1
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Liu Z, Yue T, Zheng X, Luo S, Xu W, Yan J, Weng J, Yang D, Wang C. Microbial and metabolomic profiles of type 1 diabetes with depression: A case-control study. J Diabetes 2024; 16:e13542. [PMID: 38599848 PMCID: PMC11006619 DOI: 10.1111/1753-0407.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Depression is the most common psychological disorder in patients with type 1 diabetes (T1D). However, the characteristics of microbiota and metabolites in these patients remain unclear. This study aimed to investigate microbial and metabolomic profiles and identify novel biomarkers for T1D with depression. METHODS A case-control study was conducted in a total of 37 T1D patients with depression (TD+), 35 T1D patients without depression (TD-), and 29 healthy controls (HCs). 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis were conducted to investigate the characteristics of microbiota and metabolites. The association between altered microbiota and metabolites was explored by Spearman's rank correlation and visualized by a heatmap. The microbial signatures to discriminate TD+ from TD- were identified by a random forest (RF) classifying model. RESULTS In microbiota, 15 genera enriched in TD- and 2 genera enriched in TD+, and in metabolites, 14 differential metabolites (11 upregulated and 3 downregulated) in TD+ versus TD- were identified. Additionally, 5 genera (including Phascolarctobacterium, Butyricimonas, and Alistipes from altered microbiota) demonstrated good diagnostic power (area under the curve [AUC] = 0.73; 95% CI, 0.58-0.87). In the correlation analysis, Butyricimonas was negatively correlated with glutaric acid (r = -0.28, p = 0.015) and malondialdehyde (r = -0.30, p = 0.012). Both Phascolarctobacterium (r = 0.27, p = 0.022) and Alistipes (r = 0.31, p = 0.009) were positively correlated with allopregnanolone. CONCLUSIONS T1D patients with depression were characterized by unique profiles of gut microbiota and serum metabolites. Phascolarctobacterium, Butyricimonas, and Alistipes could predict the risk of T1D with depression. These findings provide further evidence that the microbiota-gut-brain axis is involved in T1D with depression.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Endocrinology and MetabolismThe Third Affiliated Hospital of Sun Yat‐sen University, Guangdong Diabetes Prevention and Control Research Center, Guangdong Provincial Key Laboratory of DiabetologyGuangzhouChina
- Department of EndocrinologyThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Tong Yue
- Department of Endocrinology, Institute of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of the Chinese Academy of Sciences (Hefei), University of Science and Technology of ChinaHefeiChina
| | - Xueying Zheng
- Department of Endocrinology, Institute of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of the Chinese Academy of Sciences (Hefei), University of Science and Technology of ChinaHefeiChina
| | - Sihui Luo
- Department of Endocrinology, Institute of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of the Chinese Academy of Sciences (Hefei), University of Science and Technology of ChinaHefeiChina
| | - Wen Xu
- Department of Endocrinology and MetabolismThe Third Affiliated Hospital of Sun Yat‐sen University, Guangdong Diabetes Prevention and Control Research Center, Guangdong Provincial Key Laboratory of DiabetologyGuangzhouChina
| | - Jinhua Yan
- Department of Endocrinology and MetabolismThe Third Affiliated Hospital of Sun Yat‐sen University, Guangdong Diabetes Prevention and Control Research Center, Guangdong Provincial Key Laboratory of DiabetologyGuangzhouChina
| | - Jianping Weng
- Department of Endocrinology and MetabolismThe Third Affiliated Hospital of Sun Yat‐sen University, Guangdong Diabetes Prevention and Control Research Center, Guangdong Provincial Key Laboratory of DiabetologyGuangzhouChina
- Department of Endocrinology, Institute of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of the Chinese Academy of Sciences (Hefei), University of Science and Technology of ChinaHefeiChina
| | - Daizhi Yang
- Department of Endocrinology and MetabolismThe Third Affiliated Hospital of Sun Yat‐sen University, Guangdong Diabetes Prevention and Control Research Center, Guangdong Provincial Key Laboratory of DiabetologyGuangzhouChina
| | - Chaofan Wang
- Department of Endocrinology and MetabolismThe Third Affiliated Hospital of Sun Yat‐sen University, Guangdong Diabetes Prevention and Control Research Center, Guangdong Provincial Key Laboratory of DiabetologyGuangzhouChina
| |
Collapse
|
3
|
Morrow AL, Boero G, Balan I. Emerging evidence for endogenous neurosteroid modulation of pro-inflammatory and anti-inflammatory pathways that impact neuropsychiatric disease. Neurosci Biobehav Rev 2024; 158:105558. [PMID: 38244954 DOI: 10.1016/j.neubiorev.2024.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
This mini-review presents emerging evidence that endogenous neurosteroids modulate both pro- and anti-inflammatory signaling by immune cells and brain cells that contribute to depression, alcohol use disorders, and other inflammatory conditions. We first review the literature on pregnenolone and allopregnanolone inhibition of proinflammatory neuroimmune pathways in the periphery and the brain - effects that are independent of GABAergic mechanisms. We follow with evidence for neurosteroid enhancement of anti-inflammatory and protective pathways in brain and immune cells. These studies draw clinical relevance from a large body of evidence that pro-inflammatory immune signaling is dysregulated in many brain disorders and the fact that neurosteroids inhibit the same inflammatory pathways that are activated in depression, alcohol use disorders and other inflammatory conditions. Thus, we describe evidence that neurosteroid levels are decreased and neurosteroid supplementation has therapeutic efficacy in these neuropsychiatric conditions. We conclude with a perspective that endogenous regulation of immune balance between pro- and anti-inflammatory pathways by neurosteroid signaling is essential to prevent the onset of disease. Deficits in neurosteroids may unleash excessive pro-inflammatory activation which progresses in a feed-forward manner to disrupt brain networks that regulate stress, emotion and motivation. Neurosteroids can block various inflammatory pathways in mouse and human macrophages, rat brain and human blood and therefore provide new hope for treatment of intractable conditions that involve excessive inflammatory signaling.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Giorgia Boero
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Irina Balan
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Acute stress impairs sensorimotor gating via the neurosteroid allopregnanolone in the prefrontal cortex. Neurobiol Stress 2022; 21:100489. [DOI: 10.1016/j.ynstr.2022.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
|
5
|
Novick AM, Duffy KA, Johnson RL, Sammel MD, Cao W, Strasser AA, Sofuoglu M, Kuzma A, Loughead J, Morrow AL, Epperson CN. Effect of progesterone administration in male and female smokers on nicotine withdrawal and neural response to smoking cues: role of progesterone conversion to allopregnanolone. Biol Sex Differ 2022; 13:60. [PMID: 36274158 PMCID: PMC9590190 DOI: 10.1186/s13293-022-00472-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Progesterone administration has therapeutic effects in tobacco use disorder (TUD), with females benefiting more than males. Conversion of progesterone to the neurosteroid allopregnanolone is hypothesized to partly underlie the therapeutic effects of progesterone; however, this has not been investigated clinically. METHODS Smokers (n = 18 males, n = 21 females) participated in a randomized, double-blind, placebo-controlled crossover study of 200 mg progesterone daily across 4 days of abstinence. The ratio of allopregnanolone:progesterone was analyzed in relationship to nicotine withdrawal, smoking urges, mood states, subjective nicotine effects, and neural response to smoking cues. RESULTS Allopregnanolone:progesterone ratio interacted with sex to predict withdrawal symptoms (p = 0.047), such that females with higher allopregnanolone:progesterone ratios reported lower withdrawal severity (b = - 0.98 [- 1.95, - 0.01]; p = 0.048). In addition, allopregnanolone:progesterone ratio interacted with sex to predict confusion (p = 0.014) and fatigue (p = 0.034), such that females with higher allopregnanolone:progesterone ratios reported less confusion (b = - 0.45 [- 0.78, - 0.12]; p = 0.008) and marginally lower fatigue (b = - 0.50 [- 1.03, 0.02]; p = 0.062. Irrespective of sex, higher ratios of allopregnanolone:progesterone were associated with stronger "good effects" of nicotine (b = 8.39 [2.58, 14.20]); p = 0.005) and weaker "bad effects" of nicotine (b = - 7.13 [- 13.53, - 0.73]; p = 0.029). CONCLUSIONS Conversion of progesterone to allopregnanolone correlated with smoking-related outcomes in both sex-dependent and sex-independent ways. Sex-dependent effects suggest that conversion of progesterone to allopregnanolone may contribute to greater therapeutic benefits in females but not males with TUD. Trial registration Clinicaltrials.gov registration, retrospectively registered: NCT01954966; https://clinicaltrials.gov/ct2/show/NCT01954966 \.
Collapse
Affiliation(s)
- Andrew M Novick
- Department of Psychiatry, School of Medicine, University of CO-Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA.
| | - Korrina A Duffy
- Department of Psychiatry, School of Medicine, University of CO-Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA
| | - Rachel L Johnson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of CO-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Mary D Sammel
- Department of Psychiatry, School of Medicine, University of CO-Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of CO-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Wen Cao
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew A Strasser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mehmet Sofuoglu
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Alexandra Kuzma
- Larner College of Medicine, University of Vermont, Burlington, VM, 05405, USA
| | - James Loughead
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - A Leslie Morrow
- Departments of Psychiatry and Pharmacology and the Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| | - C Neill Epperson
- Department of Psychiatry, School of Medicine, University of CO-Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA
- Department of Family Medicine, School of Medicine, University of CO-Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
6
|
Pisu MG, Concas L, Siddi C, Serra M, Porcu P. The Allopregnanolone Response to Acute Stress in Females: Preclinical and Clinical Studies. Biomolecules 2022; 12:biom12091262. [PMID: 36139100 PMCID: PMC9496329 DOI: 10.3390/biom12091262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
The neuroactive steroid allopregnanolone ((3α,5α)-3-hydroxypregnan-20-one or 3α,5α-THP) plays a key role in the response to stress, by normalizing hypothalamic-pituitary-adrenal (HPA) axis function to restore homeostasis. Most studies have been conducted on male rats, and little is known about the allopregnanolone response to stress in females, despite that women are more susceptible than men to develop emotional and stress-related disorders. Here, we provide an overview of animal and human studies examining the allopregnanolone responses to acute stress in females in the context of stress-related neuropsychiatric diseases and under the different conditions that characterize the female lifespan associated with the reproductive function. The blunted allopregnanolone response to acute stress, often observed in female rats and women, may represent one of the mechanisms that contribute to the increased vulnerability to stress and affective disorders in women under the different hormonal fluctuations that occur throughout their lifespan. These studies highlight the importance of targeting neuroactive steroids as a therapeutic approach for stress-related disorders in women.
Collapse
Affiliation(s)
- Maria Giuseppina Pisu
- Neuroscience Institute, National Research Council of Italy (CNR), 09042 Cagliari, Italy
| | - Luca Concas
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042 Cagliari, Italy
| | - Carlotta Siddi
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042 Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042 Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), 09042 Cagliari, Italy
- Correspondence:
| |
Collapse
|
7
|
Concas A, Serra M, Porcu P. How hormonal contraceptives shape brain and behavior: A review of preclinical studies. Front Neuroendocrinol 2022; 66:101017. [PMID: 35843303 DOI: 10.1016/j.yfrne.2022.101017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
Steroid hormones influence different aspects of brain function, including development, neurogenesis, neuronal excitability, and plasticity, thus affecting emotional states, cognition, sociality, and reward. In women, their levels fluctuate across the lifespan and through the reproductive stages but are also altered by exogenous administration of hormonal contraceptives (HC). HC are widely used by women throughout their fertile life both for contraceptive and therapeutic benefits. However, awareness of their effects on brain function and behavior is still poorly appreciated, despite the emerging evidence of their action at the level of the central nervous system. Here, we summarize results obtained in preclinical studies, mostly conducted in intact female rodents, aimed at investigating the neurobiological effects of HC. HC can alter neuroactive hormones, neurotransmitters, neuropeptides, as well as emotional states, cognition, social and sexual behaviors. Animal studies provide insights into the neurobiological effects of HC with the aim to improve women's health and well-being.
