1
|
Freibüchler A, Seifert R. Analysis of clinical studies on clozapine from 2012-2022. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9745-9765. [PMID: 38918233 PMCID: PMC11582105 DOI: 10.1007/s00210-024-03209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Clozapine has been considered the "gold standard" in the treatment of schizophrenia for many years. Clozapine has a superior effect, particularly in the treatment of negative symptoms and suicidal behaviour. However, due to its numerous adverse reactions, clozapine is mainly used for treatment-resistant schizophrenia. The aim of this paper is to analyze the results of clinical studies on clozapine from 2012-2022. PubMed was used as the database. Sixty-four studies were included and categorised by topic. The pharmacokinetic properties of clozapine tablets and a clozapine suspension solution did not differ markedly. Clozapine was superior to olanzapine and risperidone in reducing aggression and depression. A long-term study showed that metabolic parameters changed comparably with olanzapine and clozapine after 8 years. Risperidone and ziprasidone can be used as an alternative to clozapine. Scopolamine, atropine drops, and metoclopramide are effective in the treatment of clozapine-induced hypersalivation. Eight drugs, including liraglutide, exenatide, metformin, and orlistat, are potentially effective in the treatment of clozapine-induced weight gain. Ziprasidone, haloperidol, and aripiprazole showed a positive effect on symptoms when added to clozapine. No investigated drug was superior to clozapine for the treatment of schizophrenia. Ziprasidone and risperidone can also be used well for the treatment of schizophrenia. In the treatment of clozapine-induced hypersalivation and weight gain, some drugs proved to be effective.
Collapse
Affiliation(s)
- Anton Freibüchler
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany.
| |
Collapse
|
2
|
Kolind MEI, Kruse R, Petersen AS, Larsen CS, Bak LK, Højlund K, Beier CP, Stenager E, Juhl CB. Investigating the role of obesity, circadian disturbances and lifestyle factors in people with schizophrenia and bipolar disorder: Study protocol for the SOMBER trial. PLoS One 2024; 19:e0306408. [PMID: 38976708 PMCID: PMC11230533 DOI: 10.1371/journal.pone.0306408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
The aim of this study is to investigate circadian rhythms in independently living adults with obesity and mental disease, exploring the interplay between biological markers and lifestyle factors. Eighty participants divided equally into four groups; (i) people with obesity and schizophrenia; (ii) people with obesity and bipolar disorder; (iii) people with obesity without mental disease or sleep disorders, and (iv) people without obesity, mental disease or sleep disorders. Over two consecutive days, participants engage in repeated self-sampling of hair follicle and saliva; concurrently, data is collected on diet, body temperature, light exposure, sleep parameters, and physical activity by accelerometry. Hair follicles are analyzed for circadian gene expression, saliva samples for cortisol and melatonin concentrations. Circadian rhythms are investigated by cosinor analysis. The study employs a participant-tailored sampling schedule to minimize disruptions to daily routine and enhance ecological validity. The methodology aims to provide a comprehensive insight into the factors contributing to circadian disruptions in people with obesity, bipolar disorder and schizophrenia, potentially informing strategies for future management and mitigation. Trial registration: (ClinicalTrials.gov Identifier: NCT05413486).
Collapse
Affiliation(s)
- Mikkel EI Kolind
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network—OPEN, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Hospital of South West Jutland, Esbjerg, Denmark
| | - Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Anni S. Petersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Charlotte S. Larsen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Lasse K. Bak
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph P. Beier
- Open Patient data Explorative Network—OPEN, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Elsebeth Stenager
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Claus B. Juhl
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network—OPEN, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Hospital of South West Jutland, Esbjerg, Denmark
| |
Collapse
|
3
|
Bouteldja AA, Penichet D, Srivastava LK, Cermakian N. The circadian system: A neglected player in neurodevelopmental disorders. Eur J Neurosci 2024; 60:3858-3890. [PMID: 38816965 DOI: 10.1111/ejn.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Patients with neurodevelopmental disorders, such as autism spectrum disorder, often display abnormal circadian rhythms. The role of the circadian system in these disorders has gained considerable attention over the last decades. Yet, it remains largely unknown how these disruptions occur and to what extent they contribute to the disorders' development. In this review, we examine circadian system dysregulation as observed in patients and animal models of neurodevelopmental disorders. Second, we explore whether circadian rhythm disruptions constitute a risk factor for neurodevelopmental disorders from studies in humans and model organisms. Lastly, we focus on the impact of psychiatric medications on circadian rhythms and the potential benefits of chronotherapy. The literature reveals that patients with neurodevelopmental disorders display altered sleep-wake cycles and melatonin rhythms/levels in a heterogeneous manner, and model organisms used to study these disorders appear to support that circadian dysfunction may be an inherent characteristic of neurodevelopmental disorders. Furthermore, the pre-clinical and clinical evidence indicates that circadian disruption at the environmental and genetic levels may contribute to the behavioural changes observed in these disorders. Finally, studies suggest that psychiatric medications, particularly those prescribed for attention-deficit/hyperactivity disorder and schizophrenia, can have direct effects on the circadian system and that chronotherapy may be leveraged to offset some of these side effects. This review highlights that circadian system dysfunction is likely a core pathological feature of neurodevelopmental disorders and that further research is required to elucidate this relationship.
Collapse
Affiliation(s)
- Ahmed A Bouteldja
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Danae Penichet
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Li T, Cao Y, Zhou P, Xie Y, Tao S, Zou L, Yang Y, Tao F, Wu X. Prospective study of the association between chronotypes and depressive symptoms in Chinese university students: Moderating effects of PER1 gene DNA methylation. Chronobiol Int 2024; 41:621-631. [PMID: 38568246 DOI: 10.1080/07420528.2024.2337891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Most studies have shown a link between chronotypes and mental health and have identified evening chronotypes (E-types) as a potential risk for depressive symptoms. However, the mechanisms behind this association remain unknown. Abnormal expression of the PER1 gene was not only associated with circadian rhythm disturbance, but also closely related to mental illness. Therefore, this study aimed to examine the association of chronotype with depressive symptoms, and further explore the moderating effects of the PER1 gene DNA methylation on chronotypes and depressive symptoms in Chinese university students. In a stratified cluster sampling design, chronotype and depressive symptoms were assessed in 1 042 university students from 2 universities in a two-year prospective survey from April 2019 to October 2020. The survey was conducted once every 6 months, corresponding to the time points in April 2019 (T0), October 2019 (T1), April 2020 (T2), and October 2020 (T3). At T0, the Morning and Evening Questionnaire 5 (MEQ-5) was adopted to assess chronotype. At T0-T3, the Patient Health Questionnaire 9 (PHQ-9) was adopted to investigate depressive symptoms. Meanwhile, at T0, participants were subjected to a health check-up trip in the hospital, and blood samples were taken from the students to measure the PER1 gene DNA methylation levels. Binary logistic regression was used to analyze the association of chronotypes with depressive symptoms. The depression/total depression group was coded as 1, while the remaining participants was defined as one group, and was coded as 0. The PROCESS plug-in of SPSS software was used to analyze the moderating effects of PER1 gene DNA methylation on the association of chronotype with depressive symptoms. After adjusting for covariates, the results indicated that T0 E-types were positively correlated with T0-T3 depression/total depression in female university students. Furthermore, the PER1 gene DNA methylation has negative moderating effects between T0 chronotype and T3 depressive symptoms and has a sex difference. This study can provide more favorable scientific value for the prevention and control of depression in university students.
