Rivera
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia
| | - Vanessa Corrales-Agudelo
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia
| | - Laura Salazar-Jaramillo
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimi Balard recherché, UMR 5247, CNRS, University of Montpellier, ENSCM, 1919 route de Mende, 34093, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimi Balard recherché, UMR 5247, CNRS, University of Montpellier, ENSCM, 1919 route de Mende, 34093, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimi Balard recherché, UMR 5247, CNRS, University of Montpellier, ENSCM, 1919 route de Mende, 34093, Montpellier, France
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia
| | - Katalina Muñoz-Durango
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia.
| | - Jelver A Sierra
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia.
| |
Collapse
|
25
|
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases. Front Cell Infect Microbiol 2022; 12:870398. [PMID: 35937690 PMCID: PMC9353526 DOI: 10.3389/fcimb.2022.870398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
One of the growing global health problems are vector-borne diseases, including tick-borne diseases. The most common tick-borne diseases include Lyme disease, tick-borne encephalitis, human granulocytic anaplasmosis, and babesiosis. Taking into account the metabolic effects in the patient's body, tick-borne diseases are a significant problem from an epidemiological and clinical point of view. Inflammation and oxidative stress are key elements in the pathogenesis of infectious diseases, including tick-borne diseases. In consequence, this leads to oxidative modifications of the structure and function of phospholipids and proteins and results in qualitative and quantitative changes at the level of lipid mediators arising in both reactive oxygen species (ROS) and ROS enzyme-dependent reactions. These types of metabolic modifications affect the functioning of the cells and the host organism. Therefore, links between the severity of the disease state and redox imbalance and the level of phospholipid metabolites are being searched, hoping to find unambiguous diagnostic biomarkers. Assessment of molecular effects of oxidative stress may also enable the monitoring of the disease process and treatment efficacy.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marta Dobrzyńska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
26
|
Wu X, Cao X, Lintelmann J, Peters A, Koenig W, Zimmermann R, Schneider A, Wolf K. Assessment of the association of exposure to polycyclic aromatic hydrocarbons, oxidative stress, and inflammation: A cross-sectional study in Augsburg, Germany. Int J Hyg Environ Health 2022; 244:113993. [PMID: 35777219 DOI: 10.1016/j.ijheh.2022.113993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to acute and chronic health effects through the suggested pathways of oxidative stress and inflammation. However, evidence is still limited. We aimed to investigate jointly the relationship of PAHs, oxidative stress, and inflammation. METHODS We measured 13 biomarkers of PAH exposure (n = 6: hydroxylated polycyclic aromatic hydrocarbons, [OH-PAHs]), oxidative stress (n = 6: malondialdehyde (MDA); 8-hydroxy-2'-deoxyguanosine (8-OHdG); and 4 representatives of the compound class of F2α-isoprostanes) in urine, and inflammation (n = 1: high-sensitivity C-reactive protein, [hs-CRP]) in serum from 400 participants at the second follow-up (2013/2014) of the German KORA survey S4. Multiple linear regression models were applied to investigate the interplay between biomarkers. RESULTS Concentrations of biomarkers varied according to sex, age, smoking status, season, and a history of obesity, diabetes, or chronic kidney disease. All OH-PAHs were significantly and positively associated with oxidative stress biomarkers. An interquartile range (IQR) increase in sum OH-PAHs was associated with a 13.3% (95% CI: 9.9%, 16.9%) increase in MDA, a 6.5% (95% CI: 3.5%, 9.6%) increase in 8-OHdG, and an 8.4% (95% CI: 6.6%, 11.3%) increase in sum F2α-isoprostanes. Associations were more pronounced between OH-PAHs and F2α-isoprostanes but also between OH-PAHs and 8-OHdG for participants with potential underlying systemic inflammation (hs-CRP ≥ 3 mg/L). We observed no association between OH-PAHs and hs-CRP levels. While 8-OHdG was significantly positively associated with hs-CRP (13.7% [95% CI: 2.2%, 26.5%] per IQR increase in 8-OHdG), F2α-isoprostanes and MDA indicated only a positive or null association, respectively. CONCLUSION The results of this cross-sectional study suggest, at a population level, that exposure to PAHs is associated with oxidative stress even in a low exposure setting. Oxidative stress markers, but not PAHs, were associated with inflammation. Individual risk factors were important contributors to these processes and should be considered in future studies. Further longitudinal studies are necessary to investigate the causal chain of the associations.
Collapse
Affiliation(s)
- Xiao Wu
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xin Cao
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jutta Lintelmann
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research, Munich, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wolfgang Koenig
- German Heart Centre Munich, Technical University of Munich, Munich, Germany; DZHK, German Centre for Cardiovascular Research, Partner Site Munich, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Ralf Zimmermann
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.
| | | |
Collapse
|
27
|
Groth M, Łuczaj W, Dunaj-Małyszko J, Skrzydlewska E, Moniuszko-Malinowska A. Differences in the plasma phospholipid profile of patients infected with tick-borne encephalitis virus and co-infected with bacteria. Sci Rep 2022; 12:9538. [PMID: 35680957 PMCID: PMC9184562 DOI: 10.1038/s41598-022-13765-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Tick-borne encephalitis (TBE) is an infectious viral disease, the pathogenesis of which is still not fully understood. Additionally, TBE can be complicated by co-infections with various bacteria that are also transmitted by ticks, which can affect the proper diagnosis and treatment. Therefore, the aim of the study was to evaluate changes in the plasma phospholipid (PL) and ceramide (CER) profile of patients with TBE and patients with bacterial co-infection (B. burgdorferi or A. phagocytophilum) in relation to healthy subjects. For this purpose, a high-resolution LC-QTOF-MS/MS platform as well as univariate and multivariate statistics were used. The results of this study showed that the levels of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) species were increased in the plasma of patients with TBE and patients with TBE co-infected with bacteria. On the other hand, observed differences in the content of phosphoethanolamines (PE) and sphingomyelins (SM) make it possible to distinguish TBE patients from patients with co-infections. The opposite direction of changes was also observed in the CER content. This study showed significant modifications to the metabolic pathways of linoleic (LA) and arachidonic acid (AA), as confirmed by the quantitative analysis of these fatty acids. The obtained results allow to distinguish the pathomechanism of TBE from TBE with bacterial co-infection, and consequently may improve the diagnostic process and enable more efficient pharmacotherapy against both pathogens.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland.
