1
|
Di Camillo F, Grimaldi DA, Cattarinussi G, Di Giorgio A, Locatelli C, Khuntia A, Enrico P, Brambilla P, Koutsouleris N, Sambataro F. Magnetic resonance imaging-based machine learning classification of schizophrenia spectrum disorders: a meta-analysis. Psychiatry Clin Neurosci 2024. [PMID: 39290174 DOI: 10.1111/pcn.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Recent advances in multivariate pattern recognition have fostered the search for reliable neuroimaging-based biomarkers in psychiatric conditions, including schizophrenia. These approaches consider the complex pattern of alterations in brain function and structure, overcoming the limitations of traditional univariate methods. To assess the reliability of neuroimaging-based biomarkers and the contribution of study characteristics in distinguishing individuals with schizophrenia spectrum disorder (SSD) from healthy controls (HCs), we conducted a systematic review of the studies that used multivariate pattern recognition for this objective. METHODS We systematically searched PubMed, Scopus, and Web of Science for studies on SSD classification using multivariate pattern analysis on magnetic resonance imaging data. We employed a bivariate random-effects meta-analytic model to explore the classification of sensitivity (SE) and specificity (SP) across studies while also evaluating the moderator effects of clinical and non-clinical variables. RESULTS A total of 119 studies (with 12,723 patients with SSD and 13,196 HCs) were identified. The meta-analysis estimated a SE of 79.1% (95% confidence interval [CI], 77.1%-81.0%) and a SP of 80.0% (95% CI, 77.8%-82.0%). In particular, the Positive and Negative Syndrome Scale and the Global Assessment of Functioning scores, age, age of onset, duration of untreated psychosis, deep learning, algorithm type, features selection, and validation methods had significant effects on classification performance. CONCLUSIONS Multivariate pattern analysis reliably identifies neuroimaging-based biomarkers of SSD, achieving ∼80% SE and SP. Despite clinical heterogeneity, discernible brain modifications effectively differentiate SSD from HCs. Classification performance depends on patient-related and methodological factors crucial for the development, validation, and application of prospective models in clinical settings.
Collapse
Affiliation(s)
- Fabio Di Camillo
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | | | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Annabella Di Giorgio
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Clara Locatelli
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Adyasha Khuntia
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Paolo Enrico
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nikolaos Koutsouleris
- Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, Munich University Hospital, Munich, Germany
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
2
|
Brickwedde M, Anders P, Kühn AA, Lofredi R, Holtkamp M, Kaindl AM, Grent-'t-Jong T, Krüger P, Sander T, Uhlhaas PJ. Applications of OPM-MEG for translational neuroscience: a perspective. Transl Psychiatry 2024; 14:341. [PMID: 39181883 PMCID: PMC11344782 DOI: 10.1038/s41398-024-03047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Magnetoencephalography (MEG) allows the non-invasive measurement of brain activity at millisecond precision combined with localization of the underlying generators. So far, MEG-systems consisted of superconducting quantum interference devices (SQUIDS), which suffer from several limitations. Recent technological advances, however, have enabled the development of novel MEG-systems based on optically pumped magnetometers (OPMs), offering several advantages over conventional SQUID-MEG systems. Considering potential improvements in the measurement of neuronal signals as well as reduced operating costs, the application of OPM-MEG systems for clinical neuroscience and diagnostic settings is highly promising. Here we provide an overview of the current state-of-the art of OPM-MEG and its unique potential for translational neuroscience. First, we discuss the technological features of OPMs and benchmark OPM-MEG against SQUID-MEG and electroencephalography (EEG), followed by a summary of pioneering studies of OPMs in healthy populations. Key applications of OPM-MEG for the investigation of psychiatric and neurological conditions are then reviewed. Specifically, we suggest novel applications of OPM-MEG for the identification of biomarkers and circuit deficits in schizophrenia, dementias, movement disorders, epilepsy, and neurodevelopmental syndromes (autism spectrum disorder and attention deficit hyperactivity disorder). Finally, we give an outlook of OPM-MEG for translational neuroscience with a focus on remaining methodological and technical challenges.
Collapse
Affiliation(s)
- Marion Brickwedde
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany.
- Physikalisch-Technische Bundesanstalt, Berlin, Germany.
| | - Paul Anders
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Andrea A Kühn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German center for neurodegenerative diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Martin Holtkamp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Neurology, Epilepsy-Center Berlin-Brandenburg, 10117, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Pediatric Neurology, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Cell Biology and Neurobiology, 10117, Berlin, Germany
| | - Tineke Grent-'t-Jong
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| | - Peter Krüger
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Peter J Uhlhaas
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| |
Collapse
|
3
|
Walter N, Wenzel J, Haas SS, Squarcina L, Bonivento C, Ruef A, Dwyer D, Lichtenstein T, Bastrük Ö, Stainton A, Antonucci LA, Brambilla P, Wood SJ, Upthegrove R, Borgwardt S, Lencer R, Meisenzahl E, Salokangas RKR, Pantelis C, Bertolino A, Koutsouleris N, Kambeitz J, Kambeitz-Ilankovic L. A multivariate cognitive approach to predict social functioning in recent onset psychosis in response to computerized cognitive training. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110864. [PMID: 37717645 DOI: 10.1016/j.pnpbp.2023.110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Clinical and neuroimaging data has been increasingly used in recent years to disentangle heterogeneity of treatment response to cognitive training (CT) and predict which individuals may achieve the highest benefits. CT has small to medium effects on improving cognitive and social functioning in recent onset psychosis (ROP) patients, who show the most profound cognitive and social functioning deficits among psychiatric patients. We employed multivariate pattern analysis (MVPA) to investigate the potential of cognitive data to predict social functioning improvement in response to 10 h of CT in patients with ROP. A support vector machine (SVM) classifier was trained on the naturalistic data of the Personalized Prognostic Tools for Early Psychosis Management (PRONIA) study sample to predict functioning in an independent sample of 70 ROP patients using baseline cognitive data. PRONIA is a part of a FP7 EU grant program that involved 7 sites across 5 European countries, designed and conducted with the main aim of identifying (bio)markers associated with an enhanced risk of developing psychosis in order to improve early detection and prognosis. Social functioning was predicted with a balanced accuracy (BAC) of 66.4% (Sensitivity 78.8%; Specificity 54.1%; PPV 60.5%; NPV 74.1%; AUC 0.64; P = 0.01). The most frequently selected cognitive features (mean feature weights > ± 0.2) included the (1) correct number of symbol matchings within the Digit Symbol Substitution Test, (2) the number of distracting stimuli leading to an error within 300 and 200 trials in the Continuous Performance Test and (3) the dynamics of verbal fluency between 15 and 30 s within the Verbal Fluency Test, phonetic part. Next, the SVM classifier generated on the PRONIA sample was applied to the intervention sample, that obtained 54 ROP patients who were randomly assigned to a social cognitive training (SCT) or treatment as usual (TAU) group and dichotomized into good (GF-S ≥ 7) and poor (GF-S < 7) functioning patients based on their level of Global Functioning-Social (GF-S) score at follow-up (FU). By applying the initial PRONIA classifier, using out-of-sample cross-validation (OOCV) to the sample of ROP patients who have undergone the CT intervention, a BAC of 59.3% (Sensitivity 70.4%; Specificity 48.1%; PPV 57.6%; NPV 61.9%; AUC 0.63) was achieved at T0 and a BAC of 64.8% (Sensitivity 66.7%; Specificity 63.0%; PPV 64.3%; NPV 65.4%; AUC 0.66) at FU. After SCT intervention, a significant improvement in predicted social functioning values was observed in the SCT compared to TAU group (P ≤0.05; ES[Cohens' d] = 0.18). Due to a small sample size and modest variance of social functioning of the intervention sample it was not feasible to predict individual response to SCT in the current study. Our findings suggest that the use of baseline cognitive data could provide a robust individual estimate of future social functioning, while prediction of individual response to SCT using cognitive data that can be generated in the routine patient care remains to be addressed in large-scale cognitive training trials.
