1
|
Teixidó E, Riera-Colomer C, Raldúa D, Pubill D, Escubedo E, Barenys M, López-Arnau R. First-Generation Synthetic Cathinones Produce Arrhythmia in Zebrafish Eleutheroembryos: A New Approach Methodology for New Psychoactive Substances Cardiotoxicity Evaluation. Int J Mol Sci 2023; 24:13869. [PMID: 37762171 PMCID: PMC10531093 DOI: 10.3390/ijms241813869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing number of new psychoactive substances (NPS) entering the illicit drug market, especially synthetic cathinones, as well as the risk of cardiovascular complications, is intensifying the need to quickly assess their cardiotoxic potential. The present study aims to evaluate the cardiovascular toxicity and lethality induced by first-generation synthetic cathinones (mephedrone, methylone, and MDPV) and more classical psychostimulants (cocaine and MDMA) in zebrafish embryos using a new approach methodology (NAM). Zebrafish embryos at 4 dpf were exposed to the test drugs for 24 h to identify drug lethality. Drug-induced effects on ventricular and atrial heart rate after 2 h exposure were evaluated, and video recordings were properly analyzed. All illicit drugs displayed similar 24 h LC50 values. Our results indicate that all drugs are able to induce bradycardia, arrhythmia, and atrial-ventricular block (AV block), signs of QT interval prolongation. However, only MDPV induced a different rhythmicity change depending on the chamber and was the most potent bradycardia and AV block-inducing drug compared to the other tested compounds. In summary, our results strongly suggest that the NAM presented in this study can be used for screening NPS for their cardiotoxic effect and especially for their ability to prolong the QT intervals.
Collapse
Affiliation(s)
- Elisabet Teixidó
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety, University of Barcelona (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Clara Riera-Colomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Marta Barenys
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety, University of Barcelona (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Raul López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Metaxakis A, Pavlidis M, Tavernarakis N. Neuronal atg1 Coordinates Autophagy Induction and Physiological Adaptations to Balance mTORC1 Signalling. Cells 2023; 12:2024. [PMID: 37626835 PMCID: PMC10453232 DOI: 10.3390/cells12162024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The mTORC1 nutrient-sensing pathway integrates metabolic and endocrine signals into the brain to evoke physiological responses to food deprivation, such as autophagy. Nevertheless, the impact of neuronal mTORC1 activity on neuronal circuits and organismal metabolism remains obscure. Here, we show that mTORC1 inhibition acutely perturbs serotonergic neurotransmission via proteostatic alterations evoked by the autophagy inducer atg1. Neuronal ATG1 alters the intracellular localization of the serotonin transporter, which increases the extracellular serotonin and stimulates the 5HTR7 postsynaptic receptor. 5HTR7 enhances food-searching behaviour and ecdysone-induced catabolism in Drosophila. Along similar lines, the pharmacological inhibition of mTORC1 in zebrafish also stimulates food-searching behaviour via serotonergic activity. These effects occur in parallel with neuronal autophagy induction, irrespective of the autophagic activity and the protein synthesis reduction. In addition, ectopic neuronal atg1 expression enhances catabolism via insulin pathway downregulation, impedes peptidergic secretion, and activates non-cell autonomous cAMP/PKA. The above exert diverse systemic effects on organismal metabolism, development, melanisation, and longevity. We conclude that neuronal atg1 aligns neuronal autophagy induction with distinct physiological modulations, to orchestrate a coordinated physiological response against reduced mTORC1 activity.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Michail Pavlidis
- Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece;
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 71110 Heraklion, Crete, Greece
| |
Collapse
|
3
|
do Nascimento BG, Maximino C. Social investigation and social novelty in zebrafish: Roles of salience and novelty. Behav Processes 2023:104903. [PMID: 37286113 DOI: 10.1016/j.beproc.2023.104903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/23/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Social preference tests can be used to analyze variables that influence and modify social behaviors, and to investigate effects of substances such as medications, drugs, and hormones. They may become important tools for finding a valid model to study neuropsychiatric changes and to study human neurodevelopmental processes that have been impaired by social events. While a preference for conspecifics has been shown for different species, social novelty has been used as a model for anxiety-like behavior in rodents. The goal of this research was to understand the roles of stimulus salience (numerousness) and novelty in social investigation and social novelty tests in zebrafish (Danio rerio Hamilton 1822). We used a sequential design, in which animals are exposed first to a social investigation test (with dichotomous presentation of novel conspecifics vs. empty tank) and then to a social novelty test (with dichotomous presentation of the already known conspecific and a novel conspecific). In experiment 1, animals were presented to either 1 or 3 (vs. an empty tank) conspecifics as stimuli. In experiment 2, animals were presented to 1 vs. 3 conspecifics as stimuli. In experiment 3, animals were observed in the social investigation and social novelty tests for 3 consecutive days. The results showed equivalence between 1 or 3 conspecifics in the social investigation and social novelty tests, although animals were able to discriminate between different shoal sizes. These preferences do not change with repeated test exposure, suggesting novelty to be a minor contributor to social investigation and social novelty in zebrafish.
Collapse
Affiliation(s)
- Bianca Gomes do Nascimento
- Laboratório de Neurociências e Comportamento, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Universidade Federal do Pará, Belém/PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil
| |
Collapse
|
4
|
D'Amora M, Galgani A, Marchese M, Tantussi F, Faraguna U, De Angelis F, Giorgi FS. Zebrafish as an Innovative Tool for Epilepsy Modeling: State of the Art and Potential Future Directions. Int J Mol Sci 2023; 24:ijms24097702. [PMID: 37175408 PMCID: PMC10177843 DOI: 10.3390/ijms24097702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This article discusses the potential of Zebrafish (ZF) (Danio Rerio), as a model for epilepsy research. Epilepsy is a neurological disorder affecting both children and adults, and many aspects of this disease are still poorly understood. In vivo and in vitro models derived from rodents are the most widely used for studying both epilepsy pathophysiology and novel drug treatments. However, researchers have recently obtained several valuable insights into these two fields of investigation by studying ZF. Despite the relatively simple brain structure of these animals, researchers can collect large amounts of data in a much shorter period and at lower costs compared to classical rodent models. This is particularly useful when a large number of candidate antiseizure drugs need to be screened, and ethical issues are minimized. In ZF, seizures have been induced through a variety of chemoconvulsants, primarily pentylenetetrazol (PTZ), kainic acid (KA), and pilocarpine. Furthermore, ZF can be easily genetically modified to test specific aspects of monogenic forms of human epilepsy, as well as to discover potential convulsive phenotypes in monogenic mutants. The article reports on the state-of-the-art and potential new fields of application of ZF research, including its potential role in revealing epileptogenic mechanisms, rather than merely assessing iatrogenic acute seizure modulation.
Collapse
Affiliation(s)
- Marta D'Amora
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Biology, University of Pisa, 56125 Pisa, Italy
| | - Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Maria Marchese
- Molecular Medicine and Neurobiology-ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Yang Q, Deng P, Xing D, Liu H, Shi F, Hu L, Zou X, Nie H, Zuo J, Zhuang Z, Pan M, Chen J, Li G. Developmental Neurotoxicity of Difenoconazole in Zebrafish Embryos. TOXICS 2023; 11:353. [PMID: 37112580 PMCID: PMC10142703 DOI: 10.3390/toxics11040353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole is a type of triazole fungicide that is widely used in the treatment of plant diseases. Triazole fungicides have been shown in several studies to impair the development of the nervous system in zebrafish embryos. There is still little known about difenoconazole-induced neurotoxicity in fish. In this study, zebrafish embryos were exposed to 0.25, 0.5, and 1 mg/L of difenoconazole solution until 120 h post-fertilization (hpf). The difenoconazole-exposed groups showed concentration-dependent inhibitory tendencies in heart rate and body length. Malformation rate and spontaneous movement of zebrafish embryos increased, and the locomotor activity decreased in the highest exposure group. The content of dopamine and acetylcholine was reduced significantly in difenoconazole treatment groups. The activity of acetylcholinesterase (AChE) was also increased after treatment with difenoconazole. Furthermore, the expression of genes involved in neurodevelopment was remarkably altered, which corresponded with the alterations of neurotransmitter content and AChE activity. These results indicated that difenoconazole might affect the development of the nervous system through influencing neurotransmitter levels, enzyme activity, and the expression of neural-related genes, ultimately leading to abnormal locomotor activity in the early stages of zebrafish.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu 610016, China
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Shi
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Lian Hu
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Xi Zou
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zimeng Zhuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha 410000, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Yin J, Wen H, Chen H. Toxicity evaluation of main zopiclone impurities based on quantitative structure-activity relationship models and in vitro tests. J Appl Toxicol 2023; 43:230-241. [PMID: 35945809 DOI: 10.1002/jat.4376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
Toxicity evaluation of main zopiclone impurities can provide a basis for safety assessment and quality standards of zopiclone. In this study, the impurity profile of zopiclone was analyzed using forced degradation and related substances of zopiclone tablets using high-performance liquid chromatography (HPLC). Furthermore, various quantitative structure-activity relationship (QSAR) models were used to compare the toxicity, especially genotoxicity of two main zopiclone degradation impurities, namely, impurity B and 2-amino-5-chloropyridine. The predictive genotoxicity results were verified using an in vitro bacterial reverse mutation (Ames) test. Meanwhile, using zebrafish embryos as an animal model, zopiclone and its main impurities were analyzed at different concentrations, and their effects on zebrafish development, including embryonic teratogenesis and lethality, were examined. The results showed that impurity B and 2-amino-5-chloropyridine were the main degradation impurities of zopiclone; the latter's content increased with increase in the solution storage time. QSAR prediction and in vitro test results confirmed that both impurity B and 2-amino-5-chloropyridine were non-mutagenic and classified in the fifth impurity category. According to ICH M7 guidelines, these could be controlled as general non-mutagenic impurities. The relative toxicity to zebrafish embryo development was the highest for 2-amino-5-chloropyridine, followed by impurity B and zopiclone, and the malformation rate and mortality of embryos were concentration dependent. In conclusion, an increase in the control limit of 2-amino-5-chloropyridine is recommended when the quality standards of zopiclone materials and preparations are revised to ensure safety and quality control. The specific limit value of this impurity should be determined through further evaluation and research.