Collapse
Affiliation(s)
- Tingting Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuxuan Cao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Panfeng Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yang Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuman Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Liwei Zou
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Yajuan Yang
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
| |
Collapse
|
5
|
Boiko DI, Chopra H, Bilal M, Kydon PV, Herasymenko LO, Rud VO, Bodnar LA, Vasylyeva GY, Isakov RI, Zhyvotovska LV, Mehta A, Skrypnikov AM. Schizophrenia and disruption of circadian rhythms: An overview of genetic, metabolic and clinical signs. Schizophr Res 2024; 264:58-70. [PMID: 38101179 DOI: 10.1016/j.schres.2023.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
A molecular clock in the suprachiasmatic nucleus of the anterior hypothalamus, which is entrained by the dark-light cycle and controls the sleep-wake cycle, regulates circadian rhythms. The risk of developing mental disorders, such as schizophrenia, has long been linked to sleep abnormalities. Additionally, a common aspect of mental disorders is sleep disturbance, which has a direct impact on the intensity of the symptoms and the quality of life of the patient. This relationship can be explained by gene alterations such as CLOCK in schizophrenia which are also important components of the physiological circadian rhythm. The function of dopamine and adenosine in circadian rhythm should also be noted, as these hypotheses are considered to be the most popular theories explaining schizophrenia pathogenesis. Therefore, determining the presence of a causal link between the two can be key to identifying new potential targets in schizophrenia therapy, which can open new avenues for clinical research as well as psychiatric care. We review circadian disruption in schizophrenia at the genetic, metabolic, and clinical levels. We summarize data about clock and clock-controlled genes' alterations, neurotransmitter systems' impairments, and association with chronotype in schizophrenia patients. Our findings demonstrate that in schizophrenia either homeostatic or circadian processes of sleep regulation are disturbed. Also, we found an insufficient number of studies aimed at studying the relationship between known biological phenomena of circadian disorders and clinical signs of schizophrenia.
Collapse
Affiliation(s)
- Dmytro I Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, Tamil Nadu, India
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Pavlo V Kydon
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Larysa O Herasymenko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Vadym O Rud
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Lesia A Bodnar
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Ganna Yu Vasylyeva
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Rustam I Isakov
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Liliia V Zhyvotovska
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Aashna Mehta
- University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Andrii M Skrypnikov
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
6
|
Feketeová E, Dragašek J, Klobučníková K, Ďurdík P, Čarnakovič S, Slavkovská M, Chylová M. Psychotic Episode and Schizophrenia in Slovakian Narcolepsy Database. Brain Sci 2022; 13:brainsci13010043. [PMID: 36672025 PMCID: PMC9856970 DOI: 10.3390/brainsci13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Narcolepsy type 1 (NT1), a central disorder of hypersomnolence, is associated with mood, anxiety or hyperactivity mental disorders. Association with psychotic episode or schizophrenia is rare and could be the source of diagnostic and therapeutic difficulties. Their frequency in the national narcolepsy database has not been systematically studied. The aim of the presented study was to calculate the frequency of NT1 patients diagnosed with psychosis and/or schizophrenia, to identify clinical characteristics of these cases, and to look for narcoleptic and psychotic symptoms during re-evaluation years later. We identified three (4%) cases diagnosed with a psychotic episode in the course of NT1. They were diagnosed with NT1 by age ≤18 years. In the re-evaluation (mean follow-up 9.8 years), we identified one case with a dual diagnosis of NT1 and schizophrenia; two cases were diagnosed with a solitary psychotic episode in the course of NT1. NT1 patients diagnosed in the age ≤18 years are at higher risk of psychotic episode, and this may be related to higher vulnerability during the ongoing neurodevelopmental period. Comorbid schizophrenia with NT1 in the Slovakian Narcolepsy Database was within the prevalence expected in the general population. The solitary psychotic episode in the course of NT1 did not reduce the possibility of subsequent symptomatic treatment afterwards.
Collapse
Affiliation(s)
- Eva Feketeová
- Department of Neurology, Faculty of Medicine, University of P.J. Šafárik and University Hospital of L. Pasteur, Trieda SNP 1, 04011 Košice, Slovakia
| | - Jozef Dragašek
- 1st Department of Psychiatry, Faculty of Medicine, University of P.J. Šafárik and University Hospital of L. Pasteur, Trieda SNP 1, 04011 Košice, Slovakia
- Correspondence:
| | - Katarína Klobučníková
- 1st Department of Neurology, Faculty of Medicine, Comenius University and University Hospital in Bratislava, Mickiewiczova 13, 81369 Bratislava, Slovakia
| | - Peter Ďurdík
- Clinic of Children and Adolescents, Jessenius Faculty of Medicine, Comenius University in Bratislava and University Hospital in Martin, Kollarova 2, 03659 Martin, Slovakia
| | - Simona Čarnakovič
- 1st Department of Psychiatry, Faculty of Medicine, University of P.J. Šafárik and University Hospital of L. Pasteur, Trieda SNP 1, 04011 Košice, Slovakia
| | - Miriam Slavkovská
- Department of Neurology, Faculty of Medicine, University of P.J. Šafárik and University Hospital of L. Pasteur, Trieda SNP 1, 04011 Košice, Slovakia
| | - Martina Chylová
- 1st Department of Psychiatry, Faculty of Medicine, University of P.J. Šafárik and University Hospital of L. Pasteur, Trieda SNP 1, 04011 Košice, Slovakia
| |
Collapse
|
7
|
Low circadian amplitude and delayed phase are linked to seasonal affective disorder (SAD). JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
8
|
Goh KK, Chen CYA, Wu TH, Chen CH, Lu ML. Crosstalk between Schizophrenia and Metabolic Syndrome: The Role of Oxytocinergic Dysfunction. Int J Mol Sci 2022; 23:ijms23137092. [PMID: 35806096 PMCID: PMC9266532 DOI: 10.3390/ijms23137092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
The high prevalence of metabolic syndrome in persons with schizophrenia has spurred investigational efforts to study the mechanism beneath its pathophysiology. Early psychosis dysfunction is present across multiple organ systems. On this account, schizophrenia may be a multisystem disorder in which one organ system is predominantly affected and where other organ systems are also concurrently involved. Growing evidence of the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, such as an association with cognitive dysfunction, altered autonomic nervous system regulation, desynchrony in the resting-state default mode network, and shared genetic liability, suggest that metabolic syndrome and schizophrenia are connected via common pathways that are central to schizophrenia pathogenesis, which may be underpinned by oxytocin system dysfunction. Oxytocin, a hormone that involves in the mechanisms of food intake and metabolic homeostasis, may partly explain this piece of the puzzle in the mechanism underlying this association. Given its prosocial and anorexigenic properties, oxytocin has been administered intranasally to investigate its therapeutic potential in schizophrenia and obesity. Although the pathophysiology and mechanisms of oxytocinergic dysfunction in metabolic syndrome and schizophrenia are both complex and it is still too early to draw a conclusion upon, oxytocinergic dysfunction may yield a new mechanistic insight into schizophrenia pathogenesis and treatment.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cynthia Yi-An Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tzu-Hua Wu
