1
|
Stokes EG, Kim H, Ko J, Aoto J. A Systematic Structure-Function Characterization of a Human Mutation in Neurexin-3α Reveals an Extracellular Modulatory Sequence That Stabilizes Neuroligin-1 Binding to Enhance the Postsynaptic Properties of Excitatory Synapses. J Neurosci 2024; 44:e1847232024. [PMID: 39231636 PMCID: PMC11466067 DOI: 10.1523/jneurosci.1847-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
α-Neurexins are essential and highly expressed presynaptic cell-adhesion molecules that are frequently linked to neuropsychiatric and neurodevelopmental disorders. Despite their importance, how the elaborate extracellular sequences of α-neurexins contribute to synapse function is poorly understood. We recently characterized the presynaptic gain-of-function phenotype caused by a missense mutation in an evolutionarily conserved extracellular sequence of neurexin-3α (A687T) that we identified in a patient diagnosed with profound intellectual disability and epilepsy. The striking A687T gain-of-function mutation on neurexin-3α prompted us to systematically test using mutants whether the presynaptic gain-of-function phenotype is a consequence of the addition of side-chain bulk (i.e., A687V) or polar/hydrophilic properties (i.e., A687S). We used multidisciplinary approaches in mixed-sex primary hippocampal cultures to assess the impact of the neurexin-3αA687 residue on synapse morphology, function and ligand binding. Unexpectedly, neither A687V nor A687S recapitulated the neurexin-3α A687T phenotype. Instead, distinct from A687T, molecular replacement with A687S significantly enhanced postsynaptic properties exclusively at excitatory synapses and selectively increased binding to neuroligin-1 and neuroligin-3 without changing binding to neuroligin-2 or LRRTM2. Importantly, we provide the first experimental evidence supporting the notion that the position A687 of neurexin-3α and the N-terminal sequences of neuroligins may contribute to the stability of α-neurexin-neuroligin-1 trans-synaptic interactions and that these interactions may specifically regulate the postsynaptic strength of excitatory synapses.
Collapse
Affiliation(s)
- Eric G Stokes
- Department of Pharmacology, University of Colorado Anschutz School of Medicine, Colorado 80045
| | - Hyeonho Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Korea
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz School of Medicine, Colorado 80045
| |
Collapse
|
2
|
Landon SM, Holder E, Ng A, Wood R, Gutierrez Kuri E, Pinto L, Humayun S, Macpherson LJ. Maintenance of taste receptor cell presynaptic sites requires gustatory nerve fibers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.604832. [PMID: 39211150 PMCID: PMC11360969 DOI: 10.1101/2024.07.28.604832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The turnover and re-establishment of peripheral taste synapses is vital to maintain connectivity between the primary taste receptor cells and the gustatory neurons which relay taste information from the tongue to the brain. Despite the importance of neuron-taste cell reconnection, mechanisms governing synapse assembly and the specificity of synaptic connections is largely unknown. Here we use the expression of presynaptic proteins, CALHM1 and Bassoon, to probe whether nerve fiber connectivity is an initiating factor for the recruitment of presynaptic machinery in different populations of taste cells. Under homeostatic conditions, the vast majority (>90%) of presynaptic sites are directly adjacent to nerve fibers. In the days immediately following gustatory nerve transection and complete denervation, Bassoon and CALHM1 puncta are markedly reduced. This suggests that nerve fiber innervation is crucial for the recruitment and maintenance of presynaptic sites. In support of this, we find that expression of Bassoon and Calhm1 mRNA transcripts are significantly reduced after denervation. During nerve fiber regeneration into the taste bud, presynaptic sites begin to replenish, but are not as frequently connected to nerve fibers as intact controls (∼50% compared to >90%). This suggests that gustatory neuron proximity, rather than direct contact, likely drives taste receptor cells to express and aggregate presynaptic proteins at the cell membrane. Together, these data support the idea that trophic factors secreted by gustatory nerve fibers prompt taste receptor cells to produce presynaptic specializations at the cell membrane, which in turn may guide neurons to form mature synapses. These findings provide new insights into the mechanisms driving synaptogenesis and synaptic plasticity within the rapidly changing taste bud environment.
Collapse
|
3
|
Kim S, Jang G, Kim H, Lim D, Han KA, Um JW, Ko J. MDGAs perform activity-dependent synapse type-specific suppression via distinct extracellular mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2322978121. [PMID: 38900791 PMCID: PMC11214077 DOI: 10.1073/pnas.2322978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Gyubin Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Hyeonho Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Dongseok Lim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| |
Collapse
|
4
|
Verpoort B, de Wit J. Cell Adhesion Molecule Signaling at the Synapse: Beyond the Scaffold. Cold Spring Harb Perspect Biol 2024; 16:a041501. [PMID: 38316556 PMCID: PMC11065171 DOI: 10.1101/cshperspect.a041501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Synapses are specialized intercellular junctions connecting pre- and postsynaptic neurons into functional neural circuits. Synaptic cell adhesion molecules (CAMs) constitute key players in synapse development that engage in homo- or heterophilic interactions across the synaptic cleft. Decades of research have identified numerous synaptic CAMs, mapped their trans-synaptic interactions, and determined their role in orchestrating synaptic connectivity. However, surprisingly little is known about the molecular mechanisms that translate trans-synaptic adhesion into the assembly of pre- and postsynaptic compartments. Here, we provide an overview of the intracellular signaling pathways that are engaged by synaptic CAMs and highlight outstanding issues to be addressed in future work.
