1
|
Kuila A, Maity R, Acharya P, Sarkar T, Bhakat A, Brandao P, Pattanayak S, Maity T, Dalai S, Sarkar K, Samanta BC. Exploring the Potential Fungicidal Applications of a Cu(II) Complex with Schiff Base and Carboxylates against Fusarium equisetum. ACS OMEGA 2024; 9:48273-48284. [PMID: 39676998 PMCID: PMC11635468 DOI: 10.1021/acsomega.4c05824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
Given the critical need to preserve agricultural sustainability, there is an urgent call to address fungal infections. Our study presents a promising approach by focusing on SIX (Secreted in Xylem) proteins as a pivotal target for the development of innovative fungicidal strategies. Within the sphere of this study, we meticulously scrutinize the antifungal efficacy of our synthesized Cu(II) complex formulated as [Cu(L1)2(L2)]+(ClO4)-, where L1 represents (E)-cyclohexyl-N(pyridine-2-xlmethylene) methanamine and L2H denotes cinnamic acid, compared against a commercially available fungicide comprising 4% hexaconazole and 68% zineb. Employing in silico methodologies, we undertake a comparative analysis targeting SIX proteins to discern the potency of our compound. The X-ray diffraction, 1H NMR, and FTIR spectroscopic techniques were utilized to elucidate the structure of the complex methodically. The lipophilicity test of the complex signifies its potential lipophilic nature and prompted further investigation into the complex's interaction with DNA (DNA) and bovine serum albumin (BSA). The binding constant values suggested a notable interaction between the complex and both DNA and BSA. The antifungal test reveal that our complex emerges as a potent contender in the battle against Fusarium equisetum (F.E.), exhibiting a commendable efficacy that positions it as a viable substitute for the incumbent commercial fungicide. This discovery predicts well the prospect of bolstering agricultural resilience and safeguarding global food security in the face of pervasive fungal threats.
Collapse
Affiliation(s)
- Arun Kuila
- Department
of Chemistry, Mugberia Gangadhar Mahavidyalaya, Bhupatinagar, Purba Medinipur, 721425 Contai, West Bengal, India
- Department
of Chemistry and Chemical Technology, Vidyasagar
University, Midnapore 721102, West Bengal, India
| | - Ribhu Maity
- Department
of Chemistry, Mugberia Gangadhar Mahavidyalaya, Bhupatinagar, Purba Medinipur, 721425 Contai, West Bengal, India
| | - Prasun Acharya
- Department
of Chemistry, Mugberia Gangadhar Mahavidyalaya, Bhupatinagar, Purba Medinipur, 721425 Contai, West Bengal, India
- Department
of Chemistry and Chemical Technology, Vidyasagar
University, Midnapore 721102, West Bengal, India
| | - Tuhin Sarkar
- Department
of Microbiology, University of Kalyani, West Bengal, Kalyani 741235, India
| | - Ankika Bhakat
- Department
of Microbiology, University of Kalyani, West Bengal, Kalyani 741235, India
| | - Paula Brandao
- Departamento
de Química, CICECO, Universidade
de Aveiro, 3810-193 Aveiro, Portugal
| | - Satyajit Pattanayak
- Department
of Chemistry, Mugberia Gangadhar Mahavidyalaya, Bhupatinagar, Purba Medinipur, 721425 Contai, West Bengal, India
| | - Tithi Maity
- Department
of Chemistry, Prabhat Kumar College, Purba Medinipur, 721401 Contai, West Bengal, India
| | - Sudipta Dalai
- Department
of Chemistry and Chemical Technology, Vidyasagar
University, Midnapore 721102, West Bengal, India
| | - Keka Sarkar
- Department
of Microbiology, University of Kalyani, West Bengal, Kalyani 741235, India
| | - Bidhan Chandra Samanta
- Department
of Chemistry, Mugberia Gangadhar Mahavidyalaya, Bhupatinagar, Purba Medinipur, 721425 Contai, West Bengal, India
| |
Collapse
|
2
|
Canoyra A, Martín-Cordero C, Muñoz-Mingarro D, León-González AJ, Parsons RB, Acero N. Corema album Berry Juice as a Protective Agent Against Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:1535. [PMID: 39598444 PMCID: PMC11597836 DOI: 10.3390/ph17111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Corema album berries are edible fruits from the Iberian Atlantic coast, characterized by a rich polyphenolic composition, which endows their juice with potential protective effects against neurodegeneration. This study aimed to evaluate the potential of the relatively lesser-known C. album berries as a novel neuroprotective agent against neurodegenerative diseases. Methods: The phenolic compounds of the juice were characterized using UHPLC-HRMS (Orbitrap). The SH-SY5Y neuroblastoma line was used to determine the preventive effect of the juice against H2O2-induced oxidative stress. Furthermore, neuronal cells were differentiated into dopaminergic and cholinergic lines and exposed to 6-hydroxydopamine and okadaic acid, respectively, to simulate in vitro models of Parkinson's disease and Alzheimer's disease. The ability of the juice to enhance neuronal viability under toxic conditions was examined. Additionally, its inhibitory effects on neuroprotective-related enzymes, including MAO-A and MAO-B, were assessed in vitro. Results: Phytochemical characterization reveals that 5-O-caffeoylquinic acid constitutes 80% of the total phenolic compounds. Higher concentrations of the juice effectively protected both differentiated and undifferentiated SH-SY5Y cells from H2O2-induced oxidative damage, reducing oxidative stress by approximately 20% and suggesting a dose-dependent mechanism. Moreover, the presence of the juice significantly enhanced the viability of dopaminergic and cholinergic cells exposed to neurotoxic agents. In vitro, the juice inhibited the activity of MAO-A (IC50 = 87.21 µg/mL) and MAO-B (IC50 = 56.50 µg/mL). Conclusions: While these findings highlight C. album berries as a promising neuroprotective agent, further research is required to elucidate its neuroprotective mechanisms in cell and animal models and, ultimately, in human trials.
Collapse
Affiliation(s)
- Antonio Canoyra
- Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain;
| | - Carmen Martín-Cordero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain; (C.M.-C.); (A.J.L.-G.)
| | - Dolores Muñoz-Mingarro
- Chemistry and Biochemistry Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain;
| | - Antonio J. León-González
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain; (C.M.-C.); (A.J.L.-G.)
| | - Richard B. Parsons
- King’s College London, Institute of Pharmaceutical Sciences, 150 Stamford Street, London SE1 9NH, UK;
| | - Nuria Acero
- Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain;
| |
Collapse
|
3
|
Hu C, Li J, Heng P, Luo J. Mitochondrial related Mendelian randomization identifies causal associations between metabolic disorders and childhood neurodevelopmental disorders. Medicine (Baltimore) 2024; 103:e40481. [PMID: 39560584 PMCID: PMC11575971 DOI: 10.1097/md.0000000000040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Childhood neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder, and Tourette syndrome, are a predominant cause of health-related disabilities in children and adolescents. Nevertheless, disease biomarkers are still limited. The aim of this study was to evaluate the potential, causal relationship between mitochondrial DNA copy number (mtDNA-CN), metabolic disorders, and childhood NDDs using the two-sample Mendelian randomization (MR) method. Genetic associations with mtDNA-CN, disorders of lipoprotein metabolism, and disorders of iron metabolism were selected as exposures, and genome-wide association data from ASD, attention-deficit hyperactivity disorder, and Tourette syndrome were utilized as outcomes. Results of the study suggested that a high degree of disordered lipoprotein metabolism related increases in ASD risk result from a decrease in mtDNA-CN (disordered lipoprotein metabolism-mtDNA: inverse variance weighting β: -0.03, 95% confidence interval: -0.05 to -0.02, P = 2.08 × 10-5; mtDNA-CN-ASD: inverse variance weighting odds ratio: 0.83, 95% confidence interval: 0.69-0.99, P = .034). The research findings implied that mtDNA-CN can mediate disorders of lipoprotein metabolism, potentially influencing the development of ASD. The potential impact of the results of this study for the prevention and treatment of childhood NDDs warrants validation in robust randomized clinical trials.
Collapse
Affiliation(s)
- Chenyan Hu
- Department of Laboratory Medicine, Medical Center Hospital of Qionglai City, Chengdu, Sichuan, China
| | - Junjun Li
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Pengfei Heng
- Department of Laboratory Medicine, Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Jianrong Luo
- Department of Laboratory Medicine, Medical Center Hospital of Qionglai City, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Firozjae AA, Shiran MR, Rashidi M. The neuropharmacological and clinical effects of lutein: a systematic review. Horm Mol Biol Clin Investig 2024:hmbci-2024-0053. [PMID: 39436867 DOI: 10.1515/hmbci-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Neurodegenerative diseases are defined by specific protein accumulation and anatomic vulnerability leading to neuronal loss. Some studies have shown that lutein may have an effect on neurodegenerative diseases. As most of the neurodegenerative diseases don't have certain cure and therapies focus on symptom control, Lutein may be a complementary treatment. Due to controversies in studies investigating lutein effect on neurodegenerative diseases, we decided to perform a systematic review on these studies. METHODS A systematic search was carried out in the available databases. We used all MeSH terms and relevant keywords. Studies that reported relationship between lutein and any neurodegenerative disease were included. RESULTS We found 278 studies. After removing duplicates, screening by titles and abstracts and excluding irrelevant papers, 17 articles were included in this study. Fourteen studies investigated Alzheimer's disease, 2 studies Parkinson's disease and 1 study Amyotrophic lateral sclerosis. 1/17 study found that high serum levels of lutein at baseline were associated with a lower risk of AD mortality and lutein effect on lipid profile have been investigated in 2/17 studies. Also, 1/17 study has been shown that high intake of lutein may reduce the risk of ALS progression. CONCLUSIONS 4/17 studies confirm that lutein can improve cognitive function. 8/17 studies demonstrate a reduction in the progression of AD, and 2/17 studies indicate an improvement in lipid profiles. However, some studies did not find any significant associations. Additionally, there is a limited number of studies investigating the effects of lutein on other neurodegenerative diseases.