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Gabryelska A, Turkiewicz S, Karuga FF, Sochal M, Strzelecki D, Białasiewicz P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients-Possible Mechanisms Involved and Clinical Implication. Int J Mol Sci 2022; 23:ijms23020709. [PMID: 35054894 PMCID: PMC8775490 DOI: 10.3390/ijms23020709] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic condition characterized by recurrent pauses in breathing caused by the collapse of the upper airways, which results in intermittent hypoxia and arousals during the night. The disorder is associated with a vast number of comorbidities affecting different systems, including cardiovascular, metabolic, psychiatric, and neurological complications. Due to abnormal sleep architecture, OSA patients are at high risk of circadian clock disruption, as has been reported in several recent studies. The circadian clock affects almost all daily behavioral patterns, as well as a plethora of physiological processes, and might be one of the key factors contributing to OSA complications. An intricate interaction between the circadian clock and hypoxia may further affect these processes, which has a strong foundation on the molecular level. Recent studies revealed an interaction between hypoxia-inducible factor 1 (HIF-1), a key regulator of oxygen metabolism, and elements of circadian clocks. This relationship has a strong base in the structure of involved elements, as HIF-1 as well as PER, CLOCK, and BMAL, belong to the same Per-Arnt-Sim domain family. Therefore, this review summarizes the available knowledge on the molecular mechanism of circadian clock disruption and its influence on the development and progression of OSA comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
- Correspondence: ; Tel.: +48-660796004
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| |
Collapse
|
10
|
Sleep Disturbances Linked to Genetic Disorders. Sleep Med Clin 2022; 17:77-86. [DOI: 10.1016/j.jsmc.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Li S, Zhang R, Hu S, Lai J. Plasma Orexin-A Levels in Patients With Schizophrenia: A Systematic Review and Meta-Analysis. Front Psychiatry 2022; 13:879414. [PMID: 35693955 PMCID: PMC9174516 DOI: 10.3389/fpsyt.2022.879414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Orexins are polypeptides regulating appetite, sleep-wake cycle, and cognition functions, which are commonly disrupted in patients with schizophrenia. Patients with schizophrenia show a decreased connectivity between the prefrontal cortex and midline-anterior thalamus, and orexin can directly activate the axon terminal of cells within the prefrontal cortex and selectively depolarize neurons in the midline intralaminar nuclei of the thalamus. To address the relationship between orexin and schizophrenia, this study performed a meta-analysis on the alteration of plasma orexin-A levels in patients with schizophrenia. METHOD We searched eligible studies in PubMed, Embase, Cochrane, and China National Knowledge Infrastructure (CNKI) from 1998 to September 3, 2021. A total of 8 case-control studies were included in the meta-analyses, providing data on 597 patients with schizophrenia and 370 healthy controls. The Stata version 16.0 software was used to calculate the Hedges's adjusted g with 95% confidence intervals (CI). RESULTS The plasma orexin-A levels were not altered in subjects with schizophrenia (n = 597) when compared to healthy controls (n = 370). Subgroup analyses of gender (male and female vs. only male), country (China vs. other countries), medication (medication vs. non-medication), and the measurement of plasma orexin-A (Enzyme-linked immunosorbent assay vs. radioimmunoassay) revealed heterogeneity ranging from 30.15 to 98.15%, but none showed a significant alteration of plasma orexin-A levels in patients with schizophrenia. Heterogeneity was lower in the other countries and radioimmunoassay subgroup, while other subgroups remained to be highly heterogeneous. No significant evidence of publication bias was found either in Begg's test or the Egger's test. CONCLUSION The present meta-analysis indicated that patients with schizophrenia did not show abnormal plasma levels of orexin-A. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021283455, identifier: CRD42021283455.
Collapse
Affiliation(s)
- Shaoli Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruili Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
|
13
|
Falker-Gieske C, Bennewitz J, Tetens J. The light response in chickens divergently selected for feather pecking behavior reveals mechanistic insights towards psychiatric disorders. Mol Biol Rep 2021; 49:1649-1654. [PMID: 34954808 PMCID: PMC8825407 DOI: 10.1007/s11033-021-07111-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Background Feather pecking is a serious behavioral disorder in chickens that has a considerable impact on animal welfare and poses an economic burden for poultry farming. To study the underlying genetics of feather pecking animals were divergently selected for feather pecking over 15 generations based on estimated breeding values for the behavior. Methods and results By characterizing the transcriptomes of whole brains isolated from high and low feather pecking chickens in response to light stimulation we discovered a putative dysregulation of micro RNA processing caused by a lack of Dicer1. This results in a prominent downregulation of the GABRB2 gene and other GABA receptor transcripts, which might cause a constant high level of excitation in the brains of high feather pecking chickens. Moreover, our results point towards an increase in immune system-related transcripts that may be caused by higher interferon concentrations due to Dicer1 downregulation. Conclusion Based on our results, we conclude that feather pecking in chickens and schizophrenia in humans have numerous common features. For instance, a Dicer1 dependent disruption of miRNA biogenesis and the lack of GABRB2 expression have been linked to schizophrenia pathogenesis. Furthermore, disturbed circadian rhythms and dysregulation of genes involved in the immune system are common features of both conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-021-07111-4.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Division of Functional Breeding, Department of Animal Sciences, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.,Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| |
Collapse
|
14
|
DiBlasi E, Shabalin AA, Monson ET, Keeshin BR, Bakian AV, Kirby AV, Ferris E, Chen D, William N, Gaj E, Klein M, Jerominski L, Callor WB, Christensen E, Smith KR, Fraser A, Yu Z, Gray D, Camp NJ, Stahl EA, Li QS, Docherty AR, Coon H. Rare protein-coding variants implicate genes involved in risk of suicide death. Am J Med Genet B Neuropsychiatr Genet 2021; 186:508-520. [PMID: 34042246 PMCID: PMC9292859 DOI: 10.1002/ajmg.b.32861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Identification of genetic factors leading to increased risk of suicide death is critical to combat rising suicide rates, however, only a fraction of the genetic variation influencing risk has been accounted for. To address this limitation, we conducted the first comprehensive analysis of rare genetic variation in suicide death leveraging the largest suicide death biobank, the Utah Suicide Genetic Risk Study (USGRS). We conducted a single-variant association analysis of rare (minor allele frequency <1%) putatively functional single-nucleotide polymorphisms (SNPs) present on the Illumina PsychArray genotyping array in 2,672 USGRS suicide deaths of non-Finnish European (NFE) ancestry and 51,583 NFE controls from the Genome Aggregation Database. Secondary analyses used an independent control sample of 21,324 NFE controls from the Psychiatric Genomics Consortium. Five novel, high-impact, rare SNPs were identified with significant associations with suicide death (SNAPC1, rs75418419; TNKS1BP1, rs143883793; ADGRF5, rs149197213; PER1, rs145053802; and ESS2, rs62223875). 119 suicide decedents carried these high-impact SNPs. Both PER1 and SNAPC1 have other supporting gene-level evidence of suicide risk, and psychiatric associations exist for PER1 (bipolar disorder, schizophrenia), and for TNKS1BP1 and ESS2 (schizophrenia). Three of the genes (PER1, TNKS1BP1, and ADGRF5), together with additional genes implicated by genome-wide association studies on suicidal behavior, showed significant enrichment in immune system, homeostatic and signal transduction processes. No specific diagnostic phenotypes were associated with the subset of suicide deaths with the identified rare variants. These findings suggest an important role for rare variants in suicide risk and implicate genes and gene pathways for targeted replication.