Collapse
Affiliation(s)
- Jie Yin
- National Institutes for Food and Drug Control, Key Laboratory of Chemical Drug Quality Research and Evaluation, National Medical Products Administration, Beijing, China
| | - Hairuo Wen
- National Institutes for Food and Drug Control, National Center for Drug Safety Evaluation and Monitoring, Beijing Key Laboratory of Drug Non-clinical Safety Evaluation and Research, Beijing, China
| | - Hua Chen
- National Institutes for Food and Drug Control, Key Laboratory of Chemical Drug Quality Research and Evaluation, National Medical Products Administration, Beijing, China
| |
Collapse
|
7
|
Parkia platycephala Lectin (PPL) Inhibits Orofacial Nociception Responses via TRPV1 Modulation. Molecules 2022; 27:molecules27217506. [DOI: 10.3390/molecules27217506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Lectins are a heterogeneous group of proteins that reversibly bind to simple sugars or complex carbohydrates. The plant lectin purified from the seed of Parkia platycephala (PPL) was studied. This study aimed to investigate the possible orofacial antinociceptive of PPL lectin in adult zebrafish and rodents. Acute nociception was induced by cinnamaldehyde (0.66 μg/mL), 0.1% acidified saline, glutamate (12.5 µM) or hypertonic saline (5 M NaCl) applied into the upper lip (5.0 µL) of adult wild zebrafish. Zebrafish were pretreated by intraperitoneal injection (20 µL) with vehicle (Control) or PPL (0.025; 0.05 or 0.1 mg/mL) 30 min before induction. The effect of PPL on zebrafish locomotor behaviour was evaluated in the open field test. Naive groups were included in all tests. In one experiment, animals were pre-treated with capsazepine to investigate the mechanism of antinociception. The involvement of central afferent C-fibres was also investigated. In another experiment, rats pre-treated with PPL or saline were submitted to the temporomandibular joint formalin test. Other groups of rats were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of mechanical sensitivity using von Frey. PPL reduced nociceptive behaviour in adult zebrafish, and this is related to the activation of the TRPV1 channels since antinociception was effectively inhibited by capsazepine and by capsaicin-induced desensitization. PPL reduced nociceptive behaviour associated with temporomandibular joint and neuropathic pain. The results confirm the potential pharmacological relevance of PPL as an inhibitor of orofacial nociception in acute and chronic pain.
Collapse
|
8
|
Li Y, Wang C, Zhang L, Chen B, Mo Y, Zhang J. Claudin-5a is essential for the functional formation of both zebrafish blood-brain barrier and blood-cerebrospinal fluid barrier. Fluids Barriers CNS 2022; 19:40. [PMID: 35658877 PMCID: PMC9164509 DOI: 10.1186/s12987-022-00337-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mammalian Claudin-5 is the main endothelial tight junction component maintaining blood-brain barrier (BBB) permeability, while Claudin-1 and -3 seal the paracellular space of choroid plexus (CP) epithelial cells contributing to the blood-cerebrospinal fluid barrier (BCSFB). In zebrafish, two paralogs of claudin-5a and -5b are expressed while their roles in the formation of BBB and BCSFB are unclear. Methods The expression patterns of Claudin-5a and -5b in zebrafish brains were systematically analyzed by immunofluorescence (IF) assay. The developmental functions of Claudin-5a and -5b were characterized by generating of claudin-5a and -5b mutants respectively. Meanwhile, the cerebral inflammation and cell apoptosis in claudin-5a-/- were assessed by live imaging of transgenic zebrafish, RT-qPCR, IF, and TUNEL assay. The integrity of BBB and BCSFB was evaluated by in vivo angiographic and dye permeation assay. Finally, RT-qPCR, whole-mount RNA in situ hybridization (WISH), and transmission electron microscopy (TEM) analyses were performed to investigate the development of cerebral vessels and choroid plexus. Results We showed that Claudin-5a and -5b are both expressed in zebrafish cerebrovascular endothelial cells (ECs). In addition, Claudin-5a was strongly expressed in CP epithelial cells. Loss of Claudin-5b showed no effect on zebrafish vasculogenesis or BBB function. In contrast, the knockout of claudin-5a caused a lethal phenotype of severe whole-brain oedema, ventricular dilatation, and cerebral hernia in zebrafish larvae, although the cerebral vasculogenesis and the development of CP were not altered. In claudin-5a-/- , although ultrastructural analysis of CP and cerebral capillary showed intact integrity of epithelial and endothelial tight junctions, permeability assay indicated a disruption of both BBB and BCSFB functions. On the molecular level, it was found that ZO-1 was upregulated in the CP epithelium of claudin-5a-/-, while the notch and shh pathway responsible for CP development was not affected due to loss of Claudin-5a. Conclusions Our findings verified a non-functional role of zebrafish Claudin-5b in the BBB and identified Claudin-5a as the ortholog of mammalian Claudin-5, contributing to the development and the functional maintenance of both BBB and BCSFB. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00337-9.
Collapse
Affiliation(s)
- Yanyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Chunchun Wang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liang Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Bing Chen
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yuqian Mo
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China.,School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China. .,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| |
Collapse
|
9
|
Canedo A, Saiki P, Santos AL, Carneiro KDS, Souza AMD, Qualhato G, Brito RDS, Mello-Andrade F, Rocha TL. Zebrafish (Danio rerio) meets bioethics: the 10Rs ethical principles in research. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v22e-70884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract Zebrafish (Danio rerio) is a tropical fish species widely used in research, worldwide. The development of genetically modified animals and the increasing number of zebrafish breeding facilities due to their emerging use in several research fields, opened room for new ethical challenges for research carried out with this species. It is necessary to raise the scientific community’s awareness of the ethical standards and laws in force, on animal research. Thus, the aim of the current study is to describe 10 Rs ethical principles by using zebrafish as model system in research. The classical 3 Rs concerning animal welfare, namely replacement, reduction and refinement; and the added 7 Rs related to scientific (registration, reporting, robustness, reproducibility and relevance) and conduct principles (responsibility, and respect) in zebrafish research are herein presented and critically discussed. The use of these 10 Rs by researchers, institutions and the Animal Ethics Committee is recommended to support regulations, decision-making about and the promotion of zebrafish health and welfare in research.
Collapse
|
10
|
Maximino C. Decynium-22 affects behavior in the zebrafish light/dark test. NEUROANATOMY AND BEHAVIOUR 2021. [DOI: 10.35430/nab.2021.e21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Decynium-22 (D-22) is an inhibitor of the uptake2 system of monoamine clearance, resulting in increased levels of dopamine and norepinephrine (and in some cases serotonin) in the nervous system and elsewhere. Uptake2 is mediated by low-affinity, high-capacity transporters that are inhibited by glucocorticoids, suggesting a mechanism of fast glucocorticoid-monoamine interaction in the brain and a possible target for antidepressants. D-22 dose-dependently increased anxiety-like behavior in adult zebrafish exposed to the light/dark test, monotonically increasing scototaxis (dark preference), but affecting risk assessment with an inverted-U-shaped response. These results suggest that the uptake2 system has a role in defensive behavior in zebrafish, presenting a novel mechanism by which stress and glucocorticoids could produce fast neurobehavioral adjustments in vertebrates.