Collapse
Affiliation(s)
- Atefeh Arab Firozjae
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mohammad Reza Shiran
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
- The Health of Plant and Livestock Products Research Center, 92948 Mazandaran University of Medical Sciences , Sari, Iran
| |
Collapse
|
5
|
Qureshi IZ, Razzaq A, Naz SS. Testing of acute and sub-acute toxicity profile of novel naproxen sodium nanoformulation in male and female mice. Regul Toxicol Pharmacol 2024; 150:105650. [PMID: 38782233 DOI: 10.1016/j.yrtph.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Nanodrugs offer promising alternatives to conventionally used over the counter drugs. Compared to its free form, therapeutic benefits, and gastric tissue safety of naproxen sodium nanoformulation (NpNF) were recently demonstrated. Essential regulatory safety data for this formulation are, however, not available. To address this, male and female BALB/c mice were subjected to acute and 14-day repeated-oral dose assessments. Our data indicate that NpNF was well tolerated up to 2000 mg/kg b.w. A 14-day subacute toxicity testing revealed that the oral administration of low dose (30 mg/kg) NpNF did not produce any adverse effects on blood profile and serum biochemical parameters. Levels of oxidative stress markers and antioxidant enzymes neared normal. Histology of selected tissues also showed no evidence of toxicity. In contrast, a ten-fold increase in NpNF dosage (300 mg/kg), demonstrated, irrespective of gender, mild to moderate toxicity (p < 0.05) in the brain, stomach, and heart tissues, while ROS, LPO, CAT, SOD, POD, and GSH levels remained unaffected in the liver, kidney, spleen, testis, and seminal vesicles. No effect on serum biochemical parameters, overall indicated a no-observed-adverse-effect level (NOAEL) is 300 mg/kg. Further increase in dosage (1000 mg/kg) significantly altered all parameters demonstrating that high dose is toxic.
Collapse
Affiliation(s)
- Irfan Zia Qureshi
- Laboratory of Animal and Human Physiology, Department of Zoology (Animal Sciences), Faculty of Biological Sciences, Quaid-a-Azam University, Islamabad, 45320, Pakistan.
| | - Ayesha Razzaq
- Laboratory of Animal and Human Physiology, Department of Zoology (Animal Sciences), Faculty of Biological Sciences, Quaid-a-Azam University, Islamabad, 45320, Pakistan
| | - Syeda Sohaila Naz
- Nanosciences and Technology Department, National Centre for Physics, Quaid-a- Azam University Campus, Islamabad, 44000, Pakistan
| |
Collapse
|
6
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
7
|
El Brouzi MY, Lamtai M, Zghari O, El Hamzaoui A, Rezqaoui A, Hadch Z, Fath N, Ouichou A, El Hessni A, Mesfioui A. Melatonin is a Neuroprotective and Antioxidant Agent against Neurotoxicity Induced by an Intrahippocampal Injection of Nickel in Rats. Neurotox Res 2024; 42:24. [PMID: 38598025 DOI: 10.1007/s12640-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
The investigation into the hippocampal function and its response to heavy metal exposure is crucial for understanding the mechanisms underlying neurotoxicity, this can potentially inform strategies for mitigating the adverse effects associated with heavy metal exposure. Melatonin is an essential neuromodulator known for its efficacy as an antioxidant. In this study, we aimed to determine whether melatonin could protect against Nickel (Ni) neurotoxicity. To achieve this, we performed an intracerebral injection of Ni (300 µM NiCl2) into the right hippocampus of male Wistar rats, followed by melatonin treatment. Based on neurobehavioral and neurobiochemical assessments, our results demonstrate that melatonin efficiently enhances Ni-induced behavioral dysfunction and cognitive impairment. Specifically, melatonin treatment positively influences anxious behavior, significantly reduces immobility time in the forced swim test (FST), and improves learning and spatial memory abilities. Moreover, neurobiochemical assays revealed that melatonin treatment modulates the Ni-induced alterations in oxidative stress balance by increasing antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT). Additionally, we observed that melatonin significantly attenuated the increased levels of lipid peroxidation (LPO) and nitric oxide (NO). In conclusion, the data from this study suggests that melatonin attenuates oxidative stress, which is the primary mechanism responsible for Ni-induced neurotoxicity. Considering that the hippocampus is the main structure involved in the pathology associated with heavy metal intoxication, such as Ni, these findings underscore the potential therapeutic efficacy of melatonin in mitigating heavy metal-induced brain damage.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco.
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Zahra Hadch
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Nada Fath
- Compared Anatomy Unit, School of Veterinary Medicine, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Ali Ouichou
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| |
Collapse
|
8
|
Esterhuizen M, Park CB, Kim YJ, Kim TY, Yoon H, Andres F, Rodriguez-Rodriguez R, Tanabe S. A perspective on the role of physiological stresses in cancer, diabetes and cognitive disease as environmental diseases. Front Mol Biosci 2023; 10:1274221. [PMID: 38053578 PMCID: PMC10694350 DOI: 10.3389/fmolb.2023.1274221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
With rapid industrialization, urbanization, and climate change, the impact of environmental factors on human health is becoming increasingly evident and understanding the complex mechanisms involved is vital from a healthcare perspective. Nevertheless, the relationship between physiological stress resulting from environmental stressors and environmental disease is complex and not well understood. Chronic exposure to environmental stressors, such as air and water contaminants, pesticides, and toxic metals, has been recognized as a potent elicitor of physiological responses ranging from systemic inflammation to immune system dysregulation causing or progressing environmental diseases. Conversely, physiological stress can exacerbate susceptibility to environmental diseases. Stress-induced alterations in immune function and hormonal balance may impair the ability to detoxify harmful substances and combat pathogens. Additionally, prolonged stress can impact lifestyle choices, leading to harmful behaviors. Understanding the link between physiological stress and environmental disease requires a systematic, multidisciplinary approach. Addressing this complex relationship necessitates the establishment of a global research network. This perspective discusses the intricate interplay between physiological stress and environmental disease, focusing on common environmental diseases, cancer, diabetes, and cognitive degeneration. Furthermore, we highlight the intricate and reciprocal nature of the connection between physiological stress and these environmental diseases giving a perspective on the current state of knowledge as well as identifying where further information is necessary. Recognizing the role of physiological stress in environmental health outcomes will aid in the development of comprehensive strategies to safeguard public health and promote ecological balance.
Collapse
Affiliation(s)
- Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Chang-Beom Park
- Environmental Exposure and Toxicology Research Center, Korea Institute Toxicology (KIT), Jinju, Republic of Korea
| | - Young Jun Kim
- Korean Institute of Science and Technology Europe (KIST Europe), Saarbrücken, Germany
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hakwon Yoon
- Environmental Exposure and Toxicology Research Center, Korea Institute Toxicology (KIT), Jinju, Republic of Korea
| | - Frederic Andres
- Digital Content and Media Sciences Research Division, National Institute of Informatics, Tokyo, Japan
| | - Rosalia Rodriguez-Rodriguez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC Barcelona), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
9
|
Cahoon DS, Rabin BM, Fisher DR, Shukitt-Hale B. Effects of HZE-Particle Exposure Location and Energy on Brain Inflammation and Oxidative Stress in Rats. Radiat Res 2023; 200:431-443. [PMID: 37758038 DOI: 10.1667/rade-22-00041.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Astronauts on exploratory missions will be exposed to particle radiation of high energy and charge (HZE particles), which have been shown to produce neurochemical and performance deficits in animal models. Exposure to HZE particles can produce both targeted effects, resulting from direct ionization of atoms along the particle track, and non-targeted effects (NTEs) in cells that are distant from the track, extending the range of potential damage beyond the site of irradiation. While recent work suggests that NTEs are primarily responsible for changes in cognitive function after HZE exposures, the relative contributions of targeted and non-targeted effects to neurochemical changes after HZE exposures are unclear. The present experiment was designed to further explore the role of targeted and non-targeted effects on HZE-induced neurochemical changes (inflammation and oxidative stress) by evaluating the effects of exposure location and particle energy/linear energy transfer (LET). Forty-six male Sprague-Dawley rats received head-only or body-only exposures to 56Fe particles [600 MeV/n (75 cGy) or 1,000 MeV/n (100 cGy)] or 48Ti particles [500 MeV/n (50 cGy) or 1,100 MeV/n (75 cGy)] or no irradiation (0 cGy). Twenty-four h after irradiation, rats were euthanized, and the brain was dissected for analysis of HZE-particle-induced neurochemical changes in the hippocampus and frontal cortex. Results showed that exposure to 56Fe and 48Ti ions produced changes in measurements of brain inflammation [glial fibrillary astrocyte protein (GFAP)], oxidative stress [NADPH-oxidoreductase-2 (NOX2)] and antioxidant enzymes [superoxide dismutase (SOD), glutathione S-transferase (GST), nuclear factor erythroid 2-related factor 2 (Nrf2)]. However, radiation effects varied depending upon the specific measurement, brain region, and exposure location. Although overall exposures of the head produced more detrimental changes in neuroinflammation and oxidative stress than exposures of the body, body-only exposures also produced changes relative to no irradiation, and the effect of particle energy/LET on neurochemical changes was minimal. Results indicate that both targeted and non-targeted effects are important contributors to neurochemical changes after head-only exposure. However, because there were no consistent neurochemical changes as a function of changes in track structure after head-only exposures, the role of direct effects on neuronal function is uncertain. Therefore, these findings, although in an animal model, suggest that NTEs should be considered in the estimation of risk to the central nervous system (CNS) and development of countermeasures.
Collapse
Affiliation(s)
- Danielle S Cahoon
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, Maryland 02111
| | - Bernard M Rabin
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Derek R Fisher
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, Maryland 02111
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, Maryland 02111
| |
Collapse
|
10
|
Rana R, Pundir S, Lal UR, Chauhan R, Upadhyay SK, Kumar D. Phytochemistry and biological activity of Erigeron annuus (L.) Pers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2331-2346. [PMID: 37178275 DOI: 10.1007/s00210-023-02518-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Erigeron annuus L. is a flowering herb of North America, Europe, Asia and Russia. This plant is used as folk medicine in China for the cure of indigestion, enteritis, epidemic hepatitis, haematuria and diabetes. Phytochemical studies showed the presence of 170 bioactive compounds like coumarins, flavonoids, terpenoids, polyacetylenic compounds; γ-pyrone derivatives, sterols and various caffeoylquinic acids derived from the essential oil and organic extracts from its various parts such as aerial parts, roots, leaves, stems and flowers. The pharmacological studies demonstrated various extracts and the compounds of E. annuus to exhibit anti-fungal, anti-atherosclerosis, anti-inflammatory, antidiabetic, phytotoxic, cytoprotective, antiobesity and antioxidant activities. This article covers a critical compendious on geographical distribution, botanical description, phytochemistry, ethnomedicinal uses and pharmacological activities of E. annuus. However, further in-depth studies are needed to determine the medical uses of E. annuus and its chemical constituents, pharmacological activities and clinical applications.