Collapse
Affiliation(s)
- Alessandra Concas
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy.
| |
Collapse
|
8
|
Can animal models resemble a premenstrual dysphoric condition? Front Neuroendocrinol 2022; 66:101007. [PMID: 35623450 DOI: 10.1016/j.yfrne.2022.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Around 80% of women worldwide suffer mild Premenstrual Disorders (PMD) during their reproductive life. Up to a quarter are affected by moderate to severe symptoms, and between 3% and 8% experience a severe form. It is classified as premenstrual syndrome (PMS) with predominantly physical symptoms and premenstrual dysphoric disorder (PMDD) with psychiatric symptoms. The present review analyzes the factors associated with PMD and the Hypothalamus-Pituitary-Ovarian or Hypothalamus-Pituitary-adrenal axis and discusses the main animal models used to study PMDD. Evidence shows that the ovarian hormones participate in PMDD symptoms, and several points of regulation of their synthesis, metabolism, and target sites could be altered. PMDD is complex and implies several factors that require consideration when this condition is modeled in animals. Of particular interest are those points related to areas that may represent opportunities to develop new approximations to understand the mechanisms involved in PMDD and possible treatments.
Collapse
|
9
|
So SY, Savidge TC. Gut feelings: the microbiota-gut-brain axis on steroids. Am J Physiol Gastrointest Liver Physiol 2022; 322:G1-G20. [PMID: 34730020 PMCID: PMC8698538 DOI: 10.1152/ajpgi.00294.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/31/2023]
Abstract
The intricate connection between central and enteric nervous systems is well established with emerging evidence linking gut microbiota function as a significant new contributor to gut-brain axis signaling. Several microbial signals contribute to altered gut-brain communications, with steroids representing an important biological class that impacts central and enteric nervous system function. Neuroactive steroids contribute pathologically to neurological disorders, including dementia and depression, by modulating the activity of neuroreceptors. However, limited information is available on the influence of neuroactive steroids on the enteric nervous system and gastrointestinal function. In this review, we outline how steroids can modulate enteric nervous system function by focusing on their influence on different receptors that are present in the intestine in health and disease. We also highlight the potential role of the gut microbiota in modulating neuroactive steroid signaling along the gut-brain axis.
Collapse
Affiliation(s)
- Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
10
|
Wenzel ES, Pinna G, Eisenlohr-Moul T, Bernabe BP, Tallon RR, Nagelli U, Davis J, Maki PM. Neuroactive steroids and depression in early pregnancy. Psychoneuroendocrinology 2021; 134:105424. [PMID: 34607173 PMCID: PMC8943472 DOI: 10.1016/j.psyneuen.2021.105424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Progesterone (P4) can be metabolized to two general classes of neuroactive steroids (NAS) -those like allopregnanolone (ALLO) and pregnanolone (PA) which are positive allosteric modulators of the Gamma Aminobutyric Acid type A (GABAA) receptor and those like isoallopregnanolone (ISOALLO) and epipregnanolone (EPI) which are negative allosteric modulators of the GABAA receptor. While exogenous administration of ALLO is effective in treating postpartum depression, knowledge gaps remain in the dynamic interplay of NAS across the perinatal period. In particular little is known about ALLO and PA in relation to depression earlier in pregnancy, and the role of ISOALLO and EPI in relation to depression at any point in the perinatal period. In a prospective, nested case/control study in low-income women of color, we compared the metabolism of P4 to four NAS (i.e., ratios ALLO:P4, PA:P4, ISOALLO:P4, EPI:P4) in pregnant women with depression at either or both of the first and second trimesters (cases) and women without depression at either time point (controls). Fifty women (36% depressed, 56% Black, 28% Latina) completed depression screening using a computerized adaptive test of mental health (CAT-MH™) and provided blood serum samples in both trimesters. In longitudinal mixed effects models of both trimesters, PND cases showed higher ratios of ALLO:P4 (p = .002) and PA:P4 (p = .03) compared to controls. In regression models of only first trimester data, there was no significant difference in NAS ratios between cases and controls (p > .05). Conversely, in models of the second trimester, ratios of PA:P4 (p = .002) and ISOALLO:P4 (p = .01) were significantly higher in cases compared to controls, and ratios of ALLO:P4 (p = .08) and EPI:P4 (p = .1) also trended higher in cases. The most severe cases, those with depression at both trimesters, showed an increase in ALLO:P4 (p = .06) and EPI:P4 (p < .001) ratios from the first to the second trimester, whereas controls showed a decrease in these ratios. Secondary analyses confirmed higher levels of ALLO (p = .04) and PA (p = .07) overall in cases compared to controls, along with higher levels of PA (p = .005) and ISOALLO (p = .02) in the second trimester alone. This work suggests a dynamic relationship between NAS and PND; whereas low ALLO levels have been previously associated with postpartum depression, earlier in pregnancy a higher metabolism of P4 to ALLO (and higher ALLO levels) is associated with depression. Some women may show a hormone-sensitive depressive response to acute increases in NAS metabolism in early pregnancy.
Collapse
Affiliation(s)
- Elizabeth S Wenzel
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA; University of Illinois at Chicago, Department of Psychology, 1007 W Harrison St, Chicago, IL 60607, USA
| | - Graziano Pinna
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Tory Eisenlohr-Moul
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Beatriz Penalver Bernabe
- University of Illinois at Chicago, Department of Biomedical Engineering, 820 S Wood St, Chicago, IL, 60612, USA
| | - Raquel Romay Tallon
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Unnathi Nagelli
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - John Davis
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Pauline M Maki
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA; University of Illinois at Chicago, Department of Psychology, 1007 W Harrison St, Chicago, IL 60607, USA; University of Illinois at Chicago, Department of Obstetrics and Gynecology, 820 S Wood St, Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Peltier MR, Verplaetse TL, Mineur YS, Gueorguieva R, Petrakis I, Cosgrove KP, Picciotto MR, McKee SA. Sex differences in progestogen- and androgen-derived neurosteroids in vulnerability to alcohol and stress-related disorders. Neuropharmacology 2021; 187:108499. [PMID: 33600842 DOI: 10.1016/j.neuropharm.2021.108499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Stress and trauma exposure disturbs stress regulation systems and thus increases the vulnerability for stress-related disorders which are characterized by negative affect, including major depressive disorder, anxiety disorders and posttraumatic stress disorder. Similarly, stress and trauma exposure results in increased vulnerability to problematic alcohol use and alcohol use disorder, especially among women, who are more likely to drink to cope with negative affect than their male counterparts. Given these associations, the relationship between stress-related disorders and alcohol use is generally stronger among women leading to complex comorbidities across these disorders and alcohol misuse. This review highlights the therapeutic potential for progestogen- and androgen-derived neurosteroids, which affect both stress- and alcohol-related disorders, to target the overlapping symptoms related to negative affect. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'
Collapse
Affiliation(s)
- MacKenzie R Peltier
- Yale School of Medicine, New Haven, CT, 06519, USA; VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| | | | | | - Ralitza Gueorguieva
- Yale School of Medicine, New Haven, CT, 06519, USA; Yale School of Public Health, New Haven, CT, 06519, USA
| | - Ismene Petrakis
- Yale School of Medicine, New Haven, CT, 06519, USA; VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | | | | | | |
Collapse
|
12
|
Mao N, Che K, Xie H, Li Y, Wang Q, Liu M, Wang Z, Lin F, Ma H, Zhuo Z. Abnormal information flow in postpartum depression: A resting-state functional magnetic resonance imaging study. J Affect Disord 2020; 277:596-602. [PMID: 32898821 DOI: 10.1016/j.jad.2020.08.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Postpartum depression (PPD) is a common mental disorder among women. However, the brain information flow alteration in patients with PPD remains unclear. This study investigated the brain information flow characteristics of patients with PPD and their value for clinical evaluation by using support vector regression (SVR). METHODS Structural and resting-state functional magnetic resonance imaging data were acquired from 21 patients with PPD and 23 age-, educational level-, body mass index-, and menstruation-matched healthy controls. The preferred information flow direction between local brain regions and the preferred information flow direction index within local brain regions based on non-parametric multiplicative regression granger causality analysis were calculated to determine the global and local brain functional characteristics of the patients with PPD. Pearson's correlation analyses were performed to evaluate the relationship of the information flow characteristics with clinical scales. A predictive model for the mental state of the patients with PPD was established using SVR based on information flow characteristics. RESULTS The information flow patterns in the amygdala, cingulum gyrus, insula, hippocampus, frontal lobe, parietal lobe, and occipital lobe changed significantly in the patients with PPD. The preferred information flow direction between the amygdala and the temporal and frontal lobes significantly correlated with clinical scales. Prediction analysis shows that the information flow patterns can be used to assess depression in patients with PPD. LIMITATION This exploratory study has a small sample size with no longitudinal research. CONCLUSION The change in information flow pattern in the amygdala may play an important role in the neuropathological mechanism of PPD and may provide promising markers for clinical evaluation.
Collapse
Affiliation(s)
- Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, P. R. China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, P. R. China
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, P. R. China
| | - Yuna Li
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, P. R. China
| | - Qinglin Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, P. R. China
| | - Meijie Liu
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, P. R. China
| | - Zhongyi Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, P. R. China
| | - Fan Lin
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, P. R. China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, P. R. China.
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Beijing, 100044, P. R. China.
| |
Collapse
|
13
|
Deligiannidis KM, Kroll-Desrosiers AR, Tan Y, Dubuke ML, Shaffer SA. Longitudinal proneuroactive and neuroactive steroid profiles in medication-free women with, without and at-risk for perinatal depression: A liquid chromatography-tandem mass spectrometry analysis. Psychoneuroendocrinology 2020; 121:104827. [PMID: 32828068 PMCID: PMC7572700 DOI: 10.1016/j.psyneuen.2020.104827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Neuroactive steroids (NAS) are derivatives of cholesterol or steroidal precursors made in the gonads, adrenal gland, placenta and brain. We characterized longitudinal plasma proneuroactive and NAS in healthy perinatal comparison women (HPCW), women at-risk for perinatal depression (AR-PND), and women with PND with/without comorbid anxiety. We hypothesized that AR-PND women who either did or did not go on to develop PND would have elevated NAS concentrations as compared to HPCW and that NAS would be correlated to depressive and anxiety symptoms. METHODS A prospective cohort study evaluated 75 medication-free perinatal women (HPCW, n = 30; AR-PND, n = 19; PND, n = 26). Standardized depression and anxiety assessments and blood samples were completed across 5 visits. Structured Clinical Interviews for DSM-IV TR Disorders were administered at study entry and exit. Plasma pregnenolone, progesterone, 5α- and 5β-dihydroprogesterone, pregnanolone, allopregnanolone, deoxycorticosterone and tetrahydrodeoxycorticosterone were quantified by liquid chromatography-tandem mass spectrometry. Longitudinal relationships between risk-group, depression and anxiety symptoms, and NAS concentrations were analyzed using generalized estimating equations to control for repeated measures correlations. RESULTS Perinatal 5α-dihydroprogesterone, 5β-dihydroprogesterone, allopregnanolone, deoxycorticosterone, and tetrahydrodeoxycorticosterone concentrations were higher in AR-PND and PND women compared to HPCW (β = 3.57 ± 1.40 and β = 2.11 ± 1.12, p = 0.03; β = 0.18 ± 0.06 and β = 0.03 ± 0.05, p = 0.02; β = 1.06 ± 0.42 and β = 1.19 ± 0.47, p = 0.01; β = 0.17 ± 0.07 and β = 0.11 ± 0.06, p = 0.05; β = 0.03 ± 0.01 and β = 0.03 ± 0.01, p = 0.05, respectively). Perinatal allopregnanolone, 5α-dihydroprogesterone and tetrahydrodeoxycorticosterone were positively associated with HAM-D17 (all p < 0.02). HAM-A was positively associated with 5α- and 5β-dihydroprogesterone, pregnanolone, allopregnanolone, deoxycorticosterone and tetrahydrodeoxycorticosterone (all p < 0.05). A history of depression was associated with increased 5α-dihydroprogesterone (2.20 ± 1.09, p = 0.05), deoxycorticosterone (0.13 ± 0.06, p = 0.03) and tetrahydrodeoxycorticosterone (0.03 ± 0.01, p = 0.02). CONCLUSION To our knowledge, this study represents the largest prospective study of 5-α and 5-β reductase products of progesterone and deoxycorticosterone in HPCW and women AR-PND. Data suggest that PND is associated with both a reduction of progesterone to 5β-dihydroprogesterone, 5α-dihydroprogesterone, and allopregnanolone, and the 21-hydroxylation to deoxycorticosterone and tetrahydrodeoxycorticosterone. The shift towards 5α-dihydroprogesterone, deoxycorticosterone and tetrahydrodeoxycorticosterone was associated with a history of depression, a significant risk factor for PND.