Collapse
Affiliation(s)
- Emily DiBlasi
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Andrey A. Shabalin
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Eric T. Monson
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Brooks R. Keeshin
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
- Safe and Healthy Families, Primary Children's HospitalIntermountain HealthcareSalt Lake CityUtahUSA
| | - Amanda V. Bakian
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Anne V. Kirby
- Department of Occupational & Recreational TherapiesUniversity of UtahSalt Lake CityUtahUSA
| | - Elliott Ferris
- Department of Neurobiology & AnatomyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Danli Chen
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Nancy William
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Eoin Gaj
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Michael Klein
- Health Sciences Center Core Research FacilityUniversity of UtahSalt Lake CityUtahUSA
| | - Leslie Jerominski
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - W. Brandon Callor
- Utah State Office of the Medical ExaminerUtah Department of HealthSalt Lake CityUtahUSA
| | - Erik Christensen
- Utah State Office of the Medical ExaminerUtah Department of HealthSalt Lake CityUtahUSA
| | - Ken R. Smith
- Pedigree & Population Resource, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Alison Fraser
- Pedigree & Population Resource, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Zhe Yu
- Pedigree & Population Resource, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Douglas Gray
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | | | - Nicola J. Camp
- Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Eli A. Stahl
- Pamela Sklar Division of Psychiatric GenomicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Medical and Population Genetics, Broad InstituteCambridgeMassachusettsUSA
| | - Qingqin S. Li
- Neuroscience Data Science, Janssen Research & Development LLCTitusvilleNew JerseyUSA
| | - Anna R. Docherty
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
- Virginia Institute for Psychiatric & Behavioral GeneticsVirginia Commonwealth School of MedicineRichmondVirginiaUSA
| | - Hilary Coon
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| |
Collapse
|
15
|
Misiak B, Pruessner M, Samochowiec J, Wiśniewski M, Reginia A, Stańczykiewicz B. A meta-analysis of blood and salivary cortisol levels in first-episode psychosis and high-risk individuals. Front Neuroendocrinol 2021; 62:100930. [PMID: 34171354 DOI: 10.1016/j.yfrne.2021.100930] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022]
Abstract
Dysregulated cortisol responses and glucose metabolism have been reported in psychosis. We performed a random-effects meta-analysis of cortisol responses in first-episode psychosis (FEP) and psychosis risk states, taking into consideration glucose metabolism. A total of 47 studies were included. Unstimulated blood cortisol levels were significantly higher (g = 0.48, 95 %CI: 0.25-0.70, p < 0.001) in FEP, but not in psychosis risk states (g = 0.39, 95 %CI: -0.42-1.21, p = 0.342), compared to controls. Cortisol awakening response (CAR) was attenuated in FEP (g = -0.40, 95 %CI: -0.68 - -0.12, p = 0.006), but not in psychosis risk states (p = 0.433). Glucose and insulin levels were positively correlated with unstimulated blood cortisol levels in FEP. Our meta-analysis supports previous findings of elevated blood cortisol levels and attenuated CAR in FEP. Future research should focus on identifying the common denominators for alterations in stress hormones and glucose metabolism.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland.
| | - Marita Pruessner
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada; Department of Clinical Psychology, University of Konstanz, Konstanz, Germany
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-457 Szczecin, Poland
| | | | - Artur Reginia
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-457 Szczecin, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618 Wroclaw, Poland
| |
Collapse
|
16
|
Moon E, Lavin P, Storch KF, Linnaranta O. Effects of antipsychotics on circadian rhythms in humans: a systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110162. [PMID: 33152385 DOI: 10.1016/j.pnpbp.2020.110162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023]
Abstract
Antipsychotics are widely used to treat psychiatric illness and insomnia. However, the etiology of insomnia is multifactorial, including disrupted circadian rhythms. Several studies show that antipsychotics might modulate even healthy circadian rhythms. The purpose of this systematic review is to integrate current knowledge about the effects of antipsychotics on the circadian rhythms in humans, and to conduct a meta- analysis with the available data. Nine electronic databases were searched. We followed the PRISMA guidelines and included randomized controlled trials (RCTs), non-RCTs, case-control studies, case series, and case reports. Of 7,217 articles, 70 were included. The available data was mainly from healthy individuals, or patients having schizophrenia, but the findings showed a transdiagnostic impact on circadian parameters. This was consistently seen as decreased amplitude of cortisol, melatonin, and body temperature. Particularly, a meta-analysis of 16 RCTs measuring cortisol rhythm showed that antipsychotics, especially atypical antipsychotics, decreased the cortisol area under the curve and morning cortisol level, compared to placebo. The data with melatonin or actigraphy was limited. Overall, this evidence about the circadian effect of antipsychotics showed a need for longitudinal, real-time monitoring of specific circadian markers to differentiate a change in amplitude from a shift in phasing, and for knowledge about optimal timing of administration of antipsychotics, according to individual baseline circadian parameters. Standardizing selection criteria and outcome methods could facilitate good quality intervention studies and evidence-based treatment guidelines. This is relevant considering the accumulating evidence of the high prevalence and unfavorable impact of disrupted circadian rhythms in psychiatric disorders.