Collapse
Affiliation(s)
- Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Swati Pundir
- School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| | - Uma Ranjan Lal
- School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, Solan, 173229, India
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Punjab, 160062, Mohali, India
| | - Raveen Chauhan
- School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, Solan, 173229, India
| | | | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
11
|
Maicheen C, Churnthammakarn C, Pongsroypech N, Khamkhenshorngphanuch T, Ungwitayatorn J, Rangsangthong K, Asasutjarit R, Theeramunkong S. One-Pot Synthesis and Evaluation of Antioxidative Stress and Anticancer Properties of an Active Chromone Derivative. Molecules 2023; 28:molecules28073129. [PMID: 37049900 PMCID: PMC10096453 DOI: 10.3390/molecules28073129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Chromones are the structural building blocks of several natural flavonoids. The synthesis of chromones, which contain a hydroxy group on the ring, presents some challenges. We used the one-pot method to synthesize ten chromone derivatives and two related compounds using modified Baker-Venkataraman reactions. The structures were confirmed using FT-IR, 1H NMR, 13C NMR, and HRMS. The in vitro antioxidant assay revealed that compounds 2e, 2f, 2j, and 3i had potent antioxidant activity and that all these synthesized compounds, except those containing nitro groups, were harmless to normal cells. In addition, compounds 2b, 2d, 2e, 2f, 2g, 2i, and 2j had anticancer activity. Compounds 2f and 2j were used to investigate the mechanism of anticancer activity. Both 2f and 2j induced a slightly early apoptotic effect but significantly impacted the S phase in the cell cycle. The effect on cell invasion indicates that both compounds significantly inhibited the growth of cervical cancer cells. A chromone scaffold possesses effective chemoprotective and antioxidant properties, making it a promising candidate for antioxidant and future cancer treatments.
Collapse
Affiliation(s)
- Chirattikan Maicheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samut Prakan 10540, Thailand
| | | | | | - Thitiphong Khamkhenshorngphanuch
- Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand
| | - Jiraporn Ungwitayatorn
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Rathapon Asasutjarit
- Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand
| | - Sewan Theeramunkong
- Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand
- Correspondence:
| |
Collapse
|
12
|
Acharya P, Kuila A, Pramanik U, Hathwar VR, Brandao P, Mukherjee S, Maity S, Maity T, Maity R, Chandra Samanta B. Combined theoretical and experimental insights on DNA and BSA binding interactions of Cu(ii) and Ni(ii) complexes along with the DPPH method of antioxidant assay and cytotoxicity studies. RSC Adv 2023; 13:7632-7644. [PMID: 36908538 PMCID: PMC9993069 DOI: 10.1039/d2ra08341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
This present study delineates the syntheses, detailed characterization and anti-proliferative potential against SiHa (cervical cancer cell) of two mononuclear complexes of Cu(ii) and Ni(ii) using a Schiff base ligand (L) derived from 2-hydroxybenzaldehyde and N-methyl-propane 1,3-diamine. The crystallographic results show the centro-symmetric space group of orthorhombic nature (Pccn) for Cu(ii) complex (1) where the central Cu(ii) has an inversion center symmetry with six co-ordinations resulting in a distorted octahedral geometry. Whereas, in complex (2), the two independent Ni(ii) atoms present in the special position within version symmetry and form a distorted geometry of octahedral nature with six coordinations. Absorption spectral titrations with Calf Thymus (CT) DNA and the extent of the decrease in relative emission intensities of DNA-bound ethidium bromide (EB) upon adding the complexes reveal the parallel trend in DNA binding affinities for both the complexes but with a small extent of binding capabilities. Bovine serum albumin (BSA) interaction studies demonstrate that complex 1 exhibits more promiscuous binding with BSA as compared to complex 2 from the spectroscopic and theoretical approaches. α,α-Diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method shows a little antioxidant or free radical scavenging activity for both the studied complexes. Cytotoxicity studies against SiHa expressed that the percentage of cell viability was reduced with time whereas in the same concentration and conditions, the viability percentage was higher for 3T3-L1 (several normal cell lines of mouse). The fluorescence imaging obtained from acridine orange (AO) and ethidium bromide (EtBr) demonstrates that the colour of the cancer cells has changed gradually dictating the cell apoptosis from day 1 to day 3.
Collapse
Affiliation(s)
- Prasun Acharya
- Department of Chemistry Mugberia Gangadhar Mahavidyalaya Bhupatinagar Purba Medinipur-721425 West Bengal India +91-3220-270236
| | - Arun Kuila
- Department of Chemistry Mugberia Gangadhar Mahavidyalaya Bhupatinagar Purba Medinipur-721425 West Bengal India +91-3220-270236
| | - Ushasi Pramanik
- Department of Chemistry, IISER Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
| | - Venkatesha R Hathwar
- School of Physical and Applied Sciences, Goa University Taleigao Plateau Goa 403 206 India
| | - Paula Brandao
- Departamento de Química, CICECO, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Saptarshi Mukherjee
- Department of Chemistry, IISER Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
| | - Swapan Maity
- School of Materials Science and Technology (SMST), Indian Institute of Technology (IIT), BHU India
| | - Tithi Maity
- Department of Chemistry, Prabhat Kumar College Purba Medinipur-721401 Contai West Bengal India
| | - Ribhu Maity
- Department of Chemistry Mugberia Gangadhar Mahavidyalaya Bhupatinagar Purba Medinipur-721425 West Bengal India +91-3220-270236
| | - Bidhan Chandra Samanta
- Department of Chemistry Mugberia Gangadhar Mahavidyalaya Bhupatinagar Purba Medinipur-721425 West Bengal India +91-3220-270236
| |
Collapse
|
13
|
Jatav S, Pandey N, Dwivedi P, Akhtar A, Jyoti, Singh R, Bansal R, Mishra BB. Synthesis of deoxy-Andrographolide Triazolyl Glycoconjugates for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3271-3280. [PMID: 36414325 DOI: 10.1021/acschemneuro.2c00328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A new andrographolide-based terminal alkyne 3 was synthesized in good yield from deoxy-andrographolide 2, obtained from a natural compound andrographolide 1, which in turn was isolated from the leaves of the plant Andrographis paniculata. Copper(I)-catalyzed azide-alkyne cycloaddition reaction of alkyne 3 with azido-sugars 4a-f furnished a library of andrographolide-fastened triazolyl glycoconjugates 5a-f in good yields. The structures of these semisynthetic andrographolide derivatives were established by Fourier transform infrared, NMR, and mass spectroscopy. The compounds 5a-f were further evaluated against Alzheimer's disease (AD) using a scopolamine (SCOP)-induced memory impairment mice model. It was observed that antioxidant and anticholinesterase properties of these compounds contribute significantly toward their remarkable potential to improve cognitive functioning.
Collapse
Affiliation(s)
- Surendra Jatav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali140306, Punjab, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh160014, India
| | - Nishant Pandey
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali140306, Punjab, India
| | - Pratibha Dwivedi
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali140306, Punjab, India
| | - Ansab Akhtar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh160014, India
| | - Jyoti
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali140306, Punjab, India
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh160014, India
| | - Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh160014, India
| | - Bhuwan B Mishra
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali140306, Punjab, India
| |
Collapse
|
14
|
Jamal M, Tsukamoto I, Maki T, Takei S, Konishi R, Kinoshita H. COA-Cl Evokes Protective Responses Against H 2O 2-and 6-OHDA-Induced Toxic Injury in PC12 Cells. Neurotox Res 2022; 40:2061-2071. [PMID: 36435924 DOI: 10.1007/s12640-022-00587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 11/27/2022]
Abstract
COA-Cl, a novel adenosine-like nucleic acid analog, has recently been shown to exert neuroprotective effects and to increase dopamine levels both in vivo and in vitro. Therefore, we hypothesized that COA-Cl could protect dopaminergic neurons against toxic insults. Thus, the present study aimed to investigate the protective effects of COA-Cl against hydrogen peroxide (H2O2)- and 6-hydroxydopamine (6-OHDA)-induced toxicity in PC12 cells and to elucidate the possible mechanisms. PC12 cells were incubated with COA-Cl (100 μM) with or without H2O2 or 6-OHDA (200 μM) for 24 h. Treatment with COA-Cl attenuated the decrease in cell viability, SOD activity and the Bcl-2/Bax ratio caused by H2O2. In addition, COA-Cl attenuated the increase in LDH release, ROS production, caspase-3 activity, and apoptosis induced by H2O2. Further, COA-Cl enhanced the protection of PC12 cells against the toxicity caused by 6-OHDA, as evidenced by an increase in cell viability and the Bcl-2/Bax ratio, and a decrease in LDH release. Our results are the first to demonstrate that COA-Cl potentially protects PC12 cells against toxicity induced by H2O2 and 6-OHDA, implying that COA-Cl could be a promising neuroprotective agent for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Mostofa Jamal
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan.
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takata Maki
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Sella Takei
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Ryoji Konishi
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| |
Collapse
|
15
|
Sitorus P, Keliat JM, Asfianti V, Muhammad M, Satria D. A Literature Review of Artocarpus lacucha Focusing on the Phytochemical Constituents and Pharmacological Properties of the Plant. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206940. [PMID: 36296532 PMCID: PMC9610210 DOI: 10.3390/molecules27206940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Studies have shown that approximately two-thirds of the plant species in the world have some medicinal value. Artocarpus lakoocha is a synonym for Artocarpus lacucha and is a plant that can be found in Indonesia. This medicinal plant has been used to treat many diseases. (1) Objective: This article discusses the scientific investigations carried out on A. lacucha, namely the plant’s chemical content, pharmacological activity, and active compounds. (2) Methods: The design of this study was based on an article that was a review of previous research. A search for relevant publications over the past ten years (2012–2022) using data from Pubmed, Proquest, Ebsco, ScienceDirect, and Google Scholar resulted in the discovery of 369 articles. (3) Results: Fifty relevant articles investigate A. lacucha’s substances and their applications in the health field. The presence of secondary metabolites and bioactive compounds has been reported, which is evidence that A. lacucha possesses antidiarrheal, immunostimulant, anticholesterol, and hepatoprotective agents. (4) Conclusions: Mobe (A. lacucha) is a plant native to North Sumatra, Indonesia. This plant is efficacious as an antioxidant, antibacterial, antidiarrheal, anti-inflammatory, analgesic, antinociceptive, schistosomicidal, hepatoprotective, neuroprotective, cytotoxic, antiglycation, and anticholesterol, and can also be used for anti-aging and wound healing. In addition to its various benefits, it turns out that this plant also has many active compounds that are useful to the health sector, especially the pharmaceutical field.