Collapse
Affiliation(s)
- Ben Verpoort
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Han KA, Yoon TH, Kim J, Lee J, Lee JY, Jang G, Um JW, Kim JK, Ko J. Specification of neural circuit architecture shaped by context-dependent patterned LAR-RPTP microexons. Nat Commun 2024; 15:1624. [PMID: 38388459 PMCID: PMC10883964 DOI: 10.1038/s41467-024-45695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
LAR-RPTPs are evolutionarily conserved presynaptic cell-adhesion molecules that orchestrate multifarious synaptic adhesion pathways. Extensive alternative splicing of LAR-RPTP mRNAs may produce innumerable LAR-RPTP isoforms that act as regulatory "codes" for determining the identity and strength of specific synapse signaling. However, no direct evidence for this hypothesis exists. Here, using targeted RNA sequencing, we detected LAR-RPTP mRNAs in diverse cell types across adult male mouse brain areas. We found pronounced cell-type-specific patterns of two microexons, meA and meB, in Ptprd mRNAs. Moreover, diverse neural circuits targeting the same neuronal populations were dictated by the expression of different Ptprd variants with distinct inclusion patterns of microexons. Furthermore, conditional ablation of Ptprd meA+ variants at presynaptic loci of distinct hippocampal circuits impaired distinct modes of synaptic transmission and objection-location memory. Activity-triggered alterations of the presynaptic Ptprd meA code in subicular neurons mediates NMDA receptor-mediated postsynaptic responses in CA1 neurons and objection-location memory. Our data provide the evidence of cell-type- and/or circuit-specific expression patterns in vivo and physiological functions of LAR-RPTP microexons that are dynamically regulated.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Taek-Han Yoon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Jinhu Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Jusung Lee
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Ju Yeon Lee
- Korea Basic Science Institute, Research Center for Bioconvergence Analysis, Cheongju, 28119, Korea
| | - Gyubin Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, 42988, Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
6
|
Clarin JD, Reddy N, Alexandropoulos C, Gao WJ. The role of cell adhesion molecule IgSF9b at the inhibitory synapse and psychiatric disease. Neurosci Biobehav Rev 2024; 156:105476. [PMID: 38029609 PMCID: PMC10842117 DOI: 10.1016/j.neubiorev.2023.105476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Understanding perturbations in synaptic function between health and disease states is crucial to the treatment of neuropsychiatric illness. While genome-wide association studies have identified several genetic loci implicated in synaptic dysfunction in disorders such as autism and schizophrenia, many have not been rigorously characterized. Here, we highlight immunoglobulin superfamily member 9b (IgSF9b), a cell adhesion molecule thought to localize exclusively to inhibitory synapses in the brain. While both pre-clinical and clinical studies suggest its association with psychiatric diseases, our understanding of IgSF9b in synaptic maintenance, neural circuits, and behavioral phenotypes remains rudimentary. Moreover, these functions wield undiscovered influences on neurodevelopment. This review evaluates current literature and publicly available gene expression databases to explore the implications of IgSF9b dysfunction in rodents and humans. Through a focused analysis of one high-risk gene locus, we identify areas requiring further investigation and unearth clues related to broader mechanisms contributing to the synaptic etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Jacob D Clarin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Natasha Reddy
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Cassandra Alexandropoulos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
7
|
Milton AJ, Kwok JC, McClellan J, Randall SG, Lathia JD, Warren PM, Silver DJ, Silver J. Recovery of Forearm and Fine Digit Function After Chronic Spinal Cord Injury by Simultaneous Blockade of Inhibitory Matrix Chondroitin Sulfate Proteoglycan Production and the Receptor PTPσ. J Neurotrauma 2023; 40:2500-2521. [PMID: 37606910 PMCID: PMC10698859 DOI: 10.1089/neu.2023.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Spinal cord injuries (SCI), for which there are limited effective treatments, result in enduring paralysis and hypoesthesia, in part because of the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic removal of the inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) rapidly restored robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection. Importantly, ChABC treatment at cervical level 4 in this chronic model also elicited improvements in gross upper arm function. In the present study, we focused on arm and hand function, seeking to highlight and optimize crude as well as fine motor control of the forearm and digits at lengthy chronic stages post-injury. However, instead of using ChABC, we utilized a novel and more clinically relevant systemic combinatorial treatment strategy designed to simultaneously reduce and overcome inhibitory CSPGs. Following a 3-month upper cervical spinal hemi-lesion using adult female Sprague Dawley rats, we show that the combined treatment had a profound effect on functional recovery of the chronically paralyzed forelimb and paw, as well as on precision movements of the digits. The regenerative and immune system related events that we describe deepen our basic understanding of the crucial role of CSPG-mediated inhibition via the PTPσ receptor in constraining functional synaptic plasticity at lengthy time points following SCI, hopefully leading to clinically relevant translational benefits.