| | - Justyna Dunaj-Małyszko
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| |
Collapse
|
28
|
Geng X, Galano JM, Oger C, Sun GY, Durand T, Lee JC. Neuroprotective effects of DHA-derived peroxidation product 4(RS)-4-F4t-neuroprostane on microglia. Free Radic Biol Med 2022; 185:1-5. [PMID: 35447333 PMCID: PMC10150398 DOI: 10.1016/j.freeradbiomed.2022.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
The abundance of docosahexaenoic acid (DHA) in brain membrane phospholipids has stimulated studies to explore its role in neurological functions. Upon released from phospholipids, DHA undergoes enzymatic reactions resulting in synthesis of bioactive docosanoids and prostanoids. However, these phospholipids are also prone to non-enzymatic reactions leading to more complex pattern of metabolites. A non-enzymatic oxidized product of DHA, 4(RS)-4-F4t-Neuroprostane (44FNP), has been identified in cardiac and brain tissues. In this study, we examined effects of the 44FNP on oxidative and inflammatory responses in microglial cells treated with lipopolysaccharide (LPS). The 44FNP attenuated LPS-induced production of reactive oxygen species (ROS) in both primary and immortalized microglia (BV2). It also attenuated LPS-induced inflammation through suppressing NFκB-p65 and levels of iNOS and TNFα. In addition, 44FNP also suppressed LPS-induced mitochondrial dysfunction and upregulated the Nrf2/HO-1 antioxidative pathway. In sum, these findings with microglial cells demonstrated neuroprotective effects of this 44FNP and shed light into the potential of nutraceutical therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xue Geng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jean-Marie Galano
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Camille Oger
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, 65211, USA
| | - Thierry Durand
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - James C Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
29
|
Collodel G, Moretti E, Noto D, Corsaro R, Signorini C. Oxidation of Polyunsaturated Fatty Acids as a Promising Area of Research in Infertility. Antioxidants (Basel) 2022; 11:antiox11051002. [PMID: 35624866 PMCID: PMC9137497 DOI: 10.3390/antiox11051002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, the role of fatty acids (FA) in human pathological conditions, infertility in particular, was considered. FA and FA-derived metabolites modulate cell membrane composition, membrane lipid microdomains and cell signaling. Moreover, such molecules are involved in cell death, immunological responses and inflammatory processes. Human health and several pathological conditions are specifically associated with both dietary and cell membrane lipid profiles. The role of FA metabolism in human sperm and spermatogenesis has recently been investigated. Cumulative findings indicate F2 isoprostanes (oxygenated products from arachidonic acid metabolism) and resolvins (lipid mediators of resolution of inflammation) as promising biomarkers for the evaluation of semen and follicular fluid quality. Advanced knowledge in this field could lead to new scenarios in the treatment of infertility.
Collapse
|
30
|
Poultry Meat and Eggs as an Alternative Source of n-3 Long-Chain Polyunsaturated Fatty Acids for Human Nutrition. Nutrients 2022; 14:nu14091969. [PMID: 35565936 PMCID: PMC9099610 DOI: 10.3390/nu14091969] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023] Open
Abstract
The beneficial effects of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on human health are widely known. Humans are rather inefficient in synthesizing n-3 LC-PUFA; thus, these compounds should be supplemented in the diet. However, most Western human diets have unbalanced n-6/n-3 ratios resulting from eating habits and the fact that fish sources (rich in n-3 LC-PUFA) are not sufficient (worldwide deficit ~347,956 t/y) to meet the world requirements. In this context, it is necessary to find new and sustainable sources of n-3 LC-PUFA. Poultry products can provide humans n-3 LC-PUFA due to physiological characteristics and the wide consumption of meat and eggs. The present work aims to provide a general overview of the main strategies that should be adopted during rearing and postproduction to enrich and preserve n-3 LC-PUFA in poultry products. The strategies include dietary supplementation of α-Linolenic acid (ALA) or n-3 LC-PUFA, or enhancing n-3 LC-PUFA by improving the LA (Linoleic acid)/ALA ratio and antioxidant concentrations. Moreover, factors such as genotype, rearing system, transport, and cooking processes can impact the n-3 LC-PUFA in poultry products. The use of a multifactorial view in the entire production chain allows the relevant enrichment and preservation of n-3 LC-PUFA in poultry products.