Collapse
Affiliation(s)
- Nina Walter
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Kerpenerstr.62, 50931, Cologne, Germany
| | - Julian Wenzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Kerpenerstr.62, 50931, Cologne, Germany
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | | | | | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
| | - Dominic Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany; Orygen Youth Health, Melbourne, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Theresa Lichtenstein
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Kerpenerstr.62, 50931, Cologne, Germany
| | - Öznur Bastrük
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Kerpenerstr.62, 50931, Cologne, Germany
| | - Alexandra Stainton
- Orygen Youth Health, Melbourne, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Linda A Antonucci
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Brambilla
- Department of Neuosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Mental Health, University of Milan, Milan, Italy
| | - Stephen J Wood
- Orygen Youth Health, Melbourne, Australia; School of Psychology, University of Birmingham, United Kingdom; Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Rachel Upthegrove
- School of Psychology, University of Birmingham, United Kingdom; Institute of Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Stefan Borgwardt
- Translational Psychiatry Unit (TPU), Department of Psychiatry and Psychotherapy, University of Luebeck, Germany
| | - Rebekka Lencer
- Translational Psychiatry Unit (TPU), Department of Psychiatry and Psychotherapy, University of Luebeck, Germany
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & NorthWestern Mental Health, Melbourne, Australia
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany; Max Planck Institute for Psychiatry, Munich, Germany; Institute of Psychiatry, Psychology & Neuroscience, Department of Psychosis Studies, King's College London, London, United Kingdom
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Kerpenerstr.62, 50931, Cologne, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Kerpenerstr.62, 50931, Cologne, Germany; Faculty of Psychology and Educational Sciences, Department of Psychology, Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
4
|
Lin C, Huang C, Chang W, Chang Y, Liu H, Ng S, Lin H, Lee TM, Lee S, Wu S. Predicting suicidality in late-life depression by 3D convolutional neural network and cross-sample entropy analysis of resting-state fMRI. Brain Behav 2024; 14:e3348. [PMID: 38376042 PMCID: PMC10790060 DOI: 10.1002/brb3.3348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Predicting suicide is a pressing issue among older adults; however, predicting its risk is difficult. Capitalizing on the recent development of machine learning, considerable progress has been made in predicting complex behavior such as suicide. As depression remained the strongest risk for suicide, we aimed to apply deep learning algorithms to identify suicidality in a group with late-life depression (LLD). METHODS We enrolled 83 patients with LLD, 35 of which were non-suicidal and 48 were suicidal, including 26 with only suicidal ideation and 22 with past suicide attempts, for resting-state functional magnetic resonance imaging (MRI). Cross-sample entropy (CSE) analysis was conducted to examine the complexity of MRI signals among brain regions. Three-dimensional (3D) convolutional neural networks (CNNs) were used, and the classification accuracy in each brain region was averaged to predict suicidality after sixfold cross-validation. RESULTS We found brain regions with a mean accuracy above 75% to predict suicidality located mostly in default mode, fronto-parietal, and cingulo-opercular resting-state networks. The models with right amygdala and left caudate provided the most reliable accuracy in all cross-validation folds, indicating their neurobiological importance in late-life suicide. CONCLUSION Combining CSE analysis and the 3D CNN, several brain regions were found to be associated with suicidality.
Collapse
Affiliation(s)
- Chemin Lin
- Department of PsychiatryKeelung Chang Gung Memorial HospitalKeelungTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Community Medicine Research CenterChang Gung Memorial HospitalKeelungTaiwan
| | - Chih‐Mao Huang
- Department of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Wei Chang
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - You‐Xun Chang
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Ho‐Ling Liu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelungTaiwan
- Department of Imaging PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Shu‐Hang Ng
- Department of Head and Neck Oncology GroupLinkou Chang Gung Memorial Hospital and Chang Gung UniversityTaoyuanTaiwan
- Department of Diagnostic RadiologyLinkou Chang Gung Memorial Hospital and Chang Gung UniversityTaoyuanTaiwan
| | - Huang‐Li Lin
- Department of PsychiatryLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Tatia Mei‐Chun Lee
- Community Medicine Research CenterChang Gung Memorial HospitalKeelungTaiwan
- Laboratory of Neuropsychology and Human NeuroscienceThe University of Hong KongPok Fu LamHong Kong
- State Key Laboratory of Brain and Cognitive ScienceThe University of Hong KongPok Fu LamHong Kong
| | - Shwu‐Hua Lee
- Department of PsychiatryLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Shun‐Chi Wu
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
5
|
Arold D, Bernardoni F, Geisler D, Doose A, Uen V, Boehm I, Roessner V, King JA, Ehrlich S. Predicting long-term outcome in anorexia nervosa: a machine learning analysis of brain structure at different stages of weight recovery. Psychol Med 2023; 53:7827-7836. [PMID: 37554008 PMCID: PMC10758339 DOI: 10.1017/s0033291723001861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is characterized by sizable, widespread gray matter (GM) reductions in the acutely underweight state. However, evidence for persistent alterations after weight-restoration has been surprisingly scarce despite high relapse rates, frequent transitions to other psychiatric disorders, and generally unfavorable outcome. While most studies investigated brain regions separately (univariate analysis), psychiatric disorders can be conceptualized as brain network disorders characterized by multivariate alterations with only subtle local effects. We tested for persistent multivariate structural brain alterations in weight-restored individuals with a history of AN, investigated their putative biological substrate and relation with 1-year treatment outcome. METHODS We trained machine learning models on regional GM measures to classify healthy controls (HC) (N = 289) from individuals at three stages of AN: underweight patients starting intensive treatment (N = 165, used as baseline), patients after partial weight-restoration (N = 115), and former patients after stable and full weight-restoration (N = 89). Alterations after weight-restoration were related to treatment outcome and characterized both anatomically and functionally. RESULTS Patients could be classified from HC when underweight (ROC-AUC = 0.90) but also after partial weight-restoration (ROC-AUC = 0.64). Alterations after partial weight-restoration were more pronounced in patients with worse outcome and were not detected in long-term weight-recovered individuals, i.e. those with favorable outcome. These alterations were more pronounced in regions with greater functional connectivity, not merely explained by body mass index, and even increases in cortical thickness were observed (insula, lateral orbitofrontal, temporal pole). CONCLUSIONS Analyzing persistent multivariate brain structural alterations after weight-restoration might help to develop personalized interventions after discharge from inpatient treatment.
Collapse
Affiliation(s)
- Dominic Arold
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Arne Doose
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Volkan Uen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ilka Boehm
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Sun J, Dong QX, Wang SW, Zheng YB, Liu XX, Lu TS, Yuan K, Shi J, Hu B, Lu L, Han Y. Artificial intelligence in psychiatry research, diagnosis, and therapy. Asian J Psychiatr 2023; 87:103705. [PMID: 37506575 DOI: 10.1016/j.ajp.2023.103705] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Psychiatric disorders are now responsible for the largest proportion of the global burden of disease, and even more challenges have been seen during the COVID-19 pandemic. Artificial intelligence (AI) is commonly used to facilitate the early detection of disease, understand disease progression, and discover new treatments in the fields of both physical and mental health. The present review provides a broad overview of AI methodology and its applications in data acquisition and processing, feature extraction and characterization, psychiatric disorder classification, potential biomarker detection, real-time monitoring, and interventions in psychiatric disorders. We also comprehensively summarize AI applications with regard to the early warning, diagnosis, prognosis, and treatment of specific psychiatric disorders, including depression, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, addiction, sleep disorders, and Alzheimer's disease. The advantages and disadvantages of AI in psychiatry are clarified. We foresee a new wave of research opportunities to facilitate and improve AI technology and its long-term implications in psychiatry during and after the COVID-19 era.
Collapse
Affiliation(s)
- Jie Sun
- Pain Medicine Center, Peking University Third Hospital, Beijing 100191, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Qun-Xi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - San-Wang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yong-Bo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiao-Xing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tang-Sheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Bin Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Kesler SR, Henneghan AM, Prinsloo S, Palesh O, Wintermark M. Neuroimaging based biotypes for precision diagnosis and prognosis in cancer-related cognitive impairment. Front Med (Lausanne) 2023; 10:1199605. [PMID: 37720513 PMCID: PMC10499624 DOI: 10.3389/fmed.2023.1199605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer related cognitive impairment (CRCI) is commonly associated with cancer and its treatments, yet the present binary diagnostic approach fails to capture the full spectrum of this syndrome. Cognitive function is highly complex and exists on a continuum that is poorly characterized by dichotomous categories. Advanced statistical methodologies applied to symptom assessments have demonstrated that there are multiple subclasses of CRCI. However, studies suggest that relying on symptom assessments alone may fail to account for significant differences in the neural mechanisms that underlie a specific cognitive phenotype. Treatment plans that address the specific physiologic mechanisms involved in an individual patient's condition is the heart of precision medicine. In this narrative review, we discuss how biotyping, a precision medicine framework being utilized in other mental disorders, could be applied to CRCI. Specifically, we discuss how neuroimaging can be used to determine biotypes of CRCI, which allow for increased precision in prediction and diagnosis of CRCI via biologic mechanistic data. Biotypes may also provide more precise clinical endpoints for intervention trials. Biotyping could be made more feasible with proxy imaging technologies or liquid biomarkers. Large cross-sectional phenotyping studies are needed in addition to evaluation of longitudinal trajectories, and data sharing/pooling is highly feasible with currently available digital infrastructures.