Collapse
Affiliation(s)
- Kristina M Deligiannidis
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA; Department of Psychiatry, Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Queens, NY, 11004, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA; Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Aimee R Kroll-Desrosiers
- VA Central Western Massachusetts Healthcare System, Leeds, MA, 01053, USA; Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Yanglan Tan
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, 01545, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Michelle L Dubuke
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, 01545, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Scott A Shaffer
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, 01545, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
14
|
Apter-Levy Y, Zagoory-Sharon O, Feldman R. Chronic Depression Alters Mothers' DHEA and DEHA-to-Cortisol Ratio: Implications for Maternal Behavior and Child Outcomes. Front Psychiatry 2020; 11:728. [PMID: 32793012 PMCID: PMC7387697 DOI: 10.3389/fpsyt.2020.00728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/10/2020] [Indexed: 02/02/2023] Open
Abstract
Maternal depression is a major public health problem that typically occurs in the period surrounding childbirth. The neurobiological mechanisms underlying maternal depression have been the focus of increasing research and studies pointed to the crucial role of the HPA axis in this disorder. However, most studies focused on cortisol expression and regulation while recent attention has shifted to include the sulfate steroids DHEA and DHEA-S. A community cohort of 1,983 women with no comorbid risk was recruited at birth and depression was assessed periodically across the first postpartum year. At 6 years, 156 families were re-visited: 46 mothers were defined as chronically-depressed and 103 controls reported no depression from birth to six years. Mothers and children were diagnosed by structured psychiatric interviews and mother-child interactions were observed. Maternal diurnal cortisol (CT) and dehydroepiandrosterone (DHEA) were assessed. Depressed mothers had lower levels of DHEA (AUCg), flattened DHEA diurnal variability (AUCi), and smaller DHEA-to-CT Ratio. Regression analysis demonstrated that maternal sensitivity during mother-child interaction was independently predicted by maternal depression, DHEA levels, child CT, and child social withdrawal. Results underscore the need for multi-level understanding of the dynamic interplay between maternal psychopathology, mother-child relationship, and pituitary-adrenal-cortex-to-medulla balance in studying the cross generational transfer of psychiatric vulnerability from depressed mothers to their children.
Collapse
Affiliation(s)
| | | | - Ruth Feldman
- The Center for Developmental Social Neuroscience, Interdisciplinary Center Herzliya, Herzliya, Israel
| |
Collapse
|
15
|
Frye CA, Qrareya A, Llaneza DC, Paris JJ. Central Actions of 3α,5α-THP Involving NMDA and GABA A Receptors Regulate Affective and Sexual Behavior of Female Rats. Front Behav Neurosci 2020; 14:11. [PMID: 32116591 PMCID: PMC7026732 DOI: 10.3389/fnbeh.2020.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
The neurosteroid, 5α-pregnan-3α-ol-20-one (known as “allopregnanolone” or 3α,5α-THP), is produced in the midbrain ventral tegmental area (VTA), independent of peripheral sources of progestogens, where it has potential actions at N-methyl-D-aspartate (NMDA) and GABAA receptors to facilitate rodent sexual behavior. Progestogens can also have anti-anxiety effects, but whether these involve actions of centrally-derived 3α,5α-THP or these receptors to support reproductively-relevant behavior is not well understood. We investigated the extent to which 3α,5α-THP’s actions via NMDA and/or GABAA receptors in the midbrain VTA influence reproductive behaviors. Estradiol-primed, ovariectomized/adrenalectomized (OVX/ADX) rats received midbrain VTA infusions of vehicle, an NMDA receptor blocker (MK-801; 200 ng), or a GABAA receptor blocker (bicuculline; 100 ng) followed by a second infusion of vehicle or 3α,5α-THP (100 ng). Reproductively-relevant behaviors were assessed: sexual (paced mating), anxiety-like (elevated plus maze), and social (partner preference, social interaction) behavior. Compared to vehicle, intra-VTA infusions of MK-801 exerted anxiolytic-like effects on elevated plus maze behavior and enhanced lordosis. Unlike prior observations in gonadally-intact rats, intra-VTA bicuculline had no effect on the behavior of OVX/ADX rats (likely due to a floor effect). Subsequent infusions of 3α,5α-THP reversed effects on lordosis and infusions of bicuculline inhibited 3α,5α-THP-facilitated lordosis. Thus, NMDA and GABAA receptors may act as mediators for reproductive behavioral effects of 3α,5α-THP in the midbrain VTA.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-The State University of New York (SUNY), Albany, NY, United States.,Biological Sciences, The University at Albany-The State University of New York (SUNY), Albany, NY, United States.,Centers for Neuroscience, The University at Albany-The State University of New York (SUNY), Albany, NY, United States.,Life Sciences Research, The University at Albany-The State University of New York (SUNY), Albany, NY, United States
| | - Alaa Qrareya
- Department of Biomolecular Sciences, The University of Mississippi, University, MS, United States
| | - Danielle C Llaneza
- Department of Psychology, The University at Albany-The State University of New York (SUNY), Albany, NY, United States
| | - Jason J Paris
- Department of Psychology, The University at Albany-The State University of New York (SUNY), Albany, NY, United States.,Department of Biomolecular Sciences, The University of Mississippi, University, MS, United States
| |
Collapse
|
16
|
Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020; 44:320-339. [PMID: 31782169 PMCID: PMC7018555 DOI: 10.1111/acer.14253] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.
Collapse
Affiliation(s)
- A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
17
|
Yuan TF, Le J, Wang ST, Li Y. An LC/MS/MS method for analyzing the steroid metabolome with high accuracy and from small serum samples. J Lipid Res 2020; 61:580-586. [PMID: 31964762 PMCID: PMC7112139 DOI: 10.1194/jlr.d119000591] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Indexed: 11/20/2022] Open
Abstract
Analyzing global steroid metabolism in humans can shed light on the etiologies of steroid-related diseases. However, existing methods require large amounts of serum and lack the evaluation of accuracy. Here, we developed an LC/MS/MS method for the simultaneous quantification of 12 steroid hormones: testosterone, pregnenolone, progesterone, androstenedione, corticosterone, 11-deoxycortisol, cortisol, 17-hydroxypregnenolone, 17-hydroxyprogesterone, dehydroepiandrosterone, estriol, and estradiol. Steroids and spiked internal standards in 100 μl serum were extracted by protein precipitation and liquid-liquid extraction. The organic phase was dried by evaporation, and isonicotinoyl chloride was added for steroid derivatization, followed by evaporation under nitrogen and redissolution in 50% methanol. Chromatographic separation was performed on a reverse-phase PFP column, and analytes were detected on a triple quadrupole mass spectrometer with ESI. The lower limits of quantification ranged from 0.005 ng/ml for estradiol to 1 ng/ml for cortisol. Apparent recoveries of steroids at high, medium, and low concentrations in quality control samples were between 86.4% and 115.0%. There were limited biases (−10.7% to 10.5%) between the measured values and the authentic values, indicating that the method has excellent reliability. An analysis of the steroid metabolome in pregnant women highlighted the applicability of the method in clinical serum samples. We conclude that the LC/MS/MS method reported here enables steroid metabolome analysis with high accuracy and reduced serum consumption, indicating that it may be a useful tool in both clinical and scientific laboratory research.
Collapse
Affiliation(s)
- Teng-Fei Yuan
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Le
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Ting Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Boero G, Porcu P, Morrow AL. Pleiotropic actions of allopregnanolone underlie therapeutic benefits in stress-related disease. Neurobiol Stress 2019; 12:100203. [PMID: 31879693 PMCID: PMC6920111 DOI: 10.1016/j.ynstr.2019.100203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023] Open
Abstract
For several years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone) may have therapeutic potential for treatment of various stress-related diseases including post-traumatic stress disorder (PTSD), depression, alcohol use disorders (AUDs), as well as neurological and psychiatric conditions that are worsened in the presence of stress, such as multiple sclerosis, schizophrenia, and seizure disorders. In this review, we make the argument that the pleiotropic actions of allopregnanolone account for its ability to promote recovery in such a wide variety of illnesses. Likewise, the allopregnanolone precursors, pregnenolone and progesterone, share many actions of allopregnanolone. Of course, pregnenolone and progesterone lack direct effects on GABAA receptors, but these compounds are converted to allopregnanolone in vivo. This review presents a theoretical framework for understanding how endogenous neurosteroids that regulate 1) γ-aminobutyric acid (GABA)A receptors, 2) corticotropin releasing factor (CRF) and 3) pro-inflammatory signaling in the innate immune system and brain could play a key role in both the prevention and treatment of stress-related disease. We further discuss cautions and limitations of allopregnanolone or precursor therapy as well as the need for more clinical studies.
Collapse
Affiliation(s)
- Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - A Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
19
|
Tomaselli G, Vallée M. Stress and drug abuse-related disorders: The promising therapeutic value of neurosteroids focus on pregnenolone-progesterone-allopregnanolone pathway. Front Neuroendocrinol 2019; 55:100789. [PMID: 31525393 DOI: 10.1016/j.yfrne.2019.100789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
The pregnenolone-progesterone-allopregnanolone pathway is receiving increasing attention in research on the role of neurosteroids in pathophysiology, particularly in stress-related and drug use disorders. These disorders involve an allostatic change that may result from deficiencies in allostasis or adaptive responses, and may be downregulated by adjustments in neurotransmission by neurosteroids. The following is an overview of findings that assess how pregnenolone and/or allopregnanolone concentrations are altered in animal models of stress and after consumption of alcohol or cannabis-type drugs, as well as in patients with depression, anxiety, post-traumatic stress disorder or psychosis and/or in those diagnosed with alcohol or cannabis use disorders. Preclinical and clinical evidence shows that pregnenolone and allopregnanolone, operating according to a different or common pharmacological profile involving GABAergic and/or endocannabinoid system, may be relevant biomarkers of psychiatric disorders for therapeutic purposes. Hence, ongoing clinical trials implicate synthetic analogs of pregnenolone or allopregnanolone, and also modulators of neurosteroidogenesis.
Collapse
Affiliation(s)
- Giovanni Tomaselli
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
20
|
The brain as a target of hormonal contraceptives: Evidence from animal studies. Front Neuroendocrinol 2019; 55:100799. [PMID: 31614151 DOI: 10.1016/j.yfrne.2019.100799] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
Abstract
Hormonal contraceptives are frequently prescribed drugs among women, mainly for their reversible contraceptive purposes but also for beneficial effects in some gynecological pathologies. Despite extensive studies aimed at elucidating the physical effects of hormonal contraceptives and ameliorating some unwanted outcomes, little is known yet about the effects of these drugs on brain function and related behavior, which are known to be modulated by endogenous steroid hormones. We describe the current literature on preclinical studies in animals undertaken to investigate effects of hormonal contraceptives on brain function and behavior. These studies suggest that hormonal contraceptives influence neurohormones, neurotransmitters, neuropeptides, and emotional, cognitive, social and sexual behaviors. Animals allow examination of the basic biological mechanisms of these drugs, devoid of the psychological aspect often associated to hormonal contraceptives' use in women. Understanding the neurobiological effects of these drugs may improve women's health and may help women making informed choices on hormonal contraception.