Collapse
Affiliation(s)
- Panal Sitorus
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Jane Melita Keliat
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Vivi Asfianti
- Doctoral Programme, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Mahatir Muhammad
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
- Correspondence:
| |
Collapse
|
16
|
Anjum S, Rana S, Dasila K, Agnihotri V, Pandey A, Pande V. Comparative nutritional and antimicrobial analysis of Himalayan black and yellow soybean and their okara. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5358-5367. [PMID: 35318666 DOI: 10.1002/jsfa.11889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Soybean is believed to have good nutraceutical potential which is important for human health. Yellow soybean (YS) is generally used for the production of soymilk and other products, while black soybean (BS) is less explored. During the production of soymilk, residue, called okara is generated which is reported to have a good amount of nutrient content. Studies are generally performed with YS while BS is less explored. The present work is a comparison of the nutraceutical potential of BS and YS and their okara, mainly in terms of proximate, minerals, antinutrients, and isoflavone content and bioactivity of all types of samples in terms of antioxidant and antimicrobial activity. RESULTS Compared to raw soybean, protein content decreased significantly in both types of okara. Phytochemicals like ascorbic acid, catechin, quercetin, and gallic acid were significantly (P < 0.05) high in BS residue in comparison to respective raw soybean. Among isoflavones, daidzin and genistin were found significantly varying among all the samples, and glycitin and glycitein were not present in YS. CONCLUSION The nutraceutical potential and antimicrobial activity were comparative for both the raw beans and their okara, while the phytochemical contents and antioxidant activity were higher in the case of BS and its okara. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sofiya Anjum
- Centre for Land and Water Resource Management, G. B. Pant National Institute of Himalayan Environment, Almora, India
| | - Smita Rana
- Centre for Land and Water Resource Management, G. B. Pant National Institute of Himalayan Environment, Almora, India
| | - Khashti Dasila
- Centre for Land and Water Resource Management, G. B. Pant National Institute of Himalayan Environment, Almora, India
| | - Vasudha Agnihotri
- Centre for Land and Water Resource Management, G. B. Pant National Institute of Himalayan Environment, Almora, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, India
| |
Collapse
|
17
|
Selenium Intake and its Interaction with Iron Intake Are Associated with Cognitive Functions in Chinese Adults: A Longitudinal Study. Nutrients 2022; 14:nu14153005. [PMID: 35893861 PMCID: PMC9332607 DOI: 10.3390/nu14153005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Studies on the relation between selenium intake and cognitive function are inconclusive. This study aimed to examine the associations between dietary selenium intake and cognitive function among Chinese adults and tested the interaction effect of selenium intake and iron intake on cognition. Data from 4852 adults aged 55 years and above who attended the 1991–2006 China Health and Nutrition Survey (CHNS) were used. Cognitive function was assessed through face-to-face interviews in 1997, 2000, 2004, and 2006. A 3-day, 24-hour recall was used to collect dietary selenium intake. Multivariable mixed linear regression and logistic regression were used in the analyses. In fully adjusted regression models, the regression coefficients (95% confidence interval) were 0.00, 0.29 (−0.12–0.70), 0.26 (−0.18–0.70), and 0.50 (0.02–0.97) across the quartiles of selenium intake. In the subgroup analysis, the positive association between selenium intake and cognitive function was only observed in the participants who live in the southern region but not those in the northern region. The selenium-intake-to-iron-intake ratio was inversely associated with low global cognition scores. Furthermore, only those with a normal BMI had a positive association between selenium and cognition. In conclusion, high selenium intake was linked to better cognitive function and a lower risk of cognition decline in Chinese adults among those with low iron intake. A substantial interaction was found between selenium intake and BMI or region.
Collapse
|
18
|
Prasuhn J, Kunert L, Brüggemann N. Neuroimaging Methods to Map In Vivo Changes of OXPHOS and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms23137263. [PMID: 35806267 PMCID: PMC9266616 DOI: 10.3390/ijms23137263] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is a pathophysiological hallmark of most neurodegenerative diseases. Several clinical trials targeting mitochondrial dysfunction have been performed with conflicting results. Reliable biomarkers of mitochondrial dysfunction in vivo are thus needed to optimize future clinical trial designs. This narrative review highlights various neuroimaging methods to probe mitochondrial dysfunction. We provide a general overview of the current biological understanding of mitochondrial dysfunction in degenerative brain disorders and how distinct neuroimaging methods can be employed to map disease-related changes. The reviewed methodological spectrum includes positron emission tomography, magnetic resonance, magnetic resonance spectroscopy, and near-infrared spectroscopy imaging, and how these methods can be applied to study alterations in oxidative phosphorylation and oxidative stress. We highlight the advantages and shortcomings of the different neuroimaging methods and discuss the necessary steps to use these for future research. This review stresses the importance of neuroimaging methods to gain deepened insights into mitochondrial dysfunction in vivo, its role as a critical disease mechanism in neurodegenerative diseases, the applicability for patient stratification in interventional trials, and the quantification of individual treatment responses. The in vivo assessment of mitochondrial dysfunction is a crucial prerequisite for providing individualized treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-43420; Fax: +49-451-500-43424
| |
Collapse
|
19
|
Mahmood MN, Shaker AH, Mohammed HE. Estimation of some antioxidants in people exposed to electromagnetic waves from Internet towers in Samarra. JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY = JOURNAL DE LA THERAPEUTIQUE DES POPULATIONS ET DE LA PHARMACOLOGIE CLINIQUE 2022; 29:e79-e87. [PMID: 35848200 DOI: 10.47750/jptcp.2022.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The current study was conducted as a preliminary study in the Samarra city of Iraq. The study explored direct and indirect impact on people exposed to Internet network towers on residential premises in the cities of Iraq. The study included collection of samples from people exposed to radioactive frequencies of Internet towers for a period ranging from 1 to 10 years. In all, 43 blood samples of males and female participants (age: 20-35 years) were collected exposed to radioactive frequencies (present at the places where constellations were located); also, 20 samples were collected from those (20-35-year old) not exposed to radioactive frequencies (from places far from the Internet towers), which acted as a control group. Measurements and analyses were made for antioxidants that included the following enzymes: glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and peroxynitrate (or peroxonitrite [ONOO-]). Antioxidants are one of the most essential lines of defense against free radicals that cause diseases and premature aging. The results demonstrated a significant increase in the levels of GPx and SOD concentrations and a decrease in the levels of GSH concentration in the blood serum of participants exposed to electromagnetic waves of Internet towers compared to the control group. The results also showed a significant increase in the concentrations of both MDA and ONOO- compared to the non-exposed subjects of the control group.
Collapse
Affiliation(s)
- Methaq Nazhan Mahmood
- Department of Applied Chemistry, College of Applied Science, University of Samarra, Samarra, Iraq;
| | - Asmaa Hashim Shaker
- Department of Chemistry, College of Education for Women, University of Tikrit, Tikrit, Iraq
| | - Humam E Mohammed
- Department of Pathological Analyses, College of Applied Sciences, University of Samarra, Samarra, Iraq
| |
Collapse
|
20
|
In Vitro Evaluation of Curcumin Encapsulation in Gum Arabic Dispersions under Different Environments. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123855. [PMID: 35744978 PMCID: PMC9229835 DOI: 10.3390/molecules27123855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
Biopolymers, especially polysaccharides (e.g., gum Arabic), are widely applied as drug carriers in drug delivery systems due to their advantages. Curcumin, with high antioxidant ability but limited solubility and bioavailability in the body, can be encapsulated in gum Arabic to improve its solubility and bioavailability. When curcumin is encapsulated in gum Arabic, it is essential to understand how it works in various conditions. As a result, in Simulated Intestinal Fluid and Simulated Gastric Fluid conditions, we investigated the potential of gum Arabic as the drug carrier of curcumin. This study was conducted by varying the gum Arabic concentrations, i.e., 5, 10, 15, 20, 30, and 40%, to encapsulate 0.1 mg/mL of curcumin. Under both conditions, the greater the gum Arabic concentration, the greater the encapsulation efficiency and antioxidant activity of curcumin, but the worse the gum Arabic loading capacity. To achieve excellent encapsulation efficiency, loading capacity, and antioxidant activity, the data advises that 10% is the best feasible gum Arabic concentration. Regarding the antioxidant activity of curcumin, the findings imply that a high concentration of gum Arabic was effective, and the Simulated Intestinal Fluid brought an excellent surrounding compared to the Simulated Gastric Fluid solution. Moreover, the gum Arabic releases curcumin faster in the Simulated Gastric Fluid condition.
Collapse
|
21
|
Mitigated Oxidative Stress and Cognitive Impairments in Transient Global Ischemia using Niosomal Selegiline-NBP delivery. Behav Neurol 2022; 2022:4825472. [PMID: 35469274 PMCID: PMC9034968 DOI: 10.1155/2022/4825472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/26/2022] [Indexed: 11/23/2022] Open
Abstract
Stroke is the most common reason for adult disabilities and the second ground for death worldwide. Our previous study revealed that selegiline serves as an alternative candidate in transient hypoxia-ischemia. However, aggressive and restless behavior was observed in stroke-induced rats receiving 4 mg/kg selegiline. In comparison, 1 mg/kg selegiline could induce negligible therapeutic effects on mitochondrial dysfunction and histopathological changes. Therefore, we designed oral noisome-based selegiline attached to 4-(4-nitrobenzyl) pyridine to improve transient global ischemia by attenuating cognitive impairments, oxidative stress, and histopathological injury. The investigation was performed in transient hypoxia-ischemia-induced rats by oral administration of nanoformulation containing selegiline (0.25-1 mg/kg) for 4 weeks (3 times a week). Novel object recognition (NOR) was considered to evaluate their cognitive dysfunction. Oxidative stress parameters and brain histopathological assessments were determined following the scarification of rats. Outstandingly, our data demonstrated slower selegiline release from niosomes relative to free drug, which was also in a controlled manner. Our data confirmed significant improvement in cognitive behavior in the NOR test, an increase in glutathione level and total antioxidant power, a decline in MDA and protein carbonyl level, as well as a decreased number of dead cells in histopathological assessment after being exposed to (0.5-1 mg/kg) selegiline-NBP nanoformulation. These data manifested that the selegiline-NBP nanoformulation (0.5-1 mg/kg) could significantly reduce oxidative damage, cognitive dysfunction, and histopathological damage compared to transient hypoxia-ischemia rats, which is 20 times lower than the therapeutic dose in humans. Therefore, the proposed nanoformulation would be capable as an alternative candidate without side effects in stroke.