Collapse
|
11
|
Crowley-Perry M, Barberio AJ, Zeino J, Winston ER, Connaughton VP. Zebrafish Optomotor Response and Morphology Are Altered by Transient, Developmental Exposure to Bisphenol-A. J Dev Biol 2021; 9:jdb9020014. [PMID: 33918232 PMCID: PMC8167563 DOI: 10.3390/jdb9020014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Estrogen-specific endocrine disrupting compounds (EDCs) are potent modulators of neural and visual development and common environmental contaminants. Using zebrafish, we examined the long-term impact of abnormal estrogenic signaling by testing the effects of acute, early exposure to bisphenol-A (BPA), a weak estrogen agonist, on later visually guided behaviors. Zebrafish aged 24 h postfertilization (hpf), 72 hpf, and 7 days postfertilization (dpf) were exposed to 0.001 μM or 0.1 μM BPA for 24 h, and then allowed to recover for 1 or 2 weeks. Morphology and optomotor responses (OMRs) were assessed after 1 and 2 weeks of recovery for 24 hpf and 72 hpf exposure groups; 7 dpf exposure groups were additionally assessed immediately after exposure. Increased notochord length was seen in 0.001 μM exposed larvae and decreased in 0.1 μM exposed larvae across all age groups. Positive OMR was significantly increased at 1 and 2 weeks post-exposure in larvae exposed to 0.1 μM BPA when they were 72 hpf or 7 dpf, while positive OMR was increased after 2 weeks of recovery in larvae exposed to 0.001 μM BPA at 72 hpf. A time-delayed increase in eye diameter occurred in both BPA treatment groups at 72 hpf exposure; while a transient increase occurred in 7 dpf larvae exposed to 0.1 μM BPA. Overall, short-term developmental exposure to environmentally relevant BPA levels caused concentration- and age-dependent effects on zebrafish visual anatomy and function.
Collapse
Affiliation(s)
- Mikayla Crowley-Perry
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
- Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Angelo J. Barberio
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Jude Zeino
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Erica R. Winston
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Victoria P. Connaughton
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
- Correspondence: ; Tel.: +1-202-885-2188
| |
Collapse
|
12
|
Zebrafish early life stages as alternative model to study 'designer drugs': Concordance with mammals in response to opioids. Toxicol Appl Pharmacol 2021; 419:115483. [PMID: 33722667 DOI: 10.1016/j.taap.2021.115483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
The number of new psychoactive substances (NPS) on the illicit drug market increases fast, posing a need to urgently understand their toxicity and behavioural effects. However, with currently available rodent models, NPS assessment is limited to a few substances per year. Therefore, zebrafish (Danio rerio) embryos and larvae have been suggested as an alternative model that would require less time and resources to perform an initial assessment and could help to prioritize substances for subsequent evaluation in rodents. To validate this model, more information on the concordance of zebrafish larvae and mammalian responses to specific classes of NPS is needed. Here, we studied toxicity and behavioural effects of opioids in zebrafish early life stages. Synthetic opioids are a class of NPS that are often used in pain medication but also frequently abused, having caused multiple intoxications and fatalities recently. Our data shows that fentanyl derivatives were the most toxic among the tested opioids, with toxicity in the zebrafish embryo toxicity test decreasing in the following order: butyrfentanyl>3-methylfentanyl>fentanyl>tramadol> O-desmethyltramadol>morphine. Similar to rodents, tramadol as well as fentanyl and its derivatives led to hypoactive behaviour in zebrafish larvae, with 3-methylfentanyl being the most potent. Physico-chemical properties-based predictions of chemicals' uptake into zebrafish embryos and larvae correlated well with the effects observed. Further, the biotransformation pattern of butyrfentanyl in zebrafish larvae was reminiscent of that in humans. Comparison of toxicity and behavioural responses to opioids in zebrafish and rodents supports zebrafish as a suitable alternative model for rapidly testing synthetic opioids.
Collapse
|
13
|
Gondim Lambert Moreira L, Leite Ferreira ME, Reginaldo FPS, Lourenço EMG, Zuanazzi JAS, Barbosa EG, Ferreira LDS, Fett-Neto AG, Cavalheiro AJ, Luchiari AC, Giordani RB. Erythroxylum pungens Tropane Alkaloids: GC-MS Analysis and the Bioactive Potential of 3-(2-methylbutyryloxy)tropan-6,7-diol in Zebrafish (Danio rerio). PLANTA MEDICA 2021; 87:177-186. [PMID: 33176378 DOI: 10.1055/a-1264-4302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tropane alkaloids are specialized plant metabolites mostly found in the Erythroxylaceae and Solanaceae families. Although tropane alkaloids have a high degree of structural similarity because of the tropane ring, their pharmacological actions are quite distinct. Brazil is one of the main hotspots of Erythroxylum spp. diversity with 123 species (almost 66% of the species catalogued in tropical America). Erythroxylum pungens occurs in the Caatinga, a promising biome that provides bioactive compounds, including tropane alkaloids. As part of our efforts to investigate this species, 15 alkaloids in specimens harvested under different environmental conditions are presented herein. The occurrence of 3-(2-methylbutyryloxy)tropan-6,7-diol in the stem bark of plants growing in their natural habitat, greenhouse controlled conditions, and after a period of water restriction, suggests that it is a potential chemical marker for the species. This alkaloid was evaluated for several parameters in zebrafish (Danio rerio) as a model organism. Regarding toxicity, teratogenic effects were observed at 19.5 µM and the lethal dose for embryos was 18.4 µM. No mortality was observed in adults, but a behavioral screen showed psychostimulatory action at 116.7 µM. Overall, the alkaloid was able to cause zebrafish behavioral changes, prompting further investigation of its potential as a new molecule in the treatment of depression-like symptoms. In silico, targets involved in antidepressant pathways were identified by docking.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arthur Germano Fett-Neto
- Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
14
|
Banerji R, Huynh C, Figueroa F, Dinday MT, Baraban SC, Patel M. Enhancing glucose metabolism via gluconeogenesis is therapeutic in a zebrafish model of Dravet syndrome. Brain Commun 2021; 3:fcab004. [PMID: 33842883 PMCID: PMC8023476 DOI: 10.1093/braincomms/fcab004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Energy-producing pathways are novel therapeutic targets for the treatment of neurodevelopmental disorders. Here, we focussed on correcting metabolic defects in a catastrophic paediatric epilepsy, Dravet syndrome which is caused by mutations in sodium channel NaV1.1 gene, SCN1A. We utilized a translatable zebrafish model of Dravet syndrome (scn1lab) which exhibits key characteristics of patients with Dravet syndrome and shows metabolic deficits accompanied by down-regulation of gluconeogenesis genes, pck1 and pck2. Using a metabolism-based small library screen, we identified compounds that increased gluconeogenesis via up-regulation of pck1 gene expression in scn1lab larvae. Treatment with PK11195, a pck1 activator and a translocator protein ligand, normalized dys-regulated glucose levels, metabolic deficits, translocator protein expression and significantly decreased electrographic seizures in mutant larvae. Inhibition of pck1 in wild-type larvae mimicked metabolic and behaviour defects observed in scn1lab mutants. Together, this suggests that correcting dys-regulated metabolic pathways can be therapeutic in neurodevelopmental disorders such as Dravet syndrome arising from ion channel dysfunction.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Christopher Huynh
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Francisco Figueroa
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Matthew T Dinday
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Manisha Patel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| |
Collapse
|
15
|
Brenet A, Somkhit J, Hassan-Abdi R, Yanicostas C, Romain C, Bar O, Igert A, Saurat D, Taudon N, Dal-Bo G, Nachon F, Dupuis N, Soussi-Yanicostas N. Organophosphorus diisopropylfluorophosphate (DFP) intoxication in zebrafish larvae causes behavioral defects, neuronal hyperexcitation and neuronal death. Sci Rep 2020; 10:19228. [PMID: 33154418 PMCID: PMC7645799 DOI: 10.1038/s41598-020-76056-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
With millions of intoxications each year and over 200,000 deaths, organophosphorus (OP) compounds are an important public health issue worldwide. OP poisoning induces cholinergic syndrome, with respiratory distress, hypertension, and neuron damage that may lead to epileptic seizures and permanent cognitive deficits. Existing countermeasures are lifesaving but do not prevent long-lasting neuronal comorbidities, emphasizing the urgent need for animal models to better understand OP neurotoxicity and identify novel antidotes. Here, using diisopropylfluorophosphate (DFP), a prototypic and moderately toxic OP, combined with zebrafish larvae, we first showed that DFP poisoning caused major acetylcholinesterase inhibition, resulting in paralysis and CNS neuron hyperactivation, as indicated by increased neuronal calcium transients and overexpression of the immediate early genes fosab, junBa, npas4b, and atf3. In addition to these epileptiform seizure-like events, DFP-exposed larvae showed increased neuronal apoptosis, which were both partially alleviated by diazepam treatment, suggesting a causal link between neuronal hyperexcitation and cell death. Last, DFP poisoning induced an altered balance of glutamatergic/GABAergic synaptic activity with increased NR2B-NMDA receptor accumulation combined with decreased GAD65/67 and gephyrin protein accumulation. The zebrafish DFP model presented here thus provides important novel insights into the pathophysiology of OP intoxication, making it a promising model to identify novel antidotes.