Collapse
|
31
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 219] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
32
|
Putman AK, Sordillo LM, Contreras GA. The Link Between 15-F2t-Isoprostane Activity and Acute Bovine Endothelial Inflammation Remains Elusive. Front Vet Sci 2022; 9:873544. [PMID: 35573419 PMCID: PMC9100427 DOI: 10.3389/fvets.2022.873544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023] Open
Abstract
Modern dairy cattle suffer from increased incidence and severity of mastitis during major physiological transitions of the lactation cycle. Oxidative stress, a condition resulting from inadequate antioxidant defense against reactive oxygen and nitrogen species, is a major underlying component of mastitis pathophysiology. Isoprostanes (IsoP) are molecules derived from cellular lipid membranes upon non-enzymatic interaction with reactive species during inflammation, and are regarded as highly sensitive and specific biomarkers of oxidative stress. Changes in IsoP concentrations have been noted during major physiological transitions and diseases such as coliform mastitis in dairy cattle. However, the biological role of IsoP during oxidative stress in dairy cows has not been well-elucidated. Therefore, this study aimed to characterize the impacts of IsoP on oxidative stress outcomes in a bovine model of acute endothelial inflammation. Bovine aortic endothelial cells (BAEC; n = 4) were stimulated with 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) or lipopolysaccharide (LPS) with or without 15-F2t-IsoP to determine how IsoP influence oxidative stress outcomes. Our endothelial inflammation model showed relatively decreased reactive metabolites and increased barrier integrity in cells treated with both the agonist and IsoP compared to agonist treatment alone. However, IsoP do not appear to affect oxidative stress outcomes during acute inflammation. Understanding the effect of IsoP on BAEC is an early step in elucidating how IsoP impact dairy cows during times of oxidative stress in the context of acute clinical mastitis. Future studies should define the optimal dosing and treatment timing of IsoP to maximize their cytoprotective potential during acute inflammation.
Collapse
|
33
|
15-F 2t-Isoprostane Favors an Anti-Inflammatory Phenotype in RAW 264.7 Macrophages during Endotoxin Challenge. Antioxidants (Basel) 2022; 11:antiox11030586. [PMID: 35326236 PMCID: PMC8945100 DOI: 10.3390/antiox11030586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/25/2022] Open
Abstract
Dysregulated inflammation and oxidative stress are major underlying components of several diseases. Macrophages are critical effector cells in immune responses, functioning to progress and resolve inflammation during such diseases. These mononuclear cells regulate inflammatory responses by exhibiting a range of phenotypes that evolve with the process, first promoting inflammation but then switching to a proresolving subtype to restore tissue homeostasis. Furthermore, macrophages are a primary source of isoprostanes (IsoPs), a nonenzymatic byproduct of lipid peroxidation during inflammation. As highly sensitive and specific indicators of lipid damage, IsoPs are the gold standard biomarker of oxidative stress. However, the physiological role of IsoPs during inflammation is currently not well-established. This study determined how IsoPs affect macrophage phenotype during lipopolysaccharide (LPS) challenge. RAW 264.7 macrophages (n = 7) were challenged with 5 ng/mL LPS for 8 h, followed with or without 500 nM 15-F2t-IsoP for 1 h. Macrophage phenotype was determined using metabolic, transcriptomic, and proteomic markers. Phenotypic markers assessed included ATP production; transcription of proinflammatory Nos2, Il1β, and anti-inflammatory Il10; and translation markers IL1α and IL6 (proinflammatory) with G-CSF and IL17 (anti-inflammatory). Statistical analyses included one-way ANOVA followed by Tukey’s posthoc test. Significance was set at p < 0.05. In combination with LPS, 15-F2t-IsoP increased ATP production relative to LPS-only treated cells. Additionally, gene expression of Nos2 and Il1β were decreased while Il10 was increased. Cytokine production of IL6 was decreased while IL10, G-CSF, and IL17 were increased. Collectively, these results provide evidence that 15-F2t-IsoP promotes an anti-inflammatory macrophage phenotype during LPS challenge. These data support a novel physiological role of IsoPs, where these lipid mediators may participate in healing pathways during late-stage inflammation when they are elevated. Additionally, the promotion of an anti-inflammatory macrophage phenotype may contribute to preventing or mitigating inflammation during disease. Future studies should be directed towards defining the mechanisms in which IsoPs influence macrophage phenotype, such as receptor interactions and downstream signaling pathways.
Collapse
|
34
|
Aisporna A, Chen A, Benton HP, Galano JM, Giera M, Siuzdak G. Neutral Loss Mass Spectral Data Enhances Molecular Similarity Analysis in METLIN. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:530-534. [PMID: 35174708 PMCID: PMC10131246 DOI: 10.1021/jasms.1c00343] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neutral loss (NL) spectral data presents a mirror of MS2 data and is a valuable yet largely untapped resource for molecular discovery and similarity analysis. Tandem mass spectrometry (MS2) data is effective for the identification of known molecules and the putative identification of novel, previously uncharacterized molecules (unknowns). Yet, MS2 data alone is limited in characterizing structurally related molecules. To facilitate unknown identification and complement the METLIN-MS2 fragment ion database for characterizing structurally related molecules, we have created a MS2 to NL converter as a part of the METLIN platform. The converter has been used to transform METLIN's MS2 data into a neutral loss database (METLIN-NL) on over 860 000 individual molecular standards. The platform includes both the MS2 to NL converter and a graphical user interface enabling comparative analyses between MS2 and NL data. Examples of NL spectral data are shown with oxylipin analogues and two structurally related statin molecules to demonstrate NL spectra and their ability to help characterize structural similarity. Mirroring MS2 data to generate NL spectral data offers a unique dimension for chemical and metabolite structure characterization.