Collapse
Affiliation(s)
- Adrianna J. Milton
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jessica C.F. Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Jacob McClellan
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sabre G. Randall
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
| | - Philippa M. Warren
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Daniel J. Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Bastien BL, Cowen MH, Hart MP. Distinct neurexin isoforms cooperate to initiate and maintain foraging activity. Transl Psychiatry 2023; 13:367. [PMID: 38036526 PMCID: PMC10689797 DOI: 10.1038/s41398-023-02668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Neurexins are synaptic adhesion molecules that play diverse roles in synaptic development, function, maintenance, and plasticity. Neurexin genes have been associated with changes in human behavior, where variants in NRXN1 are associated with autism, schizophrenia, and Tourette syndrome. While NRXN1, NRXN2, and NRXN3 all encode major α and β isoforms, NRXN1 uniquely encodes a γ isoform, for which mechanistic roles in behavior have yet to be defined. Here, we show that both α and γ isoforms of neurexin/nrx-1 are required for the C. elegans behavioral response to food deprivation, a sustained period of hyperactivity upon food loss. We find that the γ isoform regulates initiation and the α isoform regulates maintenance of the behavioral response to food deprivation, demonstrating cooperative function of multiple nrx-1 isoforms in regulating a sustained behavior. The γ isoform alters monoamine signaling via octopamine, relies on specific expression of NRX-1 isoforms throughout the relevant circuit, and is independent of neuroligin/nlg-1, the canonical trans-synaptic partner of nrx-1. The α isoform regulates the pre-synaptic structure of the octopamine producing RIC neuron and its maintenance role is conditional on neuroligin/nlg-1. Collectively, these results demonstrate that neurexin isoforms can have separate behavioral roles and act cooperatively across neuronal circuits to modify behavior, highlighting the need to directly analyze and consider all isoforms when defining the contribution of neurexins to behavior.
Collapse
Affiliation(s)
- Brandon L Bastien
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mara H Cowen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Jung H, Kim S, Ko J, Um JW. Intracellular signaling mechanisms that shape postsynaptic GABAergic synapses. Curr Opin Neurobiol 2023; 81:102728. [PMID: 37236068 DOI: 10.1016/j.conb.2023.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
Postsynaptic GABAergic receptors interact with various membrane and intracellular proteins to mediate inhibitory synaptic transmission. They form structural and/or signaling synaptic protein complexes that perform a variety of postsynaptic functions. In particular, the key GABAergic synaptic scaffold, gephyrin, and its interacting partners govern downstream signaling pathways that are essential for GABAergic synapse development, transmission, and plasticity. In this review, we discuss recent researches on GABAergic synaptic signaling pathways. We also outline the main outstanding issues that need to be addressed in this field and highlight the association of dysregulated GABAergic synaptic signaling with the onset of various brain disorders.
Collapse
Affiliation(s)
- Hyeji Jung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea
| | - Seungjoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea.
| |
Collapse
|
10
|
Han KA, Ko J. Orchestration of synaptic functions by WAVE regulatory complex-mediated actin reorganization. Exp Mol Med 2023; 55:1065-1075. [PMID: 37258575 PMCID: PMC10318009 DOI: 10.1038/s12276-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The WAVE regulatory complex (WRC), composed of five components-Cyfip1/Sra1, WAVE/Scar, Abi, Nap1/Nckap1, and Brk1/HSPC300-is essential for proper actin cytoskeletal dynamics and remodeling in eukaryotic cells, likely by matching various patterned signals to Arp2/3-mediated actin nucleation. Accumulating evidence from recent studies has revealed diverse functions of the WRC in neurons, demonstrating its crucial role in dictating the assembly of molecular complexes for the patterning of various trans-synaptic signals. In this review, we discuss recent exciting findings on the physiological role of the WRC in regulating synaptic properties and highlight the involvement of WRC dysfunction in various brain disorders.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
11
|
Lee H, Chofflet N, Liu J, Fan S, Lu Z, Resua Rojas M, Penndorf P, Bailey AO, Russell WK, Machius M, Ren G, Takahashi H, Rudenko G. Designer molecules of the synaptic organizer MDGA1 reveal 3D conformational control of biological function. J Biol Chem 2023; 299:104586. [PMID: 36889589 PMCID: PMC10131064 DOI: 10.1016/j.jbc.2023.104586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
MDGAs (MAM domain-containing glycosylphosphatidylinositol anchors) are synaptic cell surface molecules that regulate the formation of trans-synaptic bridges between neurexins (NRXNs) and neuroligins (NLGNs), which promote synaptic development. Mutations in MDGAs are implicated in various neuropsychiatric diseases. MDGAs bind NLGNs in cis on the postsynaptic membrane and physically block NLGNs from binding to NRXNs. In crystal structures, the six immunoglobulin (Ig) and single fibronectin III domains of MDGA1 reveal a striking compact, triangular shape, both alone and in complex with NLGNs. Whether this unusual domain arrangement is required for biological function or other arrangements occur with different functional outcomes is unknown. Here, we show that WT MDGA1 can adopt both compact and extended 3D conformations that bind NLGN2. Designer mutants targeting strategic molecular elbows in MDGA1 alter the distribution of 3D conformations while leaving the binding affinity between soluble ectodomains of MDGA1 and NLGN2 intact. In contrast, in a cellular context, these mutants result in unique combinations of functional consequences, including altered binding to NLGN2, decreased capacity to conceal NLGN2 from NRXN1β, and/or suppressed NLGN2-mediated inhibitory presynaptic differentiation, despite the mutations being located far from the MDGA1-NLGN2 interaction site. Thus, the 3D conformation of the entire MDGA1 ectodomain appears critical for its function, and its NLGN-binding site on Ig1-Ig2 is not independent of the rest of the molecule. As a result, global 3D conformational changes to the MDGA1 ectodomain via strategic elbows may form a molecular mechanism to regulate MDGA1 action within the synaptic cleft.