Collapse
Affiliation(s)
| | - Julie Somkhit
- NeuroDiderot, Inserm, Université de Paris, 75019, Paris, France
| | | | | | | | - Olivier Bar
- NeuroDiderot, Inserm, Université de Paris, 75019, Paris, France
| | - Alexandre Igert
- Département de toxicologie et risques chimiques, Institut de Recherche Biomédicale des Armées (IRBA), 91 220, Brétigny-sur-Orge, France
| | - Dominique Saurat
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Développements Analytiques et Bioanalyse, 91 220, Brétigny-sur-Orge, France
| | - Nicolas Taudon
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Développements Analytiques et Bioanalyse, 91 220, Brétigny-sur-Orge, France
| | - Gregory Dal-Bo
- Département de toxicologie et risques chimiques, Institut de Recherche Biomédicale des Armées (IRBA), 91 220, Brétigny-sur-Orge, France
| | - Florian Nachon
- Département de toxicologie et risques chimiques, Institut de Recherche Biomédicale des Armées (IRBA), 91 220, Brétigny-sur-Orge, France
| | - Nina Dupuis
- Département de toxicologie et risques chimiques, Institut de Recherche Biomédicale des Armées (IRBA), 91 220, Brétigny-sur-Orge, France
| | | |
Collapse
|
16
|
Goodman AC, Wong RY. Differential effects of ethanol on behavior and GABA A receptor expression in adult zebrafish (Danio rerio) with alternative stress coping styles. Sci Rep 2020; 10:13076. [PMID: 32753576 PMCID: PMC7403336 DOI: 10.1038/s41598-020-69980-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Variation in stress responses between individuals are linked to factors ranging from stress coping styles to sensitivity of neurotransmitter systems. Many anxiolytic compounds (e.g. ethanol) can increase stressor engagement through modulation of neurotransmitter systems and are used to investigate stress response mechanisms. There are two alternative suites of correlated behavioral and physiological responses to stressors (stress coping styles) that differ in exploration tendencies: proactive and reactive stress coping styles. By chronically treating individuals differing in stress coping style with ethanol, a GABA-acting drug, we assessed the role of the GABAergic system on the behavioral stress response. Specifically, we investigated resulting changes in stress-related behavior (i.e. exploratory behavior) and whole-brain GABAA receptor subunits (gabra1, gabra2, gabrd, & gabrg2) in response to a novelty stressor. We found that ethanol-treated proactive individuals showed lower stress-related behaviors than their reactive counterparts. Proactive individuals showed significantly higher expression of gabra1, gabra2, and gabrg2 compared to reactive individuals and ethanol treatment resulted in upregulation of gabra1 and gabrg2 in both stress coping styles. These results suggest that impacts of ethanol on stress-related behaviors vary by stress coping style and that expression of select GABAA receptor subunits may be one of the underlying mechanisms.
Collapse
Affiliation(s)
- Alexander C Goodman
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Ryan Y Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| |
Collapse
|
17
|
Müller TE, Fontana BD, Bertoncello KT, Franscescon F, Mezzomo NJ, Canzian J, Stefanello FV, Parker MO, Gerlai R, Rosemberg DB. Understanding the neurobiological effects of drug abuse: Lessons from zebrafish models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109873. [PMID: 31981718 DOI: 10.1016/j.pnpbp.2020.109873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Drug abuse and brain disorders related to drug comsumption are public health problems with harmful individual and social consequences. The identification of therapeutic targets and precise pharmacological treatments to these neuropsychiatric conditions associated with drug abuse are urgently needed. Understanding the link between neurobiological mechanisms and behavior is a key aspect of elucidating drug abuse-related targets. Due to various molecular, biochemical, pharmacological, and physiological features, the zebrafish (Danio rerio) has been considered a suitable vertebrate for modeling complex processes involved in drug abuse responses. In this review, we discuss how the zebrafish has been successfully used for modeling neurobehavioral phenotypes related to drug abuse and review the effects of opioids, cannabinoids, alcohol, nicotine, and psychedelic drugs on the central nervous system (CNS). Moreover, we summarize recent advances in zebrafish-based studies and outline potential advantages and limitations of the existing zebrafish models to explore the neurochemical bases of drug abuse and addiction. Finally, we discuss how the use of zebrafish models may present fruitful approaches to provide valuable clinically translatable data.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Kanandra T Bertoncello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nathana J Mezzomo
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
18
|
Dahlén A, Wagle M, Zarei M, Guo S. Heritable natural variation of light/dark preference in an outbred zebrafish population. J Neurogenet 2019; 33:199-208. [PMID: 31544554 DOI: 10.1080/01677063.2019.1663846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Anxiety is a fear-like response to stimuli perceived to be threatening. Excessive or uncontrollable anxiety is a debilitating psychiatric disorder which affects many people throughout their lifetime. In unravelling the complex genetic and environmental regulations of anxiety-like phenotypes, models measuring the natural dark avoidance of larval zebrafish have shed light on the individual variation and heritability of this anxiety-related trait. Using the light/dark choice paradigm and selective breeding, this study aims to validate previous findings of the variable (VDA) and strong dark aversion (SDA) heritability in AB-WT larval zebrafish using the outbred zebrafish strain EK, which offers more genetic diversity to aid in future molecular mapping efforts. 190 larvae (6 days post fertilization [dpf] and 7 dpf) were tested across four trials and divided into variable (VDA), medium (MDA) and strong (SDA) dark aversion for further in-crosses. VDA and MDA larvae became more explorative with time, whereas SDA larvae rarely left the preferred light zone. The SDA and VDA in-crosses significantly increased the respective phenotypes in the second generation of larvae, whereas VDA × MDA inter-crosses did not. For the second-generation SDA cohort, dark aversion correlated with increased thigmotaxis, which reinforces SDA as an anxiety-like phenotype. Our finding that the dark aversion trait and SDA and VDA phenotypes are heritable in an outbred zebrafish population lays an important foundation for future studies of genetic underpinnings using whole-genome mapping methods. This conserved fear/anxiety-like response in a highly accessible model organism also allows for further pharmacological and behavioral studies to elucidate the etiology of anxiety and the search for novel therapeutics for anxiety disorders.
Collapse
Affiliation(s)
- Amelia Dahlén
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.,School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Mahendra Wagle
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Mahdi Zarei
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
19
|
Broening HW, La Du J, Carr GJ, Nash JF, Truong L, Tanguay RL. Determination of narcotic potency using a neurobehavioral assay with larval zebrafish. Neurotoxicology 2019; 74:67-73. [PMID: 31085211 PMCID: PMC6750999 DOI: 10.1016/j.neuro.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/04/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Identifying chemicals with narcotic potency is an important aspect of assessing the safety of consumer products that may be accidentally ingested. A rapid and efficient assay of narcotic potency is desired for assessing chemicals with such suspected activity. OBJECTIVES This purpose of this research was to develop a non-mammalian vertebrate, high throughput, neurobehavioral method to assess the narcotic potency of chemicals using larval zebrafish. METHODS Larval zebrafish were acutely exposed to chemicals beginning at 5 days post fertilization (5 dpf). Locomotor activity, elicited by regular, periodic photostimulation, was quantified using a video tracking apparatus. Narcotic potency was determined as the molar concentration at which photostimulated locomotor activity was reduced by 50% (IC50). Toxicity was assessed based on observations of morbidity or mortality. Recovery was assessed following removal of test material by serial dilution and reassessment of photostimulated behavior 24 hr later (6 dpf). RESULTS A total of 21 chemicals were assessed. Etomidate, a human narcotic analgesic agent, was used as a reference material. Investigating a series of eleven linear, primary alcohols (C6 to C16), a relationship between narcotic potency and carbon number was observed; narcotic potency increased with carbon number up to C12, consistent with historical studies. For a set of technical grade surfactants, nonionic surfactants (i.e., alcohol ethoxylates) were observed to be narcotic agents while anionic surfactants produced evidence of reduced locomotor activity only in combination with toxicity. Of the solvents evaluated, only ethanol exhibited narcotic activity with an IC50 of 261 mM and was the least potent of the chemicals investigated. Etomidate was the most potent material evaluated with an IC50 of 0.39 μM. CONCLUSIONS The larval zebrafish neurobehavioral assay provides a method capable of estimating the narcotic potency of chemicals and can identify if toxicity contributes to observed neurobehavioral effects in the test organism.
Collapse
Affiliation(s)
| | - Jane La Du
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | | | - J F Nash
- The Procter & Gamble Company, Cincinnati, OH, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
20
|
Gawel K, Banono NS, Michalak A, Esguerra CV. A critical review of zebrafish schizophrenia models: Time for validation? Neurosci Biobehav Rev 2019; 107:6-22. [PMID: 31381931 DOI: 10.1016/j.neubiorev.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a mental disorder that affects 1% of the population worldwide and is manifested as a broad spectrum of symptoms, from hallucinations to memory impairment. It is believed that genetic and/or environmental factors may contribute to the occurrence of this disease. Recently, the zebrafish has emerged as a valuable and attractive model for various neurological disorders including schizophrenia. In this review, we describe current pharmacological models of schizophrenia with special emphasis on providing insights into the pros and cons of using zebrafish as a behavioural model of this disease. Moreover, we highlight the advantages and utility of using zebrafish for elucidating the genetic mechanisms underlying this psychiatric disorder. We believe that the zebrafish has high potential also in the area of precision medicine and may complement the development of therapeutics, especially for pharmacoresistant patients.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway; Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090, Lublin, Poland.