Collapse
Affiliation(s)
- Eunsoo Moon
- Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Psychiatry, Medical Research Institute and Pusan National University Hospital, Busan, Republic of Korea; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Paola Lavin
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Outi Linnaranta
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada; National institute for Health and Welfare, Helsinki, Finland.
| |
Collapse
|
17
|
Lu J, Huang ML, Li JH, Jin KY, Li HM, Mou TT, Fronczek R, Duan JF, Xu WJ, Swaab D, Bao AM. Changes of Hypocretin (Orexin) System in Schizophrenia: From Plasma to Brain. Schizophr Bull 2021; 47:1310-1319. [PMID: 33974073 PMCID: PMC8379539 DOI: 10.1093/schbul/sbab042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypocretin (also called orexin) regulates various functions, such as sleep-wake rhythms, attention, cognition, and energy balance, which show significant changes in schizophrenia (SCZ). We aimed to identify alterations in the hypocretin system in SCZ patients. We measured plasma hypocretin-1 levels in SCZ patients and healthy controls and found significantly decreased plasma hypocretin-1 levels in SCZ patients, which was mainly due to a significant decrease in female SCZ patients compared with female controls. In addition, we measured postmortem hypothalamic hypocretin-1-immunoreactivity (ir), ventricular cerebrospinal fluid (CSF) hypocretin-1 levels, and hypocretin receptor (Hcrt-R) mRNA expression in the superior frontal gyrus (SFG) in SCZ patients and controls We observed a significant decrease in the amount of hypothalamic hypocretin-1 ir in SCZ patients, which was due to decreased amounts in female but not male patients. Moreover, Hcrt-R2 mRNA in the SFG was decreased in female SCZ patients compared with female controls, while male SCZ patients showed a trend of increased Hcrt-R1 mRNA and Hcrt-R2 mRNA expression compared with male controls. We conclude that central hypocretin neurotransmission is decreased in SCZ patients, especially female patients, and this is reflected in the plasma.
Collapse
Affiliation(s)
- Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Man-Li Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jin-Hui Li
- Department of Traditional Chinese Medicine & Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kang-Yu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Mei Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting-Ting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Jin-Feng Duan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Wei-Juan Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Dick Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Min Bao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China,To whom correspondence should be addressed; Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; tel: +86 571 88208789, fax: +86 571 88208094, e-mail:
| |
Collapse
|
18
|
Filiz Ozsoy, Yigit S, Nursal AF, Kulu M, Karakus N. The Impact of PER3 VNTR Polymorphism on the Development of Schizophrenia in a Turkish Population. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721020109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Abstract
During the evolution of life, the temporal rhythm of our rotating planet was internalized in the form of circadian rhythms. Circadian rhythms are ~24h internal manifestations that drive daily patterns of physiology and behavior. These rhythms are entrained (synchronized) to the external environment, primarily by the light-dark cycle, and precisely controlled via molecular clocks located within the suprachiasmatic nucleus of the hypothalamus. Misalignment and/or disruption of circadian rhythms can have detrimental consequences for human health. Indeed, studies suggest strong associations between mental health and circadian rhythms. However, direct interactions between mood regulation and the circadian system are just beginning to be uncovered and appreciated. This chapter examines the relationship between disruption of circadian rhythms and mental health. The primary focus will be outlining the association between circadian disruption, in the form of night shift work, exposure to light at night, jet lag, and social jet lag, and psychiatric illness (i.e., anxiety, major depressive disorder, bipolar disorder, and schizophrenia). Additionally, we review animal models of disrupted circadian rhythms, which provide further evidence in support of a strong association between circadian disruption and affective responses. Finally, we discuss future directions for the field and suggest areas of study that require further investigation.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States.
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
20
|
Lis M, Stańczykiewicz B, Liśkiewicz P, Misiak B. Impaired hormonal regulation of appetite in schizophrenia: A narrative review dissecting intrinsic mechanisms and the effects of antipsychotics. Psychoneuroendocrinology 2020; 119:104744. [PMID: 32534330 DOI: 10.1016/j.psyneuen.2020.104744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022]
Abstract
Cardiometabolic diseases are the main contributor of reduced life expectancy in patients with schizophrenia. It is now widely accepted that antipsychotic treatment plays an important role in the development of obesity and its consequences. However, some intrinsic mechanisms need to be taken into consideration. One of these mechanisms might be related to impaired hormonal regulation of appetite in this group of patients. In this narrative review, we aimed to dissect impairments of appetite-regulating hormones attributable to intrinsic mechanisms and those related to medication effects. Early hormonal alterations that might be associated with intrinsic mechanisms include low levels of leptin and glucagon-like peptide-1 (GLP-1) together with elevated insulin levels in first-episode psychosis (FEP) patients. However, evidence regarding low GLP-1 levels in FEP patients is based on one large study. In turn, multiple-episode schizophrenia patients show elevated levels of insulin, leptin and orexin A together with decreased levels of adiponectin. In addition, patients receiving olanzapine may present with low ghrelin levels. Post mortem studies have also demonstrated reduced number of neuropeptide Y neurons in the prefrontal cortex of patients with schizophrenia. Treatment with certain second-generation antipsychotics may also point to these alterations. Although our understanding of hormonal regulation of appetite in schizophrenia has largely been improved, several limitations and directions for future studies need to be addressed. This is of particular importance since several novel pharmacological interventions for obesity and diabetes have already been developed and translation of these developments to the treatment of cardiometabolic comorbidities in schizophrenia patients is needed.
Collapse
Affiliation(s)
- Michał Lis
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, The Central Clinical Hospital of the Ministry of the Interior in Warsaw, Wołoska 137 Street, 02-507 Warsaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618, Wroclaw, Poland
| | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460, Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| |
Collapse
|
21
|
Kirlioglu SS, Balcioglu YH. Chronobiology Revisited in Psychiatric Disorders: From a Translational Perspective. Psychiatry Investig 2020; 17:725-743. [PMID: 32750762 PMCID: PMC7449842 DOI: 10.30773/pi.2020.0129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Several lines of evidence support a relationship between circadian rhythms disruption in the onset, course, and maintenance of mental disorders. Despite the study of circadian phenotypes promising a decent understanding of the pathophysiologic or etiologic mechanisms of psychiatric entities, several questions still need to be addressed. In this review, we aimed to synthesize the literature investigating chronobiologic theories and their associations with psychiatric entities. METHODS The Medline, Embase, PsycInfo, and Scopus databases were comprehensively and systematically searched and articles published between January 1990 and October 2019 were reviewed. Different combinations of the relevant keywords were polled. We first introduced molecular elements and mechanisms of the circadian system to promote a better understanding of the chronobiologic implications of mental disorders. Then, we comprehensively and systematically reviewed circadian system studies in mood disorders, schizophrenia, and anxiety disorders. RESULTS Although subject characteristics and study designs vary across studies, current research has demonstrated that circadian pathologies, including genetic and neurohumoral alterations, represent the neural substrates of the pathophysiology of many psychiatric disorders. Impaired HPA-axis function-related glucocorticoid rhythm and disrupted melatonin homeostasis have been prominently demonstrated in schizophrenia and other psychotic disorders, while alterations of molecular expressions of circadian rhythm genes including CLOCK, PER, and CRY have been reported to be involved in the pathogenesis of mood disorders. CONCLUSION Further translational work is needed to identify the causal relationship between circadian physiology abnormalities and mental disorders and related psychopathology, and to develop sound pharmacologic interventions.