Collapse
Affiliation(s)
- Aries Aisporna
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Andy Chen
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - H. Paul Benton
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Gary Siuzdak
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, Molecular and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
35
|
Vigor C, Züllig T, Eichmann TO, Oger C, Zhou B, Rechberger GN, Hilsberg L, Trötzmüller M, Pellegrino RM, Alabed HBR, Hartler J, Wolinski H, Galano JM, Durand T, Spener F. α-Linolenic acid and product octadecanoids in Styrian pumpkin seeds and oils: How processing impacts lipidomes of fatty acid, triacylglycerol and oxylipin molecular structures. Food Chem 2022; 371:131194. [PMID: 34600364 DOI: 10.1016/j.foodchem.2021.131194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Styrian pumpkin seed oil is a conditioned green-colored oil renowned for nutty smell and taste. Due to α-linolenic acid (ALA) contents below 1% of total fatty acids and the prospect of nutritional health claims based on its potential oxidation products, we investigated the fate of ALA and product oxylipins in the course of down-stream processing of seeds and in oils. Lipidomic analyses with Lipid Data Analyzer 2.8.1 revealed: Processing did not change (1) main fatty acid composition in the oils, (2) amounts of triacylglycerol species, (3) structures of triacylglycerol molecular species containing ALA. (4) Minor precursor ALA in fresh Styrian and normal pumpkins produced 6 product phytoprostanes in either cultivar, quantitatively more in the latter. (5) In oil samples 7 phytoprostanes and 2 phytofurans were detected. The latter two are specific for their presence in pumpkin seed oils, of note, quantitatively more in conditioned oils than in cold-pressed native oils.
Collapse
Affiliation(s)
- Claire Vigor
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Thomas O Eichmann
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | - Camille Oger
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Bingqing Zhou
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Gerald N Rechberger
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | | | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Roberto M Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Building B, 06126 Perugia, Italy
| | - Husam B R Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Building B, 06126 Perugia, Italy
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria; Field of Excellence BioHealth - University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Heimo Wolinski
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | - Jean-Marie Galano
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Thierry Durand
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Friedrich Spener
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria; Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6/6, 8010 Graz, Austria.
| |
Collapse
|
36
|
Laget J, Vigor C, Nouvel A, Rocher A, Leroy J, Jeanson L, Reversat G, Oger C, Galano JM, Durand T, Péraldi-Roux S, Azay-Milhau J, Lajoix AD. Reduced production of isoprostanes by peri-pancreatic adipose tissue from Zucker fa/fa rats as a new mechanism for β-cell compensation in insulin resistance and obesity. Free Radic Biol Med 2022; 182:160-170. [PMID: 35227851 DOI: 10.1016/j.freeradbiomed.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/18/2022]
Abstract
During early stages of type 2 diabetes, named prediabetes, pancreatic β-cells compensate for insulin resistance through increased insulin secretion in order to maintain normoglycemia. Obesity leads to the development of ectopic fat deposits, among which peri-pancreatic white adipose tissue (pWAT) can communicate with β-cells through soluble mediators. Thus we investigated whether pWAT produced oxygenated lipids, namely isoprostanes and neuroprostanes and whether they can influence β-cell function in obesity. In the Zucker fa/fa rat model, pWAT and epididymal white adipose tissue (eWAT) displayed different inflammatory profiles. In obese rats, pWAT, but not eWAT, released less amounts of 5-F2t-isoprostanes, 15-F2t-isoprostanes, 4-F4t-neuroprostanes and 10-F4t-neuroprostane compared to lean animals. These differences could be explained by a greater induction of antioxidant defenses enzymes such as SOD-1, SOD-2, and catalase in pWAT of obese animals compared to eWAT. In addition, sPLA2 IIA, involved in the release of isoprostanoids from cellular membranes, was decreased in pWAT of obese animals, but not in eWAT, and may also account for the reduced release of oxidized lipids by this tissue. At a functional level, 15-F2t-isoprostane epimers, but not 5-F2t-isoprostanes, were able to decrease glucose-induced insulin secretion in pancreatic islets from Wistar rats. This effect appeared to be mediated through activation of the thromboxane A2 receptor and reduction of cAMP signaling in pancreatic islets. In conclusion, through the removal of an inhibitory tone exerted by isoprostanes, we have shown, for the first time, a new mechanism allowing β-cells to compensate for insulin resistance in obesity that is linked to a biocommunication between adipose tissue and β-cells.
Collapse
Affiliation(s)
- Jonas Laget
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France; RD-Néphrologie, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Agathe Nouvel
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Jérémy Leroy
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France
| | - Laura Jeanson
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Sylvie Péraldi-Roux
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France; Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | | | | |
Collapse
|
37
|
Biagini D, Franzini M, Oliveri P, Lomonaco T, Ghimenti S, Bonini A, Vivaldi F, Macera L, Balas L, Durand T, Oger C, Galano JM, Maggi F, Celi A, Paolicchi A, Di Francesco F. MS-based targeted profiling of oxylipins in COVID-19: A new insight into inflammation regulation. Free Radic Biol Med 2022; 180:236-243. [PMID: 35085774 PMCID: PMC8786407 DOI: 10.1016/j.freeradbiomed.2022.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
The key role of inflammation in COVID-19 induced many authors to study the cytokine storm, whereas the role of other inflammatory mediators such as oxylipins is still poorly understood. IMPRECOVID was a monocentric retrospective observational pilot study with COVID-19 related pneumonia patients (n = 52) admitted to Pisa University Hospital between March and April 2020. Our MS-based analytical platform permitted the simultaneous determination of sixty plasma oxylipins in a single run at ppt levels for a comprehensive characterisation of the inflammatory cascade in COVID-19 patients. The datasets containing oxylipin and cytokine plasma levels were analysed by principal component analysis (PCA), computation of Fisher's canonical variable, and a multivariate receiver operating characteristic (ROC) curve. Differently from cytokines, the panel of oxylipins clearly differentiated samples collected in COVID-19 wards (n = 43) and Intensive Care Units (ICUs) (n = 27), as shown by the PCA and the multivariate ROC curve with a resulting AUC equal to 0.92. ICU patients showed lower (down to two orders of magnitude) plasma concentrations of anti-inflammatory and pro-resolving lipid mediators, suggesting an impaired inflammation response as part of a prolonged and unsolvable pro-inflammatory status. In conclusion, our targeted oxylipidomics platform helped shedding new light in this field. Targeting the lipid mediator class switching is extremely important for a timely picture of a patient's ability to respond to the viral attack. A prediction model exploiting selected lipid mediators as biomarkers seems to have good chances to classify patients at risk of severe COVID-19.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy.