Collapse
Affiliation(s)
- Hubert Lee
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shanghua Fan
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhuoyang Lu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martin Resua Rojas
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Patrick Penndorf
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mischa Machius
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montréal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada.
| | - Gabby Rudenko
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Trotter JH, Wang CY, Zhou P, Nakahara G, Südhof TC. A combinatorial code of neurexin-3 alternative splicing controls inhibitory synapses via a trans-synaptic dystroglycan signaling loop. Nat Commun 2023; 14:1771. [PMID: 36997523 PMCID: PMC10063607 DOI: 10.1038/s41467-023-36872-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/20/2023] [Indexed: 04/03/2023] Open
Abstract
Disrupted synaptic inhibition is implicated in neuropsychiatric disorders, yet the molecular mechanisms that shape and sustain inhibitory synapses are poorly understood. Here, we show through rescue experiments performed using Neurexin-3 conditional knockout mice that alternative splicing at SS2 and SS4 regulates the release probability, but not the number, of inhibitory synapses in the olfactory bulb and prefrontal cortex independent of sex. Neurexin-3 splice variants that mediate Neurexin-3 binding to dystroglycan enable inhibitory synapse function, whereas splice variants that don't allow dystroglycan binding do not. Furthermore, a minimal Neurexin-3 protein that binds to dystroglycan fully sustains inhibitory synaptic function, indicating that trans-synaptic dystroglycan binding is necessary and sufficient for Neurexin-3 function in inhibitory synaptic transmission. Thus, Neurexin-3 enables a normal release probability at inhibitory synapses via a trans-synaptic feedback signaling loop consisting of presynaptic Neurexin-3 and postsynaptic dystroglycan.
Collapse
Affiliation(s)
- Justin H Trotter
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Cosmos Yuqi Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peng Zhou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - George Nakahara
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Khoja S, Haile MT, Chen LY. Advances in neurexin studies and the emerging role of neurexin-2 in autism spectrum disorder. Front Mol Neurosci 2023; 16:1125087. [PMID: 36923655 PMCID: PMC10009110 DOI: 10.3389/fnmol.2023.1125087] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Over the past 3 decades, the prevalence of autism spectrum disorder (ASD) has increased globally from 20 to 28 million cases making ASD the fastest-growing developmental disability in the world. Neurexins are a family of presynaptic cell adhesion molecules that have been increasingly implicated in ASD, as evidenced by genetic mutations in the clinical population. Neurexins function as context-dependent specifiers of synapse properties and critical modulators in maintaining the balance between excitatory and inhibitory transmission (E/I balance). Disrupted E/I balance has long been established as a hallmark of ASD making neurexins excellent starting points for understanding the etiology of ASD. Herein we review neurexin mutations that have been discovered in ASD patients. Further, we discuss distinct synaptic mechanisms underlying the aberrant neurotransmission and behavioral deficits observed in different neurexin mouse models, with focus on recent discoveries from the previously overlooked neurexin-2 gene (Nrxn2 in mice and NRXN2 in humans). Hence, the aim of this review is to provide a summary of new synaptic insights into the molecular underpinnings of ASD.