Collapse
|
22
|
Phytochemical Characterization and Antioxidant and Enzyme Inhibitory Activities of Different Parts of Prinsepia utilis Royle. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9739851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to evaluate the phenolic composition and antioxidant and enzyme inhibitory activities of the flowers, leaves, and stems of Prinsepia utilis Royle. In the work, their total phenol content and flavonoid content were determined. In addition, the scavenging effects of DPPH and ABTS free radicals and ferric reducing antioxidant power were measured. The results showed the flowers had the highest total phenol and flavonoid content, followed by the leaves and stems. A total of 11 phenolic substances were identified and quantified using UHPLC-ESI-HRMS/MS, of which rutin was the dominant phenolic compound in all samples. All three samples had good antioxidant activity and dose dependently inhibited the activity of α-glucosidase, pancreatic lipase, and tyrosinase. In summary, the ethanol extracts of the flowers have the best antioxidant and enzyme inhibitory ability among three samples. The outcome could provide support for the development and utilization of P. utilis.
Collapse
|
23
|
Khatmi A, Eskandarian Boroujeni M, Ezi S, Hamidreza Mirbehbahani S, Aghajanpour F, Soltani R, Hossein Meftahi G, Abdollahifar MA, Hassani Moghaddam M, Toreyhi H, Khodagholi F, Aliaghaei A. Combined molecular, structural and memory data unravel the destructive effect of tramadol on hippocampus. Neurosci Lett 2021; 771:136418. [PMID: 34954113 DOI: 10.1016/j.neulet.2021.136418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Tramadol is a synthetic analogue of codeine and stimulates neurodegeneration in several parts of the brain that leads to various behavioral impairments. Despite the leading role of hippocampus in learning and memory as well as decreased function of them under influence of tramadol, there are few studies analyzing the effect of tramadol administration on gene expression profiling and structural consequences in hippocampus region. Thus, we sought to determine the effect of tramadol on both PC12 cell line and hippocampal tissue, from gene expression changes to structural alterations. In this respect, we investigated genome-wide mRNA expression using high throughput RNA-seq technology and confirmatory quantitative real-time PCR, accompanied by stereological analysis of hippocampus and behavioral assessment following tramadol exposure. At the cellular level, PC12 cells were exposed to 600μM tramadol for 48 hrs, followed by the assessments of ROS amount and gene expression levels of neurotoxicity associated with neurodegenerative pathways such as apoptosis and autophagy. Moreover, the structural and functional alteration of the hippocampus under chronic exposure to tramadol was also evaluated. In this regard, rats were treated with tramadol at doses of 50 mg/kg for three consecutive weeks. In vitro data revealed that tramadol provoked ROS production and caused the increase in the expression of autophagic and apoptotic genes in PC12 cells. Furthermore, in-vivo results demonstrated that tramadol not only did induce hippocampal atrophy, but it also triggered microgliosis and microglial activation, causing upregulation of apoptotic and inflammatory markers as well as over-activation of neurodegeneration. Tramadol also interrupted spatial learning and memory function along with long-term potentiation (LTP). Taken all together, our data disclosed the neurotoxic effects of tramadol on both in vitro and in-vivo. Moreover, we proposed a potential correlation between disrupted biochemical cascades and memory deficit under tramadol administration.
Collapse
Affiliation(s)
- Aysan Khatmi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Samira Ezi
- Department of Anatomy, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Fakhroddin Aghajanpour
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Soltani
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Amin Abdollahifar
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Hossein Toreyhi
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Walia V, Kaushik D, Mittal V, Kumar K, Verma R, Parashar J, Akter R, Rahman MH, Bhatia S, Al-Harrasi A, Karthika C, Bhattacharya T, Chopra H, Ashraf GM. Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Mol Neurobiol 2021; 59:657-680. [PMID: 34751889 DOI: 10.1007/s12035-021-02617-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is considered the sixth leading cause of death in elderly patients and is characterized by progressive neuronal degeneration and impairment in memory, language, etc. AD is characterized by the deposition of senile plaque, accumulation of fibrils, and neurofibrillary tangles (NFTs) which are responsible for neuronal degeneration. Amyloid-β (Aβ) plays a key role in the process of neuronal degeneration in the case of AD. It has been reported that Aβ is responsible for the production of reactive oxygen species (ROS), depletion of endogenous antioxidants, increase in intracellular Ca2+ which further increases mitochondria dysfunctions, oxidative stress, release of pro-apoptotic factors, neuronal apoptosis, etc. Thus, oxidative stress plays a key role in the pathogenesis of AD. Antioxidants are compounds that have the ability to counteract the oxidative damage conferred by ROS. Therefore, the antioxidant therapy may provide benefits and halt the progress of AD to advance stages by counteracting neuronal degeneration. However, despite the beneficial effects imposed by the antioxidants, the findings from the clinical studies suggested inconsistent results which might be due to poor study design, selection of the wrong antioxidant, inability of the molecule to cross the blood-brain barrier (BBB), treatment in the advanced state of disease, etc. The present review insights into the neuroprotective effects and limitations of the antioxidant therapy for the treatment of AD by targeting mitochondrial-derived ROS. This particular article will certainly help the researchers to search new avenues for the treatment of AD by utilizing mitochondrial-derived ROS-targeted antioxidant therapies.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Saurabh Bhatia
- School of Health Science University of Petroleum and Energy Studies, Dehrandun, Uttarkhand, 248007, India
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Tanima Bhattacharya
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Assessment of plasma antioxidant capacity and oxidative stress in HIV/AIDS patients in Calabar, Nigeria. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e01017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
26
|
Alzoubi KH, Batran RM, Al-Sawalha NA, Khabour OF, Karaoghlanian N, Shihadeh A, Eissenberg T. The effect of electronic cigarettes exposure on learning and memory functions: behavioral and molecular analysis. Inhal Toxicol 2021; 33:234-243. [PMID: 34311661 DOI: 10.1080/08958378.2021.1954732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: Electronic cigarettes (ECIGs) are battery-powered devices that emit vaporized solutions for the user to inhale. ECIGs are marketed as a less harmful alternative to combustible cigarettes. The current study examined the effects of ECIG aerosol exposure on learning and memory, expression of brain derived neurotrophic factor (BDNF), and the activity of antioxidant enzymes in the hippocampus.Methods: Male Wistar rats were exposed to ECIG aerosol, by a whole-body exposure system, 1 h/day for 1 week, 4 weeks, and 12 weeks. Spatial learning and memory were tested using the Radial Arm Water Maze (RAWM). Hippocampal BDNF protein level, and oxidative stress biomarkers (GPx, SOD, GSH, GSSG, GSH/GSSG ratio) were also assessed.Results: ECIG aerosol exposure for 4 and 12 weeks impaired both short- and long- term memory and induced reductions in the hippocampus BDNF, SOD and GPx activities, and GSH/GSSG ratio (p < 0.05). No changes in any examined biomarkers were observed after 1-week exposure to ECIG aerosol (p > 0.05).Conclusions: ECIG aerosol exposure impaired functional memory and elicited changes in brain chemistry that are consistent with reduced function and oxidative stress.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Rahaf M Batran
- Department of Legal Medicine, Toxicology and Forensic Sciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Nareg Karaoghlanian
- Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Alan Shihadeh
- Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas Eissenberg
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
27
|
Mohamed Mowafy S, Awad Hegazy A, A Mandour D, Salah Abd El-Fatah S. Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastruct Pathol 2021; 45:307-318. [PMID: 34459708 DOI: 10.1080/01913123.2021.1970660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of copper oxide nanoparticles (CUONPs) on a large-scale application is a reason for many health problems and morbidities involving most body tissues, particularly those of the nervous system. Crocin is the chemical ingredient primarily responsible for the color of saffron. It has different pharmacological effects, such as antioxidant, anticancer, and memory-improving activities. This study was conducted to elaborate the effects of CUONP exposureon the cerebellar cortical tissues of rats and explore the potential protecting role of crocin through biochemical, light microscopic, and ultrastructural examinations. Twenty four adult male albino rats were randomly divided into four equal groups: Group I (negative control); Group II (crocin-treated group; 30mg/kg body weight (BW) intraperitoneal (IP) crocin daily); Group III (CUONP-treatedgroup; 0.5-mg/kg BW IP CUONP daily); and Group IV (CUONP/crocin-treated group). After 14 days of the experiment, venous blood samples were collected to determine red blood cell (RBC), white blood cell (WBC), and hemoglobin (Hb) levels. Besides, serum malondialdehyde (MDA), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) were measured. Cerebellar tissue samples were examined under light and electron microscopy along with a histomorphological analysis. CUONPs induced oxidative/antioxidative imbalance as evidenced by a significant increase in serum MDA levels and decreased GPx and TAC activities. CUONPs caused a significant decrease in RBC and Hb levels and an increase in WBC count. Histopathological alterations in the cerebellar cortex were observed. The administration of crocin showed some protection against the toxic effects of CUONPs. Crocin is suggested to have a mitigating role on oxidative stress and structure alterations in the cerebellar tissues induced by CUONPs.