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway
| | - Agnieszka Michalak
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki St. 4A, 20-093, Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
21
|
Hu Z, Dang Y, Liu C, Zhou L, Liu H. Acute exposure to ustiloxin A affects growth and development of early life zebrafish, Danio rerio. CHEMOSPHERE 2019; 226:851-857. [PMID: 30978596 DOI: 10.1016/j.chemosphere.2019.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Ustiloxin A is a cyclopeptide mycotoxin originally isolated from rice false smut balls (FSBs) that formed in rice spikelets infected by the fungal pathogen Ustilaginoidea virens. Studies have shown that ustiloxin A was toxic to animals, but the toxicological evidence is still lacking. To reveal the negative influence of ustiloxin A on model organism, zebrafish were selected and exposed to ustiloxin A at concentrations of 0, 0.25, 2.5 or 25 μM from 2 h post-fertilization (hpf) to 144 hpf. The hatching rates of embryos in the 25 μM exposure group was 12.85% less than the control group at 96 hpf. Meanwhile, exposure to 0.25, 2.5 or 25 μM ustiloxin A resulted in a distinct dose-dependent increase in mortality rate of embryos at 96 hpf. We also found that exposed to ustiloxin A could cause some other damages on zebrafish larvae, such as growth delay and increased heart rate. In addition, the athletic behavior of zebrafish larvae exposed to ustiloxin A at 25 μM was dramatically different with that of control. Transcriptome sequencing showed that abundances of 339 transcripts (125 up-regulated and 214 down-regulated) were significantly altered in larvae exposed to 25 μM of ustiloxin A. Several of the crucial genes were validated by RT-qPCR. This is the first report on the toxicologic study of ustiloxins against model organism zebrafish. Results suggested that ustiloxins have become a potential danger for food security.
Collapse
Affiliation(s)
- Zheng Hu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yao Dang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Ligang Zhou
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Hao Liu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
22
|
Lakstygal AM, de Abreu MS, Lifanov DA, Wappler-Guzzetta EA, Serikuly N, Alpsyshov ET, Wang D, Wang M, Tang Z, Yan D, Demin KA, Volgin AD, Amstislavskaya TG, Wang J, Song C, Alekseeva P, Kalueff AV. Zebrafish models of diabetes-related CNS pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:48-58. [PMID: 30476525 DOI: 10.1016/j.pnpbp.2018.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/18/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disorder that affects multiple organ systems. DM also affects brain processes, contributing to various CNS disorders, including depression, anxiety and Alzheimer's disease. Despite active research in humans, rodent models and in-vitro systems, the pathogenetic link between DM and brain disorders remains poorly understood. Novel translational models and new model organisms are therefore essential to more fully study the impact of DM on CNS. The zebrafish (Danio rerio) is a powerful novel model species to study metabolic and CNS disorders. Here, we discuss how DM alters brain functions and behavior in zebrafish, and summarize their translational relevance to studying DM-related CNS pathogenesis in humans. We recognize the growing utility of zebrafish models in translational DM research, as they continue to improve our understanding of different brain pathologies associated with DM, and may foster the discovery of drugs that prevent or treat these diseases.
Collapse
Affiliation(s)
- Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Dmitry A Lifanov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; School of Pharmacy, Southwest University, Chongqing, China
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Polina Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Ural Federal University, Ekaterinburg, Russia; Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; ZENEREI Research Center, Slidell, LA, USA.
| |
Collapse
|
23
|
Zabegalov KN, Kolesnikova TO, Khatsko SL, Volgin AD, Yakovlev OA, Amstislavskaya TG, Friend AJ, Bao W, Alekseeva PA, Lakstygal AM, Meshalkina DA, Demin KA, de Abreu MS, Rosemberg DB, Kalueff AV. Understanding zebrafish aggressive behavior. Behav Processes 2019; 158:200-210. [DOI: 10.1016/j.beproc.2018.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
|
24
|
Robinson KJ, Yuan KC, Don EK, Hogan AL, Winnick CG, Tym MC, Lucas CW, Shahheydari H, Watchon M, Blair IP, Atkin JD, Nicholson GA, Cole NJ, Laird AS. Motor Neuron Abnormalities Correlate with Impaired Movement in Zebrafish that Express Mutant Superoxide Dismutase 1. Zebrafish 2018; 16:8-14. [PMID: 30300572 PMCID: PMC6357263 DOI: 10.1089/zeb.2018.1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. ALS can be modeled in zebrafish (Danio rerio) through the expression of human ALS-causing genes, such as superoxide dismutase 1 (SOD1). Overexpression of mutated human SOD1 protein causes aberrant branching and shortening of spinal motor axons. Despite this, the functional relevance of this axon morphology remains elusive. Our aim was to determine whether this motor axonopathy is correlated with impaired movement in mutant (MT) SOD1-expressing zebrafish. Transgenic zebrafish embryos that express blue fluorescent protein (mTagBFP) in motor neurons were injected with either wild-type (WT) or MT (A4V) human SOD1 messenger ribonucleic acid (mRNA). At 48 hours post-fertilization, larvae movement (distance traveled during behavioral testing) was examined, followed by quantification of motor axon length. Larvae injected with MT SOD1 mRNA had significantly shorter and more aberrantly branched motor axons (p < 0.002) and traveled a significantly shorter distance during behavioral testing (p < 0.001) when compared with WT SOD1 and noninjected larvae. Furthermore, there was a positive correlation between distance traveled and motor axon length (R2 = 0.357, p < 0.001). These data represent the first correlative investigation of motor axonopathies and impaired movement in SOD1-expressing zebrafish, confirming functional relevance and validating movement as a disease phenotype for the testing of disease treatments for ALS.
Collapse
Affiliation(s)
- Katherine J Robinson
- 1 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Kristy C Yuan
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| | - Emily K Don
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| | - Alison L Hogan
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| | - Claire G Winnick
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| | - Madelaine C Tym
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| | - Caitlin W Lucas
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| | - Hamideh Shahheydari
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| | - Maxinne Watchon
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia.,3 Sydney Medical School, University of Sydney, Sydney, Australia
| | - Ian P Blair
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| | - Julie D Atkin
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| | - Garth A Nicholson
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia.,4 Concord Clinical School and ANZAC Research Institute, Concord Repatriation Hospital, Concord, Australia
| | - Nicholas J Cole
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| | - Angela S Laird
- 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, Australia
| |
Collapse
|
25
|
Volgin AD, Yakovlev OA, Demin KA, de Abreu MS, Alekseeva PA, Friend AJ, Lakstygal AM, Amstislavskaya TG, Bao W, Song C, Kalueff AV. Zebrafish models for personalized psychiatry: Insights from individual, strain and sex differences, and modeling gene x environment interactions. J Neurosci Res 2018; 97:402-413. [PMID: 30320468 DOI: 10.1002/jnr.24337] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/16/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
Currently becoming widely recognized, personalized psychiatry focuses on unique physiological and genetic profiles of patients to best tailor their therapy. However, the role of individual differences, as well as genetic and environmental factors, in human psychiatric disorders remains poorly understood. Animal experimental models are a valuable tool to improve our understanding of disease pathophysiology and its molecular mechanisms. Due to high reproduction capability, fully sequenced genome, easy gene editing, and high genetic and physiological homology with humans, zebrafish (Danio rerio) are emerging as a novel powerful model in biomedicine. Mounting evidence supports zebrafish as a useful model organism in CNS research. Robustly expressed in these fish, individual, strain, and sex differences shape their CNS responses to genetic, environmental, and pharmacological manipulations. Here, we discuss zebrafish as a promising complementary translational tool to further advance patient-centered personalized psychiatry.