Collapse
Affiliation(s)
- Simge Seren Kirlioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
22
|
Ashton A, Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front Neurosci 2020; 14:636. [PMID: 32655359 PMCID: PMC7324687 DOI: 10.3389/fnins.2020.00636] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD) is a common feature of schizophrenia, and is associated with symptom severity and patient quality of life. It is commonly manifested as disturbances to the sleep/wake cycle, with sleep abnormalities occurring in up to 80% of patients, making it one of the most common symptoms of this disorder. Severe circadian misalignment has also been reported, including non-24 h periods and phase advances and delays. In parallel, there are alterations to physiological circadian parameters such as body temperature and rhythmic hormone production. At the molecular level, alterations in the rhythmic expression of core clock genes indicate a dysfunctional circadian clock. Furthermore, genetic association studies have demonstrated that mutations in several clock genes are associated with a higher risk of schizophrenia. Collectively, the evidence strongly suggests that sleep and circadian disruption is not only a symptom of schizophrenia but also plays an important causal role in this disorder. The alterations in dopamine signaling that occur in schizophrenia are likely to be central to this role. Dopamine is well-documented to be involved in the regulation of the sleep/wake cycle, in which it acts to promote wakefulness, such that elevated dopamine levels can disturb sleep. There is also evidence for the influence of dopamine on the circadian clock, such as through entrainment of the master clock in the suprachiasmatic nuclei (SCN), and dopamine signaling itself is under circadian control. Therefore dopamine is closely linked with sleep and the circadian system; it appears that they have a complex, bidirectional relationship in the pathogenesis of schizophrenia, such that disturbances to one exacerbate abnormalities in the other. This review will provide an overview of the evidence for a role of SCRD in schizophrenia, and examine the interplay of this with altered dopamine signaling. We will assess the evidence to suggest common underlying mechanisms in the regulation of sleep/circadian rhythms and the pathophysiology of schizophrenia. Improvements in sleep are associated with improvements in symptoms, along with quality of life measures such as cognitive ability and employability. Therefore the circadian system holds valuable potential as a new therapeutic target for this disorder.
Collapse
Affiliation(s)
- Anna Ashton
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Satyanarayanan SK, Chien YC, Chang JPC, Huang SY, Guu TW, Su H, Su KP. Melatonergic agonist regulates circadian clock genes and peripheral inflammatory and neuroplasticity markers in patients with depression and anxiety. Brain Behav Immun 2020; 85:142-151. [PMID: 30851380 DOI: 10.1016/j.bbi.2019.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Circadian dysfunction is a core manifestation and a risk factor for psychiatric disorders. Ramelteon (RMT), a melatonin receptor agonist, has been shown to induce sleep phase shifts and has been used to normalize sleep onset time. RMT has been used in sleep disorders, depression and anxiety. In this study, we aimed to investigate the effects of RMT in regulating gene expression profiles of the circadian clock and peripheral markers of inflammation and neuroplasticity. METHODS Sixteen patients with a diagnosis of primary insomnia comorbid with depression and anxiety and ten healthy controls were recruited in an 8-week open-label trial. The patients with primary insomnia received RMT 8 mg/day. The morning expression profiles of 15 core clock genes from peripheral blood mononuclear cells (PBMCs), urine and plasma levels of melatonin and its metabolite levels, and plasma inflammatory markers and neurotrophin levels were evaluated at baseline, 4th and 8th week of RMT treatment. RESULTS RMT treatment was associated with significant clinical improvement in depression scores at 8th week (Hamilton depression rating scale scores (Mean ± SEM) from 21.5 ± 2.44 to 14.31 ± 2.25, p ≤ 0.05). The overall poor sleep quality (Pittsburgh sleep quality index) of the patient group significantly improved (p ≤ 0.05) following RMT treatment. The mRNA level analysis showed a significant association between RMT treatment and alterations of the nine core circadian genes (CLOCK, PER1, PER2, CRY1, CRY2, NR1D1, NR1D2, DEC1 and TIMELESS) in the patient group when compared with the control group (p ≤ 0.05). Compared with the controls, the patient group had a decrease in neurotrophins (brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and beta-nerve growth factor; p ≤ 0.05) but an increase in pro-inflammatory cytokine levels (interleukin-6, interleukin-1b, tumour necrosis factor-alpha and interferon gamma; p ≤ 0.05); RMT treatment normalized the levels of neurotrophins and cytokine levels. CONCLUSION RMT treatment is able to restore phase-shifted melatonin markers, normalized the altered expression of the circadian genes, the levels of inflammatory cytokines and neurotrophins in patients with insomnia comorbid anxiety and depression.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yu-Chuan Chien
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Division of Psychiatry, Departments of Internal Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Jane Pei-Chen Chang
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; College of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ta-Wei Guu
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Division of Psychiatry, Departments of Internal Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
24
|
Wei H, Zapata RC, Lopez-Valencia M, Aslanoglou D, Farino ZJ, Benner V, Osborn O, Freyberg Z, McCarthy MJ. Dopamine D 2 receptor signaling modulates pancreatic beta cell circadian rhythms. Psychoneuroendocrinology 2020; 113:104551. [PMID: 31884319 PMCID: PMC7787223 DOI: 10.1016/j.psyneuen.2019.104551] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023]
Abstract
Antipsychotic drugs (APD) have clinically important, adverse effects on metabolism that limit their therapeutic utility. Pancreatic beta cells produce dopamine and express the D2 dopamine receptor (D2R). As D2R antagonists, APDs alter glucose-stimulated insulin secretion, indicating that dopamine likely plays a role in APD-induced metabolic dysfunction. Insulin secretion from beta cells is also modulated by the circadian clock. Disturbed circadian rhythms cause metabolic disturbances similar to those observed in APD-treated subjects. Given the importance of dopamine and circadian rhythms for beta cells, we hypothesized that the beta cell dopamine system and circadian clock interact and dually regulate insulin secretion, and that circadian manipulations may alter the metabolic impact of APDs. We measured circadian rhythms, insulin release, and the impact of dopamine upon these processes in beta cells using bioluminescent reporters. We then assessed the impact of circadian timing on weight gain and metabolic outcomes in mice treated with the APD sulpiride at the onset of light or dark. We found that molecular components of the dopamine system were rhythmically expressed in beta cells. D2R stimulation by endogenous dopamine or the agonist bromocriptine reduced circadian rhythm amplitude, and altered the temporal profile of insulin secretion. Sulpiride caused greater weight gain and hyperinsulinemia in mice when given in the dark phase compared to the light phase. D2R-acting drugs affect circadian-dopamine interactions and modulate beta cell metabolic function. These findings identify circadian timing as a novel and important mechanism underlying APD-induced metabolic dysfunction, offering new possibilities for therapeutic interventions.