Collapse
Affiliation(s)
- Sarah Mohamed Mowafy
- Department of Anatomy and Embryology, Faculty of Medicine, PortSaid University, Egypt
| | - Abdelmonem Awad Hegazy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
28
|
Jîtcă G, Ősz BE, Tero-Vescan A, Vari CE. Psychoactive Drugs-From Chemical Structure to Oxidative Stress Related to Dopaminergic Neurotransmission. A Review. Antioxidants (Basel) 2021; 10:381. [PMID: 33806320 PMCID: PMC8000782 DOI: 10.3390/antiox10030381] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Nowadays, more and more young people want to experience illegal, psychoactive substances, without knowing the risks of exposure. Besides affecting social life, psychoactive substances also have an important effect on consumer health. We summarized and analyzed the published literature data with reference to the mechanism of free radical generation and the link between chemical structure and oxidative stress related to dopaminergic neurotransmission. This review presents data on the physicochemical properties, on the ability to cross the blood brain barrier, the chemical structure activity relationship (SAR), and possible mechanisms by which neuronal injuries occur due to oxidative stress as a result of drug abuse such as "bath salts", amphetamines, or cocaine. The mechanisms of action of ingested compounds or their metabolites involve intermediate steps in which free radicals are generated. The brain is strongly affected by the consumption of such substances, facilitating the induction of neurodegenerative diseases. It can be concluded that neurotoxicity is associated with drug abuse. Dependence and oxidative stress are linked to inhibition of neurogenesis and the onset of neuronal death. Understanding the pathological mechanisms following oxidative attack can be a starting point in the development of new therapeutic targets.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
29
|
Kumatia EK, Ayertey F, Appiah-Opong R, Bolah P, Ehun E, Dabo J. Antrocaryon micraster (A. Chev. And Guillaumin) stem bark extract demonstrated anti-malaria action and normalized hematological indices in Plasmodium berghei infested mice in the Rane's test. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113427. [PMID: 33022339 DOI: 10.1016/j.jep.2020.113427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria is caused by infection with some species of Plasmodium parasite which leads to adverse alterations in physical and hematological features of infected persons and ultimately results in death. Antrocaryon micraster is used to treat malaria in Ghanaian traditional medicine. However, there is no scientific validation of its anti-malaria properties. The plant does not also have any chemical fingerprint or standardization parameters. AIM OF THE STUDY This study sought to evaluate the anti-malaria activity of standardized A. micraster stem bark extract (AMSBE) and its effect on mean survival time (MST) and body weight reduction of Plasmodiumberghei infested mice. And to study the effect of treatment of AMSBE on hematological indices of the P. berghei infested mice in order to partly elucidate its anti-malarial mechanism of action. MATERIALS AND METHODS Malaria was induced in female ICR mice by infecting them with 0.2 mL of blood (i.p.) containing 1.0 × 107P. berghei-infested RBCs from a donor mouse and leaving them without treatment for 3 days. AMSBE or Lonart (standard control) was then orally administered at 50, 200 and 400 mg/kg or 10 mg/kg once daily for 4 consecutive days. The untreated control received sterile water. Malaria parasitemia reduction, anti-malarial activity, mean change in body weight and MST of the parasitized mice were evaluated. Furthermore, changes in white blood cells (WBCs), red blood cells (RBCs), platelets count, hemoglobin (HGB), hematocrit (HCT) and mean corpuscular volume (MCV) were also determined in the healthy animals before infection as baseline and on days 3, 5 and 8 after infection by employing complete blood count. Standardization of AMSBE was achieved by quantification of its constituents and chemical fingerprint analysis using UHPLC-MS. RESULTS Administration of AMSBE, standardized to 41.51% saponins and 234.960 ± 0.026 mg/g of GAE phenolics, produced significant (P < 0.05) reduction of parasitemia development, maximum anti-malaria activity of 46.01% (comparable to 32.53% produced by Lonart) and significantly (P < 0.05) increased body weight and MST of P. berghei infected mice compared to the untreated control. Moreover, there were significant (P > 0.05) elevation in WBCs, RBCs, HGB, HCT and platelets in the parasitized-AMSBE (especially at 400 mg/kg p.o.) treated mice compared to their baseline values. Whereas, the non-treated parasitized control recorded significant reduction (P < 0.05) in all the above-mentioned parameters compared to its baseline values. The UHPLC-MS fingerprint of AMSBE revealed four compounds with their retention times, percentage composition in their chromatograms and m/z of the molecular ions and fragments in the spectra. CONCLUSIONS These results show that A. micraster stem bark possessed significant anti-malaria effect and also has the ability to abolish body weight loss, leucopenia, anemia and thrombocytopenia in P. berghei infected mice leading to prolonged life span. The UHPLC-MS fingerprint developed for AMSBE can be used for rapid authentication and standardization of A. micraster specimens and herbal preparations produced from its hydroethanolic stem bark extract to ensure consistent biological activity. The results justify A. micraster's use as anti-malaria agent.
Collapse
Affiliation(s)
- Emmanuel Kofi Kumatia
- Department of Phytochemistry, Centre for Plant Medicine Research, Mampong-Akwapim, Ghana.
| | - Fredrick Ayertey
- Department of Phytochemistry, Centre for Plant Medicine Research, Mampong-Akwapim, Ghana
| | - Regina Appiah-Opong
- Department of Chemical Pathology, Noguchi Memorial Institute for Medical Research, Legon, Accra, Ghana
| | - Peter Bolah
- Department of Phytochemistry, Centre for Plant Medicine Research, Mampong-Akwapim, Ghana
| | - Ebenezer Ehun
- Department of Phytochemistry, Centre for Plant Medicine Research, Mampong-Akwapim, Ghana
| | - Jonathan Dabo
- Division of Biodiversity Conservation and Ecoservices, Forestry Research Institute of Ghana, Kumasi, Ghana
| |
Collapse
|
30
|
Salau VF, Erukainure OL, Ayeni G, Ibeji CU, Islam MS. Modulatory effect of ursolic acid on neurodegenerative activities in oxidative brain injury: An ex vivo study. J Food Biochem 2021; 45:e13597. [PMID: 33368405 DOI: 10.1111/jfbc.13597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Natural products-based antioxidants have been well reported for their therapeutic benefits in the treatment and management of neurodegenerative diseases. The neuroprotective effect of ursolic acid (UA) against oxidative injury was investigated in isolated rat brain. Induction of oxidative injury in isolated rat brains with 0.1 mM FeSO4 led to depleted levels of glutathione, superoxide dismutase, catalase, and ENTPDase activities, with concomitant exacerbation of malondialdehyde and nitric oxide levels, α-chymotrypsin, ATPase, and acetylcholinesterase activities. These levels and activities were significantly reversed following treatment of the brain tissues with UA. Molecular docking studies revealed strong molecular interactions between UA, catalase, and ATPase. Overall, these results indicate the neuroprotective effect of UA against oxidative injury in isolated rat brains as depicted by their ability to mitigate oxidative stress, purinergic, and cholinergic dysfunctions, with concomitant suppression of proteolytic activity. PRACTICAL APPLICATIONS: Neurodegenerative diseases are among the common diseases associated with aging and has been implicated as oxidative mediated. Natural products have received increasing recognition in their use as treatment remedy for various oxidative-mediated diseases including neurodegeneration. These natural products include plant secondary metabolites commonly known as phytochemicals. Ursolic acid is a phytochemical usually present in leafy vegetables and fruits. The present study describes the possible therapeutic mechanism of ursolic acid in the amelioration of complications linked to neurodegeneration in oxidative-mediated brain injury. These findings thus give insights into the use of natural products of plant origin in treating and managing neurodegenerative diseases, which may have little or no side effects.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Biochemistry, Veritas University, Bwari, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Collins U Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
31
|
Kumatia EK, Ayertey F, Appiah-Opong R, Ofori-Attah E, Bolah P, Antwi S, Appiah AA, Ocloo A. Effect of Anthonotha macrophyla (P. Beauv) leaf extract on carrageenan-induced paw oedema, oxidative stress makers and hyperalgesia in murine models. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00541-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Preventing dementia? Interventional approaches in mild cognitive impairment. Neurosci Biobehav Rev 2021; 122:143-164. [PMID: 33440197 DOI: 10.1016/j.neubiorev.2020.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/13/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Mild cognitive impairment (MCI) is defined as an intermediate state between normal cognitive aging and dementia. It describes a status of the subjective impression of cognitive decline and objectively detectible memory impairment beyond normal age-related changes. Activities of daily living are not affected. As the population ages, there is a growing need for early, proactive programs that can delay the consequences of dementia and improve the well-being of people with MCI and their caregivers. Various forms and approaches of intervention for older people with MCI have been suggested to delay cognitive decline. Pharmacological as well as non-pharmacological approaches (cognitive, physiological, nutritional supplementation, electric stimulation, psychosocial therapeutic) and multicomponent interventions have been proposed. Interventional approaches in MCI from 2009 to April 2019 concerning the cognitive performance are presented in this review.
Collapse
|
33
|
Ali M, Baek KH, Lee SY, Kim HC, Park JY, Jo C, Jung JH, Park HC, Nam KC. Comparative Meat Qualities of Boston Butt Muscles ( M. subscapularis) from Different Pig Breeds Available in Korean Market. Food Sci Anim Resour 2021; 41:71-84. [PMID: 33506218 PMCID: PMC7810401 DOI: 10.5851/kosfa.2020.e79] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 11/14/2022] Open
Abstract
This study aimed to determine the effects of breed on meat quality
characteristics of porcine Boston butt muscles (M.
subscapularis) from three different pig breeds:
Landrace×Yorkshire×Duroc (LYD), Berkshire, and Ibérico
available in Korean market. Ibérico showed significantly higher fat
content, yellowness (CIE b*), cooking loss, and lower shear force values than
LYD and Berkshire. Moreover, the contents of oleic acid (18:1) and palmitic acid
(16:0) were significantly higher in Ibérico breed, but stearic acid
(18:0) was higher in LYD. As linoleic acid (18:2) and arachidonic acid (20:4)
were higher in Berkshire sows as compared to the other breeds, atherogenicity
and thrombogenicity indexes were significantly lower in Berkshire sow.
Ibérico had lower the ω-6/ω-3 fatty acids ratio, and higher
taurine and free amino acids compared with the others. Ibérico also
showed significantly greater lipid oxidation, lower antioxidant capacity, and
higher hypoxanthine contents, whereas the Berkshire had higher
inosine-5’-monophosphate and lower K-index value as
compared to the Ibérico. The breed did not impart any significant effect
on the size and density of muscle fibers. Thus, quality characteristics of
Boston butt varied from breed to breed, and certain consumer preferences for
Ibérico can be explained, in part, by the unique quality characteristics
imparted by higher contents of intramuscular fat, oleic acid, and free amino
acids.