Collapse
Affiliation(s)
- Shelli R. Kesler
- Division of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, United States
- Department of Diagnostic Medicine, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
| | - Ashley M. Henneghan
- Division of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
| | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Oxana Palesh
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer, Houston, TX, United States
| |
Collapse
|
8
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Brucar LR, Feczko E, Fair DA, Zilverstand A. Current Approaches in Computational Psychiatry for the Data-Driven Identification of Brain-Based Subtypes. Biol Psychiatry 2023; 93:704-716. [PMID: 36841702 PMCID: PMC10038896 DOI: 10.1016/j.biopsych.2022.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
The ability of our current psychiatric nosology to accurately delineate clinical populations and inform effective treatment plans has reached a critical point with only moderately successful interventions and high relapse rates. These challenges continue to motivate the search for approaches to better stratify clinical populations into more homogeneous delineations, to better inform diagnosis and disease evaluation, and prescribe and develop more precise treatment plans. The promise of brain-based subtyping based on neuroimaging data is that finding subgroups of individuals with a common biological signature will facilitate the development of biologically grounded, targeted treatments. This review provides a snapshot of the current state of the field in empirical brain-based subtyping studies in child, adolescent, and adult psychiatric populations published between 2019 and March 2022. We found that there is vast methodological exploration and a surprising number of new methods being created for the specific purpose of brain-based subtyping. However, this methodological exploration and advancement is not being met with rigorous validation approaches that assess both reproducibility and clinical utility of the discovered brain-based subtypes. We also found evidence for a collaboration crisis, in which methodological exploration and advancements are not clearly grounded in clinical goals. We propose several steps that we believe are crucial to address these shortcomings in the field. We conclude, and agree with the authors of the reviewed studies, that the discovery of biologically grounded subtypes would be a significant advancement for treatment development in psychiatry.
Collapse
Affiliation(s)
- Leyla R Brucar
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota; Institute of Child Development, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota Medical School, Minneapolis, Minnesota.
| |
Collapse
|
10
|
Nakua H, Yu JC, Abdi H, Hawco C, Voineskos A, Hill S, Lai MC, Wheeler AL, McIntosh AR, Ameis SH. Comparing the stability and reproducibility of brain-behaviour relationships found using Canonical Correlation Analysis and Partial Least Squares within the ABCD Sample. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531763. [PMID: 36945610 PMCID: PMC10028915 DOI: 10.1101/2023.03.08.531763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Introduction Canonical Correlation Analysis (CCA) and Partial Least Squares Correlation (PLS) detect associations between two data matrices based on computing a linear combination between the two matrices (called latent variables; LVs). These LVs maximize correlation (CCA) and covariance (PLS). These different maximization criteria may render one approach more stable and reproducible than the other when working with brain and behavioural data at the population-level. This study compared the LVs which emerged from CCA and PLS analyses of brain-behaviour relationships from the Adolescent Brain Cognitive Development (ABCD) dataset and examined their stability and reproducibility. Methods Structural T1-weighted imaging and behavioural data were accessed from the baseline Adolescent Brain Cognitive Development dataset (N > 9000, ages = 9-11 years). The brain matrix consisted of cortical thickness estimates in different cortical regions. The behavioural matrix consisted of 11 subscale scores from the parent-reported Child Behavioral Checklist (CBCL) or 7 cognitive performance measures from the NIH Toolbox. CCA and PLS models were separately applied to the brain-CBCL analysis and brain-cognition analysis. A permutation test was used to assess whether identified LVs were statistically significant. A series of resampling statistical methods were used to assess stability and reproducibility of the LVs. Results When examining the relationship between cortical thickness and CBCL scores, the first LV was found to be significant across both CCA and PLS models (singular value: CCA = .13, PLS = .39, p < .001). LV1 from the CCA model found that covariation of CBCL scores was linked to covariation of cortical thickness. LV1 from the PLS model identified decreased cortical thickness linked to lower CBCL scores. There was limited evidence of stability or reproducibility of LV1 for both CCA and PLS. When examining the relationship between cortical thickness and cognitive performance, there were 6 significant LVs for both CCA and PLS (p < .01). The first LV showed similar relationships between CCA and PLS and was found to be stable and reproducible (singular value: CCA = .21, PLS = .43, p < .001). Conclusion CCA and PLS identify different brain-behaviour relationships with limited stability and reproducibility when examining the relationship between cortical thickness and parent-reported behavioural measures. However, both methods identified relatively similar brain-behaviour relationships that were stable and reproducible when examining the relationship between cortical thickness and cognitive performance. The results of the current study suggest that stability and reproducibility of brain-behaviour relationships identified by CCA and PLS are influenced by characteristics of the analyzed sample and the included behavioural measurements when applied to a large pediatric dataset.
Collapse
Affiliation(s)
- Hajer Nakua
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju-Chi Yu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Hervé Abdi
- The University of Texas at Dallas, Richardson, Texas, United States
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne L. Wheeler
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Stephanie H. Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Sankar A, Shen X, Colic L, Goldman DA, Villa LM, Kim JA, Pittman B, Scheinost D, Constable RT, Blumberg HP. Predicting depressed and elevated mood symptomatology in bipolar disorder using brain functional connectomes. Psychol Med 2023; 53:1-10. [PMID: 36891769 PMCID: PMC10491744 DOI: 10.1017/s003329172300003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The study is aimed to identify brain functional connectomes predictive of depressed and elevated mood symptomatology in individuals with bipolar disorder (BD) using the machine learning approach Connectome-based Predictive Modeling (CPM). METHODS Functional magnetic resonance imaging data were obtained from 81 adults with BD while they performed an emotion processing task. CPM with 5000 permutations of leave-one-out cross-validation was applied to identify functional connectomes predictive of depressed and elevated mood symptom scores on the Hamilton Depression and Young Mania rating scales. The predictive ability of the identified connectomes was tested in an independent sample of 43 adults with BD. RESULTS CPM predicted the severity of depressed [concordance between actual and predicted values (r = 0.23, pperm (permutation test) = 0.031) and elevated (r = 0.27, pperm = 0.01) mood. Functional connectivity of left dorsolateral prefrontal cortex and supplementary motor area nodes, with inter- and intra-hemispheric connections to other anterior and posterior cortical, limbic, motor, and cerebellar regions, predicted depressed mood severity. Connectivity of left fusiform and right visual association area nodes with inter- and intra-hemispheric connections to the motor, insular, limbic, and posterior cortices predicted elevated mood severity. These networks were predictive of mood symptomatology in the independent sample (r ⩾ 0.45, p = 0.002). CONCLUSIONS This study identified distributed functional connectomes predictive of depressed and elevated mood severity in BD. Connectomes subserving emotional, cognitive, and psychomotor control predicted depressed mood severity, while those subserving emotional and social perceptual functions predicted elevated mood severity. Identification of these connectome networks may help inform the development of targeted treatments for mood symptoms.
Collapse
Affiliation(s)
- Anjali Sankar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lejla Colic
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Danielle A. Goldman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Luca M. Villa
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jihoon A. Kim
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
13
|
Griffiths SL, Lalousis PA, Wood SJ, Upthegrove R. Heterogeneity in treatment outcomes and incomplete recovery in first episode psychosis: does one size fit all? Transl Psychiatry 2022; 12:485. [PMID: 36396628 PMCID: PMC9671914 DOI: 10.1038/s41398-022-02256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The heterogeneity in recovery outcomes for individuals with First Episode Psychosis (FEP) calls for a strong evidence base to inform practice at an individual level. Between 19-89% of young people with FEP have an incomplete recovery despite gold-standard evidence-based treatments, suggesting current service models, which adopt a 'one-size fits all' approach, may not be addressing the needs of many young people with psychosis. The lack of consistent terminology to define key concepts such as recovery and treatment resistance, the multidimensional nature of these concepts, and common comorbid symptoms are some of the challenges faced by the field in delineating heterogeneity in recovery outcomes. The lack of robust markers for incomplete recovery also results in potential delay in delivering prompt, and effective treatments to individuals at greatest risk. There is a clear need to adopt a stratified approach to care where interventions are targeted at subgroups of patients, and ultimately at the individual level. Novel machine learning, using large, representative data from a range of modalities, may aid in the parsing of heterogeneity, and provide greater precision and sophistication in identifying those on a pathway to incomplete recovery.