Collapse
|
21
|
Zheng W, Cai DB, Zheng W, Sim K, Ungvari GS, Peng XJ, Ning YP, Wang G, Xiang YT. Brexanolone for postpartum depression: A meta-analysis of randomized controlled studies. Psychiatry Res 2019; 279:83-89. [PMID: 31323375 DOI: 10.1016/j.psychres.2019.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To systematically examine the effectiveness, tolerability, and safety of brexanolone infusion in treating postpartum depression (PPD). METHODS Randomized controlled trials (RCTs) were included. RESULTS Two articles reporting 3 RCTs with 4 active arms (n = 267) covering 156 women with PPD receiving brexanolone infusion and 111 women with PPD on placebo were included. Compared with placebo, women suffering from PPD who received brexanolone had significantly greater response that started after 24 h (risk ratio (RR)=1.34, 95%CI 1.03-1.73), peaked at 36 h (RR = 1.50, 95%CI 1.06-2.13, P = 0.02) and lasted until Day 7 (RR = 1.32, 95%CI 1.01-1.73). Similarly, PPD women treated with brexanolone had significantly greater remission starting at 24 h (RR = 1.86, 95%CI 1.03-3.34), peaking at 60 h (RR = 2.20, 95%CI 1.31-3.70) and lasting until 72 h (RR = 1.96, 95%CI 1.41-2.72). Brexanolone infusion led to significantly higher rate of discontinuation for any reasons (RR = 2.68, 95%CI 1.35-5.32). Discontinuation due to intolerability and adverse drug reactions was similar between the active agent and placebo. CONCLUSION A single brexanolone infusion appears to have ultra-rapid antidepressant effect for PPD, lasting for up to 1 week. The short and long-term therapeutic effect of brexanolone needs to be examined in large-scale RCTs.
Collapse
Affiliation(s)
- Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Dong-Bin Cai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Wei Zheng
- School of Medicine, Xiamen University, Xiamen, China
| | - Kang Sim
- Institute of Mental Health, Buangkok Green Medical Park, Singapore
| | - Gabor S Ungvari
- The University of Notre Dame Australia, Fremantle, Australia; Division of Psychiatry, School of Medicine, University of Western Australia, Perth, Australia
| | | | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Yu-Tao Xiang
- Unit of Psychiatry, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, 3/F, Building E12, Taipa, Macao SAR, China; Center for Cognition and Brain Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
22
|
Tsang C, Hodgson L, Bussu A, Farhat G, Al-Dujaili E. Effect of Polyphenol-Rich Dark Chocolate on Salivary Cortisol and Mood in Adults. Antioxidants (Basel) 2019; 8:antiox8060149. [PMID: 31146395 PMCID: PMC6616509 DOI: 10.3390/antiox8060149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate whether ingestion of polyphenol-rich dark chocolate improved salivary cortisol levels and subjective mood states in adults recruited from a health and social care setting. Twenty-six participants ingested 25 g/day of a high polyphenol dark chocolate (containing 500 mg of total flavonoids) or a similar amount of a control dark chocolate containing negligible flavonoids for four weeks. Twenty-four-hour salivary glucocorticoid levels (cortisol and cortisone) were measured by an enzyme-linked immunosorbent assay, and subjective mood was assessed using a validated Positive Affect and Negative Affect Schedule. Total daily cortisol, morning cortisol, and the cortisol/cortisone ratio were significantly reduced (p < 0.001) after ingestion of only the high polyphenol dark chocolate. There were no significant differences between groups for overall scores for positive affect and negative affect. No changes were observed after the control dark chocolate, or any other parameter measured. In conclusion, the findings from this small-scale study indicate lowering of salivary cortisol levels following polyphenol-rich dark chocolate in adults recruited from a health and social care setting. Such changes may be attributable to their ability to inhibit 11β-hydroxysteroid dehydrogenase type 1 activity and warrant further investigation.
Collapse
Affiliation(s)
- Catherine Tsang
- Faculty of Health and Social Care, Edge Hill University, St. Helen's Road, Ormskirk, Lancashire L39 4QP, UK.
| | - Lindsay Hodgson
- Faculty of Health and Social Care, Edge Hill University, St. Helen's Road, Ormskirk, Lancashire L39 4QP, UK.
| | - Anna Bussu
- Faculty of Health and Social Care, Edge Hill University, St. Helen's Road, Ormskirk, Lancashire L39 4QP, UK.
| | - Grace Farhat
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | - Emad Al-Dujaili
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
23
|
Flores-Ramos M, Alcauter S, López-Titla M, Bernal-Santamaría N, Calva-Coraza E, Edden RAE. Testosterone is related to GABA+ levels in the posterior-cingulate in unmedicated depressed women during reproductive life. J Affect Disord 2019; 242:143-149. [PMID: 30195172 PMCID: PMC6484862 DOI: 10.1016/j.jad.2018.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The role of testosterone (T) in the pathophysiology of affective disorders and anxiety is broadly supported. Evidence suggests that T has anxiolytic and antidepressant properties. One proposed route for the central effects of T is its interaction with the gamma-aminobutyric acid (GABA) system. We explored the relationship between T levels and GABA+ levels in anterior-cingulate (ACC) and the posterior-cingulate (PCC) regions in depressed women, using magnetic resonance spectroscopy (1H-MRS). METHODS Twenty-one depressed patients with regularly cycling who were not taking hormonal or psychotropic drugs were recruited. We assessed severity of depression using the Hamilton Depression Rating Scale (HDRS). Blood samples were taken for quantification of free (FT) and total testosterone (TT) on the day of the magnetic resonance (MR) scan. We evaluated GABA+ levels in the PCC and ACC, using the Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy (HERMES) sequence. Pearson correlations were used to evaluate the association between FT, TT, GABA+ concentrations, and HDRS scores. RESULTS TT and FT levels were positively correlated with GABA+ levels in the PCC. No correlation was observed between T levels and GABA+ levels in the ACC. The HDRS total scores correlated negatively with FT levels. LIMITATIONS Limitations include the cross-sectional evaluation and the lack of a comparative healthy group. CONCLUSIONS Our findings suggest that the potential anxiolytic and antidepressant properties of T are related to increased GABA+ levels in the PCC. This observation may contribute to increased understanding of the role of T in depressive and anxiety symptoms in women.
Collapse
Affiliation(s)
- M Flores-Ramos
- Consejo Nacional de Ciencia y Tecnología, CONACyT, Avenida Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de México, México; Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, México.
| | - S Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, México
| | - M López-Titla
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, México; Universidad Veracruzana, División de estudios de Posgrado. Veracruz, Veracruz. México
| | - N Bernal-Santamaría
- Departamento de Servicio Social, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000. Ciudad de México, México
| | - Edgar Calva-Coraza
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, México
| | - R A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a theoretical explanation and a review of the recent literature concerning the role of neuroactive steroids in perinatal depression, and to use this information to suggest future directions of research. RECENT FINDINGS The bulk of the evidence on neuroactive steroids in perinatal depression concerns allopregnanolone. Recent studies have been mixed, with some studies finding a direct correlation between lower levels of allopregnanolone and increased depressive symptoms but other studies finding no relationship. Evidence concerning other neuroactive steroids and perinatal depression is sparse. Additional research is needed with larger sample sizes and better characterization across the perinatal period (rather than cross-sectionally). Because some studies point to a lag between neuroactive steroid dysregulation and subsequent symptoms, future research should consider interactions with other aspects of neuroactive steroid physiology, such as synthetic enzymes or receptor plasticity.
Collapse
Affiliation(s)
- Katherine McEvoy
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 305, Baltimore, MD, 21205, USA
| | - Jennifer L Payne
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 305, Baltimore, MD, 21205, USA
| | - Lauren M Osborne
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 305, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
Dichtel LE, Lawson EA, Schorr M, Meenaghan E, Paskal ML, Eddy KT, Pinna G, Nelson M, Rasmusson AM, Klibanski A, Miller KK. Neuroactive Steroids and Affective Symptoms in Women Across the Weight Spectrum. Neuropsychopharmacology 2018; 43:1436-1444. [PMID: 29090684 PMCID: PMC5916351 DOI: 10.1038/npp.2017.269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/24/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022]
Abstract
3α-5α-Tetrahydroprogesterone, a progesterone metabolite also known as allopregnanolone, and 5α-androstane-3α,17β-diol, a testosterone metabolite also known as 3α-androstanediol, are neuroactive steroids and positive GABAA receptor allosteric modulators. Both anorexia nervosa (AN) and obesity are complicated by affective comorbidities and hypothalamic-pituitary-gonadal dysregulation. However, it is not known whether neuroactive steroid levels are abnormal at the extremes of the weight spectrum. We hypothesized that serum allopregnanolone and 3α-androstanediol levels would be decreased in AN compared with healthy controls (HC) and negatively associated with affective symptoms throughout the weight spectrum, independent of body mass index (BMI). Thirty-six women were 1 : 1 age-matched across three groups: AN, HC, and overweight/obese (OW/OB). AN were amenorrheic; HC and OW/OB were studied in the follicular phase. Fasting serum neuroactive steroids were measured by gas chromatography/mass spectrometry. Mean Hamilton depression and anxiety scores were highest in AN (p<0.0001). Mean serum allopregnanolone was lower in AN and OW/OB than HC (AN 95.3±56.4 vs OW/OB 73.8±31.3 vs HC 199.5±167.8 pg/ml, p=0.01), despite comparable mean serum progesterone. Allopregnanolone levels, but not progesterone levels, were negatively associated with depression and anxiety symptom severity, independent of BMI. Serum 3α-androstanediol levels did not differ among groups and were not associated with depression or anxiety scores, despite a significant negative association between free testosterone levels and both anxiety and depression severity. In conclusion, women at both extremes of the weight spectrum have low mean serum allopregnanolone, which is associated with increased depression and anxiety severity, independent of BMI. Neuroactive steroids such as allopregnanolone may be potential therapeutic targets for depression and anxiety in traditionally treatment-resistant groups, including AN.
Collapse
Affiliation(s)
- Laura E Dichtel
- Neuroendocrine Unit, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,Neuroendocrine Unit, Massachusetts General Hospital, BUL457B, 55 Fruit Street, Boston, MA 02114, USA, Tel: +1 617 726 3870, Fax: +1 617 726 5072, E-mail:
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Melanie Schorr
- Neuroendocrine Unit, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Erinne Meenaghan
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Marianela Nelson
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ann M Rasmusson
- National Center for PTSD, Department of Veterans Affairs, VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Liang JJ, Rasmusson AM. Overview of the Molecular Steps in Steroidogenesis of the GABAergic Neurosteroids Allopregnanolone and Pregnanolone. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2018; 2:2470547018818555. [PMID: 32440589 PMCID: PMC7219929 DOI: 10.1177/2470547018818555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
Abstract
Allopregnanolone and pregnanolone-neurosteroids synthesized from progesterone in the brain, adrenal gland, ovary and testis-have been implicated in a range of neuropsychiatric conditions including seizure disorders, post-traumatic stress disorder, major depression, post-partum depression, pre-menstrual dysphoric disorder, chronic pain, Parkinson's disease, Alzheimer's disease, neurotrauma, and stroke. Allopregnanolone and pregnanolone equipotently facilitate the effects of gamma-amino-butyric acid (GABA) at GABAA receptors, and when sulfated, antagonize N-methyl-D-aspartate receptors. They play myriad roles in neurophysiological homeostasis and adaptation to stress while exerting anxiolytic, antidepressant, anti-nociceptive, anticonvulsant, anti-inflammatory, sleep promoting, memory stabilizing, neuroprotective, pro-myelinating, and neurogenic effects. Given that these neurosteroids are synthesized de novo on demand, this review details the molecular steps involved in the biochemical conversion of cholesterol to allopregnanolone and pregnanolone within steroidogenic cells. Although much is known about the early steps in neurosteroidogenesis, less is known about transcriptional, translational, and post-translational processes in allopregnanolone- and pregnanolone-specific synthesis. Further research to elucidate these mechanisms as well as to optimize the timing and dose of interventions aimed at altering the synthesis or levels of these neurosteroids is much needed. This should include the development of novel therapeutics for the many neuropsychiatric conditions to which dysregulation of these neurosteroids contributes.