Collapse
Affiliation(s)
| | | | - Lulu Y. Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
14
|
Lin PY, Chen LY, Jiang M, Trotter JH, Seigneur E, Südhof TC. Neurexin-2: An inhibitory neurexin that restricts excitatory synapse formation in the hippocampus. SCIENCE ADVANCES 2023; 9:eadd8856. [PMID: 36608123 PMCID: PMC9821874 DOI: 10.1126/sciadv.add8856] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Neurexins are widely thought to promote synapse formation and to organize synapse properties. Here we found that in contrast to neurexin-1 and neurexin-3, neurexin-2 unexpectedly restricts synapse formation. In the hippocampus, constitutive or neuron-specific deletions of neurexin-2 nearly doubled the strength of excitatory CA3➔CA1 region synaptic connections and markedly increased their release probability. No effect on inhibitory synapses was detected. Stochastic optical reconstruction microscopy (STORM) superresolution microscopy revealed that the neuron-specific neurexin-2 deletion elevated the density of excitatory CA1 region synapses nearly twofold. Moreover, hippocampal neurexin-2 deletions also increased synaptic connectivity in the CA1 region when induced in mature mice and impaired the cognitive flexibility of spatial memory. Thus, neurexin-2 controls the dynamics of hippocampal synaptic circuits by repressing synapse assembly throughout life, a restrictive function that markedly differs from that of neurexin-1 and neurexin-3 and of other synaptic adhesion molecules, suggesting that neurexins evolutionarily diverged into opposing pro- and antisynaptogenic organizers.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
| | - Lulu Y. Chen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
| | - Man Jiang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
| | - Justin H. Trotter
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
| | - Erica Seigneur
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
15
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
16
|
Tang C, Jin Y, Wang H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy. Front Synaptic Neurosci 2022; 14:1054605. [PMID: 36530954 PMCID: PMC9755596 DOI: 10.3389/fnsyn.2022.1054605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/18/2022] [Indexed: 06/12/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication caused by sepsis, and is responsible for increased mortality and poor outcomes in septic patients. Neurological dysfunction is one of the main manifestations of SAE patients. Patients may still have long-term cognitive impairment after hospital discharge, and the underlying mechanism is still unclear. Here, we first outline the pathophysiological changes of SAE, including neuroinflammation, glial activation, and blood-brain barrier (BBB) breakdown. Synapse dysfunction is one of the main contributors leading to neurological impairment. Therefore, we summarized SAE-induced synaptic dysfunction, such as synaptic plasticity inhibition, neurotransmitter imbalance, and synapses loss. Finally, we discuss the alterations in the synapse, synapse formation, and mediators associated with synapse formation during SAE. In this review, we focus on the changes in synapse/synapse formation caused by SAE, which can further understand the synaptic dysfunction associated with neurological impairment in SAE and provide important insights for exploring appropriate therapeutic targets of SAE.
Collapse
Affiliation(s)
| | | | - Huan Wang
- College of Life and Health, Dalian University, Dalian, China
| |
Collapse
|
17
|
Dai J, Liakath-Ali K, Golf SR, Südhof TC. Distinct neurexin-cerebellin complexes control AMPA- and NMDA-receptor responses in a circuit-dependent manner. eLife 2022; 11:e78649. [PMID: 36205393 PMCID: PMC9586558 DOI: 10.7554/elife.78649] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023] Open
Abstract
At CA1→subiculum synapses, alternatively spliced neurexin-1 (Nrxn1SS4+) and neurexin-3 (Nrxn3SS4+) enhance NMDA-receptors and suppress AMPA-receptors, respectively, without affecting synapse formation. Nrxn1SS4+ and Nrxn3SS4+ act by binding to secreted cerebellin-2 (Cbln2) that in turn activates postsynaptic GluD1 receptors. Whether neurexin-Cbln2-GluD1 signaling has additional functions besides regulating NMDA- and AMPA-receptors, and whether such signaling performs similar roles at other synapses, however, remains unknown. Here, we demonstrate using constitutive Cbln2 deletions in mice that at CA1→subiculum synapses, Cbln2 performs no additional developmental roles besides regulating AMPA- and NMDA-receptors. Moreover, low-level expression of functionally redundant Cbln1 did not compensate for a possible synapse-formation function of Cbln2 at CA1→subiculum synapses. In exploring the generality of these findings, we examined the prefrontal cortex where Cbln2 was recently implicated in spinogenesis, and the cerebellum where Cbln1 is known to regulate parallel-fiber synapses. In the prefrontal cortex, Nrxn1SS4+-Cbln2 signaling selectively controlled NMDA-receptors without affecting spine or synapse numbers, whereas Nrxn3SS4+-Cbln2 signaling had no apparent role. In the cerebellum, conversely, Nrxn3SS4+-Cbln1 signaling regulated AMPA-receptors, whereas now Nrxn1SS4+-Cbln1 signaling had no manifest effect. Thus, Nrxn1SS4+- and Nrxn3SS4+-Cbln1/2 signaling complexes differentially control NMDA- and AMPA-receptors in different synapses in diverse neural circuits without regulating synapse or spine formation.