Collapse
Affiliation(s)
- Siân Lowri Griffiths
- Institute for Mental Health, University of Birmingham, Birmingham, UK. .,Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Paris Alexandros Lalousis
- grid.6572.60000 0004 1936 7486Institute for Mental Health, University of Birmingham, Birmingham, UK ,grid.6572.60000 0004 1936 7486Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Stephen J. Wood
- grid.6572.60000 0004 1936 7486Institute for Mental Health, University of Birmingham, Birmingham, UK ,grid.488501.00000 0004 8032 6923Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XCentre for Youth Mental Health, The University of Melbourne, Parkville, VIC Australia
| | - Rachel Upthegrove
- grid.6572.60000 0004 1936 7486Institute for Mental Health, University of Birmingham, Birmingham, UK ,grid.6572.60000 0004 1936 7486Centre for Human Brain Health, University of Birmingham, Birmingham, UK ,grid.498025.20000 0004 0376 6175Birmingham Early Interventions Service, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
14
|
Chen ZS, Kulkarni P(P, Galatzer-Levy IR, Bigio B, Nasca C, Zhang Y. Modern views of machine learning for precision psychiatry. PATTERNS (NEW YORK, N.Y.) 2022; 3:100602. [PMID: 36419447 PMCID: PMC9676543 DOI: 10.1016/j.patter.2022.100602] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In light of the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. We further review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We also discuss explainable AI (XAI) and neuromodulation in a closed human-in-the-loop manner and highlight the ML potential in multi-media information extraction and multi-modal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | | | - Isaac R. Galatzer-Levy
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Meta Reality Lab, New York, NY, USA
| | - Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
15
|
Tejavibulya L, Rolison M, Gao S, Liang Q, Peterson H, Dadashkarimi J, Farruggia MC, Hahn CA, Noble S, Lichenstein SD, Pollatou A, Dufford AJ, Scheinost D. Predicting the future of neuroimaging predictive models in mental health. Mol Psychiatry 2022; 27:3129-3137. [PMID: 35697759 PMCID: PMC9708554 DOI: 10.1038/s41380-022-01635-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022]
Abstract
Predictive modeling using neuroimaging data has the potential to improve our understanding of the neurobiology underlying psychiatric disorders and putatively information interventions. Accordingly, there is a plethora of literature reviewing published studies, the mathematics underlying machine learning, and the best practices for using these approaches. As our knowledge of mental health and machine learning continue to evolve, we instead aim to look forward and "predict" topics that we believe will be important in current and future studies. Some of the most discussed topics in machine learning, such as bias and fairness, the handling of dirty data, and interpretable models, may be less familiar to the broader community using neuroimaging-based predictive modeling in psychiatry. In a similar vein, transdiagnostic research and targeting brain-based features for psychiatric intervention are modern topics in psychiatry that predictive models are well-suited to tackle. In this work, we target an audience who is a researcher familiar with the fundamental procedures of machine learning and who wishes to increase their knowledge of ongoing topics in the field. We aim to accelerate the utility and applications of neuroimaging-based predictive models for psychiatric research by highlighting and considering these topics. Furthermore, though not a focus, these ideas generalize to neuroimaging-based predictive modeling in other clinical neurosciences and predictive modeling with different data types (e.g., digital health data).
Collapse
Affiliation(s)
- Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
| | - Max Rolison
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Siyuan Gao
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Hannah Peterson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Javid Dadashkarimi
- Department of Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Michael C Farruggia
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - C Alice Hahn
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Dwyer D, Koutsouleris N. Annual Research Review: Translational machine learning for child and adolescent psychiatry. J Child Psychol Psychiatry 2022; 63:421-443. [PMID: 35040130 DOI: 10.1111/jcpp.13545] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Children and adolescents could benefit from the use of predictive tools that facilitate personalized diagnoses, prognoses, and treatment selection. Such tools have not yet been deployed using traditional statistical methods, potentially due to the limitations of the paradigm and the need to leverage large amounts of digital data. This review will suggest that a machine learning approach could address these challenges and is designed to introduce new readers to the background, methods, and results in the field. A rationale is first introduced followed by an outline of fundamental elements of machine learning approaches. To provide an overview of the use of the techniques in child and adolescent literature, a scoping review of broad trends is then presented. Selected studies are also highlighted in order to draw attention to research areas that are closest to translation and studies that exhibit a high degree of experimental innovation. Limitations to the research, and machine learning approaches generally, are outlined in the penultimate section highlighting issues related to sample sizes, validation, clinical utility, and ethical challenges. Finally, future directions are discussed that could enhance the possibility of clinical implementation and address specific questions relevant to the child and adolescent psychiatry. The review gives a broad overview of the machine learning paradigm in order to highlight the benefits of a shift in perspective towards practically oriented statistical solutions that aim to improve clinical care of children and adolescents.
Collapse
Affiliation(s)
- Dominic Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.,Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Australia.,Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.,Max-Planck Institute of Psychiatry, Munich, Germany.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
17
|
den Boer JA, de Vries EJ, Borra RJ, Waarde AV, Lammertsma AA, Dierckx RA. Role of Brain Imaging in Drug Development for Psychiatry. Curr Rev Clin Exp Pharmacol 2022; 17:46-71. [DOI: 10.2174/1574884716666210322143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
Background:
Over the last decades, many brain imaging studies have contributed to
new insights in the pathogenesis of psychiatric disease. However, in spite of these developments,
progress in the development of novel therapeutic drugs for prevalent psychiatric health conditions
has been limited.
Objective:
In this review, we discuss translational, diagnostic and methodological issues that have
hampered drug development in CNS disorders with a particular focus on psychiatry. The role of
preclinical models is critically reviewed and opportunities for brain imaging in early stages of drug
development using PET and fMRI are discussed. The role of PET and fMRI in drug development
is reviewed emphasizing the need to engage in collaborations between industry, academia and
phase I units.
Conclusion:
Brain imaging technology has revolutionized the study of psychiatric illnesses, and
during the last decade, neuroimaging has provided valuable insights at different levels of analysis
and brain organization, such as effective connectivity (anatomical), functional connectivity patterns
and neurochemical information that may support both preclinical and clinical drug development.
Since there is no unifying pathophysiological theory of individual psychiatric syndromes and since
many symptoms cut across diagnostic boundaries, a new theoretical framework has been proposed
that may help in defining new targets for treatment and thus enhance drug development in CNS diseases.
In addition, it is argued that new proposals for data-mining and mathematical modelling as
well as freely available databanks for neural network and neurochemical models of rodents combined
with revised psychiatric classification will lead to new validated targets for drug development.
Collapse
Affiliation(s)
| | - Erik J.F. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald J.H. Borra
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudi A. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Feng C, Thompson WK, Paulus MP. Effect sizes of associations between neuroimaging measures and affective symptoms: A meta-analysis. Depress Anxiety 2022; 39:19-25. [PMID: 34516701 DOI: 10.1002/da.23215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The utility of brain-based biomarkers for psychiatric disorders hinges among other factors on their ability to explain a significant portion of the phenotypic variance. In particular, many small scale studies have been unable to arbitrate whether structural or functional magnetic resonance imaging has potential to be a biological marker for these disorders. METHODS This study conducted a meta-analysis to examine the relationship between study power and published effect sizes for the relationship between affective symptoms and structural or functional magnetic resonance imaging measures. The current analyses are based on 821 brain-affective symptom association effect sizes derived from 120 publications, which employed a univariate region-of-interest approach. RESULTS For self-assessed affective symptoms published brain imaging measures accounted for on average 8% (confidence interval: 1.6%-23%) of between-subject variation. This average effect size was based mostly on studies with small sample sizes, which have likely led to inflation of these effect size estimates. CONCLUSIONS These findings support the conclusion that brain imaging measures currently account for a smaller proportion of the interindividual variance in affective symptoms than has been previously reported. The current findings support the need for both large-sample clinical studies and new statistical and theoretical models to more robustly capture systematic variance of brain-affective symptom relationships.
Collapse
Affiliation(s)
- Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Wesley K Thompson
- Division of Biostatistics, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
19
|
Machine learning approaches for parsing comorbidity/heterogeneity in antisociality and substance use disorders: A primer. PERSONALITY NEUROSCIENCE 2021; 4:e6. [PMID: 34909565 PMCID: PMC8640675 DOI: 10.1017/pen.2021.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
By some accounts, as many as 93% of individuals diagnosed with antisocial personality disorder (ASPD) or psychopathy also meet criteria for some form of substance use disorder (SUD). This high level of comorbidity, combined with an overlapping biopsychosocial profile, and potentially interacting features, has made it difficult to delineate the shared/unique characteristics of each disorder. Moreover, while rarely acknowledged, both SUD and antisociality exist as highly heterogeneous disorders in need of more targeted parcellation. While emerging data-driven nosology for psychiatric disorders (e.g., Research Domain Criteria (RDoC), Hierarchical Taxonomy of Psychopathology (HiTOP)) offers the opportunity for a more systematic delineation of the externalizing spectrum, the interrogation of large, complex neuroimaging-based datasets may require data-driven approaches that are not yet widely employed in psychiatric neuroscience. With this in mind, the proposed article sets out to provide an introduction into machine learning methods for neuroimaging that can help parse comorbid, heterogeneous externalizing samples. The modest machine learning work conducted to date within the externalizing domain demonstrates the potential utility of the approach but remains highly nascent. Within the paper, we make suggestions for how future work can make use of machine learning methods, in combination with emerging psychiatric nosology systems, to further diagnostic and etiological understandings of the externalizing spectrum. Finally, we briefly consider some challenges that will need to be overcome to encourage further progress in the field.