Collapse
Affiliation(s)
- Mahabbat Ali
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Ki Ho Baek
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seong-Yun Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Hyun Cheol Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji-Young Park
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | | | | | - Ki-Chang Nam
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
34
|
Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, Sarfraz RM, Farooq MA. Nano-scaled materials may induce severe neurotoxicity upon chronic exposure to brain tissues: A critical appraisal and recent updates on predisposing factors, underlying mechanism, and future prospects. J Control Release 2020; 328:873-894. [PMID: 33137366 DOI: 10.1016/j.jconrel.2020.10.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
Owing to their tremendous potential, the inference of nano-scaled materials has revolutionized many fields including the medicine and health, particularly for development of various types of targeted drug delivery devices for early prognosis and successful treatment of various diseases, including the brain disorders. Owing to their unique characteristic features, a variety of nanomaterials (particularly, ultra-fine particles (UFPs) have shown tremendous success in achieving the prognostic and therapeutic goals for early prognosis and treatment of various brain maladies such as Alzheimer's disease, Parkinson's disease, brain lymphomas, and other ailments. However, serious attention is needful due to innumerable after-effects of the nanomaterials. Despite their immense contribution in optimizing the prognostic and therapeutic modalities, biological interaction of nanomaterials with various body tissues may produce severe nanotoxicity of different organs including the heart, liver, kidney, lungs, immune system, gastro-intestinal system, skin as well as nervous system. However, in this review, we have primarily focused on nanomaterials-induced neurotoxicity of the brain. Following their translocation into different regions of the brain, nanomaterials may induce neurotoxicity through multiple mechanisms including the oxidative stress, DNA damage, lysosomal dysfunction, inflammatory cascade, apoptosis, genotoxicity, and ultimately necrosis of neuronal cells. Our findings indicated that rigorous toxicological evaluations must be carried out prior to clinical translation of nanomaterials-based formulations to avoid serious neurotoxic complications, which may further lead to develop various neuro-degenerative disorders.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hnin Ei Thu
- Innoscience Research Sdn. Bhd., Suites B-5-7, Level 5, Skypark@ One City, Jalan Ust 25/1, Subang Jaya 47650, Selangor, Malaysia; Department of Pharmacology, Faculty of Medicine, Lincoln University College, Selangor, Malaysia.
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy & Thumbay Research Institute for Precision Medicine Gulf Medical University, United Arab Emirates
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Shahzeb Khan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, 2409 West University Avenue, PHR 4.116, Austin TX78712, USA; Department of Pharmacy, University of Malakand, Dir Lower, Chakdara, KPK, Pakistan
| | - Mohammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | | | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| |
Collapse
|
35
|
Ramli NZ, Yahaya MF, Tooyama I, Damanhuri HA. A Mechanistic Evaluation of Antioxidant Nutraceuticals on Their Potential against Age-Associated Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1019. [PMID: 33092139 PMCID: PMC7588884 DOI: 10.3390/antiox9101019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals have been extensively studied worldwide due to its neuroprotective effects in in vivo and in vitro studies, attributed by the antioxidative properties. Alzheimer (AD) and Parkinson disease (PD) are the two main neurodegenerative disorders that are discussed in this review. Both AD and PD share the similar involvement of oxidative stress in their pathophysiology. Nutraceuticals exert their antioxidative effects via direct scavenging of free radicals, prevent damage to biomolecules, indirectly stimulate the endogenous antioxidative enzymes and gene expressions, inhibit activation of pro-oxidant enzymes, and chelate metals. In addition, nutraceuticals can act as modulators of pro-survival, pro-apoptotic, and inflammatory signaling pathways. They have been shown to be effective particularly in preclinical stages, due to their multiple mechanisms of action in attenuating oxidative stress underlying AD and PD. Natural antioxidants from food sources and natural products such as resveratrol, curcumin, green tea polyphenols, and vitamin E are promising therapeutic agents in oxidative stress-mediated neurodegenerative disease as they have fewer adverse effects, more tolerable, cheaper, and sustainable for long term consumption.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ikuo Tooyama
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan;
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
36
|
Malghani Z, Khan AU, Faheem M, Danish MZ, Nadeem H, Ansari SF, Maqbool M. Molecular Docking, Antioxidant, Anticancer and Antileishmanial Effects of Newly Synthesized Quinoline Derivatives. Anticancer Agents Med Chem 2020; 20:1516-1529. [DOI: 10.2174/1871520620666200516145117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/27/2023]
Abstract
Background:
Due to the pressing need and adverse effects associated with the available anti-cancer
agents, an attempt was made to develop the new anti-cancer agents with better activity and lesser adverse
effects.
Objective:
Synthetic approaches based on chemical modification of quinoline derivatives have been undertaken
with the aim of improving anti-cancer agents’ safety profile.
Methods:
In the present study, quinoline derivatives 6-hydroxy-2-(4-methoxyphenyl) quinoline-4-carboxylic
acid (M1) and 2-(4-chlorophenyl)-6-hydroxyquinoline-4-carboxylic acid (M3) were synthesized by the reaction
of aldehyde and pyruvic acid. The complete reaction was indicated by thin-layer chromatography. Newly synthesized
M1and M3were tested for in silico and in vitro studies.
Results:
M1 and M3 were docked against selected targets. Both the test compounds showed good affinity against
all targets except the p300\CBP-associated factor target as there was no H-bond formed by M1. IC50 values of
M1 and M3 against 1, 1-diphenyl-picrylhydrazyl free radical scavenging activity were 562 and 136.56ng/mL,
respectively. In brine shrimp lethality assay, M1 and M3 showed IC50 value of 81.98 and 139.2ng/mL, respectively.
IC50 values recorded for M1 and M3 in tumor inhibition activity were 129 and 219μg/mL, respectively.
M1 and M3 exhibited concentration-dependent anti-cancer effects against human cell lines of hepatocellular
carcinoma (HepG2) and colon cancer (HCT-116). Against HepG2 cells, M1 and M3 exhibited IC50 of 88.6 and
43.62μg/mL, respectively. M1 and M3 utilized against HCT-116 cell lines possessed IC50 values of 62.5 and
15.3μg/mL. M1 and M3 also showed an anti-leishmanial effect with IC50 values of 336.64 and 530.142μg/mL,
respectively.
Conclusion:
From the results of pharmacological studies, we conclude that the newly synthesized compound
showed enhanced anti-oxidant, anti-cancer and anti-leishmanial profile with good yield.
Collapse
Affiliation(s)
- Zoonish Malghani
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Z. Danish
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sameen F. Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Madeeha Maqbool
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
37
|
Mwamatope B, Tembo D, Chikowe I, Kampira E, Nyirenda C. Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
38
|
|
39
|
Yao J, Yang Z, Li H, Qu Y, Qiu B. Effects of waterborne exposure to cadmium on biochemical responses in the freshwater gastropod, Bellamya aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110365. [PMID: 32114244 DOI: 10.1016/j.ecoenv.2020.110365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The biochemical responses of Bellamya aeruginosa as a dominant and widespread freshwater gastropod throughout China to waterborne cadmium (Cd) were investigated to explore the impacts of exposure concentration and duration in this potential sentinel species. After the 7 days' test of dosage-mortality relationship, gastropods were exposed for either 7 days at the LC50 (1.7 mg/L), the LC10 (0.7 mg/L) and 0.02 mg/L Cd, or 28 days at 0.02 mg/L Cd. A suite of biochemical indicators including metallothionein-like protein (MTLP), reduced glutathione (GSH), catalase (CAT), contents of tissue metal (Cd, Fe, Mn, Cu, Zn), and the compartments of these metals bound to MTLP were examined. The treatment of 0.02 mg/L Cd led to the increase of Cd bound to MTLP (Cd-MTLP) levels, the decrease of GSH content, and the upregulation of CAT activity, but no induction of MTLP, indicating that the intrinsic MTLP and GSH worked together for the detoxification of Cd at the low exposure. When the exposure concentration increased, GSH was depleted severely and synthesis of MTLP was triggered, leading to a strong and significant relationship between MTLP level and Cd accumulation. At the lethal concentrations (1.7 mg/L), both MTLP induction and CAT activity were inhibited while the proportion of Cd-MTLP to total Cd were increased, suggesting more intrinsic MTLP were utilized to sequester free Cd ions. Therefore, the content of Cd-MTLP in digestive glands of B. aeruginosa was recommended as a reliable biomarker for Cd contamination.
Collapse
Affiliation(s)
- Jie Yao
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Haipu Li
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Yaobaixue Qu
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Bo Qiu
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
40
|
Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21072564. [PMID: 32272735 PMCID: PMC7178158 DOI: 10.3390/ijms21072564] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.
Collapse
|
41
|
Martins N, Heleno SA, Ferreira ICFR. An Upcoming Approach to Alzheimer's Disease: Ethnopharmacological Potential of Plant Bioactive Molecules. Curr Med Chem 2020; 27:4344-4371. [PMID: 32072889 DOI: 10.2174/0929867327666200219120806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders have achieved epidemic levels in the last decades; not only the elderly but also adult individuals have been increasingly affected. Among them, Alzheimer's disease is one of the most prevalent and crippling diseases, associated with high rates of multi-morbidities and dependency. Despite the existence of a wide variety of drugs used as the symptomatic treatment, they have some side effects and toxicity, apart from their limited effectiveness. Botanical preparations have a secular use, being widely recommended for a multitude of purposes, such as for the improvement of brain health. OBJECTIVE The aim of the present report is to systematize the knowledge on plant-food derived bioactive molecules with promising in vitro enzymatic inhibitory activities. RESULTS Alkaloids, phenolic compounds and terpenes are the most studied phytochemicals, both derived from natural and commercial sources. In spite of their efficient activity as enzymatic inhibitors, the number of in vivo studies and even clinical trials have confirmed that their real bioactive potential remains scarce. CONCLUSION Thus, it is of the utmost importance to deepen knowledge in this area, once those relevant and informative tools can significantly contribute to the promising advances in the field of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Natália Martins
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Sandrina A Heleno
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| |
Collapse
|
42
|
Abstract
Five N-amide substituted melatonin (MLT) derivatives were synthesized and evaluated for antioxidative activities, and compounds 9–12 showed higher electron spin resonance (ESR) response than MLT. 4-Bromobenzoyl and naphthoyl derivatives (10 and 11) presented stronger hydroxyl radical inhibitory effect than MLT in Fenton reaction. The substitution at the N1-position on the MLT core structure with acetyl (8), benzoyl (9), 4-bromobenzoyl (10), and naphthoyl (11) and N2-substitution with 4-bromobenzoyl (12) decreased the reducing power of the derivatives in ferric reducing antioxidant power (FRAP) assay. Compounds 8–11 also presented lower antioxidant capacity than their parent compound in 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) disodium salt (ABTS) assay; whereas, compound 12 presented radical scavenging activity similarly to MLT. All aryl derivatives (9–12) showed higher ability to quench peroxyl radicals than MLT about three times, especially the benzoylated derivatives (9 and 10) that presented the highest ability in oxygen radical absorbance capacity (ORAC) assay.