Collapse
Affiliation(s)
- Jinye Dai
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Samantha Rose Golf
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Thomas C Südhof
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| |
Collapse
|
18
|
Kim J, Wulschner LEG, Oh WC, Ko J. Trans
‐synaptic mechanisms orchestrated by mammalian synaptic cell adhesion molecules. Bioessays 2022; 44:e2200134. [DOI: 10.1002/bies.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jinhu Kim
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| | | | - Won Chan Oh
- Department of Pharmacology University of Colorado School of Medicine Aurora Colorado USA
| | - Jaewon Ko
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| |
Collapse
|
19
|
Li H, Guo R, Guan Y, Li J, Wang Y. Modulation of Trans-Synaptic Neurexin-Neuroligin Interaction in Pathological Pain. Cells 2022; 11:cells11121940. [PMID: 35741069 PMCID: PMC9222181 DOI: 10.3390/cells11121940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Synapses serve as the interface for the transmission of information between neurons in the central nervous system. The structural and functional characteristics of synapses are highly dynamic, exhibiting extensive plasticity that is shaped by neural activity and regulated primarily by trans-synaptic cell-adhesion molecules (CAMs). Prototypical trans-synaptic CAMs, such as neurexins (Nrxs) and neuroligins (Nlgs), directly regulate the assembly of presynaptic and postsynaptic molecules, including synaptic vesicles, active zone proteins, and receptors. Therefore, the trans-synaptic adhesion mechanisms mediated by Nrx-Nlg interaction can contribute to a range of synaptopathies in the context of pathological pain and other neurological disorders. The present review provides an overview of the current understanding of the roles of Nrx-Nlg interaction in the regulation of trans-synaptic connections, with a specific focus on Nrx and Nlg structures, the dynamic shaping of synaptic function, and the dysregulation of Nrx-Nlg in pathological pain. Additionally, we discuss a range of proteins capable of modulating Nrx-Nlg interactions at the synaptic cleft, with the objective of providing a foundation to guide the future development of novel therapeutic agents for managing pathological pain.
Collapse
Affiliation(s)
- Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China;
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100030, China;
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing 100069, China;
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China;
- Correspondence: ; Tel.: +86-10-85231463
| |
Collapse
|
20
|
Lim D, Kim D, Um JW, Ko J. Reassessing synaptic adhesion pathways. Trends Neurosci 2022; 45:517-528. [DOI: 10.1016/j.tins.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 01/19/2023]
|
21
|
Kim J, Kim S, Kim H, Hwang IW, Bae S, Karki S, Kim D, Ogelman R, Bang G, Kim JY, Kajander T, Um JW, Oh WC, Ko J. MDGA1 negatively regulates amyloid precursor protein-mediated synapse inhibition in the hippocampus. Proc Natl Acad Sci U S A 2022; 119:e2115326119. [PMID: 35074912 PMCID: PMC8795569 DOI: 10.1073/pnas.2115326119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022] Open
Abstract
Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.
Collapse
Affiliation(s)
- Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - In-Wook Hwang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Sungwon Bae
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Sudeep Karki
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Roberto Ogelman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 305-732, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 305-732, Korea
| | - Tommi Kajander
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Won Chan Oh
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045;
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
22
|
Wang CY, Trotter JH, Liakath-Ali K, Lee SJ, Liu X, Südhof TC. Molecular self-avoidance in synaptic neurexin complexes. SCIENCE ADVANCES 2021; 7:eabk1924. [PMID: 34919427 PMCID: PMC8682996 DOI: 10.1126/sciadv.abk1924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 05/30/2023]
Abstract
Synapses are thought to be organized by interactions of presynaptic neurexins with postsynaptic ligands, particularly with neuroligins and cerebellins. However, when a neuron forms adjacent pre- and postsynaptic specializations, as in dendrodendritic or axo-axonic synapses, nonfunctional cis neurexin/ligand interactions would be energetically favored. Here, we reveal an organizational principle for preventing synaptic cis interactions (“self-avoidance”). Using dendrodendritic synapses between mitral and granule cells in the olfactory bulb as a paradigm, we show that, owing to its higher binding affinity, cerebellin-1 blocks the cis interaction of neurexins with neuroligins, thereby enabling trans neurexin/neuroligin interaction. In mitral cells, ablating either cerebellin-1 or neuroligins severely impaired granule cell➔mitral cell synapses, as did overexpression of wild-type neurexins but not of mutant neurexins unable to bind to neuroligins. Our data uncover a molecular interaction network that organizes the self-avoidance of nonfunctional neurexin/ligand cis interactions, thus allowing assembly of physiological trans interactions.
Collapse
Affiliation(s)
- Cosmos Yuqi Wang
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Justin H. Trotter
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sung-Jin Lee
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xinran Liu
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis 2021; 162:105564. [PMID: 34838666 DOI: 10.1016/j.nbd.2021.105564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
This review provides an overview of the synaptic dysfunction of neuronal circuits and the ensuing behavioral alterations caused by mutations in autism spectrum disorder (ASD)-linked genes directly or indirectly affecting the postsynaptic neuronal compartment. There are plenty of ASD risk genes, that may be broadly grouped into those involved in gene expression regulation (epigenetic regulation and transcription) and genes regulating synaptic activity (neural communication and neurotransmission). Notably, the effects mediated by ASD-associated genes can vary extensively depending on the developmental time and/or subcellular site of expression. Therefore, in order to gain a better understanding of the mechanisms of disruptions in postsynaptic function, an effort to better model ASD in experimental animals is required to improve standardization and increase reproducibility within and among studies. Such an effort holds promise to provide deeper insight into the development of these disorders and to improve the translational value of preclinical studies.