Collapse
|
20
|
Miranda L, Paul R, Pütz B, Koutsouleris N, Müller-Myhsok B. Systematic Review of Functional MRI Applications for Psychiatric Disease Subtyping. Front Psychiatry 2021; 12:665536. [PMID: 34744805 PMCID: PMC8569315 DOI: 10.3389/fpsyt.2021.665536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Psychiatric disorders have been historically classified using symptom information alone. Recently, there has been a dramatic increase in research interest not only in identifying the mechanisms underlying defined pathologies but also in redefining their etiology. This is particularly relevant for the field of personalized medicine, which searches for data-driven approaches to improve diagnosis, prognosis, and treatment selection for individual patients. Methods: This review aims to provide a high-level overview of the rapidly growing field of functional magnetic resonance imaging (fMRI) from the perspective of unsupervised machine learning applications for disease subtyping. Following the PRISMA guidelines for protocol reproducibility, we searched the PubMed database for articles describing functional MRI applications used to obtain, interpret, or validate psychiatric disease subtypes. We also employed the active learning framework ASReview to prioritize publications in a machine learning-guided way. Results: From the 20 studies that met the inclusion criteria, five used functional MRI data to interpret symptom-derived disease clusters, four used it to interpret clusters derived from biomarker data other than fMRI itself, and 11 applied clustering techniques involving fMRI directly. Major depression disorder and schizophrenia were the two most frequently studied pathologies (35% and 30% of the retrieved studies, respectively), followed by ADHD (15%), psychosis as a whole (10%), autism disorder (5%), and the consequences of early exposure to violence (5%). Conclusions: The increased interest in personalized medicine and data-driven disease subtyping also extends to psychiatric disorders. However, to date, this subfield is at an incipient exploratory stage, and all retrieved studies were mostly proofs of principle where further validation and increased sample sizes are craved for. Whereas results for all explored diseases are inconsistent, we believe this reflects the need for concerted, multisite data collection efforts with a strong focus on measuring the generalizability of results. Finally, whereas functional MRI is the best way of measuring brain function available to date, its low signal-to-noise ratio and elevated monetary cost make it a poor clinical alternative. Even with technology progressing and costs decreasing, this might incentivize the search for more accessible, clinically ready functional proxies in the future.
Collapse
Affiliation(s)
- Lucas Miranda
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Riya Paul
- Department of Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich, Germany
| | - Benno Pütz
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich, Germany
| | - Bertram Müller-Myhsok
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Health Data Science, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Clinical predictors of treatment response towards exposure therapy in virtuo in spider phobia: A machine learning and external cross-validation approach. J Anxiety Disord 2021; 83:102448. [PMID: 34298236 DOI: 10.1016/j.janxdis.2021.102448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/07/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022]
Abstract
While being highly effective on average, exposure-based treatments are not equally effective in all patients. The a priori identification of patients with a poor prognosis may enable the application of more personalized psychotherapeutic interventions. We aimed at identifying sociodemographic and clinical pre-treatment predictors for treatment response in spider phobia (SP). N = 174 patients with SP underwent a highly standardized virtual reality exposure therapy (VRET) at two independent sites. Analyses on group-level were used to test the efficacy. We applied a state-of-the-art machine learning protocol (Random Forests) to evaluate the predictive utility of clinical and sociodemographic predictors for a priori identification of individual treatment response assessed directly after treatment and at 6-month follow-up. The reliability and generalizability of predictive models was tested via external cross-validation. Our study shows that one session of VRET is highly effective on a group-level and is among the first to reveal long-term stability of this treatment effect. Individual short-term symptom reductions could be predicted above chance, but accuracies dropped to non-significance in our between-site prediction and for predictions of long-term outcomes. With performance metrics hardly exceeding chance level and the lack of generalizability in the employed between-site replication approach, our study suggests limited clinical utility of clinical and sociodemographic predictors. Predictive models including multimodal predictors may be more promising.
Collapse
|
22
|
Soldatos RF, Cearns M, Nielsen MØ, Kollias C, Xenaki LA, Stefanatou P, Ralli I, Dimitrakopoulos S, Hatzimanolis A, Kosteletos I, Vlachos II, Selakovic M, Foteli S, Nianiakas N, Mantonakis L, Triantafyllou TF, Ntigridaki A, Ermiliou V, Voulgaraki M, Psarra E, Sørensen ME, Bojesen KB, Tangmose K, Sigvard AM, Ambrosen KS, Meritt T, Syeda W, Glenthøj BY, Koutsouleris N, Pantelis C, Ebdrup BH, Stefanis N. Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning. Schizophr Bull 2021; 48:122-133. [PMID: 34535800 PMCID: PMC8781312 DOI: 10.1093/schbul/sbab107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Validated clinical prediction models of short-term remission in psychosis are lacking. Our aim was to develop a clinical prediction model aimed at predicting 4-6-week remission following a first episode of psychosis. METHOD Baseline clinical data from the Athens First Episode Research Study was used to develop a Support Vector Machine prediction model of 4-week symptom remission in first-episode psychosis patients using repeated nested cross-validation. This model was further tested to predict 6-week remission in a sample of two independent, consecutive Danish first-episode cohorts. RESULTS Of the 179 participants in Athens, 120 were male with an average age of 25.8 years and average duration of untreated psychosis of 32.8 weeks. 62.9% were antipsychotic-naïve. Fifty-seven percent attained remission after 4 weeks. In the Danish cohort, 31% attained remission. Eleven clinical scale items were selected in the Athens 4-week remission cohort. These included the Duration of Untreated Psychosis, Personal and Social Performance Scale, Global Assessment of Functioning and eight items from the Positive and Negative Syndrome Scale. This model significantly predicted 4-week remission status (area under the receiver operator characteristic curve (ROC-AUC) = 71.45, P < .0001). It also predicted 6-week remission status in the Danish cohort (ROC-AUC = 67.74, P < .0001), demonstrating reliability. CONCLUSIONS Using items from common and validated clinical scales, our model significantly predicted early remission in patients with first-episode psychosis. Although replicated in an independent cohort, forward testing between machine learning models and clinicians' assessment should be undertaken to evaluate the possible utility as a routine clinical tool.
Collapse
Affiliation(s)
- Rigas F Soldatos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece,Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia,World Federation of Societies of Biological Psychiatry, First Episode Psychosis Task Force, Barsbüttel, Germany,To whom correspondence should be addressed; First Department of Psychiatry, Eginition Hospital, 72-74 Vasilissis Sofias Avenue, Athens 11527, Greece, tel: +302107289400, e-mail:
| | - Micah Cearns
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia,Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Costas Kollias
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Lida-Alkisti Xenaki
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Pentagiotissa Stefanatou
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Irene Ralli
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Stefanos Dimitrakopoulos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Alex Hatzimanolis
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Ioannis Kosteletos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Ilias I Vlachos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Mirjana Selakovic
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Stefania Foteli
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Nikolaos Nianiakas
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Leonidas Mantonakis
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Theoni F Triantafyllou
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Aggeliki Ntigridaki
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Vanessa Ermiliou
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Marina Voulgaraki
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Evaggelia Psarra
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Mikkel E Sørensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anne M Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Toni Meritt
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Warda Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nikolaos Koutsouleris
- World Federation of Societies of Biological Psychiatry, First Episode Psychosis Task Force, Barsbüttel, Germany,Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich, Germany
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia,World Federation of Societies of Biological Psychiatry, First Episode Psychosis Task Force, Barsbüttel, Germany
| | - Bjørn H Ebdrup
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia,Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nikos Stefanis
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece,World Federation of Societies of Biological Psychiatry, First Episode Psychosis Task Force, Barsbüttel, Germany,University Mental Health, Neurosciences and Precision Medicine Research Institute, 2 Soranou Efesiou, 11527 Athens, Greece
| |
Collapse
|
23
|
Virtual Connectomic Datasets in Alzheimer's Disease and Aging Using Whole-Brain Network Dynamics Modelling. eNeuro 2021; 8:ENEURO.0475-20.2021. [PMID: 34045210 PMCID: PMC8260273 DOI: 10.1523/eneuro.0475-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Large neuroimaging datasets, including information about structural connectivity (SC) and functional connectivity (FC), play an increasingly important role in clinical research, where they guide the design of algorithms for automated stratification, diagnosis or prediction. A major obstacle is, however, the problem of missing features [e.g., lack of concurrent DTI SC and resting-state functional magnetic resonance imaging (rsfMRI) FC measurements for many of the subjects]. We propose here to address the missing connectivity features problem by introducing strategies based on computational whole-brain network modeling. Using two datasets, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and a healthy aging dataset, for proof-of-concept, we demonstrate the feasibility of virtual data completion (i.e., inferring “virtual FC” from empirical SC or “virtual SC” from empirical FC), by using self-consistent simulations of linear and nonlinear brain network models. Furthermore, by performing machine learning classification (to separate age classes or control from patient subjects), we show that algorithms trained on virtual connectomes achieve discrimination performance comparable to when trained on actual empirical data; similarly, algorithms trained on virtual connectomes can be used to successfully classify novel empirical connectomes. Completion algorithms can be combined and reiterated to generate realistic surrogate connectivity matrices in arbitrarily large number, opening the way to the generation of virtual connectomic datasets with network connectivity information comparable to the one of the original data.