| | - Maria Franzini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | | | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy
| | - Federico Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy
| | - Lisa Macera
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, University of Montpellier, CNRS, EBNSCM, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, University of Montpellier, CNRS, EBNSCM, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, University of Montpellier, CNRS, EBNSCM, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, University of Montpellier, CNRS, EBNSCM, France
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Italy
| | - Alessandro Celi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Italy
| | - Aldo Paolicchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy.
| |
Collapse
|
38
|
Mrakic-Sposta S, Biagini D, Bondi D, Pietrangelo T, Vezzoli A, Lomonaco T, Di Francesco F, Verratti V. OxInflammation at High Altitudes: A Proof of Concept from the Himalayas. Antioxidants (Basel) 2022; 11:antiox11020368. [PMID: 35204250 PMCID: PMC8869289 DOI: 10.3390/antiox11020368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
High-altitude locations are fascinating for investigating biological and physiological responses in humans. In this work, we studied the high-altitude response in the plasma and urine of six healthy adult trekkers, who participated in a trek in Nepal that covered 300 km in 19 days along a route in the Kanchenjunga Mountain and up to a maximum altitude of 5140 m. Post-trek results showed an unbalance in redox status, with an upregulation of ROS (+19%), NOx (+28%), neopterin (+50%), and pro-inflammatory prostanoids, such as PGE2 (+120%) and 15-deoxy-delta12,14-PGJ2 (+233%). The isoprostane 15-F2t-IsoP was associated with low levels of TAC (−18%), amino-thiols, omega-3 PUFAs, and anti-inflammatory CYP450 EPA-derived mediators, such as DiHETEs. The deterioration of antioxidant systems paves the way to the overload of redox and inflammative markers, as triggered by the combined physical and hypoxic stressors. Our data underline the link between oxidative stress and inflammation, which is related to the concept of OxInflammation into the altitude hypoxia fashion.
Collapse
Affiliation(s)
- Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (S.M.-S.); (A.V.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
- Correspondence:
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (D.B.); (T.P.)
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (D.B.); (T.P.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (S.M.-S.); (A.V.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy;
| |
Collapse
|
39
|
Signorini C, De Felice C, Durand T, Galano JM, Oger C, Leoncini S, Hayek J, Lee JCY, Lund TC, Orchard PJ. Isoprostanoid Plasma Levels Are Relevant to Cerebral Adrenoleukodystrophy Disease. Life (Basel) 2022; 12:146. [PMID: 35207434 PMCID: PMC8874514 DOI: 10.3390/life12020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral adrenoleukodystrophy (ALD) is a rare neuroinflammatory disorder characterized by progressive demyelination. Mutations within the ABCD1 gene result in very long-chain fatty acid (VLCFA) accumulation within the peroxisome, particularly in the brain. While this VLCFA accumulation is known to be the driving cause of the disease, oxidative stress can be a contributing factor. For patients with early cerebral disease, allogeneic hematopoietic stem cell transplantation (HSCT) is the standard of care, and this can be supported by antioxidants. To evaluate the involvement of fatty acid oxidation in the disease, F2-isoprostanes (F2-IsoPs), F2-dihomo-isoprostanes (F2-dihomo-IsoPs) and F4-neuroprostanes (F4-NeuroPs)-which are oxygenated metabolites of arachidonic (ARA), adrenic (AdA) and docosahexaenoic (DHA) acids, respectively-in plasma samples from ALD subjects (n = 20)-with various phenotypes of the disease-were measured. Three ALD groups were classified according to patients with: (1) confirmed diagnosis of ALD but without cerebral disease; (2) cerebral disease in early period post-HSCT (<100 days post-HSCT) and on intravenous N-acetyl-L-cysteine (NAC) treatment; (3) cerebral disease in late period post-HSCT (beyond 100 days post-HSCT) and off NAC therapy. In our observation, when compared to healthy subjects (n = 29), in ALD (i), F2-IsoPs levels were significantly (p < 0.01) increased in all patients, with the single exception of the early ALD and on NAC subjects; (ii) significant elevated (p < 0.0001) amounts of F2-dihomo-IsoPs were detected, with the exception of patients with a lack of cerebral disease; (iii), a significant increase (p < 0.003) in F4-NeuroP plasma levels was detected in all ALD patients. Moreover, F2-IsoPs plasma levels were significantly higher (p = 0.038) in early ALD in comparison to late ALD stage, and F4-NeuroPs were significantly lower (p = 0.012) in ALD subjects with a lack of cerebral disease in comparison to the late disease stage. Remarkably, plasma amounts of all investigated isoprostanoids were shown to discriminate ALD patients vs. healthy subjects. Altogether, isoprostanoids are relevant to the phenotype of X-ALD and may be helpful in predicting the presence of cerebral disease and establishing the risk of progression.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (C.O.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (C.O.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (C.O.)
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (S.L.); (J.H.)
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (S.L.); (J.H.)