Collapse
|
24
|
Uchigashima M, Cheung A, Futai K. Neuroligin-3: A Circuit-Specific Synapse Organizer That Shapes Normal Function and Autism Spectrum Disorder-Associated Dysfunction. Front Mol Neurosci 2021; 14:749164. [PMID: 34690695 PMCID: PMC8526735 DOI: 10.3389/fnmol.2021.749164] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
Chemical synapses provide a vital foundation for neuron-neuron communication and overall brain function. By tethering closely apposed molecular machinery for presynaptic neurotransmitter release and postsynaptic signal transduction, circuit- and context- specific synaptic properties can drive neuronal computations for animal behavior. Trans-synaptic signaling via synaptic cell adhesion molecules (CAMs) serves as a promising mechanism to generate the molecular diversity of chemical synapses. Neuroligins (Nlgns) were discovered as postsynaptic CAMs that can bind to presynaptic CAMs like Neurexins (Nrxns) at the synaptic cleft. Among the four (Nlgn1-4) or five (Nlgn1-3, Nlgn4X, and Nlgn4Y) isoforms in rodents or humans, respectively, Nlgn3 has a heterogeneous expression and function at particular subsets of chemical synapses and strong association with non-syndromic autism spectrum disorder (ASD). Several lines of evidence have suggested that the unique expression and function of Nlgn3 protein underlie circuit-specific dysfunction characteristic of non-syndromic ASD caused by the disruption of Nlgn3 gene. Furthermore, recent studies have uncovered the molecular mechanism underlying input cell-dependent expression of Nlgn3 protein at hippocampal inhibitory synapses, in which trans-synaptic signaling of specific alternatively spliced isoforms of Nlgn3 and Nrxn plays a critical role. In this review article, we overview the molecular, anatomical, and physiological knowledge about Nlgn3, focusing on the circuit-specific function of mammalian Nlgn3 and its underlying molecular mechanism. This will provide not only new insight into specific Nlgn3-mediated trans-synaptic interactions as molecular codes for synapse specification but also a better understanding of the pathophysiological basis for non-syndromic ASD associated with functional impairment in Nlgn3 gene.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Amy Cheung
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kensuke Futai
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
25
|
Ban Y, Yu T, Feng B, Lorenz C, Wang X, Baker C, Zou Y. Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex. SCIENCE ADVANCES 2021; 7:eabh2974. [PMID: 34613779 PMCID: PMC8494439 DOI: 10.1126/sciadv.abh2974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/16/2021] [Indexed: 05/04/2023]
Abstract
Whether there exists a common signaling mechanism that assembles all glutamatergic synapses is unknown. We show here that knocking out Prickle1 and Prickle2 reduced the formation of the PSD-95–positive glutamatergic synapses in the hippocampus and medial prefrontal cortex in postnatal development by 70–80%. Prickle1 and Prickle2 double knockout in adulthood lead to the disassembly of 70 to 80% of the postsynaptic-density(PSD)-95–positive glutamatergic synapses. PSD-95–positive glutamatergic synapses in the hippocampus of Prickle2E8Q/E8Q mice were reduced by 50% at postnatal day 14. Prickle2 promotes synapse formation by antagonizing Vangl2 and stabilizing the intercellular complex of the planar cell polarity (PCP) components, whereas Prickle2 E8Q fails to do so. Coculture experiments show that the asymmetric PCP complexes can determine the presynaptic and postsynaptic polarity. In summary, the PCP components regulate the assembly and maintenance of a large number of glutamatergic synapses and specify the direction of synaptic transmission.
Collapse
Affiliation(s)
- Yue Ban
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Yu
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bo Feng
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Charlotte Lorenz
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaojia Wang
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clayton Baker
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Lie E, Yeo Y, Lee EJ, Shin W, Kim K, Han KA, Yang E, Choi TY, Bae M, Lee S, Um SM, Choi SY, Kim H, Ko J, Kim E. SALM4 negatively regulates NMDA receptor function and fear memory consolidation. Commun Biol 2021; 4:1138. [PMID: 34588597 PMCID: PMC8481232 DOI: 10.1038/s42003-021-02656-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Many synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3-/-) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3-/- hippocampus show increased currents of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3-/- mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3-/- mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).