Collapse
|
24
|
Eitel F, Schulz MA, Seiler M, Walter H, Ritter K. Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research. Exp Neurol 2021; 339:113608. [PMID: 33513353 DOI: 10.1016/j.expneurol.2021.113608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
By promising more accurate diagnostics and individual treatment recommendations, deep neural networks and in particular convolutional neural networks have advanced to a powerful tool in medical imaging. Here, we first give an introduction into methodological key concepts and resulting methodological promises including representation and transfer learning, as well as modelling domain-specific priors. After reviewing recent applications within neuroimaging-based psychiatric research, such as the diagnosis of psychiatric diseases, delineation of disease subtypes, normative modeling, and the development of neuroimaging biomarkers, we discuss current challenges. This includes for example the difficulty of training models on small, heterogeneous and biased data sets, the lack of validity of clinical labels, algorithmic bias, and the influence of confounding variables.
Collapse
Affiliation(s)
- Fabian Eitel
- Charité - Universitätsmedizin Berlin, Corporate Member Of Freie Universität Berlin, Humboldt-Universität zu Berlin; Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Marc-André Schulz
- Charité - Universitätsmedizin Berlin, Corporate Member Of Freie Universität Berlin, Humboldt-Universität zu Berlin; Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Moritz Seiler
- Charité - Universitätsmedizin Berlin, Corporate Member Of Freie Universität Berlin, Humboldt-Universität zu Berlin; Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, Corporate Member Of Freie Universität Berlin, Humboldt-Universität zu Berlin; Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Kerstin Ritter
- Charité - Universitätsmedizin Berlin, Corporate Member Of Freie Universität Berlin, Humboldt-Universität zu Berlin; Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany.
| |
Collapse
|
25
|
Chang JC, Lin HY, Lv J, Tseng WYI, Gau SSF. Regional brain volume predicts response to methylphenidate treatment in individuals with ADHD. BMC Psychiatry 2021; 21:26. [PMID: 33430830 PMCID: PMC7798216 DOI: 10.1186/s12888-021-03040-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/24/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Despite the effectiveness of methylphenidate for treating ADHD, up to 30% of individuals with ADHD show poor responses to methylphenidate. Neuroimaging biomarkers to predict medication responses remain elusive. This study characterized neuroanatomical features that differentiated between clinically good and poor methylphenidate responders with ADHD. METHODS Using a naturalistic observation design selected from a larger cohort, we included 79 drug-naive individuals (aged 6-42 years) with ADHD without major psychiatric comorbidity, who had acceptable baseline structural MRI data quality. Based on a retrospective chart review, we defined responders by individuals' responses to at least one-month treatment with methylphenidate. A nonparametric mass-univariate voxel-based morphometric analysis was used to compare regional gray matter volume differences between good and poor responders. A multivariate pattern recognition based on the support vector machine was further implemented to identify neuroanatomical indicators to predict an individual's response. RESULTS 63 and 16 individuals were classified in the good and poor responder group, respectively. Using the small-volume correction procedure based on the hypothesis-driven striatal and default-mode network masks, poor responders had smaller regional volumes of the left putamen as well as larger precuneus volumes compared to good responders at baseline. The machine learning approach identified that volumetric information among these two regions alongside the left frontoparietal regions, occipital lobes, and posterior/inferior cerebellum could predict clinical responses to methylphenidate in individuals with ADHD. CONCLUSION Our results suggest regional striatal and precuneus gray matter volumes play a critical role in mediating treatment responses in individuals with ADHD.
Collapse
Affiliation(s)
- Jung-Chi Chang
- grid.412094.a0000 0004 0572 7815Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan ,grid.412094.a0000 0004 0572 7815Department of Psychiatry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan ,grid.19188.390000 0004 0546 0241Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- grid.155956.b0000 0000 8793 5925Azrieli Adult Neurodevelopmental Centre and Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Ontario Canada
| | - Junglei Lv
- grid.1013.30000 0004 1936 834XSydney Imaging and School of Biomedical Engineering, University of Sydney, Camperdown, NSW Australia
| | - Wen-Yih Issac Tseng
- grid.19188.390000 0004 0546 0241Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan ,grid.19188.390000 0004 0546 0241Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
26
|
Todeva-Radneva A, Paunova R, Kandilarova S, St Stoyanov D. The Value of Neuroimaging Techniques in the Translation and Transdiagnostic Validation of Psychiatric Diagnoses - Selective Review. Curr Top Med Chem 2021; 20:540-553. [PMID: 32003690 DOI: 10.2174/1568026620666200131095328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
Abstract
Psychiatric diagnosis has long been perceived as more of an art than a science since its foundations lie within the observation, and the self-report of the patients themselves and objective diagnostic biomarkers are lacking. Furthermore, the diagnostic tools in use not only stray away from the conventional medical framework but also remain invalidated with evidence-based concepts. However, neuroscience, as a source of valid objective knowledge has initiated the process of a paradigm shift underlined by the main concept of psychiatric disorders being "brain disorders". It is also a bridge closing the explanatory gap among the different fields of medicine via the translation of the knowledge within a multidisciplinary framework. The contemporary neuroimaging methods, such as fMRI provide researchers with an entirely new set of tools to reform the current status quo by creating an opportunity to define and validate objective biomarkers that can be translated into clinical practice. Combining multiple neuroimaging techniques with the knowledge of the role of genetic factors, neurochemical imbalance and neuroinflammatory processes in the etiopathophysiology of psychiatric disorders is a step towards a comprehensive biological explanation of psychiatric disorders and a final differentiation of psychiatry as a well-founded medical science. In addition, the neuroscientific knowledge gained thus far suggests a necessity for directional change to exploring multidisciplinary concepts, such as multiple causality and dimensionality of psychiatric symptoms and disorders. A concomitant viewpoint transition of the notion of validity in psychiatry with a focus on an integrative validatory approach may facilitate the building of a collaborative bridge above the wall existing between the scientific fields analyzing the mind and those studying the brain.
Collapse
Affiliation(s)
- Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Drozdstoy St Stoyanov
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
27
|
Na KS, Kim YK. The Application of a Machine Learning-Based Brain Magnetic Resonance Imaging Approach in Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:57-69. [PMID: 33834394 DOI: 10.1007/978-981-33-6044-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major depressive disorder (MDD) shows a high prevalence and is associated with increased disability. While traditional studies aimed to investigate global characteristic neurobiological substrates of MDD, machine learning-based approaches focus on individual people rather than a group. Therefore, machine learning has been increasingly conducted and applied to clinical practice. Several previous neuroimaging studies used machine learning for stratifying MDD patients from healthy controls as well as in differentially diagnosing MDD apart from other psychiatric disorders. Also, machine learning has been used to predict treatment response using magnetic resonance imaging (MRI) results. Despite the recent accomplishments of machine learning-based MRI studies, small sample sizes and the heterogeneity of the depression group limit the generalizability of a machine learning-based predictive model. Future neuroimaging studies should integrate various materials such as genetic, peripheral, and clinical phenotypes for more accurate predictability of diagnosis and treatment response.
Collapse
Affiliation(s)
- Kyoung-Sae Na
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, College of Medicine, Ansan, Republic of Korea.
| |
Collapse
|
28
|
Hamaker EL, Mulder JD, van IJzendoorn MH. Description, prediction and causation: Methodological challenges of studying child and adolescent development. Dev Cogn Neurosci 2020; 46:100867. [PMID: 33186867 PMCID: PMC7670214 DOI: 10.1016/j.dcn.2020.100867] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Scientific research can be categorized into: a) descriptive research, with the main goal to summarize characteristics of a group (or person); b) predictive research, with the main goal to forecast future outcomes that can be used for screening, selection, or monitoring; and c) explanatory research, with the main goal to understand the underlying causal mechanism, which can then be used to develop interventions. Since each goal requires different research methods in terms of design, operationalization, model building and evaluation, it should form an important basis for decisions on how to set up and execute a study. To determine the extent to which developmental research is motivated by each goal and how this aligns with the research designs that are used, we evaluated 100 publications from the Consortium on Individual Development (CID). This analysis shows that the match between research goal and research design is not always optimal. We discuss alternative techniques, which are not yet part of the developmental scientist's standard toolbox, but that may help bridge some of the lurking gaps that developmental scientists encounter between their research design and their research goal. These include unsupervised and supervised machine learning, directed acyclical graphs, Mendelian randomization, and target trials.