Collapse
Affiliation(s)
- Andrey D Volgin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Military Medical Academy, St Petersburg, Russia
| | - Oleg A Yakovlev
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Military Medical Academy, St Petersburg, Russia
| | - Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Polina A Alekseeva
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, Louisiana
| | - Anton M Lakstygal
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tamara G Amstislavskaya
- Laboratory of Translational Biopsychiatry, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Wandong Bao
- School of Pharmacy, Southwest University, Chongqing, China
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Ural Federal University, Ekaterinburg, Russia.,ZENEREI Research Center, Slidell, Louisiana.,Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
26
|
Zebrafish models of epigenetic regulation of CNS functions. Brain Res Bull 2018; 142:344-351. [DOI: 10.1016/j.brainresbull.2018.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
|
27
|
Soares MC, Cardoso SC, Carvalho TDS, Maximino C. Using model fish to study the biological mechanisms of cooperative behaviour: A future for translational research concerning social anxiety disorders? Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:205-215. [PMID: 29154800 DOI: 10.1016/j.pnpbp.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
Abstract
Human societies demand of its composing members the development of a wide array of social tools and strategies. A notable example is human outstanding ability to cooperate with others, in all its complex forms, depicting the reality of a highly demanding social framework in which humans need to be integrated as to attain physical and mental benefits. Considering the importance of social engagement, it's not entirely unexpected that most psychiatric disorders involve some disruption of normal social behaviour, ranging from an abnormal absence to a significant increase of social functioning. It is however surprising that knowledge on these social anxiety disorders still remains so limited. Here we review the literature focusing on the social and cooperative toolbox of 3 fish model species (cleaner fishes, guppies and zebrafish) which are amenable systems to test for social disorders. We build on current knowledge based on ethological information, arising from studies on cooperative behaviour in cleanerfishes and guppies, while profiting from the advantages of the intense use of zebrafish, to create novel paradigms aiming at the major socio-cognitive modules/dimensions in fish species. This focus may enable the discovery of putative conserved endpoints which are relevant for research into social disorders. We suggest that cross-species, cross-domain, functional and genetic approaches could provide a wider array of information on the neurobiological bases of social and cooperative behaviour, crucial to understanding the neural bases of social disorders and key to finding novel avenues towards treatment.
Collapse
Affiliation(s)
- Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - Sónia C Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Tamires Dos Santos Carvalho
- IESB, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III, Marabá, Brazil
| | - Caio Maximino
- IESB, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III, Marabá, Brazil
| |
Collapse
|
28
|
Shams S, Amlani S, Buske C, Chatterjee D, Gerlai R. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish. Dev Psychobiol 2018; 60:43-56. [PMID: 29091281 PMCID: PMC5747993 DOI: 10.1002/dev.21581] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022]
Abstract
The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions.
Collapse
Affiliation(s)
- Soaleha Shams
- Department of Cell & Systems Biology, University of Toronto
| | - Shahid Amlani
- Department of Psychology, University of Toronto Mississauga
| | | | - Diptendu Chatterjee
- Department of Nutritional Sciences, University of Toronto
- Department of Psychology, University of Toronto Mississauga
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto
- Department of Psychology, University of Toronto Mississauga
| |
Collapse
|
29
|
Purinergic and adenosine receptors contribute to hypoxic hyperventilation in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2017; 214:50-57. [DOI: 10.1016/j.cbpa.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022]
|
30
|
Calienni MN, Feas DA, Igartúa DE, Chiaramoni NS, Alonso SDV, Prieto MJ. Nanotoxicological and teratogenic effects: A linkage between dendrimer surface charge and zebrafish developmental stages. Toxicol Appl Pharmacol 2017; 337:1-11. [DOI: 10.1016/j.taap.2017.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 01/02/2023]
|
31
|
The use of fish models to study human neurological disorders. Neurosci Res 2017; 120:1-7. [DOI: 10.1016/j.neures.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 11/21/2022]
|
32
|
Seguin D, Gerlai R. Zebrafish prefer larger to smaller shoals: analysis of quantity estimation in a genetically tractable model organism. Anim Cogn 2017; 20:813-821. [PMID: 28616841 DOI: 10.1007/s10071-017-1102-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/24/2023]
Abstract
Numerical abilities have been demonstrated in a variety of non-human vertebrates. However, underlying biological mechanisms have been difficult to study due to a paucity of experimental tools. Powerful genetic and neurobiological tools already exist for the zebrafish, but numerical abilities remain scarcely explored with this species. Here, we investigate the choice made by single experimental zebrafish between numerically different shoals of conspecifics presented concurrently on opposite sides of the experimental tank. We examined this choice using the AB strain and pet store zebrafish. We found zebrafish of both populations to generally prefer the numerically larger shoal to the smaller one. This preference was significant for contrasted ratios above or equalling 2:1 (i.e. 4 vs. 0, 4 vs. 1, 8 vs. 2, 6 vs. 2 and 6 vs. 3). Interestingly, zebrafish showed no significant preference when each of the two contrasted shoals had at least 4 members, e.g. in a contrast 8 versus 4. These results confirm that zebrafish possess the ability to distinguish larger numbers of items from smaller number of items, in a shoaling context, with a potential limit above 4. Our findings confirm the utility of the zebrafish for the exploration of both the behavioural and the biological mechanisms underlying numerical abilities in vertebrates.
Collapse
Affiliation(s)
- Diane Seguin
- Department of Psychology, University of Toronto Mississauga, 3559 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3559 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
33
|
Kacprzak V, Patel NA, Riley E, Yu L, Yeh JRJ, Zhdanova IV. Dopaminergic control of anxiety in young and aged zebrafish. Pharmacol Biochem Behav 2017; 157:1-8. [PMID: 28408289 DOI: 10.1016/j.pbb.2017.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/26/2023]
Abstract
Changes in the expression of the dopamine transporter (DAT), or the sensitivity of dopamine receptors, are associated with aging and substance abuse and may underlie some of the symptoms common to both conditions. In this study, we explored the role of the dopaminergic system in the anxiogenic effects of aging and acute cocaine exposure by comparing the behavioral phenotypes of wild type (WT) and DAT knockout zebrafish (DAT-KO) of different ages. To determine the involvement of specific dopamine receptors in anxiety states, antagonists to D1 (SCH23390) and D2/D3 (sulpiride) were employed. We established that DAT-KO results in a chronic anxiety-like state, seen as an increase in bottom-dwelling and thigmotaxis. Similar effects were produced by aging and acute cocaine administration, both leading to reduction in DAT mRNA abundance (qPCR). Inhibition of D1 activity counteracted the anxiety-like effects associated with DAT deficit, independent of its origin. Inhibition of D2/D3 receptors reduced anxiety in young DAT-KO, and enhanced the anxiogenic effects of cocaine in WT, but did not affect aged WT or DAT-KO fish. These findings provide new evidence that the dopaminergic system plays a critical role in anxiety-like states, and suggest that adult zebrafish provide a sensitive diurnal vertebrate model for elucidating the molecular mechanisms of anxiety and a platform for anxiolytic drug screens.
Collapse
Affiliation(s)
- Victoria Kacprzak
- Boston University School of Medicine, Lab of Sleep and Circadian Physiology, R-911, 72 E. Concord St., Boston, MA 02118, United States.
| | - Neil A Patel
- Boston University School of Medicine, Lab of Sleep and Circadian Physiology, R-911, 72 E. Concord St., Boston, MA 02118, United States.
| | - Elizabeth Riley
- Boston University School of Medicine, Lab of Sleep and Circadian Physiology, R-911, 72 E. Concord St., Boston, MA 02118, United States.
| | - Lili Yu
- Boston University School of Medicine, Lab of Sleep and Circadian Physiology, R-911, 72 E. Concord St., Boston, MA 02118, United States.
| | - Jing-Ruey J Yeh
- Massachusetts General Hospital, Cardiovascular Research Center, 149 13th St., 4.217, Charlestown, MA 02129, United States.
| | - Irina V Zhdanova
- Boston University School of Medicine, Lab of Sleep and Circadian Physiology, R-911, 72 E. Concord St., Boston, MA 02118, United States.
| |
Collapse
|
34
|
Fulcher N, Tran S, Shams S, Chatterjee D, Gerlai R. Neurochemical and Behavioral Responses to Unpredictable Chronic Mild Stress Following Developmental Isolation: The Zebrafish as a Model for Major Depression. Zebrafish 2017; 14:23-34. [DOI: 10.1089/zeb.2016.1295] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Niveen Fulcher
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Steven Tran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Soaleha Shams
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Fizet J, Cassel JC, Kelche C, Meunier H. A review of the 5-Choice Serial Reaction Time (5-CSRT) task in different vertebrate models. Neurosci Biobehav Rev 2016; 71:135-153. [DOI: 10.1016/j.neubiorev.2016.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/25/2023]
|
36
|
Qiang L, Cheng J, Yi J, Rotchell JM, Zhu X, Zhou J. Environmental concentration of carbamazepine accelerates fish embryonic development and disturbs larvae behavior. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1426-1437. [PMID: 27386877 DOI: 10.1007/s10646-016-1694-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
Environmental pollution caused by pharmaceuticals has been recognized as a major threat to the aquatic ecosystems. Carbamazepine, as the widely prescribed antiepileptic drug, has been frequently detected in the aquatic environment and has created concerns about its potential impacts in the aquatic organisms. The effects of carbamazepine on zebrafish embryos were studied by examining their phenotype, behavior and molecular responses. The results showed that carbamazepine disturbed the normal growth and development of exposed zebrafish embryos and larvae. Upon exposure to carbamazepine at 1 μg/L, the hatching rate, body length, swim bladder appearance and yolk sac absorption rate were significantly increased. Embryos in treatment groups were more sensitive to touch and light stimulation. At molecular level, exposure to an environmentally relevant concentration (1 μg/L) of carbamazepine disturbed the expression pattern of neural-related genes of zebrafish embryos and larvae. This study suggests that the exposure of fish embryo to antiepileptic drugs, at environmentally relevant concentrations, affects their early development and impairs their behavior. Such impacts may have future repercussions by affecting fish population structure.