Collapse
Affiliation(s)
| | - Ann M. Rasmusson
- Boston
University School of Medicine, Boston, MA,
USA
- National Center for PTSD, Women’s Health
Science Division, Department of Veterans Affairs, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA,
USA
| |
Collapse
|
27
|
Abstract
RATIONALE Social isolation of rats immediately after weaning is thought to represent an animal model of anxiety-like disorders. Socially isolated virgin females showed a significant decrease in allopregnanolone levels, associated with increased anxiety-related behavior compared with group-housed rats. OBJECTIVES The present study investigates whether post-weaning social isolation affects maternal behavior and assesses neuroactive steroid levels in adult female rats during pregnancy and postpartum. RESULTS Socially isolated dams displayed a reduction in the frequency of arched back nursing (ABN) behavior compared to group-housed dams. In addition, both total and active nursing were lower in socially isolated dams compared to group-housed dams. Compared to virgin females, pregnancy increases allopregnanolone levels in group-housed as well as isolated dams and such increase was greater in the latter group. Compared to pregnancy levels, allopregnanolone levels decreased after delivery and this decrease was more pronounced in isolated than group-housed dams. Moreover, the fluctuations in plasma corticosterone levels that occur in late pregnancy and during lactation follow a different pattern in socially isolated vs. group-housed rats. CONCLUSIONS The present results show that social isolation in female rats decreases maternal behavior; this effect is associated with lower allopregnanolone concentrations at postpartum, which may account, at least in part, for the poor maternal care observed in socially isolated dams. In support of this conclusion is the finding that finasteride-treated dams, which display a decrease in plasma allopregnanolone levels, also showed a marked reduction in maternal care, suggesting that allopregnanolone may contribute to the quality of maternal care.
Collapse
|
28
|
Osborne LM, Gispen F, Sanyal A, Yenokyan G, Meilman S, Payne JL. Lower allopregnanolone during pregnancy predicts postpartum depression: An exploratory study. Psychoneuroendocrinology 2017; 79:116-121. [PMID: 28278440 PMCID: PMC5420429 DOI: 10.1016/j.psyneuen.2017.02.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/08/2017] [Accepted: 02/10/2017] [Indexed: 11/19/2022]
Abstract
Current evidence is mixed on the role of progesterone and its metabolites in perinatal mood and anxiety disorders. We measured second and third trimester (T2 and T3) progesterone (PROG) and allopregnanolone (ALLO) levels by ELISA and postpartum depression (PPD) by clinician interview (DSM-IV criteria) in 60 pregnant women with a prior diagnosis of a mood disorder. Methods included multivariate and logistic regression with general linear mixed effect models. We found that, after adjustment, every additional ng/mL of T2 ALLO resulted in a 63% (95% CI 13% to 84%, p=0.022) reduction in the risk of developing PPD. Our findings extend previous work connecting ALLO and depression within pregnancy, and indicate that the relationship between pregnancy ALLO and PPD is worth further exploration in a larger sample.
Collapse
Affiliation(s)
- Lauren M Osborne
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States.
| | - Fiona Gispen
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States
| | - Abanti Sanyal
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States
| | - Gayane Yenokyan
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States
| | - Samantha Meilman
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States
| | - Jennifer L Payne
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
29
|
Hill M, Řípová D, Mohr P, Kratochvílová Z, Velíková M, Dušková M, Bičíková M, Stárka L. Circulating C19 steroids and progesterone metabolites in women with acute depression and anxiety disorders. Horm Mol Biol Clin Investig 2017; 26:153-64. [PMID: 27092655 DOI: 10.1515/hmbci-2016-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
Abstract
Depression and anxiety disorders are highly prevalent in women. Although several studies have reported altered circulating steroids accompanying various mental disturbances, knowledge about alterations in the peripheral steroid pattern in such pathologies is incomplete. Therefore, we attempted to add to this knowledge using the simultaneous quantification of circulating steroids by gas chromatography mass spectrometry (GC-MS) in groups of premenopausal women in the follicular phase of the menstrual cycle (22 women with depression, 17 with anxiety disorders, 17 healthy controls). In addition to age-adjusted analysis of covariance (ANCOVA) followed by multiple comparisons, we developed models to successfully discriminate these groups from each other on the basis of steroid levels. Women with depression showed a reduced sulfoconjugation of steroids as well as lower levels of 7α-, 7β- and 16α-hydroxy-metabolites of C19 Δ5 steroids. Women with depression have significantly lower circulating levels of 5α/β-reduced pregnane steroids (with exception of free isopregnanolone) than women with anxiety or controls. Finally, our data indicate higher levels of estrogens in women with anxiety disorders when compared to women with depression.
Collapse
|
30
|
Changes in stress-stimulated allopregnanolone levels induced by neonatal estradiol treatment are associated with enhanced dopamine release in adult female rats: reversal by progesterone administration. Psychopharmacology (Berl) 2017; 234:749-760. [PMID: 28013353 DOI: 10.1007/s00213-016-4511-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/11/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Allopregnanolone plays a role in the stress response and homeostasis. Alterations in the estrogen milieu during the perinatal period influence brain development in a manner that persists into adulthood. Accordingly, we showed that a single administration of estradiol benzoate (EB) on the day of birth decreases brain allopregnanolone concentrations in adult female rats. OBJECTIVE We examined whether the persistent decrease in allopregnanolone concentrations, induced by neonatal EB treatment, might affect sensitivity to stress during adulthood. METHODS Female rats were treated with 10 μg of EB or vehicle on the day of birth. During adulthood, the response to acute foot shock stress was assessed by measuring changes in brain allopregnanolone and corticosterone levels, as well as extracellular dopamine output in the medial prefrontal cortex (mPFC). RESULTS Neonatal EB treatment enhanced stress-stimulated allopregnanolone levels in the hypothalamus, as well as extracellular dopamine output in the mPFC; this latest effect is reverted by subchronic progesterone treatment. By contrast, neonatal EB treatment did not alter stress-induced corticosterone levels, sensitivity to hypothalamic-pituitary-adrenal (HPA) axis negative feedback, or abundance of glucocorticoid and mineralocorticoid receptors. CONCLUSIONS The persistent decrease in brain allopregnanolone concentrations, induced by neonatal EB treatment, enhances stress-stimulated allopregnanolone levels and extracellular dopamine output during adulthood. These effects are not associated to an impairment in HPA axis activity. Heightened sensitivity to stress is a risk factor for several neuropsychiatric disorders; these results suggest that exposure to estrogen during development may predispose individuals to such disorders.
Collapse
|
31
|
Dury AY, Ke Y, Labrie F. Precise and accurate assay of pregnenolone and five other neurosteroids in monkey brain tissue by LC-MS/MS. Steroids 2016; 113:64-70. [PMID: 27378657 DOI: 10.1016/j.steroids.2016.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022]
Abstract
A series of steroids present in the brain have been named "neurosteroids" following the possibility of their role in the central nervous system impairments such as anxiety disorders, depression, premenstrual dysphoric disorder (PMDD), addiction, or even neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Study of their potential role requires a sensitive and accurate assay of their concentration in the monkey brain, the closest model to the human. We have thus developed a robust, precise and accurate liquid chromatography-tandem mass spectrometry method for the assay of pregnenolone, pregnanolone, epipregnanolone, allopregnanolone, epiallopregnanolone, and androsterone in the cynomolgus monkey brain. The extraction method includes a thorough sample cleanup using protein precipitation and phospholipid removal, followed by hexane liquid-liquid extraction and a Girard T ketone-specific derivatization. This method opens the possibility of investigating the potential implication of these six steroids in the most suitable animal model for neurosteroid-related research.
Collapse
Affiliation(s)
- Alain Y Dury
- Endoceutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City (QC) G1V 4M7, Canada
| | - Yuyong Ke
- Endoceutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City (QC) G1V 4M7, Canada
| | - Fernand Labrie
- Endoceutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City (QC) G1V 4M7, Canada.
| |
Collapse
|
32
|
Deligiannidis KM, Kroll-Desrosiers AR, Mo S, Nguyen HP, Svenson A, Jaitly N, Hall JE, Barton BA, Rothschild AJ, Shaffer SA. Peripartum neuroactive steroid and γ-aminobutyric acid profiles in women at-risk for postpartum depression. Psychoneuroendocrinology 2016; 70:98-107. [PMID: 27209438 PMCID: PMC4907817 DOI: 10.1016/j.psyneuen.2016.05.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/12/2016] [Accepted: 05/07/2016] [Indexed: 01/21/2023]
Abstract
Neuroactive steroids (NAS) are allosteric modulators of the γ-aminobutyric acid (GABA) system. NAS and GABA are implicated in depression. The peripartum period involves physiologic changes in NAS which may be associated with peripartum depression and anxiety. We measured peripartum plasma NAS and GABA in healthy comparison subjects (HCS) and those at-risk for postpartum depression (AR-PPD) due to current mild depressive or anxiety symptoms or a history of depression. We evaluated 56 peripartum medication-free subjects. We measured symptoms with the Hamilton Depression Rating Scale (HAM-D17), Hamilton Anxiety Rating Scale (HAM-A) and Spielberger State-Trait Anxiety Inventory-State (STAI-S). Plasma NAS and GABA were quantified by liquid chromatography-mass spectrometry. We examined the associations between longitudinal changes in NAS, GABA and depressive and anxiety symptoms using generalized estimating equation methods. Peripartum GABA concentration was 1.9±0.7ng/mL (p=0.004) lower and progesterone and pregnanolone were 15.8±7.5 (p=0.04) and 1.5±0.7ng/mL (p=0.03) higher in AR-PPD versus HCS, respectively. HAM-D17 was negatively associated with GABA (β=-0.14±0.05, p=0.01) and positively associated with pregnanolone (β=0.16±0.06, p=0.01). STAI-S was positively associated with pregnanolone (β=0.11±0.04, p=0.004), allopregnanolone (β=0.13±0.05, p=0.006) and pregnenolone (β=0.02±0.01, p=0.04). HAM-A was negatively associated with GABA (β=-0.12±0.04, p=0.004) and positively associated with pregnanolone (β=0.11±0.05, p=0.05). Altered peripartum NAS and GABA profiles in AR-PPD women suggest that their interaction may play an important role in the pathophysiology of peripartum depression and anxiety.
Collapse
Affiliation(s)
- Kristina M. Deligiannidis
- Center for Psychopharmacologic Research & Treatment, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, U.S.A.,Women’s Mental Health Program, Departments of Psychiatry and Obstetrics & Gynecology, University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA 01655, U.S.A.,Corresponding Author: Kristina M. Deligiannidis, M.D. Associate Professor of Psychiatry and Obstetrics & Gynecology Director, Depression Specialty Clinic Reproductive Psychiatrist, Women’s Mental Health Program, University of Massachusetts Medical School/UMass Memorial Medical Center, Center for Psychopharmacologic Research and Treatment, 55 Lake Avenue, North, Worcester, MA 01655, U.S.A. Tel.: (+1) 774.455.4134; Fax: (+1) 508.856.4854
| | - Aimee R. Kroll-Desrosiers
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01655, U.S.A
| | - Shunyan Mo
- Proteomics and Mass Spectrometry Facility and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Hien P. Nguyen
- Proteomics and Mass Spectrometry Facility and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, U.S.A
| | - Abby Svenson
- Center for Psychopharmacologic Research & Treatment, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Nina Jaitly
- Center for Psychopharmacologic Research & Treatment, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01655, USA; National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709-2233, USA.
| | - Janet E. Hall
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709-2233, U.S.A
| | - Bruce A. Barton
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01655, U.S.A
| | - Anthony J. Rothschild
- Center for Psychopharmacologic Research & Treatment, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, U.S.A
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, U.S.A
| |
Collapse
|
33
|
Kimmel M, Clive M, Gispen F, Guintivano J, Brown T, Cox O, Beckmann MW, Kornhuber J, Fasching PA, Osborne LM, Binder E, Payne JL, Kaminsky Z. Oxytocin receptor DNA methylation in postpartum depression. Psychoneuroendocrinology 2016; 69:150-60. [PMID: 27108164 PMCID: PMC7152506 DOI: 10.1016/j.psyneuen.2016.04.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
The oxytocin receptor (OXTR) is a key regulator of stress and anxiety and may be regulated by both psychosocial risk factors and gonadal hormones, making it an attractive candidate for study in postpartum depression (PPD). The objective of this study was to investigate both serum hormone and PPD specific DNA methylation variation in the OXTR. Illumina HM450 microarray data generated in a prospective PPD cohort identified significant associations (P=0.014) with PPD in an intronic region in the OXTR located 4bp proximal to an estrogen receptor (ER) binding region. Pyrosequencing confirmed moderate evidence for an interaction of CpGs in the region with childhood abuse status to mediate PPD. These CpGs located on chr3 at positions 8810078 and 8810069 exhibited significant associations with postpartum depression scores from an independent cohort of 240 women with no prior psychiatric history. Hormone analysis suggested a PPD specific negative correlation of DNA methylation in the region with serum estradiol levels. Estradiol levels and OXTR DNA methylation exhibited a significant interaction to associate with the ratio of allopregnanolone to progesterone. Cumulatively, the data corroborate our previous hypotheses of a PPD specific increased sensitivity of epigenetic reprogramming at estrogen target genes and suggests that OXTR epigenetic variation may be an important mediator of mood relevant neuroactive steroid production.