Collapse
Affiliation(s)
- Ellen L Hamaker
- Methodology and Statistics, Faculty of Social and Behavioural Sciences, Utrecht University, The Netherlands.
| | - Jeroen D Mulder
- Methodology and Statistics, Faculty of Social and Behavioural Sciences, Utrecht University, The Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, The Netherlands; School of Clinical Medicine, University of Cambridge, UK
| |
Collapse
|
29
|
Griffiths SL, Birchwood M. A Synthetic Literature Review on the Management of Emerging Treatment Resistance in First Episode Psychosis: Can We Move towards Precision Intervention and Individualised Care? ACTA ACUST UNITED AC 2020; 56:medicina56120638. [PMID: 33255489 PMCID: PMC7761187 DOI: 10.3390/medicina56120638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Treatment resistance is prevalent in early intervention in psychosis services, and causes a significant burden for the individual. A wide range of variables are shown to contribute to treatment resistance in first episode psychosis (FEP). Heterogeneity in illness course and the complex, multidimensional nature of the concept of recovery calls for an evidence base to better inform practice at an individual level. Current gold standard treatments, adopting a ‘one-size fits all’ approach, may not be addressing the needs of many individuals. This following review will provide an update and critical appraisal of current clinical practices and methodological approaches for understanding, identifying, and managing early treatment resistance in early psychosis. Potential new treatments along with new avenues for research will be discussed. Finally, we will discuss and critique the application and translation of machine learning approaches to aid progression in this area. The move towards ‘big data’ and machine learning holds some prospect for stratifying intervention-based subgroups of individuals. Moving forward, better recognition of early treatment resistance is needed, along with greater sophistication and precision in predicting outcomes, so that effective evidence-based treatments can be appropriately tailored to the individual. Understanding the antecedents and the early trajectory of one’s illness may also be key to understanding the factors that drive illness course.
Collapse
Affiliation(s)
- Siân Lowri Griffiths
- Institute for Mental Health, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-7912-4972-67
| | - Max Birchwood
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| |
Collapse
|
30
|
Sacher J, Chechko N, Dannlowski U, Walter M, Derntl B. The peripartum human brain: Current understanding and future perspectives. Front Neuroendocrinol 2020; 59:100859. [PMID: 32771399 DOI: 10.1016/j.yfrne.2020.100859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
The peripartum period offers a unique opportunity to improve our understanding of how dramatic fluctuations in endogenous ovarian hormones affect the human brain and behavior. This notwithstanding, peripartum depression remains an underdiagnosed and undertreated disorder. Here, we review recent neuroimaging findings with respect to the neuroplastic changes in the maternal brain during pregnancy and the postpartum period. We seek to provide an overview of multimodal neuroimaging designs of current peripartum depression models of hormone withdrawal, changes in monoaminergic signaling, and maladaptive neuroplasticity, which likely lead to the development of a condition that puts the lives of mother and infant at risk. We discuss the need to effectively integrate the available information on psychosocial and neurobiological risk factors contributing to individual vulnerability. Finally, we propose a systematic approach to neuroimaging the peripartum brain that acknowledges important co-morbidities and variation in disease onset.
Collapse
Affiliation(s)
- Julia Sacher
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany; Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig, Liebigstr. 16, 04103 Leipzig, Germany.
| | - Natalia Chechko
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Pauwelsstr. 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Muenster, Albert Schweitzer-Campus 1, G 9A, 48149 Muenster, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Osianderstr. 24, 72076 Tübingen, Germany; LEAD Graduate Training & Research Network, University of Tübingen, Walter-Simon-Str. 12, 72072 Tübingen, Germany
| |
Collapse
|
31
|
Taylor JA, Larsen KM, Garrido MI. Multi-dimensional predictions of psychotic symptoms via machine learning. Hum Brain Mapp 2020; 41:5151-5163. [PMID: 32870535 PMCID: PMC7670649 DOI: 10.1002/hbm.25181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/09/2020] [Accepted: 08/09/2020] [Indexed: 11/10/2022] Open
Abstract
The diagnostic criteria for schizophrenia comprise a diverse range of heterogeneous symptoms. As a result, individuals each present a distinct set of symptoms despite having the same overall diagnosis. Whilst previous machine learning studies have primarily focused on dichotomous patient-control classification, we predict the severity of each individual symptom on a continuum. We applied machine learning regression within a multi-modal fusion framework to fMRI and behavioural data acquired during an auditory oddball task in 80 schizophrenia patients. Brain activity was highly predictive of some, but not all symptoms, namely hallucinations, avolition, anhedonia and attention. Critically, each of these symptoms was associated with specific functional alterations across different brain regions. We also found that modelling symptoms as an ensemble of subscales was more accurate, specific and informative than models which predict compound scores directly. In principle, this approach is transferrable to any psychiatric condition or multi-dimensional diagnosis.
Collapse
Affiliation(s)
- Jeremy A Taylor
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia.,Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - Kit M Larsen
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Child and Adolescent Mental Health Care, Mental Health Services Capital Region Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Marta I Garrido
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia.,Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia.,Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
32
|
Chen L, Xia C, Sun H. Recent advances of deep learning in psychiatric disorders. PRECISION CLINICAL MEDICINE 2020; 3:202-213. [PMID: 35694413 PMCID: PMC8982596 DOI: 10.1093/pcmedi/pbaa029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Deep learning (DL) is a recently proposed subset of machine learning methods that has gained extensive attention in the academic world, breaking benchmark records in areas such as visual recognition and natural language processing. Different from conventional machine learning algorithm, DL is able to learn useful representations and features directly from raw data through hierarchical nonlinear transformations. Because of its ability to detect abstract and complex patterns, DL has been used in neuroimaging studies of psychiatric disorders, which are characterized by subtle and diffuse alterations. Here, we provide a brief review of recent advances and associated challenges in neuroimaging studies of DL applied to psychiatric disorders. The results of these studies indicate that DL could be a powerful tool in assisting the diagnosis of psychiatric diseases. We conclude our review by clarifying the main promises and challenges of DL application in psychiatric disorders, and possible directions for future research.
Collapse
Affiliation(s)
- Lu Chen
- West China Medical Publishers, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huaiqiang Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Yang J, Pu W, Wu G, Chen E, Lee E, Liu Z, Palaniyappan L. Connectomic Underpinnings of Working Memory Deficits in Schizophrenia: Evidence From a replication fMRI study. Schizophr Bull 2020; 46:916-926. [PMID: 32016430 PMCID: PMC7345823 DOI: 10.1093/schbul/sbz137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Working memory (WM) deficit is a key feature of schizophrenia that relates to a generalized neural inefficiency of extensive brain areas. To date, it remains unknown how these distributed regions are systemically organized at the connectome level and how the disruption of such organization brings about the WM impairment seen in schizophrenia. METHODS We used graph theory to examine the neural efficiency of the functional connectome in different granularity in 155 patients with schizophrenia and 96 healthy controls during a WM task. These analyses were repeated in another independent dataset (81 patients and 54 controls). Linear regression analysis was used to test associations of altered graph properties, clinical symptoms, and WM accuracy in patients. A machine-learning approach was adopted to study the ability of multivariate connectome features from one dataset to discriminate patients from controls in the second dataset. RESULTS Small-worldness of the whole-brain connectome was significantly increased in schizophrenia during the WM task; this increase is related to better (though subpar) WM accuracy in patients with more severe negative symptom burden. There was a shift in the degree distribution to a more homogeneous form in patients. The machine-learning approach classified a new set of patients from controls with 84.3% true-positivity rate for schizophrenia and 71.6% overall accuracy. CONCLUSIONS We demonstrate a putative mechanistic link between connectome topology, hub redistribution, and impaired n-back performance in schizophrenia. The task-dependent modulation of the connectome relates to, but remains inefficient in, improving the performance above par in the presence of severe negative symptoms.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Weidan Pu
- Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, P.R. China
- Medical Psychological Institute of Central South University, Changsha, P.R. China
| | - Guowei Wu
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Eric Chen
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Edwin Lee
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhening Liu
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Lena Palaniyappan
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
34
|
Schwarzmeier H, Leehr EJ, Böhnlein J, Seeger FR, Roesmann K, Gathmann B, Herrmann MJ, Siminski N, Junghöfer M, Straube T, Grotegerd D, Dannlowski U. Theranostic markers for personalized therapy of spider phobia: Methods of a bicentric external cross-validation machine learning approach. Int J Methods Psychiatr Res 2020; 29:e1812. [PMID: 31814209 PMCID: PMC7301283 DOI: 10.1002/mpr.1812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Embedded in the Collaborative Research Center "Fear, Anxiety, Anxiety Disorders" (CRC-TRR58), this bicentric clinical study aims at identifying biobehavioral markers of treatment (non-)response by applying machine learning methodology with an external cross-validation protocol. We hypothesize that a priori prediction of treatment (non-)response is possible in a second, independent sample based on multimodal markers. METHODS One-session virtual reality exposure treatment (VRET) with patients with spider phobia was conducted on two sites. Clinical, neuroimaging, and genetic data were assessed at baseline, post-treatment and after 6 months. The primary and secondary outcomes defining treatment response are as follows: 30% reduction regarding the individual score in the Spider Phobia Questionnaire and 50% reduction regarding the individual distance in the behavioral avoidance test. RESULTS N = 204 patients have been included (n = 100 in Würzburg, n = 104 in Münster). Sample characteristics for both sites are comparable. DISCUSSION This study will offer cross-validated theranostic markers for predicting the individual success of exposure-based therapy. Findings will support clinical decision-making on personalized therapy, bridge the gap between basic and clinical research, and bring stratified therapy into reach. The study is registered at ClinicalTrials.gov (ID: NCT03208400).