Collapse
Affiliation(s)
- Liyuan Qiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200062, Shanghai, China
| | - Jinping Cheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200062, Shanghai, China.
- Environmental Science Programs, School of Science, Hong Kong University of Science and Technology, Clear Water bay, Kowloon, Hong Kong, China.
| | - Jun Yi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200062, Shanghai, China
| | - Jeanette M Rotchell
- School of Biological, Biomedical & Environmental Sciences, University of Hull, Cottingham Road, Hull, HU67RX, UK
| | - Xiaotong Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200062, Shanghai, China
| | - Junliang Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200062, Shanghai, China
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
37
|
Kirla KT, Groh KJ, Steuer AE, Poetzsch M, Banote RK, Stadnicka-Michalak J, Eggen RIL, Schirmer K, Kraemer T. From the Cover: Zebrafish Larvae Are Insensitive to Stimulation by Cocaine: Importance of Exposure Route and Toxicokinetics. Toxicol Sci 2016; 154:183-193. [PMID: 27521082 DOI: 10.1093/toxsci/kfw156] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zebrafish (Danio rerio) larvae have been suggested as vertebrate model to complement or even replace mammals for rapidly assessing behavioral effects of psychoactive drugs. Yet, divergent responses have been reported in mammals and fish despite the conservation of many drug targets. Cocaine, eg, acts as stimulant in mammals but no such response has been documented for zebrafish larvae. We hypothesized that differences in exposure routes (inhalation or injection in mammals vs waterborne in fish) may be a reason for differences in behavioral responses. We characterized cocaine toxicokinetics by liquid chromatography-mass spectrometry and found its rapid uptake into larvae. We used Matrix-assisted laser desorption ionization-mass spectrometry imaging for the first time to characterize internal distribution of cocaine in zebrafish larvae. Surprisingly, eyes accumulated the highest amount of cocaine and retained most of it even after 48 h depuration. We attribute this to trapping by pigment melanin, a thus far little explored mechanism that may also be relevant for other basic drugs. Cocaine also reached the brain but with levels similar to those in trunk indicating simple passive diffusion as means of distribution which was supported by toxicokinetic models. Although brain levels covered those known to cause hyperactivity in mammals, only hypoactivity (decreased locomotion) was recorded in zebrafish larvae. Our results therefore point to cocaine's anesthetic properties as the dominant mechanism of interaction in the fish: upon entry through the fish skin and gills, it first acts on peripheral nerves rapidly overriding any potential stimulatory response in the brain.
Collapse
Affiliation(s)
- Krishna Tulasi Kirla
- *Department of Forensic Pharmacology and Toxicology, University of Zurich, Zurich Institute of Forensic Medicine, Zurich, 8057, Switzerland
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, 8600, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, 8600, Switzerland
| | - Andrea E Steuer
- *Department of Forensic Pharmacology and Toxicology, University of Zurich, Zurich Institute of Forensic Medicine, Zurich, 8057, Switzerland
| | - Michael Poetzsch
- *Department of Forensic Pharmacology and Toxicology, University of Zurich, Zurich Institute of Forensic Medicine, Zurich, 8057, Switzerland
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Gothenburg, S-41345, Sweden
| | - Julita Stadnicka-Michalak
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, 8600, Switzerland
- EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne, 1015, Switzerland
| | - Rik I L Eggen
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, 8600, Switzerland
- ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, 8092, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, 8600, Switzerland
- EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne, 1015, Switzerland
- ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, 8092, Switzerland
| | - Thomas Kraemer
- *Department of Forensic Pharmacology and Toxicology, University of Zurich, Zurich Institute of Forensic Medicine, Zurich, 8057, Switzerland
| |
Collapse
|
38
|
Hamilton TJ, Myggland A, Duperreault E, May Z, Gallup J, Powell RA, Schalomon M, Digweed SM. Episodic-like memory in zebrafish. Anim Cogn 2016; 19:1071-1079. [PMID: 27421709 DOI: 10.1007/s10071-016-1014-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/26/2022]
Abstract
Episodic-like memory tests often aid in determining an animal's ability to recall the what, where, and which (context) of an event. To date, this type of memory has been demonstrated in humans, wild chacma baboons, corvids (Scrub jays), humming birds, mice, rats, Yucatan minipigs, and cuttlefish. The potential for this type of memory in zebrafish remains unexplored even though they are quickly becoming an essential model organism for the study of a variety of human cognitive and mental disorders. Here we explore the episodic-like capabilities of zebrafish (Danio rerio) in a previously established mammalian memory paradigm. We demonstrate that when zebrafish were presented with a familiar object in a familiar context but a novel location within that context, they spend more time in the novel quadrant. Thus, zebrafish display episodic-like memory as they remember what object they saw, where they saw it (quadrant location), and on which occasion (yellow or blue walls) it was presented.
Collapse
Affiliation(s)
- Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB, T5J 4S2, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | - Allison Myggland
- Department of Psychology, MacEwan University, Edmonton, AB, T5J 4S2, Canada
| | - Erika Duperreault
- Department of Psychology, MacEwan University, Edmonton, AB, T5J 4S2, Canada
| | - Zacnicte May
- Department of Psychology, MacEwan University, Edmonton, AB, T5J 4S2, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Joshua Gallup
- Department of Psychology, MacEwan University, Edmonton, AB, T5J 4S2, Canada
| | - Russell A Powell
- Department of Psychology, MacEwan University, Edmonton, AB, T5J 4S2, Canada
| | - Melike Schalomon
- Department of Psychology, MacEwan University, Edmonton, AB, T5J 4S2, Canada
| | - Shannon M Digweed
- Department of Psychology, MacEwan University, Edmonton, AB, T5J 4S2, Canada
| |
Collapse
|
39
|
Time-dependent sensitization of stress responses in zebrafish: A putative model for post-traumatic stress disorder. Behav Processes 2016; 128:70-82. [DOI: 10.1016/j.beproc.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 01/22/2023]
|
40
|
Sheng L, Wang L, Su M, Zhao X, Hu R, Yu X, Hong J, Liu D, Xu B, Zhu Y, Wang H, Hong F. Mechanism of TiO2 nanoparticle-induced neurotoxicity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2016; 31:163-175. [PMID: 25059219 DOI: 10.1002/tox.22031] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/07/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish (Danio rerio) has been used historically for evaluating the toxicity of environmental and aqueous toxicants, and there is an emerging literature reporting toxic effects of manufactured nanoparticles (NPs) in zebrafish embryos. Few researches, however, are focused on the neurotoxicity on adult zebrafish after subchronic exposure to TiO2 NPs. This study was designed to evaluate the morphological changes, alterations of neurochemical contents, and expressions of memory behavior-related genes in zebrafish brains caused by exposures to 5, 10, 20, and 40 μg/L TiO2 NPs for 45 consecutive days. Our data indicated that spatial recognition memory and levels of norepinephrine, dopamine, and 5-hydroxytryptamine were significantly decreased and NO levels were markedly elevated, and over proliferation of glial cells, neuron apoptosis, and TiO2 NP aggregation were observed after low dose exposures of TiO2 NPs. Furthermore, the low dose exposures of TiO2 NPs significantly activated expressions of C-fos, C-jun, and BDNF genes, and suppressed expressions of p38, NGF, CREB, NR1, NR2ab, and GluR2 genes. These findings imply that low dose exposures of TiO2 NPs may result in the brain damages in zebrafish, provide a developmental basis for evaluating the neurotoxicity of subchronic exposure, and raise the caution of aquatic application of TiO2 NPs.