Collapse
Affiliation(s)
- Mary Kimmel
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA,Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Makena Clive
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fiona Gispen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jerry Guintivano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tori Brown
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Olivia Cox
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Lauren M. Osborne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elisabeth Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Jennifer L. Payne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zachary Kaminsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
34
|
Osborne L, Clive M, Kimmel M, Gispen F, Guintivano J, Brown T, Cox O, Judy J, Meilman S, Braier A, Beckmann MW, Kornhuber J, Fasching PA, Goes F, Payne JL, Binder EB, Kaminsky Z. Replication of Epigenetic Postpartum Depression Biomarkers and Variation with Hormone Levels. Neuropsychopharmacology 2016; 41:1648-58. [PMID: 26503311 PMCID: PMC4832028 DOI: 10.1038/npp.2015.333] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/02/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022]
Abstract
DNA methylation variation at HP1BP3 and TTC9B is modified by estrogen exposure in the rodent hippocampus and was previously shown to be prospectively predictive of postpartum depression (PPD) when modeled in antenatal blood. The objective of this study was to replicate the predictive efficacy of the previously established model in women with and without a previous psychiatric diagnosis and to understand the effects of changing hormone levels on PPD biomarker loci. Using a statistical model trained on DNA methylation data from N=51 high-risk women, we prospectively predicted PPD status in an independent N=51 women using first trimester antenatal gene expression levels of HP1BP3 and TTC9B, with an area under the receiver operator characteristic curve (AUC) of 0.81 (95% CI: 0.69-0.92, p<5 × 10(-4)). Modeling DNA methylation of these genes in N=240 women without a previous psychiatric diagnosis resulted in a cross-sectional prediction of PPD status with an AUC of 0.81 (95% CI: 0.68-0.93, p=0.01). TTC9B and HP1BP3 DNA methylation at early antenatal time points showed moderate evidence for association to the change in estradiol and allopregnanolone over the course of pregnancy, suggesting that epigenetic variation at these loci may be important for mediating hormonal sensitivity. In addition both loci showed PPD-specific trajectories with age, possibly mediated by age-associated hormonal changes. The data add to the growing body of evidence suggesting that PPD is mediated by differential gene expression and epigenetic sensitivity to pregnancy hormones and that modeling proxies of this sensitivity enable accurate prediction of PPD.
Collapse
Affiliation(s)
- Lauren Osborne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Makena Clive
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Kimmel
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fiona Gispen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jerry Guintivano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tori Brown
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olivia Cox
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Judy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samantha Meilman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aviva Braier
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fernando Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer L Payne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Zachary Kaminsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,The Mood Disorder Center, Johns Hopkins University, 720 Rutland Avenue, Ross Research Building 1070, Baltimore, MD 21205, USA, Tel: +1 443 287 0093, Fax: +1 410 502 0065,E-mail:
| |
Collapse
|
35
|
Crowley SK, O’Buckley TK, Schiller CE, Stuebe A, Morrow AL, Girdler SS. Blunted neuroactive steroid and HPA axis responses to stress are associated with reduced sleep quality and negative affect in pregnancy: a pilot study. Psychopharmacology (Berl) 2016; 233:1299-310. [PMID: 26856852 PMCID: PMC4803569 DOI: 10.1007/s00213-016-4217-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/14/2016] [Indexed: 01/24/2023]
Abstract
RATIONALE Anxiety during pregnancy has been linked to adverse maternal health outcomes, including postpartum depression (PPD). However, there has been limited study of biological mechanisms underlying behavioral predictors of PPD during pregnancy. OBJECTIVES Considering the shared etiology of chronic stress amongst antenatal behavioral predictors, the primary goal of this pilot study was to examine associations among stress-related physiological factors (including GABA-ergic neurosteroids) and stress-related behavioral indices of anxiety during pregnancy. METHODS Fourteen nulliparous women in their second trimester of a singleton pregnancy underwent speech and mental arithmetic stress, following a 2-week subjective and objective recording of sleep-wake behavior. RESULTS Lower cortisol, progesterone, and a combined measure of ALLO + pregnanolone throughout the entire stressor protocol (area under the curve, AUC) were associated with greater negative emotional responses to stress, and lower cortisol AUC was associated with worse sleep quality. Lower adrenocorticotropic hormone was associated with greater anxious and depressive symptoms. Stress produced paradoxical reductions in cortisol, progesterone, and a combined measure of allopregnanolone + pregnanolone, while tetrahydrodeoxycorticosterone levels were elevated. CONCLUSIONS These data suggest that cortisol, progesterone, and ALLO + pregnanolone levels in the second trimester of pregnancy are inversely related to negative emotional symptoms, and the negative impact of acute stress challenge appears to exert its effects by reducing these steroids to further promote negative emotional responses.
Collapse
Affiliation(s)
- Shannon K. Crowley
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| | - Crystal E. Schiller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| | - Alison Stuebe
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
- Department of Maternal and Child Health, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| | - A. Leslie Morrow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| | - Susan S. Girdler
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7175, USA
| |
Collapse
|
36
|
Stephens MAC, Mahon PB, McCaul ME, Wand GS. Hypothalamic-pituitary-adrenal axis response to acute psychosocial stress: Effects of biological sex and circulating sex hormones. Psychoneuroendocrinology 2016; 66:47-55. [PMID: 26773400 PMCID: PMC4788592 DOI: 10.1016/j.psyneuen.2015.12.021] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/23/2015] [Accepted: 12/17/2015] [Indexed: 01/05/2023]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis influences the risk for developing stress-related disorders. Sex-dependent differences in the HPA axis stress response are believed to contribute to the different prevalence rates of stress-related disorders found in men and women. However, studies examining the HPA axis stress response have shown mixed support for sex differences, and the role of endogenous sex hormones on HPA axis response has not been adequately examined in humans. This study utilized the largest sample size to date to analyze the effects of biological sex and sex hormones on HPA axis social stress responses. Healthy, 18- to 30- year-old community volunteers (N=282) completed the Trier Social Stress Test (TSST), a widely used and well-validated stress-induction laboratory procedure. All women (n=135) were tested during the follicular phase of their menstrual cycle (when progesterone levels are most similar to men). Adrenocorticotropic hormone (ACTH) and cortisol measures were collected at multiple points throughout pre- and post-TSST. Testosterone and progesterone (in men) and progesterone and estradiol (in women) were determined pre-TSST. Following the TSST, men had greater ACTH and cortisol levels than women. Men had steeper baseline-to-peak and peak-to-end ACTH and cortisol response slopes than women; there was a trend for more cortisol responders among men than women. Testosterone negatively correlated with salivary cortisol response in men, while progesterone negatively correlated with ACTH and cortisol responses in women. These data confirm that men show more robust activation of the HPA axis response to the TSST than do women in the follicular phase of the menstrual cycle. Testosterone results suggest an inhibitory effect on HPA axis reactivity in men. Progesterone results suggest an inhibitory effect on HPA axis reactivity in women. Future work is needed to explain why men mount a greater ACTH and cortisol response to the TSST than do women during the follicular phase of the menstrual cycle.
Collapse
Affiliation(s)
- Mary Ann C Stephens
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 115, Baltimore, MD 21205, USA.
| | - Pamela B Mahon
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 600 N. Wolfe St, Phipps 300, Baltimore, MD 21287, USA.
| | - Mary E McCaul
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 115, Baltimore, MD 21205, USA.
| | - Gary S Wand
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 115, Baltimore, MD 21205, USA; Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Building, Rm 863, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Blaine SK, Milivojevic V, Fox H, Sinha R. Alcohol Effects on Stress Pathways: Impact on Craving and Relapse Risk. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:145-53. [PMID: 27254089 PMCID: PMC4813419 DOI: 10.1177/0706743716632512] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A significant amount of neurobiological research regarding the development of alcohol use disorders (AUDs) has focused on alcohol-related activation and long-term alterations in the mesocortical dopaminergic reward pathways. However, alcohol does not only interact with brain reward systems. Many of its acute and chronic effects may be related to allostatic adaptations in hypothalamic and extrahypothalamic stress regulation pathways. For example, acute binge intoxication is associated with hypothalamically driven increases in blood cortisol, norepinephrine, and sex steroid metabolite levels. This may contribute to the development of mesocortical sensitization to alcohol. Furthermore, chronic alcohol exposure is associated with systemic dysregulation of the hypothalamic pituitary adrenal axis, sympathetic adrenal medullary system, and sex steroid systems. This dysregulation appears to manifest as neuroendocrine tolerance. In this review, we first summarize the literature suggesting that alcohol-induced alterations in these hypothalamic systems influence craving and contribute to the development of AUDs. We note that for women, the effects of alcohol on these neuroendocrine stress regulation systems may be influenced by the rhythmic variations of hormones and steroids across the menstrual cycle. Second, we discuss how changes in these systems may indicate progression of AUDs and increased risk of relapse in both sexes. Specifically, neuroendocrine tolerance may contribute to mesocortical sensitization, which in turn may lead to decreased prefrontal inhibitory control of the dopaminergic reward and hypothalamic stress systems. Thus, pharmacological strategies that counteract alcohol-associated changes in hypothalamic and extrahypothalamic stress regulation pathways may slow the development and progression of AUDs.
Collapse
Affiliation(s)
- Sara K Blaine
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Verica Milivojevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Helen Fox
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
38
|
Porcu P, Barron AM, Frye CA, Walf AA, Yang SY, He XY, Morrow AL, Panzica GC, Melcangi RC. Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research. J Neuroendocrinol 2016; 28:12351. [PMID: 26681259 PMCID: PMC4769676 DOI: 10.1111/jne.12351] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/12/2015] [Accepted: 12/12/2015] [Indexed: 12/19/2022]
Abstract
Neuroactive steroids are endogenous neuromodulators synthesised in the brain that rapidly alter neuronal excitability by binding to membrane receptors, in addition to the regulation of gene expression via intracellular steroid receptors. Neuroactive steroids induce potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the GABAA receptor. They also exert neuroprotective, neurotrophic and antiapoptotic effects in several animal models of neurodegenerative diseases. Neuroactive steroids regulate many physiological functions, such as the stress response, puberty, the ovarian cycle, pregnancy and reward. Their levels are altered in several neuropsychiatric and neurological diseases and both preclinical and clinical studies emphasise a therapeutic potential of neuroactive steroids for these diseases, whereby symptomatology ameliorates upon restoration of neuroactive steroid concentrations. However, direct administration of neuroactive steroids has several challenges, including pharmacokinetics, low bioavailability, addiction potential, safety and tolerability, which limit its therapeutic use. Therefore, modulation of neurosteroidogenesis to restore the altered endogenous neuroactive steroid tone may represent a better therapeutic approach. This review summarises recent approaches that target the neuroactive steroid biosynthetic pathway at different levels aiming to promote neurosteroidogenesis. These include modulation of neurosteroidogenesis through ligands of the translocator protein 18 kDa and the pregnane xenobiotic receptor, as well as targeting of specific neurosteroidogenic enzymes such as 17β-hydroxysteroid dehydrogenase type 10 or P450 side chain cleavage. Enhanced neurosteroidogenesis through these targets may be beneficial not only for neurodegenerative diseases, such as Alzheimer's disease and age-related dementia, but also for neuropsychiatric diseases, including alcohol use disorders.