Collapse
Affiliation(s)
- Hanna Schwarzmeier
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | | | - Joscha Böhnlein
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
| | - Fabian Reinhard Seeger
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Kati Roesmann
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems NeuroscienceUniversity of MünsterMünsterGermany
| | - Martin J. Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Niklas Siminski
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Markus Junghöfer
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Thomas Straube
- Institute of Medical Psychology and Systems NeuroscienceUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Dominik Grotegerd
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
| | - Udo Dannlowski
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| |
Collapse
|
35
|
Burkhardt G, Adorjan K, Kambeitz J, Kambeitz-Ilankovic L, Falkai P, Eyer F, Koller G, Pogarell O, Koutsouleris N, Dwyer DB. A machine learning approach to risk assessment for alcohol withdrawal syndrome. Eur Neuropsychopharmacol 2020; 35:61-70. [PMID: 32418843 DOI: 10.1016/j.euroneuro.2020.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/04/2020] [Accepted: 03/27/2020] [Indexed: 02/01/2023]
Abstract
At present, risk assessment for alcohol withdrawal syndrome relies on clinical judgment. Our aim was to develop accurate machine learning tools to predict alcohol withdrawal outcomes at the individual subject level using information easily attainable at patients' admission. An observational machine learning analysis using nested cross-validation and out-of-sample validation was applied to alcohol-dependent patients at two major detoxification wards (LMU, n = 389; TU, n = 805). 121 retrospectively derived clinical, blood-derived, and sociodemographic measures were used to predict 1) moderate to severe withdrawal defined by the alcohol withdrawal scale, 2) delirium tremens, and 3) withdrawal seizures. Mild and more severe withdrawal cases could be separated with significant, although highly variable accuracy in both samples (LMU, balanced accuracy [BAC] = 69.4%; TU, BAC = 55.9%). Poor outcome predictions were associated with higher cumulative clomethiazole doses during the withdrawal course. Delirium tremens was predicted in the TU cohort with BAC of 75%. No significant model predicting withdrawal seizures could be found. Our models were unique to each treatment site and thus did not generalize. For both treatment sites and withdrawal outcome different variable sets informed our models' decisions. Besides previously described variables (most notably, thrombocytopenia), we identified new predictors (history of blood pressure abnormalities, urine screening for benzodiazepines and educational attainment). In conclusion, machine learning approaches may facilitate generalizable, individualized predictions for alcohol withdrawal severity. Since predictive patterns highly vary for different outcomes of withdrawal severity and across treatment sites, prediction tools should not be recommended for clinical practice unless adequately validated in specific cohorts.
Collapse
Affiliation(s)
- Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich Nussbaumstr. 7, 80336 Munich, Germany.
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich Nussbaumstr. 7, 80336 Munich, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich Nussbaumstr. 7, 80336 Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich Nussbaumstr. 7, 80336 Munich, Germany
| | - Florian Eyer
- Department of Clinical Toxicology, TUM School of Medicine, Technical University of Munich, Germany
| | - Gabi Koller
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich Nussbaumstr. 7, 80336 Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich Nussbaumstr. 7, 80336 Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich Nussbaumstr. 7, 80336 Munich, Germany
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich Nussbaumstr. 7, 80336 Munich, Germany
| |
Collapse
|
36
|
Schmidt A, Borgwardt S. Implementing MR Imaging into Clinical Routine Screening in Patients with Psychosis? Neuroimaging Clin N Am 2020; 30:65-72. [DOI: 10.1016/j.nic.2019.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Lin E, Lin CH, Lane HY. Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches. Int J Mol Sci 2020; 21:ijms21030969. [PMID: 32024055 PMCID: PMC7037937 DOI: 10.3390/ijms21030969] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence now suggests that precision psychiatry, an interdisciplinary field of psychiatry, precision medicine, and pharmacogenomics, serves as an indispensable foundation of medical practices by offering the accurate medication with the accurate dose at the accurate time to patients with psychiatric disorders. In light of the latest advancements in artificial intelligence and machine learning techniques, numerous biomarkers and genetic loci associated with psychiatric diseases and relevant treatments are being discovered in precision psychiatry research by employing neuroimaging and multi-omics. In this review, we focus on the latest developments for precision psychiatry research using artificial intelligence and machine learning approaches, such as deep learning and neural network algorithms, together with multi-omics and neuroimaging data. Firstly, we review precision psychiatry and pharmacogenomics studies that leverage various artificial intelligence and machine learning techniques to assess treatment prediction, prognosis prediction, diagnosis prediction, and the detection of potential biomarkers. In addition, we describe potential biomarkers and genetic loci that have been discovered to be associated with psychiatric diseases and relevant treatments. Moreover, we outline the limitations in regard to the previous precision psychiatry and pharmacogenomics studies. Finally, we present a discussion of directions and challenges for future research.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA;
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (C.-H.L.); (H.-Y.L.)
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 40402, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
- Correspondence: (C.-H.L.); (H.-Y.L.)
| |
Collapse
|
38
|
Itani S, Rossignol M. At the Crossroads Between Psychiatry and Machine Learning: Insights Into Paradigms and Challenges for Clinical Applicability. Front Psychiatry 2020; 11:552262. [PMID: 33192664 PMCID: PMC7541948 DOI: 10.3389/fpsyt.2020.552262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Sarah Itani
- Fund for Scientific Research (F.R.S.-FNRS), Brussels, Belgium.,Department of Mathematics and Operations Research, Faculty of Engineering, University of Mons, Mons, Belgium
| | - Mandy Rossignol
- Department of Cognitive Psychology and Neuropsychology, Faculty of Psychology and Education, University of Mons, Mons, Belgium
| |
Collapse
|
39
|
Martani A, Geneviève LD, Pauli-Magnus C, McLennan S, Elger BS. Regulating the Secondary Use of Data for Research: Arguments Against Genetic Exceptionalism. Front Genet 2019; 10:1254. [PMID: 31956328 PMCID: PMC6951399 DOI: 10.3389/fgene.2019.01254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/14/2019] [Indexed: 12/02/2022] Open
Abstract
As accessing, collecting, and storing personal information become increasingly easier, the secondary use of data has the potential to make healthcare research more cost and time effective. The widespread reuse of data, however, raises important ethical and policy issues, especially because of the sensitive nature of genetic and health-related information. Regulation is thus crucial to determine the conditions upon which data can be reused. In this respect, the question emerges whether it is appropriate to endorse genetic exceptionalism and grant genetic data an exceptional status with respect to secondary use requirements. Using Swiss law as a case study, it is argued that genetic exceptionalism in secondary use regulation is not justified for three reasons. First, although genetic data have particular features, also other non-genetic data can be extremely sensitive. Second, having different regulatory requirements depending on the nature of data hinders the creation of comprehensible consent forms. Third, empirical evidence about public preferences concerning data reuse suggests that exceptional protection for genetic data alone is not justified. In this sense, it is claimed that regulation concerning data reuse should treat genetic data as important, but not exceptional.
Collapse
Affiliation(s)
- Andrea Martani
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | | | - Christiane Pauli-Magnus
- Department of Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Stuart McLennan
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
- Institute of History and Ethics in Medicine, Technical University of Munich, Munich, Germany
| | - Bernice Simone Elger
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
- University Center of Legal Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
40
|
Machine Learning in Neural Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:127-137. [DOI: 10.1007/978-981-32-9721-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|