- Pediatric Speciality Center “L’Isola di Bau”, Certaldo, 50052 Florence, Italy
| | | | - Troy C. Lund
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.)
| | - Paul J. Orchard
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.)
| |
Collapse
|
40
|
Vigor C, Balas L, Guy A, Bultel-Poncé V, Reversat G, Galano JM, Durand T, Oger C. Isoprostanoids, Isofuranoids and Isoketals ‐ From Synthesis to Lipidomics. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claire Vigor
- Institut des Biomolecules Max Mousseron Bioactive Lipid Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Laurence Balas
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Alexandre Guy
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Valérie Bultel-Poncé
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard1919 route de Mende 34293 Montpellier FRENCH POLYNESIA
| | - Guillaume Reversat
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Jean-Marie Galano
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Thierry Durand
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Camille Oger
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| |
Collapse
|
41
|
Giera M, Yanes O, Siuzdak G. Metabolite discovery: Biochemistry's scientific driver. Cell Metab 2022; 34:21-34. [PMID: 34986335 PMCID: PMC10131248 DOI: 10.1016/j.cmet.2021.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/26/2021] [Accepted: 11/09/2021] [Indexed: 01/19/2023]
Abstract
Metabolite identification represents a major challenge, and opportunity, for biochemistry. The collective characterization and quantification of metabolites in living organisms, with its many successes, represents a major biochemical knowledgebase and the foundation of metabolism's rebirth in the 21st century; yet, characterizing newly observed metabolites has been an enduring obstacle. Crystallography and NMR spectroscopy have been of extraordinary importance, although their applicability in resolving metabolism's fine structure has been restricted by their intrinsic requirement of sufficient and sufficiently pure materials. Mass spectrometry has been a key technology, especially when coupled with high-performance separation technologies and emerging informatic and database solutions. Even more so, the collective of artificial intelligence technologies are rapidly evolving to help solve the metabolite characterization conundrum. This perspective describes this challenge, how it was historically addressed, and how metabolomics is evolving to address it today and in the future.
Collapse
Affiliation(s)
- Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, Leiden 2333 ZA, the Netherlands
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain; CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Fatty Acid Oxidation and Pro-Resolving Lipid Mediators Are Related to Male Infertility. Antioxidants (Basel) 2022; 11:antiox11010107. [PMID: 35052611 PMCID: PMC8773194 DOI: 10.3390/antiox11010107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Specialized pro-resolving lipid mediators regulate the resolution of acute inflammation. They are formed by enzymatic oxygenation of polyunsaturated fatty acids and are divided into families including lipoxins, resolvins, protectins, and maresins. Resolvin D1 (RvD1), produced by docosahexaenoic acid, exerts anti-inflammatory and pro-resolving activities. This research aimed to investigate the implication of seminal RvD1 in human infertility. Infertile patients (n° 67) were grouped based on pathological reproductive conditions as idiopathic infertility, varicocele, and leukocytospermia; the fourth group was composed of fertile men (n° 18). Sperm characteristics were evaluated by light microscopy (WHO guidelines) and by transmission electron microscopy (TEM). The seminal levels of RvD1 and F2-isoprostane (F2-IsoPs) were dosed. In twenty men (6 fertile men, 8 with varicocele, 6 with leukocytospermia) seminal phospholipase A2, iron, cholesterol, transferrin, estradiol, ferritin, testosterone, and sperm membrane fatty acids were detected. The results indicated that: (i) RvD1 amount was positively correlated with F2-IsoPs and reduced sperm quality; (ii) RvD1 levels were significantly higher in patients with leukocytospermia, varicocele, and idiopathic infertility compared to fertile men; (iii) RvD1 increased along with other markers of oxidative stress and inflammation as fatty acids content and clinical biomarkers. This study suggests a panel of inflammatory markers and lipid mediators for a diagnosis of inflammatory status and a subsequent appropriate therapeutic approach.
Collapse
|
43
|
Adipose Tissue Dysfunctions in Response to an Obesogenic Diet Are Reduced in Mice after Transgenerational Supplementation with Omega 3 Fatty Acids. Metabolites 2021; 11:metabo11120838. [PMID: 34940596 PMCID: PMC8706165 DOI: 10.3390/metabo11120838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity is characterized by profound alterations in adipose tissue (AT) biology, leading to whole body metabolic disturbances such as insulin resistance and cardiovascular diseases. These alterations are related to the development of a local inflammation, fibrosis, hypertrophy of adipocytes, and dysregulation in energy homeostasis, notably in visceral adipose tissue (VAT). Omega 3 (n-3) fatty acids (FA) have been described to possess beneficial effects against obesity-related disorders, including in the AT; however, the long-term effect across generations remains unknown. The current study was conducted to identify if supplementation with n-3 polyunsaturated FA (PUFA) for three generations could protect from the consequences of an obesogenic diet in VAT. Young mice from the third generation of a lineage receiving a daily supplementation (1% of the diet) with fish oil rich in eicosapentaenoic acid (EPA) or an isocaloric amount of sunflower oil, were fed a high-fat, high-sugar content diet for 4 months. We explore the transcriptomic adaptations in each lineage using DNA microarray in VAT and bioinformatic exploration of biological regulations using online databases. Transgenerational intake of EPA led to a reduced activation of inflammatory processes, perturbation in metabolic homeostasis, cholesterol metabolism, and mitochondrial functions in response to the obesogenic diet as compared to control mice from a control lineage. This suggests that the continuous intake of long chain n-3 PUFA could be preventive in situations of oversupply of energy-dense, nutrient-poor foods.