Collapse
Affiliation(s)
- Heather Wei
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161, USA
| | - Rizaldy C. Zapata
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | | | - Despoina Aslanoglou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Valerie Benner
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161, USA
| | - Olivia Osborn
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Michael J. McCarthy
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161, USA,Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, San Diego, CA 92161, USA,Corresponding author at: VA San Diego Healthcare System, 3350 La Jolla Village Dr MC116A, San Diego, CA 92161 USA
| |
Collapse
|
25
|
Walker WH, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and mental health. Transl Psychiatry 2020; 10:28. [PMID: 32066704 PMCID: PMC7026420 DOI: 10.1038/s41398-020-0694-0] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythms are internal manifestations of the solar day that permit adaptations to predictable environmental temporal changes. These ~24-h rhythms are controlled by molecular clockworks within the brain that are reset daily to precisely 24 h by exposure to the light-dark cycle. Information from the master clock in the mammalian hypothalamus conveys temporal information to the entire body via humoral and neural communication. A bidirectional relationship exists between mood disorders and circadian rhythms. Mood disorders are often associated with disrupted circadian clock-controlled responses, such as sleep and cortisol secretion, whereas disruption of circadian rhythms via jet lag, night-shift work, or exposure to artificial light at night, can precipitate or exacerbate affective symptoms in susceptible individuals. Evidence suggests strong associations between circadian rhythms and mental health, but only recently have studies begun to discover the direct interactions between the circadian system and mood regulation. This review provides an overview of disrupted circadian rhythms and the relationship to behavioral health and psychiatry. The focus of this review is delineating the role of disruption of circadian rhythms on mood disorders using human night shift studies, as well as jet lag studies to identify links. We also review animal models of disrupted circadian rhythms on affective responses. Lastly, we propose low-cost behavioral and lifestyle changes to improve circadian rhythms and presumably behavioral health.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA.
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA
- Department of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
26
|
Xu Y, Ma H, Zhao T, Wen D, Wen Y, Qiao D, Liu Z. Association Between Period 3 Gene Polymorphisms and Adverse Effects of Antidepressants for Major Depressive Disorder. Genet Test Mol Biomarkers 2019; 23:843-849. [PMID: 31692380 DOI: 10.1089/gtmb.2019.0065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: Circadian rhythm genes including Period 3 (Per3) are associated with major depressive disorder (MDD) and have an effect on the patient's response to selective serotonin reuptake inhibitor (SSRI) antidepressants. The aim of this study was to identify possible associations between three single nucleotide polymorphisms (SNPs) of Per3 (rs10746473, rs228697, and rs228729), the MDD symptoms, and adverse effects of SSRIs. Materials and Methods: A total of 600 MDD patients who had been treated with SSRIs were enrolled. The 17-item Hamilton Rating Scale for Depression (HAMD17) was used to evaluate symptoms and treatment efficacy. In addition, the Treatment Emergent Symptom Scale/UKU Consumer Satisfaction Rating Scale (TESS/UKU) was used to assess adverse effects. The Per3 locus was genotyped by PCR and DNA sequencing. Results: The Per3 rs228697 CC genotype was associated with a higher sleep factor score when compared with the CG genotype (F = 4.027, p = 0.046). In addition, the rs228729 TC genotype was associated with a greater risk of suffering from excitement/agitation (p = 0.002, OR [odds ratio] = 4.049), akathisia (p = 0.014, OR = 4.905) and weight loss (p = 0.041, OR = 2.287) when compared with the CC genotype. Finally, the rs10746473 AA genotype patients were more likely to suffer from dizziness (p = 0.042, OR = 0.362) and the GA genotype patients from tachycardia (p = 0.015, OR = 0.340) when compared with those with GG genotype. Conclusion: The Per3 gene variants in patients can predict adverse effects of SSRIs and drug compliance.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, P.R. China.,First Clinical Medical College, Shanxi Medical Univeristy, Taiyuan, P.R. China
| | - Huiying Ma
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Ting Zhao
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Dan Wen
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Yujiao Wen
- First Clinical Medical College, Shanxi Medical Univeristy, Taiyuan, P.R. China
| | - Dan Qiao
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, P.R. China.,First Clinical Medical College, Shanxi Medical Univeristy, Taiyuan, P.R. China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, P.R. China
| |
Collapse
|
27
|
Hubbard DB, Miller BJ. Meta-analysis of blood cortisol levels in individuals with first-episode psychosis. Psychoneuroendocrinology 2019; 104:269-275. [PMID: 30909008 DOI: 10.1016/j.psyneuen.2019.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Schizophrenia is associated with abnormal neuroimmunoendocrine function. There is evidence for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in individuals with first-episode psychosis (FEP). However, some previous meta-analyses have focused on heterogeneous sample sources and patient populations. We performed a meta-analysis of baseline (i.e., one sample) blood cortisol levels in individuals with FEP and minimal exposure to antipsychotics. METHOD Articles were identified by searching PubMed, PsycInfo, Web of Science, and Science Direct, and the reference lists of these studies. RESULTS Twenty-six studies (comprising twenty-seven samples) met the inclusion criteria. Blood cortisol levels were significantly increased in individuals with FEP compared to controls with a small-to-medium effect size (standard mean difference [SMD] = 0.37, 95% CI 0.16-0.57, p < 0.001). In meta-regression analyses, geography was a significant moderator of this association, with larger effects seen in studies conducted in Asia versus the Middle East. CONCLUSION We found elevated blood cortisol levels in individuals with FEP, providing additional, complementary evidence for abnormal HPA axis function in this disorder. This finding, which does not inform on mechanism, is consistent with the "neural diathesis-stress" model of psychosis. Given the immunomodulatory effects of cortisol, methodologically rigorous longitudinal studies of cortisol parameters, inflammatory markers, and psychopathology in this patient population are warranted.
Collapse
Affiliation(s)
- Daniel B Hubbard
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Brian J Miller
- Department of Psychiatry and Health Behavior, Augusta University, 997 Saint Sebastian Way, Augusta, GA, 30912, United States.