Collapse
Affiliation(s)
- Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Anna M. Barron
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan
| | - Cheryl Anne Frye
- Institute of Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, AK, USA
- The University at Albany, Albany, NY, USA
| | - Alicia A. Walf
- Institute of Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, AK, USA
- The University at Albany, Albany, NY, USA
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Song-Yu Yang
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Xue-Ying He
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - A. Leslie Morrow
- Departments of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Gian Carlo Panzica
- Department of Neuroscience, University of Turin, and NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Roberto C. Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
39
|
Trost L, Saitz TR, Hellstrom WJG. Side Effects of 5-Alpha Reductase Inhibitors: A Comprehensive Review. Sex Med Rev 2015; 1:24-41. [PMID: 27784557 DOI: 10.1002/smrj.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION 5α-reductase inhibitors (5ARI) include finasteride and dutasteride, and are commonly prescribed in the treatment of benign prostatic hyperplasia and androgenic alopecia. 5ARIs are associated with several known adverse effects (AEs), with varying reported prevalence rates. AIM The aim was to review and summarize findings from published literature detailing AEs associated with 5ARI use. A secondary aim was to review potential mechanisms of action, which may account for these observed and reported AEs. METHODS A PubMed search was conducted on articles published from 1992 to 2012, which reported AEs with 5ARIs. Priority was given to randomized, placebo-controlled trials. Studies investigating potential mechanisms of action for 5ARIs were included for review. MAIN OUTCOME MEASURES AE data reported from available trials were summarized and reviewed. RESULTS Reported AEs with 5ARIs include sexual dysfunction, infertility, mood disorders, gynecomastia, high-grade prostate cancer, breast cancer, and cardiovascular morbidity/risk factors, although their true association, prevalence, causality, and clinical significance remain unclear. A pooled summary of all randomized, placebo-controlled trials evaluating 5ARIs (N = 62,827) revealed slightly increased rates over placebo for decreased libido (1.5%), erectile dysfunction (ED) (1.6%), ejaculatory dysfunction (EjD) (3.4%), and gynecomastia (1.3%). The limited data available on the impact of 5ARIs on mood disorders demonstrate statistically significant (although clinically minimal) differences in rates of depression and/or anxiety. Similarly, there are limited reports of reversible, diminished fertility among susceptible individuals. Post-marketing surveillance reports have questioned the actual prevalence of AEs associated with 5ARI use and suggest the possibility of persistent symptoms after drug discontinuation. Well-designed studies evaluating these reports are needed. CONCLUSIONS 5ARIs are associated with slightly increased rates of decreased libido, ED, EjD, gynecomastia, depression, and/or anxiety. Further studies directed at identifying prevalence rates and persistence of symptoms beyond drug discontinuation are required to assess causality. Trost L, Saitz TR, and Hellstrom WJG. Side effects of 5-alpha reductase inhibitors: A comprehensive review. Sex Med Rev 2013;1:24-41.
Collapse
Affiliation(s)
| | - Theodore R Saitz
- Department of Urology, Section of Andrology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wayne J G Hellstrom
- Department of Urology, Section of Andrology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
40
|
Mocking RJT, Pellikaan CM, Lok A, Assies J, Ruhé HG, Koeter MW, Visser I, Bockting CL, Olff M, Schene AH. DHEAS and cortisol/DHEAS-ratio in recurrent depression: State, or trait predicting 10-year recurrence? Psychoneuroendocrinology 2015; 59:91-101. [PMID: 26036454 DOI: 10.1016/j.psyneuen.2015.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) has been associated with low dehydroepiandrosterone-sulphate (DHEAS), - particularly relative to high cortisol - although conflicting findings exist. Moreover, it is unclear whether low DHEAS is only present during the depressive state, or manifests as a trait that may reflect vulnerability for recurrence. Therefore, we longitudinally tested whether low DHEAS and high cortisol/DHEAS-ratio in recurrent MDD (I) reflects a trait, and/or (II) varies with depressive state. In addition, we tested associations with (III) previous MDD-episodes, (IV) prospective recurrence, and (V) effects of cognitive therapy. METHODS At study-entry, we cross-sectionally compared morning and evening salivary DHEAS and molar cortisol/DHEAS-ratio of 187 remitted recurrent MDD-patients with 72 matched controls. Subsequently, patients participated in an 8-week randomized controlled cognitive therapy trial. We repeated salivary measures after 3 months and 2 years. We measured clinical symptoms during a 10-year follow-up. RESULTS Remitted patients showed steeper diurnal DHEAS-decline (p<.005) and a flatter diurnal profile of cortisol/DHEAS-ratio (p<.001) than controls. We found no state-effect in DHEAS or cortisol/DHEAS-ratio throughout follow-up and no association with number of previous episodes. Higher morning cortisol/DHEAS-ratio predicted shorter time till recurrence over the 10-year follow-up in interaction with the effects of cognitive therapy (p<.05). Finally, cognitive therapy did not influence DHEAS or cortisol/DHEAS-ratio. CONCLUSIONS Diurnal profiles of DHEAS and cortisol/DHEAS-ratio remain equally altered in between depressive episodes, and may predict future recurrence. This suggests they represent an endophenotypic vulnerability trait rather than a state-effect, which provides a new road to understand recurrent depression and its prevention. TRIAL REGISTRATION www.isrctn.com/ISRCTN68246470.
Collapse
Affiliation(s)
- R J T Mocking
- Program for Mood disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - C M Pellikaan
- Program for Mood disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - A Lok
- Program for Mood disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands; Arq Psychotrauma Expert Group, Diemen, The Netherlands
| | - J Assies
- Program for Mood disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - H G Ruhé
- Program for Mood disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands; University Medical Center Groningen, Program for Mood and Anxiety Disorders, Department of Psychiatry, The Netherlands
| | - M W Koeter
- Program for Mood disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - I Visser
- Program for Mood disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - C L Bockting
- Department of Clinical Psychology, University of Groningen, The Netherlands; Department of Clinical and Health Psychology, Utrecht University, The Netherlands
| | - M Olff
- Arq Psychotrauma Expert Group, Diemen, The Netherlands; Center for Psychological Trauma, Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - A H Schene
- Program for Mood disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Irwin RW, Solinsky CM, Loya CM, Salituro FG, Rodgers KE, Bauer G, Rogawski MA, Brinton RD. Allopregnanolone preclinical acute pharmacokinetic and pharmacodynamic studies to predict tolerability and efficacy for Alzheimer's disease. PLoS One 2015; 10:e0128313. [PMID: 26039057 PMCID: PMC4454520 DOI: 10.1371/journal.pone.0128313] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/25/2015] [Indexed: 11/18/2022] Open
Abstract
To develop allopregnanolone as a therapeutic for Alzheimer's disease, we investigated multiple formulations and routes of administration in translationally relevant animal models of both sexes. Subcutaneous, topical (transdermal and intranasal), intramuscular, and intravenous allopregnanolone were bolus-administered. Pharmacokinetic analyses of intravenous allopregnanolone in rabbit and mouse indicated that peak plasma and brain levels (3-fold brain/plasma ratios) at 5min were sufficient to activate neuroregenerative responses at sub-sedative doses. Slow-release subcutaneous suspension of allopregnanolone displayed 5-fold brain/plasma ratio at Cmax at 30min. At therapeutic doses by either subcutaneous or intravenous routes, allopregnanolone mouse plasma levels ranged between 34-51ng/ml by 30min, comparable to published endogenous human level in the third trimester of pregnancy. Exposure to subcutaneous, topical, intramuscular, and intravenous allopregnanolone, at safe and tolerable doses, increased hippocampal markers of neurogenesis including BrdU and PCNA in young 3xTgAD and aged wildtype mice. Intravenous allopregnanolone transiently and robustly phosphorylated CREB within 5min and increased levels of neuronal differentiation transcription factor NeuroD within 4h. Neurogenic efficacy was achieved with allopregnanolone brain exposure of 300-500hr*ng/g. Formulations were tested to determine the no observable adverse effect level (NOAEL) and maximally tolerated doses (MTD) in male and female rats by sedation behavior time course. Sex differences were apparent, males exhibited ≥40% more sedation time compared to females. Allopregnanolone formulated in sulfobutyl-ether-beta-cyclodextrin at optimized complexation ratio maximized allopregnanolone delivery and neurogenic efficacy. To establish the NOAEL and MTD for Allo-induced sedation using a once-per-week intravenous regenerative treatment regimen: In female rats the NOAEL was 0.5mg/kg and MTD 2mg/kg. The predicted MTD in human female is 0.37mg/kg. In male rats the NOAEL and MTD were less than those determined for female. Outcomes of these PK/PD studies predict a safe and efficacious dose range for initial clinical trials of allopregnanolone for Alzheimer's disease. These findings have translational relevance to multiple neurodegenerative conditions.
Collapse
Affiliation(s)
- Ronald W. Irwin
- Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Christine M. Solinsky
- Clinical and Experimental Therapeutics Program, University of Southern California, Los Angeles, California, United States of America
| | - Carlos M. Loya
- Sage Therapeutics, Cambridge, Massachusetts, United States of America
| | | | - Kathleen E. Rodgers
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Gerhard Bauer
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Michael A. Rogawski
- Department of Neurology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
- Department of Neurology, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, California, United states of America
| |
Collapse
|
42
|
Smith CC, Gibbs TT, Farb DH. Pregnenolone sulfate as a modulator of synaptic plasticity. Psychopharmacology (Berl) 2014; 231:3537-56. [PMID: 24997854 PMCID: PMC4625978 DOI: 10.1007/s00213-014-3643-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/24/2014] [Indexed: 12/22/2022]
Abstract
RATIONALE The neurosteroid pregnenolone sulfate (PregS) acts as a cognitive enhancer and modulator of neurotransmission, yet aligning its pharmacological and physiological effects with reliable measurements of endogenous local concentrations and pharmacological and therapeutic targets has remained elusive for over 20 years. OBJECTIVES New basic and clinical research concerning neurosteroid modulation of the central nervous system (CNS) function has emerged over the past 5 years, including important data involving pregnenolone and various neurosteroid precursors of PregS that point to a need for a critical status update. RESULTS Highly specific actions of PregS affecting excitatory N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic transmission and the pharmacological effects of PregS on various receptors and ion channels are discussed. The discovery of a high potency (nanomolar) signal transduction pathway for PregS-induced NMDAR trafficking to the cell surface via a Ca(2+)- and G protein-coupled receptor (GPCR)-dependent mechanism and a potent (EC50 ~ 2 pM) direct enhancement of intracellular Ca(2+) levels is discussed in terms of its agonist effects on long-term potentiation (LTP) and memory. Lastly, preclinical and clinical studies assessing the promnestic effects of PregS and pregnenolone toward cognitive dysfunction in schizophrenia, and altered serum levels in epilepsy and alcohol dependence, are reviewed. CONCLUSIONS PregS is present in human and rodent brain at physiologically relevant concentrations and meets most of the criteria for an endogenous neurotransmitter/neuromodulator. PregS likely plays a significant role in modulation of glutamatergic excitatory synaptic transmission underlying learning and memory, yet the molecular target(s) for its action awaits identification.
Collapse
Affiliation(s)
- Conor C. Smith
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - Terrell T. Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - David H. Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| |
Collapse
|
43
|
Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans? Psychopharmacology (Berl) 2014; 231:3619-34. [PMID: 24756763 PMCID: PMC4135030 DOI: 10.1007/s00213-014-3572-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/06/2014] [Indexed: 11/25/2022]
Abstract
RATIONALE A robust epidemiological literature suggests an association between chronic stress and the development of affective disorders. However, the precise biological underpinnings of this relationship remain elusive. Central to the human response and adaptation to stress, activation and inhibition of the hypothalamic pituitary adrenal (HPA) axis involves a multi-level, multi-system, neurobiological stress response which is as comprehensive in its complexity as it is precarious. Dysregulation in this complex system has implications for human stress related illness. OBJECTIVES The pioneering research of Robert Purdy and colleagues has laid the groundwork for advancing our understanding of HPA axis regulation by stress-derived steroid hormones and their neuroactive metabolites (termed neurosteroids), which are potent allosteric modulators of GABAA receptor function in the central nervous system. This review will describe what is known about neurosteroid modulation of the HPA axis in response to both acute and chronic stress, particularly with respect to the current state of our knowledge of this process in humans. RESULTS Implications of this research to the development of human stress-related illness are discussed in the context of two human stress-related psychiatric disorders - major depressive disorder and premenstrual dysphoric disorder. CONCLUSIONS Neurosteroid-mediated HPA axis dysregulation is a potential pathophysiologic mechanism which may cross traditional psychiatric diagnostic classifications. Future research directions are identified.