Collapse
|
44
|
Gladine C, Fedorova M. The clinical translation of eicosanoids and other oxylipins, although challenging, should be actively pursued. J Mass Spectrom Adv Clin Lab 2021; 21:27-30. [PMID: 34820674 PMCID: PMC8600996 DOI: 10.1016/j.jmsacl.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Key Words
- CE, cholesteryl ester
- CVD, cardiovascular disease
- LDL, low density lipoprotein
- NFκB, nuclear factor kappa B
- PC, phosphatidylcholine
- PL, phospholipid
- PPAR, peroxisome proliferator-activated receptor
- PUFA, polyunsaturated fatty acid
- TG, triglyceride
- oxCE, oxidized CE
- oxLDL, oxidized LDL
- oxTG, oxidized TG
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.,Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
45
|
Ahmed OS, Sedraoui S, Zhou B, Reversat G, Rocher A, Bultel-Poncé V, Guy A, Vercauteren J, Selim S, Galano JM, Durand T, Oger C, Vigor C. Phytoprostanes from Date Palm Fruit and Byproducts: Five Different Varieties Grown in Two Different Locations As Potential sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13754-13761. [PMID: 34766764 DOI: 10.1021/acs.jafc.1c03364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Date palm fruit has been considered for centuries as an ancient nutritional constituent in the human diet. Recently, global trade in dates increased at an average that, simultaneously, will be accompanied by an increase in date palm byproducts. Supported by date phytochemicals and their health benefits, the aim of this work is to evaluate for the first time the presence of special metabolites of plant called phytoprostanes (PhytoPs) in five different varieties of the Phoenix dactylifera L. pulps and pits using a microLC-ESI-QTrap-MS/MS methodology. Results obtained showed the interest of using these matrices as potential sources of several PhytoPs (ent-16-B1-PhytoP; ent-9-L1-PhytoP; and epimers of ent-16-F1t-PhytoP and of 9-F1t-PhytoP). The variation in concentration between different varieties and different DPF parts was also evaluated. Results obtained will help to unravel the biological activities associated with DPF consumption that could be related to these bioactive metabolites.
Collapse
Affiliation(s)
- Omar S Ahmed
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
- Department of Analytical Chemistry, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Al-Motamayez District, 6th of October City 12566, Egypt
| | - Sami Sedraoui
- Laboratory of Cardio-circulatory, Respiratory, and Hormonal Adaptations to Muscular Exercise, Faculty of Sciences of Bizerte, University of Carthage, Tunis 1054, Tunisia
| | - Bingqing Zhou
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| |
Collapse
|
46
|
Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells 2021; 10:cells10112963. [PMID: 34831185 PMCID: PMC8616333 DOI: 10.3390/cells10112963] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids are major components in the lipid bilayer of cell membranes. These molecules are comprised of two acyl or alkyl groups and different phospho-base groups linked to the glycerol backbone. Over the years, substantial interest has focused on metabolism of phospholipids by phospholipases and the role of their metabolic products in mediating cell functions. The high levels of polyunsaturated fatty acids (PUFA) in the central nervous system (CNS) have led to studies centered on phospholipases A2 (PLA2s), enzymes responsible for cleaving the acyl groups at the sn-2 position of the phospholipids and resulting in production of PUFA and lysophospholipids. Among the many subtypes of PLA2s, studies have centered on three major types of PLA2s, namely, the calcium-dependent cytosolic cPLA2, the calcium-independent iPLA2 and the secretory sPLA2. These PLA2s are different in their molecular structures, cellular localization and, thus, production of lipid mediators with diverse functions. In the past, studies on specific role of PLA2 on cells in the CNS are limited, partly because of the complex cellular make-up of the nervous tissue. However, understanding of the molecular actions of these PLA2s have improved with recent advances in techniques for separation and isolation of specific cell types in the brain tissue as well as development of sensitive molecular tools for analyses of proteins and lipids. A major goal here is to summarize recent studies on the characteristics and dynamic roles of the three major types of PLA2s and their oxidative products towards brain health and neurological disorders.
Collapse
|
47
|
Rodríguez ML, Millán I, Ortega ÁL. Cellular targets in diabetic retinopathy therapy. World J Diabetes 2021; 12:1442-1462. [PMID: 34630899 PMCID: PMC8472497 DOI: 10.4239/wjd.v12.i9.1442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control triggers the appearance of chronic complications such as diabetic retinopathy. Diabetic retinopathy is considered a multifactorial disease of complex etiology in which oxidative stress and low chronic inflammation play essential roles. Chronic exposure to hyperglycemia triggers a loss of redox balance that is critical for the appearance of neuronal and vascular damage during the development and progression of the disease. Current therapies for the treatment of diabetic retinopathy are used in advanced stages of the disease and are unable to reverse the retinal damage induced by hyperglycemia. The lack of effective therapies without side effects means there is an urgent need to identify an early action capable of preventing the development of the disease and its pathophysiological consequences in order to avoid loss of vision associated with diabetic retinopathy. Therefore, in this review we propose different therapeutic targets related to the modulation of the redox and inflammatory status that, potentially, can prevent the development and progression of the disease.
Collapse
Affiliation(s)
- María Lucía Rodríguez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Iván Millán
- Neonatal Research Group, Health Research Institute La Fe, Valencia 46026, Valencia, Spain
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| |
Collapse
|
48
|
Biernacki M, Jastrząb A, Skrzydlewska E. Changes in Hepatic Phospholipid Metabolism in Rats under UV Irradiation and Topically Treated with Cannabidiol. Antioxidants (Basel) 2021; 10:1157. [PMID: 34439405 PMCID: PMC8388943 DOI: 10.3390/antiox10081157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
The liver is a key metabolic organ that is particularly sensitive to environmental factors, including UV radiation. As UV radiation induces oxidative stress and inflammation, natural compounds are under investigation as one method to counteract these consequences. The aim of this study was to assess the effect of topical application of phytocannabinoid-cannabidiol (CBD) on the skin of nude rats chronically irradiated with UVA/UVB, paying particular attention to its impact on the liver antioxidants and phospholipid metabolism. The results of this study indicate that CBD reaches the rat liver where it is then metabolized into decarbonylated cannabidiol, 7-hydroxy-cannabidiol and cannabidiol-glucuronide. CBD increased the levels of GSH and vitamin A after UVB radiation. Moreover, CBD prevents the increase of 4-hydroxynonenal and 8-iso-prostaglandin-F2α levels in UVA-irradiated rats. As a consequence of reductions in phospholipase A2 and cyclooxygenases activity following UV irradiation, CBD upregulates the level of 2-arachidonoylglycerol and downregulates prostaglandin E2 and leukotriene B4. Finally, CBD enhances decreased level of 15-deoxy-Δ-12,14-prostaglandin J2 after UVB radiation and 15-hydroxyeicosatetraenoic acid after UVA radiation. These data show that CBD applied to the skin prevents ROS- and enzyme-dependent phospholipid metabolism in the liver of UV-irradiated rats, suggesting that it may be used as an internal organ protector.