Collapse
Affiliation(s)
- Eunkyung Lie
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea ,grid.255168.d0000 0001 0671 5021Department of Chemistry, Dongguk University, Seoul, 04620 Korea
| | - Yeji Yeo
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Eun-Jae Lee
- grid.267370.70000 0004 0533 4667Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505 Korea
| | - Wangyong Shin
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Kyungdeok Kim
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Kyung Ah Han
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988 Korea
| | - Esther Yang
- grid.222754.40000 0001 0840 2678Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, 02841 Korea
| | - Tae-Yong Choi
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080 Korea
| | - Mihyun Bae
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Suho Lee
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Seung Min Um
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Se-Young Choi
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080 Korea
| | - Hyun Kim
- grid.222754.40000 0001 0840 2678Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, 02841 Korea
| | - Jaewon Ko
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988 Korea
| | - Eunjoon Kim
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea ,grid.267370.70000 0004 0533 4667Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505 Korea
| |
Collapse
|
27
|
Liouta K, Chabbert J, Benquet S, Tessier B, Studer V, Sainlos M, De Wit J, Thoumine O, Chamma I. Role of regulatory C-terminal motifs in synaptic confinement of LRRTM2. Biol Cell 2021; 113:492-506. [PMID: 34498765 DOI: 10.1111/boc.202100026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Leucine Rich Repeat Transmembrane proteins (LRRTMs) are neuronal cell adhesion molecules involved in synapse development and plasticity. LRRTM2 is the most synaptogenic isoform of the family, and its expression is strongly restricted to excitatory synapses in mature neurons. However, the mechanisms by which LRRTM2 is trafficked and stabilized at synapses remain unknown. Here, we examine the role of LRRTM2 intracellular domain on its membrane expression and stabilization at excitatory synapses, using a knock-down strategy combined to single molecule tracking and super-resolution dSTORM microscopy. We show that LRRTM2 operates an important shift in mobility after synaptogenesis in hippocampal neurons. Knock-down of LRRTM2 during synapse formation reduced excitatory synapse density in mature neurons. Deletion of LRRTM2 C-terminal domain abolished the compartmentalization of LRRTM2 in dendrites and disrupted its synaptic enrichment. Furtheremore, we show that LRRTM2 diffusion is increased in the absence of its intracellular domain, and that the protein is more dispersed at synapses. Surprisingly, LRRTM2 confinement at synapses was strongly dependent on a YxxC motif in the C-terminal domain, but was independent of the PDZ-like binding motif ECEV. Finally, the nanoscale organization of LRRTM2 at excitatory synapses depended on its C-terminal domain, with involvement of both the PDZ-binding and YxxC motifs. Altogether, these results demonstrate that LRRTM2 trafficking and enrichment at excitatory synapses are dependent on its intracellular domain.
Collapse
Affiliation(s)
- Konstantina Liouta
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Julia Chabbert
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Sebastien Benquet
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Béatrice Tessier
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Vincent Studer
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Matthieu Sainlos
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Joris De Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Ingrid Chamma
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| |
Collapse
|
28
|
Südhof TC. The cell biology of synapse formation. J Cell Biol 2021; 220:e202103052. [PMID: 34086051 PMCID: PMC8186004 DOI: 10.1083/jcb.202103052] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 04/25/2023] Open
Abstract
In a neural circuit, synapses transfer information rapidly between neurons and transform this information during transfer. The diverse computational properties of synapses are shaped by the interactions between pre- and postsynaptic neurons. How synapses are assembled to form a neural circuit, and how the specificity of synaptic connections is achieved, is largely unknown. Here, I posit that synaptic adhesion molecules (SAMs) organize synapse formation. Diverse SAMs collaborate to achieve the astounding specificity and plasticity of synapses, with each SAM contributing different facets. In orchestrating synapse assembly, SAMs likely act as signal transduction devices. Although many candidate SAMs are known, only a few SAMs appear to have a major impact on synapse formation. Thus, a limited set of collaborating SAMs likely suffices to account for synapse formation. Strikingly, several SAMs are genetically linked to neuropsychiatric disorders, suggesting that impairments in synapse assembly are instrumental in the pathogenesis of neuropsychiatric disorders.
Collapse
|
29
|
Mild Amnestic Cognitive Impairment and Depressive Symptoms in Autoimmune Encephalitis Associated with Serum Anti-Neurexin-3α Autoantibodies. Brain Sci 2021; 11:brainsci11060673. [PMID: 34064006 PMCID: PMC8224079 DOI: 10.3390/brainsci11060673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/21/2023] Open
Abstract
(1) Background: autoimmune encephalitis associated with neurexin-3α antibodies is a seldom reported disease entity often accompanied by a severe clinical neuropsychiatric syndrome. (2) Method: we report on the case of a 58-year-old man diagnosed with neurexin-3α-associated autoimmune encephalitis revealing cognitive decline and depression before the proof of neurexin-3α antibodies. He underwent neuropsychological testing, peripheral blood and cerebrospinal fluid analysis, neuroimaging and electroencephalography. (3) Results: our patient’s main clinical feature was amnestic cognitive decline in combination with depressive symptoms. CSF analysis showed elevated phosphorylated tau protein 181 and positive proof of serum neurexin-3α antibodies in a cell-based assay. An 18F-FDG-PET/CT of the brain initially showed bilateral cerebral hypometabolism prefrontal and parietal, which was absent in follow up. The brain MRI was unremarkable. EEG recordings showed frontotemporal slowing in the theta and delta range. (4) Conclusions: taken together, we assumed autoimmune encephalitis associated with serum neurexin-3α antibodies. To the best of our knowledge, we are the first to report on a predominantly mild clinical manifestation entailing amnestic mild cognitive impairment in addition to depression, thus broadening the clinical spectrum associated with neurexin-3α antibodies.
Collapse
|