Collapse
|
44
|
Gong QH, Smith SS. Characterization of neurosteroid effects on hyperpolarizing current at α4β2δ GABAA receptors. Psychopharmacology (Berl) 2014; 231:3525-35. [PMID: 24740493 PMCID: PMC4135043 DOI: 10.1007/s00213-014-3538-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/10/2014] [Indexed: 11/28/2022]
Abstract
RATIONALE The neurosteroid 3α,5β-THP (3α-OH-5β-pregnan-20-one, pregnanolone) is a modulator of the GABAA receptor (GABAR), with α4β2δ GABARs the most sensitive. However, the effects of 3α,5β-THP at α4β2δ are polarity-dependent: 3α,5β-THP potentiates depolarizing current, as has been widely reported, but decreases hyperpolarizing current by accelerating desensitization. OBJECTIVES The present study further characterized 3α,5β-THP inhibition of hyperpolarizing current at this receptor and compared effects of other related steroids at α4β2δ GABARs. METHODS α4β2δ GABARs were expressed in HEK-293 cells, and agonist-gated current recorded with whole cell voltage-clamp techniques using a theta tube to rapidly apply agonist before and after application of neurosteroids. RESULTS The GABA-modulatory steroids (30 nM) 3α,5α-THP (3α-OH-5α-pregnan-20-one, allopregnanolone) and THDOC (3α,21-dihydroxy-5α-pregnan-20-one) inhibited hyperpolarizing GABA (10 μM)-gated current at α4β2δ GABARs similar to 3α,5β-THP, while the inactive 3β,5β-THP isomer had no effect. Greater inhibition was seen for current gated by the high efficacy agonist gaboxadol (THIP, 100 μM) than for GABA (0.1-1000 μM), consistent with an effect of 3α,5β-THP on desensitization. Inhibitory effects of the steroid were not seen under low [Cl(-)] conditions or in the presence of calphostin C (500 nM), an inhibitor of protein kinase C. Chimeras swapping the IL (intracellular loop) of α4 with α1, when expressed with β2 and δ, produced receptors (α[414]β2δ) which were not inhibited by 3α,5β-THP when GABA-gated current was hyperpolarizing, while α[141]β2δ exhibited steroid-induced polarity-dependent modulation. CONCLUSIONS These findings suggest that numerous neurosteroids exhibit polarity-dependent effects at α4β2δ GABARs, which are dependent upon protein kinase C and the IL of α4.
Collapse
Affiliation(s)
- Qi Hua Gong
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 10023 U.S.A
| | - Sheryl S. Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 10023 U.S.A
| |
Collapse
|
45
|
Klatzkin RR, Bunevicius A, Forneris CA, Girdler S. Menstrual mood disorders are associated with blunted sympathetic reactivity to stress. J Psychosom Res 2014; 76:46-55. [PMID: 24360141 PMCID: PMC3951307 DOI: 10.1016/j.jpsychores.2013.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/30/2013] [Accepted: 11/02/2013] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Few studies have directly compared women with a menstrually related mood disorder (MRMD) with women who have suffered from depression for stress reactivity phenotypes. It is unclear whether blunted responses to stress in women with a MRMD reflect a unique phenotype of MRMDs or may be explained by a history of depression. METHODS We assessed cardiovascular reactivity to stress in four groups: 1) Women with a MRMD without a history of depression (n=37); 2) women with a MRMD plus a history of depression (n=26); 3) women without a MRMD and without a history of depression (n=43); and 4) women without a MRMD but with a history of depression (n=20). RESULTS Women with a MRMD showed blunted myocardial (heart rate and cardiac index) reactivity to mental stress compared to non-MRMD women, irrespective of histories of depression. Hypo-reactivity to stress predicted greater premenstrual symptom severity in the entire sample. Women with a MRMD showed blunted norepinephrine and diastolic blood pressure stress reactivity relative to women with no MRMD, but only when no history of depression was present. Both MRMD women and women with depression histories reported greater negative subjective responses to stress relative to their non-MRMD and never depressed counterparts. CONCLUSION Our findings support the assertion that a blunted stress reactivity profile represents a unique phenotype of MRMDs and also underscore the importance of psychiatric histories to stress reactivity. Furthermore, our results emphasize the clinical relevance of myocardial hypo-reactivity to stress, since it predicts heightened premenstrual symptom severity.
Collapse
Affiliation(s)
| | - Adomas Bunevicius
- Department of Psychiatry, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Catherine A. Forneris
- Department of Psychiatry, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Susan Girdler
- Department of Psychiatry, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Irwig MS. Persistent Sexual and Nonsexual Adverse Effects of Finasteride in Younger Men. Sex Med Rev 2014; 2:24-35. [DOI: 10.1002/smrj.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Plante DT, Goldstein MR. Medroxyprogesterone acetate is associated with increased sleep spindles during non-rapid eye movement sleep in women referred for polysomnography. Psychoneuroendocrinology 2013; 38:3160-6. [PMID: 24054762 PMCID: PMC3844048 DOI: 10.1016/j.psyneuen.2013.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/21/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Sleep spindles are characteristic electroencephalographic waveforms that may play functionally significant roles in sleep-dependent memory consolidation, cortical development, and neuropsychiatric disorders. Circumstantial evidence has connected endogenous progesterone and its metabolites to the production of sleep spindles; however, the effects of exogenous progestins on sleep spindles have not been described in women. We examined differences in sleep spindle frequency and morphology in a clinical sample of women (n=21) referred for polysomnography taking depot medroxyprogesterone acetate (MPA), relative to a matched comparison group. Consistent with our hypotheses, women taking MPA demonstrated significantly higher sleep spindle density and maximal amplitude relative to comparison patients. Our results suggest that progestins potentiate the generation of sleep spindles, which may have significant implications for research that examines the role of these waveforms in learning, development, and mental illness.
Collapse
Affiliation(s)
- David T. Plante
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Michael R. Goldstein
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA,Department of Psychology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
48
|
Rogawski MA, Loya CM, Reddy K, Zolkowska D, Lossin C. Neuroactive steroids for the treatment of status epilepticus. Epilepsia 2013; 54 Suppl 6:93-8. [PMID: 24001085 DOI: 10.1111/epi.12289] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Benzodiazepines are the current first-line standard-of-care treatment for status epilepticus but fail to terminate seizures in about one third of cases. Synaptic GABAA receptors, which mediate phasic inhibition in central circuits, are the molecular target of benzodiazepines. As status epilepticus progresses, these receptors are internalized and become functionally inactivated, conferring benzodiazepine resistance, which is believed to be a major cause of treatment failure. GABAA receptor positive allosteric modulator neuroactive steroids, such as allopregnanolone, also potentiate synaptic GABAA receptors, but in addition they enhance extrasynaptic GABAA receptors that mediate tonic inhibition. Extrasynaptic GABAA receptors are not internalized, and desensitization of these receptors does not occur during continuous seizures in status epilepticus models. Here we review the broad-spectrum antiseizure activity of allopregnanolone in animal seizure models and the evidence for its activity in models of status epilepticus. We also demonstrate that allopregnanolone inhibits ongoing behavioral and electrographic seizures in a model of status epilepticus, even when there is benzodiazepine resistance. Parenteral allopregnanolone may provide an improved treatment for refractory status epilepticus.
Collapse
Affiliation(s)
- Michael A Rogawski
- Department of Neurology, School of Medicine, University of California-Davis, 4860 Y Street, Sacramento, CA 95817, U.S.A.
| | | | | | | | | |
Collapse
|
49
|
The role of allopregnanolone in depression and anxiety. Prog Neurobiol 2013; 113:79-87. [PMID: 24215796 DOI: 10.1016/j.pneurobio.2013.09.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/21/2013] [Accepted: 09/21/2013] [Indexed: 12/22/2022]
Abstract
Neuroactive steroids such as allopregnanolone do not only act as transcriptional factors in the regulation of gene expression after intracellular back-oxidation into the 5-α pregnane steroids but may also alter neuronal excitability through interactions with specific neurotransmitter receptors. In particular, certain 3α-reduced metabolites of progesterone such as 3α,5α-tetrahydroprogesterone (allopregnanolone) and 3α,5β-tetrahydroprogesterone (pregnanolone) are potent positive allosteric modulators of the GABA(A) receptor complex. During the last years, the downregulation of neurosteroid biosynthesis has been intensively discussed to be a possible contributor to the development of anxiety and depressive disorder. Reduced levels of allopregnanolone in the peripheral blood or cerebrospinal fluid were found to be associated with major depression, anxiety disorders, premenstrual dysphoric disorder, negative symptoms in schizophrenia, or impulsive aggression. The importance of allopregnanolone for the regulation of emotion and its therapeutical use in depression and anxiety may not only involve GABAergic mechanisms, but probably also includes enhancement of neurogenesis, myelination, neuroprotection, and regulatory effects on HPA axis function. Certain pharmacokinetic obstacles limit the therapeutic use of natural neurosteroids (low bioavailability, oxidation to the ketone). Until now synthetic neuroactive steroids could not be established in the treatment of anxiety disorders or depression. However, the translocator protein (18 kDa) (TSPO) which is important for neurosteroidogenesis has been identified as a potential novel target. TSPO ligands such as XBD 173 increase neurosteroidogenesis and have anxiolytic effects with a favorable side effect profile.
Collapse
|
50
|
Shen H, Mohammad A, Ramroop J, Smith SS. A stress steroid triggers anxiety via increased expression of α4βδ GABAA receptors in methamphetamine dependence. Neuroscience 2013; 254:452-75. [PMID: 23994152 DOI: 10.1016/j.neuroscience.2013.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Methamphetamine (METH) is an addictive stimulant drug. In addition to drug craving and lethargy, METH withdrawal is associated with stress-triggered anxiety. However, the cellular basis for this stress-triggered anxiety is not understood. The present results suggest that during METH withdrawal (24h) following chronic exposure (3mg/kg, i.p. for 3-5weeks) of adult, male mice, the effect of one neurosteroid released by stress, 3α,5α-THP (3α-OH-5α-pregnan-20-one), and its 3α,5β isomer reverse to trigger anxiety assessed by the acoustic startle response (ASR), in contrast to their usual anti-anxiety effects. This novel effect of 3α,5β-THP was due to increased (three-fold) hippocampal expression of α4βδ GABAA receptors (GABARs) during METH withdrawal (24h-4weeks) because anxiogenic effects of 3α,5β-THP were not seen in α4-/- mice. 3α,5β-THP reduces current at these receptors when it is hyperpolarizing, as observed during METH withdrawal. As a result, 3α,5β-THP (30nM) increased neuronal excitability, assessed with current clamp and cell-attached recordings in CA1hippocampus, one CNS site which regulates anxiety. α4βδ GABARs were first increased 1h after METH exposure and recovered 6weeks after METH withdrawal. Similar increases in α4βδ GABARs and anxiogenic effects of 3α,5β-THP were noted in rats during METH withdrawal (24h). In contrast, the ASR was increased by chronic METH treatment in the absence of 3α,5β-THP administration due to its stimulant effect. Although α4βδ GABARs were increased by chronic METH treatment, the GABAergic current recorded from hippocampal neurons at this time was a depolarizing, shunting inhibition, which was potentiated by 3α,5β-THP. This steroid reduced neuronal excitability and anxiety during chronic METH treatment, consistent with its typical effect. Flumazenil (10mg/kg, i.p., 3×) reduced α4βδ expression and prevented the anxiogenic effect of 3α,5β-THP after METH withdrawal. Our findings suggest a novel mechanism underlying stress-triggered anxiety after METH withdrawal mediated by α4βδ GABARs.
Collapse
Affiliation(s)
- H Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
| | | | | | | |
Collapse
|