Collapse
Affiliation(s)
| | | | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.J.)
| |
Collapse
|
49
|
Cold bubble humidification of low-flow oxygen does not prevent acute changes in inflammation and oxidative stress at nasal mucosa. Sci Rep 2021; 11:14352. [PMID: 34253806 PMCID: PMC8275780 DOI: 10.1038/s41598-021-93837-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Some clinical situations require the use of oxygen therapy for a few hours without hypoxemia. However, there are no literature reports on the effects of acute oxygen therapy on the nasal mucosa. This study aimed to evaluate the acute effects of cold bubble humidification or dry oxygen on nasal Inflammation, oxidative stress, mucociliary clearance, and nasal symptoms. This is a randomized controlled cross-sectional study in which healthy subjects were randomly allocated into four groups: (1) CA + DRY (n = 8): individuals receiving dry compressed air; (2) OX + DRY (n = 8): individuals receiving dry oxygen therapy; (3) CA + HUMID (n = 7): individuals receiving cold bubbled humidified compressed air; (4) OX + HUMID (n = 8): individuals receiving cold bubbled humidified oxygen therapy. All groups received 3 L per minute (LPM) of the oxygen or compressed air for 1 h and were evaluated: total and differential cells in the nasal lavage fluid (NLF), exhaled nitric oxide (eNO), 8-iso-PGF2α levels, saccharin transit test, nasal symptoms, and humidity of nasal cannula and mucosa. Cold bubble humidification is not able to reduced nasal inflammation, eNO, oxidative stress, mucociliary clearance, and nasal mucosa moisture. However, subjects report improvement of nasal dryness symptoms (P < 0.05). In the conclusion, cold bubble humidification of low flow oxygen therapy via a nasal cannula did not produce any effect on the nasal mucosa and did not attenuate the oxidative stress caused by oxygen. However, it was able to improve nasal symptoms arising from the use of oxygen therapy.
Collapse
|
50
|
Signorini C, Moretti E, Noto D, Mattioli S, Castellini C, Pascarelli NA, Durand T, Oger C, Galano JM, De Felice C, Lee JCY, Collodel G. F 4-Neuroprostanes: A Role in Sperm Capacitation. Life (Basel) 2021; 11:life11070655. [PMID: 34357027 PMCID: PMC8306804 DOI: 10.3390/life11070655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
F4-neuroprostanes (F4-NeuroPs), derived from the oxidative metabolization of docosahexaenoic acid (DHA), are considered biomarkers of oxidative stress in neurodegenerative diseases. Neurons and spermatozoa display a high DHA content. NeuroPs might possess biological activities. The aim of this in vitro study was to investigate the biological effects of chemically synthetized 4-F4t-NeuroP and 10-F4t-NeuroP in human sperm. Total progressive sperm motility (p < 0.05) and linearity (p = 0.016), evaluated by a computer-assisted sperm analyzer, were significantly increased in samples incubated with 7 ng F4-NeuroPs compared to non-supplemented controls. Sperm capacitation was tested in rabbit and swim-up-selected human sperm by chlortetracycline fluorescence assay. A higher percentage of capacitated sperm (p < 0.01) was observed in samples incubated in F4-NeuroPs than in the controls. However, the percentage of capacitated sperm was not different in F4-NeuroPs and calcium ionophore treatments at 2 h incubation. The phosphorylated form of AMPKα was detected by immunofluorescence analysis; after 2 h F4-NeuroP incubation, a dotted signal appeared in the entire sperm tail, and in controls, sperm were labeled in the mid-piece. A defined level of seminal F4-NeuroPs (7 ng) showed a biological activity in sperm function; its addition in sperm suspensions stimulated capacitation, increasing the number of sperm able to fertilize.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria Alle Scotte, Viale Bracci 14, 53100 Siena, Italy; (C.S.); (D.N.); (N.A.P.); (G.C.)
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria Alle Scotte, Viale Bracci 14, 53100 Siena, Italy; (C.S.); (D.N.); (N.A.P.); (G.C.)
- Correspondence: ; Tel.: +39-577-233511
| | - Daria Noto
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria Alle Scotte, Viale Bracci 14, 53100 Siena, Italy; (C.S.); (D.N.); (N.A.P.); (G.C.)
| | - Simona Mattioli
- Department of Agricultural, Environmental, and Food Science, University of Perugia, Borgo XX Giugno 74, 06123 Perugia, Italy; (S.M.); (C.C.)
| | - Cesare Castellini
- Department of Agricultural, Environmental, and Food Science, University of Perugia, Borgo XX Giugno 74, 06123 Perugia, Italy; (S.M.); (C.C.)
| | - Nicola Antonio Pascarelli
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria Alle Scotte, Viale Bracci 14, 53100 Siena, Italy; (C.S.); (D.N.); (N.A.P.); (G.C.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34090 Montpellier, France; (T.D.); (C.O.); (J.-M.G.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34090 Montpellier, France; (T.D.); (C.O.); (J.-M.G.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34090 Montpellier, France; (T.D.); (C.O.); (J.-M.G.)
| | - Claudio De Felice
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | | | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria Alle Scotte, Viale Bracci 14, 53100 Siena, Italy; (C.S.); (D.N.); (N.A.P.); (G.C.)
| |
Collapse
|