Collapse
|
43
|
In vivo assessment of the protection conferred by β-glucans from Pleurotus ostreatus against the harmful effects of acrylamide intake (Part I). NUTR HOSP 2020; 37:850-854. [DOI: 10.20960/nh.03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
44
|
Wichur T, Więckowska A, Więckowski K, Godyń J, Jończyk J, Valdivieso ÁDR, Panek D, Pasieka A, Sabaté R, Knez D, Gobec S, Malawska B. 1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2019; 187:111916. [PMID: 31812794 DOI: 10.1016/j.ejmech.2019.111916] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023]
Abstract
Complex pathomechanism of Alzheimer's disease (AD) prompts researchers to develop multifunctional molecules in order to find effective therapy against AD. We designed and synthesized novel multifunctional ligands for which we assessed their activities towards butyrylcholinesterase, beta secretase, amyloid beta (Aβ) and tau protein aggregation as well as antioxidant and metal-chelating properties. All compounds showed dual anti-aggregating properties towards Aβ and tau protein in the in cellulo assay in Escherichia coli. Of particular interest are compounds 24b and 25b, which efficiently inhibit aggregation of Aβ and tau protein at 10 μM (24b: 45% for Aβ, 53% for tau; 25b: 49% for Aβ, 54% for tau). They display free radical scavenging capacity and antioxidant activity in ABTS and FRAP assays, respectively, and selectively chelate copper ions. Compounds 24b and 25b are also the most potent inhibitors of BuChE with IC50 of 2.39 μM and 1.94 μM, respectively. Promising in vitro activities of the presented multifunctional ligands as well as their original scaffold are a very interesting starting point for further research towards effective anti-AD treatment.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Krzysztof Więckowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Jakub Jończyk
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | | | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
45
|
Villas Boas GR, Rodrigues Lemos JM, de Oliveira MW, Dos Santos RC, Stefanello da Silveira AP, Bacha FB, Aguero Ito CN, Cornelius EB, Lima FB, Sachilarid Rodrigues AM, Costa NB, Bittencourt FF, Freitas de Lima F, Paes MM, Gubert P, Oesterreich SA. Preclinical safety evaluation of the aqueous extract from Mangifera indica Linn. (Anacardiaceae): genotoxic, clastogenic and cytotoxic assessment in experimental models of genotoxicity in rats to predict potential human risks. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112086. [PMID: 31310830 DOI: 10.1016/j.jep.2019.112086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants widely used by the population contain significant concentrations of biologically active compounds and, although they have proven pharmacological properties, can cause DNA damage and develop fatal diseases. AIM OF THE STUDY The present study aimed to evaluate the genotoxic, cytotoxic potential and clastogenic effects of the aqueous extract from Mangifera indica leaves (EAMI) on rats submitted to experimental genotoxicity models and through the SMART test performed in Drosophila melanogaster. MATERIAL AND METHODS The comet assay and the micronucleus test were performed on peripheral and bone marrow blood, respectively, of Wistar rats, orally treated with EAMI at doses of 125, 250, 500 and 1000 mg/kg/bw for 28 days. In the SMART test, the standard cross between three mutant D. melanogaster strains was used. Larvae were treated with EAMI at different concentrations, and the wings of adult flies were evaluated for the presence/frequency of mutant spots and compared to the negative control group. RESULTS Phytochemical analysis of EAMI indicated high levels of flavonoids. The tests performed in rats showed that EAMI did not present significant genotoxic or clastogenic effects. The results showed a critical dose-dependent cytoprotective effect exerted by EAMI. This result was attributed to the high content of polyphenols and flavonoids. The biotransformation metabolites of EAMI did not present genotoxic activity, as demonstrated by the SMART test. CONCLUSIONS These results are relevant since they provide safety information about a plant species of great therapeutic, economical, nutritious and ethnopharmacological value for the population.
Collapse
Affiliation(s)
- Gustavo Roberto Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil.
| | | | | | - Rafael Claudino Dos Santos
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | | | - Flávia Barbieri Bacha
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | - Caren Naomi Aguero Ito
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | | | - Fernanda Brioli Lima
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | | | - Nathália Belmal Costa
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | | | - Fernando Freitas de Lima
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil.
| | - Priscila Gubert
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil.
| | | |
Collapse
|
46
|
Baş O, Çankaya S, Enginyurt Ö, Aslan A, Uydu HA, Odaci E, Yılmaz A, Demir A, Gul T. The effect of acute organophosphate intoxication on female rat hippocampus cornu ammonis region pyramidal neuron numbers, biochemistry and morphology. J Chem Neuroanat 2019; 100:101652. [DOI: 10.1016/j.jchemneu.2019.101652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/03/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
|
47
|
Rashno M, Sarkaki A, Farbood Y, Rashno M, Khorsandi L, Naseri MKG, Dianat M. Therapeutic effects of chrysin in a rat model of traumatic brain injury: A behavioral, biochemical, and histological study. Life Sci 2019; 228:285-294. [PMID: 31063733 DOI: 10.1016/j.lfs.2019.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
Abstract
AIMS Oxidative stress and apoptosis have major roles in the progression of traumatic brain injury (TBI)-associated motor and cognitive deficits. The present study was aimed to elucidate the putative effects of chrysin, a natural flavonoid compound, against TBI-induced motor and cognitive dysfunctions and possible involved mechanisms. MAIN METHODS Chrysin (25, 50 or 100 mg/kg) was orally administered to rats starting immediately following TBI induction by Marmarou's weight-drop technique and continuously for 3 or 14 days. Neurological functions, motor coordination, learning and memory performances, histological changes, cell apoptosis, expression of pro- and anti-apoptotic proteins, and oxidative status were assayed at scheduled time points after experimental TBI. KEY FINDINGS The results indicated that treatment with chrysin improved learning and memory disabilities in passive avoidance task, and ameliorated motor coordination impairment in rotarod test after TBI. These beneficial effects were accompanied by increased the concentrations of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), decreased malondialdehyde (MDA) content, prevented neuronal loss, diminished apoptotic index, elevated the expression of anti-apoptotic Bcl-2 protein, and reduced the expression of pro-apoptotic Bax protein in the cerebral cortex and hippocampus tissues. SIGNIFICANCE Our findings suggest that both anti-oxidative and anti-apoptotic properties of chrysin (especially in the dose of 100 mg/kg) are possible mechanisms that improve cognitive/motor deficits and prevent neuronal cell death after TBI.
Collapse
Affiliation(s)
- Masome Rashno
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Kazem Gharib Naseri
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
48
|
Ge D, Du Q, Ran B, Liu X, Wang X, Ma X, Cheng F, Sun B. The neurotoxicity induced by engineered nanomaterials. Int J Nanomedicine 2019; 14:4167-4186. [PMID: 31239675 PMCID: PMC6559249 DOI: 10.2147/ijn.s203352] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Engineered nanomaterials (ENMs) have been widely used in various fields due to their novel physicochemical properties. However, the use of ENMs has led to an increased exposure in humans, and the safety of ENMs has attracted much attention. It is universally acknowledged that ENMs could enter the human body via different routes, eg, inhalation, skin contact, and intravenous injection. Studies have proven that ENMs can cross or bypass the blood-brain barrier and then access the central nervous system and cause neurotoxicity. Until now, diverse in vivo and in vitro models have been developed to evaluate the neurotoxicity of ENMs, and oxidative stress, inflammation, DNA damage, and cell death have been identified as being involved. However, due to various physicochemical properties of ENMs and diverse study models in existing studies, it remains challenging to establish the structure-activity relationship of nanomaterials in neurotoxicity. In this paper, we aimed to review current studies on ENM-induced neurotoxicity, with an emphasis on the molecular and cellular mechanisms involved. We hope to provide a rational material design strategy for ENMs when they are applied in biomedical or other engineering applications.
Collapse
Affiliation(s)
- Dan Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Qiqi Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingqing Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xingyu Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| |
Collapse
|
49
|
Sobral-Souza CE, Silva ARP, Leite NF, Rocha JE, Sousa AK, Costa JGM, Menezes IRA, Cunha FAB, Rolim LA, Coutinho HDM. Phytotoxicity reduction of the mercury chloride effect by natural products from Eugenia jambolana Lam.: A new strategy against the toxic metal pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:461-467. [PMID: 30553924 DOI: 10.1016/j.ecoenv.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The objective of this work was to evaluate the antioxidant, metal chelating and cytoprotective activity of the Eugenia jambolana Lam. extract, as well as of its flavonoid and tannic fractions, against the action of Mercury Chloride (HgCl2). Flavonoids were quantified and an LC-MS chromatographic analysis was performed to identify secondary metabolites. Fe2+ and Fe3+ chelation tests and antioxidant activity were carried out using the FRAP method. Microbiological tests were performed by microdilution to determine the Minimum Inhibitory Concentration (MIC). From these results the Minimum Bactericidal (MBC) and Minimum Fungicide Concentration (MFC) were evaluated. The allelopathy and cytoprotection assays were performed using eukaryotic and prokaryotic models. The results revealed the presence of phenolic acids and flavonoids in the E. jambolana extract and fractions. The sub-allelopathic concentration (64 μg/mL) was used and the results demonstrated the E. jambolana potential cytoprotective effect against mercury chloride.
Collapse
Affiliation(s)
- Celestina E Sobral-Souza
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000 Crato, CE, Brazil
| | - Ana R P Silva
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000 Crato, CE, Brazil
| | - Nadghia F Leite
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000 Crato, CE, Brazil
| | - Janaina E Rocha
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000 Crato, CE, Brazil
| | - Amanda K Sousa
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000 Crato, CE, Brazil
| | - José G M Costa
- Laboratório de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, Crato, CE, Brazil
| | - Irwin R A Menezes
- Laboratório de Farmacologia e Química Molecular, Universidade Regional do Cariri, Crato, CE, Brazil
| | - Francisco A B Cunha
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000 Crato, CE, Brazil
| | - Larissa A Rolim
- Central de Análises de Fármacos, Medicamentos e Alimentos, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - Henrique D M Coutinho
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000 Crato, CE, Brazil.
| |
Collapse
|
50
|
Rossino MG, Casini G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients 2019; 11:nu11040771. [PMID: 30987058 PMCID: PMC6520779 DOI: 10.3390/nu11040771] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and is characterized by degeneration of retinal neurons and neoangiogenesis, causing a severe threat to vision. Nowadays, the principal treatment options for DR are laser photocoagulation, vitreoretinal surgery, or intravitreal injection of drugs targeting vascular endothelial growth factor. However, these treatments only act at advanced stages of DR, have short term efficacy, and cause side effects. Treatment with nutraceuticals (foods providing medical or health benefits) at early stages of DR may represent a reasonable alternative to act upstream of the disease, preventing its progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DR, reducing both the neural and vascular damage typical of DR. Although most studies are limited to animal models and there is the problem of low bioavailability for many nutraceuticals, the use of these compounds may represent a natural alternative method to standard DR treatments.
Collapse
Affiliation(s)
| | - Giovanni Casini
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|