Collapse
Affiliation(s)
- Lei Sheng
- Medical College of Soochow University, Suzhou, 215123, China
| | - Ling Wang
- Libary of Soochow University, Suzhou, 215021, China
| | - Mingyu Su
- Medical College of Soochow University, Suzhou, 215123, China
- Suzhou Environmental Monitor Center, Suzhou, 215004, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou, 215123, China
| | - Renping Hu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou, 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Yunting Zhu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Han Wang
- Medical College of Soochow University, Suzhou, 215123, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou, 215123, China
| |
Collapse
|
41
|
Stewart AM, Grieco F, Tegelenbosch RA, Kyzar EJ, Nguyen M, Kaluyeva A, Song C, Noldus LP, Kalueff AV. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods 2015; 255:66-74. [DOI: 10.1016/j.jneumeth.2015.07.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 01/16/2023]
|
42
|
Maximino C, Silva RXDC, da Silva SDNS, Rodrigues LDSDS, Barbosa H, de Carvalho TS, Leão LKDR, Lima MG, Oliveira KRM, Herculano AM. Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci 2015; 9:233. [PMID: 26441567 PMCID: PMC4561806 DOI: 10.3389/fnbeh.2015.00233] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/18/2015] [Indexed: 01/04/2023] Open
Abstract
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Rhayra Xavier do Carmo Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Suéllen de Nazaré Santos da Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Laís do Socorro dos Santos Rodrigues
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Hellen Barbosa
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Tayana Silva de Carvalho
- Universität Duisburg-EssenEssen, Germany
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Luana Ketlen dos Reis Leão
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Monica Gomes Lima
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Karen Renata Matos Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| |
Collapse
|
43
|
Gerlai R. Embryonic alcohol exposure: Towards the development of a zebrafish model of fetal alcohol spectrum disorders. Dev Psychobiol 2015; 57:787-98. [DOI: 10.1002/dev.21318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/08/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Robert Gerlai
- Department of Psychology; University of Toronto Mississsauga; 3359 Mississauga Road North Mississauga Ontario L5L 1C6 Canada
| |
Collapse
|
44
|
Bhatia S, Gordon CT, Foster RG, Melin L, Abadie V, Baujat G, Vazquez MP, Amiel J, Lyonnet S, van Heyningen V, Kleinjan DA. Functional assessment of disease-associated regulatory variants in vivo using a versatile dual colour transgenesis strategy in zebrafish. PLoS Genet 2015; 11:e1005193. [PMID: 26030420 PMCID: PMC4452300 DOI: 10.1371/journal.pgen.1005193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/02/2015] [Indexed: 11/26/2022] Open
Abstract
Disruption of gene regulation by sequence variation in non-coding regions of the genome is now recognised as a significant cause of human disease and disease susceptibility. Sequence variants in cis-regulatory elements (CREs), the primary determinants of spatio-temporal gene regulation, can alter transcription factor binding sites. While technological advances have led to easy identification of disease-associated CRE variants, robust methods for discerning functional CRE variants from background variation are lacking. Here we describe an efficient dual-colour reporter transgenesis approach in zebrafish, simultaneously allowing detailed in vivo comparison of spatio-temporal differences in regulatory activity between putative CRE variants and assessment of altered transcription factor binding potential of the variant. We validate the method on known disease-associated elements regulating SHH, PAX6 and IRF6 and subsequently characterise novel, ultra-long-range SOX9 enhancers implicated in the craniofacial abnormality Pierre Robin Sequence. The method provides a highly cost-effective, fast and robust approach for simultaneously unravelling in a single assay whether, where and when in embryonic development a disease-associated CRE-variant is affecting its regulatory function. Cis-regulatory elements (CREs) play a vital role in gene regulation by providing spatial and temporal specificity to the expression of their target genes. Understanding how these regions of the genome work is of vital importance for human health as it has been demonstrated that genetic changes in these regions can result in incorrect gene expression, leading to a variety of human diseases. Functional characterization of putative CREs and the effects of mutations on their activity is currently a major bottleneck in many studies towards understanding the causes and mechanisms of disease and disease susceptibility. We describe a robust in-vivo approach using dual-colour reporter transgenesis in zebrafish for unambiguous assessment of the effects of disease-associated CRE mutations on CRE activity during the entire time-course of embryonic development. The highly efficient, cost-effective and modular design of the assay allows rapid analysis of several CRE-variants in parallel. We illustrate the robustness of our approach using examples of CRE-variants associated with a broad spectrum of genetic diseases including brain, limb, eye and jaw disorders. In a single assay the method can address where and when in development the CRE variant affects its activity, what potential target genes are misregulated by the change and what upstream trans-acting factors are likely to mediate this effect.
Collapse
Affiliation(s)
- Shipra Bhatia
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (SB); (VvH); (DAK)
| | - Christopher T. Gordon
- INSERM U781, Hôpital Necker-Enfants Malades and Université Paris Descartes-Sorbonne Paris Cité, Institute Imagine, Paris, France
| | - Robert G. Foster
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucie Melin
- INSERM U781, Hôpital Necker-Enfants Malades and Université Paris Descartes-Sorbonne Paris Cité, Institute Imagine, Paris, France
| | - Véronique Abadie
- Service de Pédiatrie Générale, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Geneviève Baujat
- Departement de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris France
| | - Marie-Paule Vazquez
- Service de Chirurgie Maxillo-Faciale et Plastique, CRMR des Malformations de la Face et de la Cavité Buccale, Hôpital Necker-Enfants Malades, Paris, France
| | - Jeanne Amiel
- INSERM U781, Hôpital Necker-Enfants Malades and Université Paris Descartes-Sorbonne Paris Cité, Institute Imagine, Paris, France
- Departement de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris France
| | - Stanislas Lyonnet
- INSERM U781, Hôpital Necker-Enfants Malades and Université Paris Descartes-Sorbonne Paris Cité, Institute Imagine, Paris, France
- Departement de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris France
| | - Veronica van Heyningen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (SB); (VvH); (DAK)
| | - Dirk A. Kleinjan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (SB); (VvH); (DAK)
| |
Collapse
|
45
|
Clift DE, Thorn RJ, Passarelli EA, Kapoor M, LoPiccolo MK, Richendrfer HA, Colwill RM, Creton R. Effects of embryonic cyclosporine exposures on brain development and behavior. Behav Brain Res 2015; 282:117-24. [PMID: 25591474 DOI: 10.1016/j.bbr.2015.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022]
Abstract
Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures.
Collapse
Affiliation(s)
- Danielle E Clift
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Robert J Thorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Emily A Passarelli
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Mrinal Kapoor
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Mary K LoPiccolo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Holly A Richendrfer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ruth M Colwill
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
46
|
Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:50-66. [PMID: 24681196 DOI: 10.1016/j.pnpbp.2014.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Neuroendocrinology Laboratory, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil; "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil
| | - Caio Maximino
- "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil; International Zebrafish Neuroscience Research Consortium, United States.
| |
Collapse
|
47
|
Liu Z, Zhang C, Chen Y, Qian F, Bai Y, He W, Guo Z. In vivo ratiometric Zn2+ imaging in zebrafish larvae using a new visible light excitable fluorescent sensor. Chem Commun (Camb) 2014; 50:1253-5. [PMID: 24336489 DOI: 10.1039/c3cc46262e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light excitable ratiometric Zn(2+) sensor was developed by integrating a Zn(2+) chelator as the ICT donor of the fluorophore sulfamoylbenzoxadiazole, which displays the Zn(2+)-induced hypsochromic emission shift (40 nm) and favors the in vivo ratiometric Zn(2+) imaging in zebrafish larvae.
Collapse
Affiliation(s)
- Zhipeng Liu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 2014; 4:2410. [PMID: 24002024 PMCID: PMC3891590 DOI: 10.1038/ncomms3410] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022] Open
Abstract
Dravet syndrome is a catastrophic pediatric epilepsy with severe intellectual disability, impaired social development and persistent drug-resistant seizures. One of its primary monogenic causes are mutations in Nav1.1 (SCN1A), a voltage-gated sodium channel. Here we characterize zebrafish Nav1.1 (scn1Lab) mutants originally identified in a chemical mutagenesis screen. Mutants exhibit spontaneous abnormal electrographic activity, hyperactivity and convulsive behaviours. Although scn1Lab expression is reduced, microarray analysis is remarkable for the small fraction of differentially expressed genes (~3%) and lack of compensatory expression changes in other scn subunits. Ketogenic diet, diazepam, valproate, potassium bromide and stiripentol attenuate mutant seizure activity; seven other antiepileptic drugs have no effect. A phenotype-based screen of 320 compounds identifies a US Food and Drug Administration-approved compound (clemizole) that inhibits convulsive behaviours and electrographic seizures. This approach represents a new direction in modelling pediatric epilepsy and could be used to identify novel therapeutics for any monogenic epilepsy disorder.
Collapse
Affiliation(s)
- Scott C Baraban
- 1] Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, Box 0520, 513 Parnassus Avenue San Francisco, California 94143, USA [2] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
49
|
Babin PJ, Goizet C, Raldúa D. Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 2014; 118:36-58. [PMID: 24705136 DOI: 10.1016/j.pneurobio.2014.03.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.
Collapse
Affiliation(s)
- Patrick J Babin
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France.
| | - Cyril Goizet
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | | |
Collapse
|
50
|
Miller GW, Truong L, Barton CL, Labut EM, Lebold KM, Traber MG, Tanguay RL. The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 10:22-9. [PMID: 24657723 DOI: 10.1016/j.cbd.2014.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin E-deficient parental diet (E-) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E- diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E- embryos at 48h post-fertilization (hpf), embryos were collected from each group at 36hpf. Lab embryos differentially expressed (p<0.01) 946 transcripts compared with the E+ embryos, and 2656 transcripts compared with the E- embryos. The differences in protein, fat and micronutrient intakes in zebrafish fed the Lab compared with the E+ diet demonstrate that despite overt morphologic consistency, significant differences in gene expression occurred. Moreover, functional analysis of the significant transcripts in the E- embryos suggested perturbed energy metabolism, leading to overt malformations and mortality. Thus, these findings demonstrate that parental zebrafish diet has a direct impact on the embryonic transcriptome.
Collapse
Affiliation(s)
- Galen W Miller
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Carrie L Barton
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Edwin M Labut
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Katie M Lebold
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|