| |
Collapse
|
28
|
Misiak B, Bartoli F, Stramecki F, Samochowiec J, Lis M, Kasznia J, Jarosz K, Stańczykiewicz B. Appetite regulating hormones in first-episode psychosis: A systematic review and meta-analysis. Neurosci Biobehav Rev 2019; 102:362-370. [PMID: 31121198 DOI: 10.1016/j.neubiorev.2019.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
We aimed to perform a systematic review and meta-analysis of appetite regulating hormones in patients with first-episode psychosis (FEP). Meta-analyses were conducted using random-effects models with Hedges' g as the effect size estimate. We identified 31 eligible studies, investigating the levels of 7 appetite regulating hormones (adiponectin, insulin, leptin, ghrelin, orexin, resistin and visfatin) in 1792 FEP patients and 1364 controls. The insulin levels in FEP patients were higher than in controls (g = 0.34, 95%CI: 0.19 - 0.49, p < 0.001), even considering only antipsychotic-naïve patients (g = 0.39, 95%CI: 0.12 - 0.66, p = 0.005). The severity of negative symptoms was positively associated with the effect size estimates (β = 0.08, 95%CI: 0.01 - 0.16, p = 0.030). Moreover, we found lower levels of leptin in antipsychotic-naïve FEP patients (g = -0.62, 95%CI: -1.11 - 0.12, p = 0.015). Impaired appetite regulation, in terms of elevated insulin levels and decreased leptin levels, occurs in early psychosis, before antipsychotic treatment. Hyperinsulinemia might be related to negative symptoms.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| | - Francesco Bartoli
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy; Department of Mental Health, ASST Nord Milano, Milano, Italy
| | - Filip Stramecki
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Michał Lis
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, The Central Clinical Hospital of the Ministry of the Interior in Warsaw, Wołoska 137 Street, 02-507 Warsaw, Poland
| | - Justyna Kasznia
- Inpatient Psychiatric Unit, Municipal General Hospital, Limanowskiego 20/22 Street, 63-400 Ostrów Wielkopolski, Poland
| | - Konrad Jarosz
- Department of Clinical Nursing, Pomeranian Medical University, Żołnierska 48 Street, 71-210 Szczecin, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618 Wroclaw, Poland
| |
Collapse
|
29
|
Jia L, Hu Y, Yang G, Li P. Puerarin suppresses cell growth and migration in HPV-positive cervical cancer cells by inhibiting the PI3K/mTOR signaling pathway. Exp Ther Med 2019; 18:543-549. [PMID: 31258692 PMCID: PMC6566033 DOI: 10.3892/etm.2019.7589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/01/2018] [Indexed: 02/07/2023] Open
Abstract
Puerarin is an effective component that is present in high concentrations in the Pueraria lobata plant and is extensively distributed throughout nature. Puerarin possesses a number of pharmacological effects and has strong pharmacological activity with few side effects and extensive clinical applications. The aim of the present study was to explore the effects of Puerarin on the apoptosis of human papillomavirus (HPV)-positive cervical cancer cells and the underlying molecular mechanisms. MTT assay, lactate dehydrogenase activity and Annexin V/fluorescein isothiocyanate/propidium iodide analysis were used to analyze cell growth of HPV-positive HeLa cervical cancer cells treated with Puerarin. Western blotting was performed to measure protein expression in the treated cells. Puerarin significantly reduced cell proliferation and induced apoptosis in HeLa cells. In addition, it was observed that Puerarin significantly enhanced caspase-3/9 activities and significantly increased B-cell lymphoma 2-asscoiate X protein expression in HeLa cells. Puerarin suppressed phosphatidylinositol-3 kinase (PI3K), phosphorylated (p)-protein kinase B (Akt) and p-mammalian target of rapamycin (mTOR) protein expression in HeLa cells. These results indicate that Puerarin induces apoptosis in HPV-positive HeLa cervical cancer cells via inhibiting PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Lihua Jia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yuling Hu
- Department of Obstetrics and Gynecology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101101, P.R. China
| | - Guohua Yang
- Department of Obstetrics and Gynecology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101101, P.R. China
| | - Peiling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
30
|
Okhuijsen‐Pfeifer C, Huijsman EAH, Hasan A, Sommer IEC, Leucht S, Kahn RS, Luykx JJ. Clozapine as a first- or second-line treatment in schizophrenia: a systematic review and meta-analysis. Acta Psychiatr Scand 2018; 138:281-288. [PMID: 30218445 PMCID: PMC6175356 DOI: 10.1111/acps.12954] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2018] [Indexed: 12/02/2022]
Abstract
OBJECTIVE No consensus exists on whether clozapine should be prescribed in early stages of psychosis. This systematic review and meta-analysis therefore focus on the use of clozapine as first-line or second-line treatment in non-treatment-resistant patients. METHODS Articles were eligible if they investigated clozapine compared to another antipsychotic as a first- or second-line treatment in non-treatment-resistant schizophrenia spectrum disorders (SCZ) patients and provided data on treatment response. We performed random-effects meta-analyses. RESULTS Fifteen articles were eligible for the systematic review (N = 314 subjects on clozapine and N = 800 on other antipsychotics). Our meta-analysis comparing clozapine to a miscellaneous group of antipsychotics revealed a significant benefit of clozapine (Hedges' g = 0.220, P = 0.026, 95% CI = 0.026-0.414), with no evidence of heterogeneity. In addition, a sensitivity analysis revealed a significant benefit of clozapine over risperidone (Hedges' g = 0.274, P = 0.030, 95% CI = 0.027-0.521). CONCLUSION The few eligible trials on this topic suggest that clozapine may be more effective than other antipsychotics when used as first- or second-line treatment. Only large clinical trials may comprehensively probe disease stage-dependent superiority of clozapine and investigate overall tolerability.
Collapse
Affiliation(s)
- C. Okhuijsen‐Pfeifer
- Department of PsychiatryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - E. A. H. Huijsman
- Department of PsychiatryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - A. Hasan
- Department of Psychiatry and PsychotherapyKlinikum der UniversitätMunichGermany
| | - I. E. C. Sommer
- Department of Neuroscience and Department of PsychiatryUniversitair Medisch Centrum GroningenGroningenThe Netherlands
| | - S. Leucht
- Department of Psychiatry and PsychotherapyTechnische Universität MünchenMunichGermany
| | - R. S. Kahn
- Department of PsychiatryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands,Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - J. J. Luykx
- Department of PsychiatryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands,Department of Translational NeuroscienceBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands,Department of PsychiatryZNA HospitalsAntwerpBelgium,Department of PsychiatrySymforaMeander HospitalAmersfoortThe Netherlands
| |
Collapse
|
31
|
Genetic Variations Associated with Sleep Disorders in Patients with Schizophrenia: A Systematic Review. MEDICINES 2018; 5:medicines5020027. [PMID: 29587340 PMCID: PMC6023503 DOI: 10.3390/medicines5020027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022]
Abstract
Background: Schizophrenic patients commonly suffer from sleep disorders which are associated with acute disease severity, worsening prognoses and a poorer quality of life. Research is attempting to disentangle the complex interplay between schizophrenia and sleep disturbances by focusing not only on demographic and clinical characteristics, but also on the identification of genetic factors. Methods: Here, we performed a systematic literature review on the topic of genetic variations in sleep-disordered schizophrenic patients in an attempt to identify high quality investigations reporting scientifically sound and clinically useful data. For this purpose, we conducted a thorough search of PubMed, ScienceDirect and GoogleScholar databases, according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) protocol. Results: Our search yielded 11 eligible studies. Certain genetic variations were reported to be associated with schizophrenia-related sleep disorders. Antipsychotic-induced restless legs syndrome was linked to polymorphisms located on CLOCK, BTBD9, GNB3, and TH genes, clozapine-induced somnolence was correlated with polymorphisms of HNMT gene, while insomnia was associated with variants of the MTNR1 gene. Conclusions: There are significant genetic associations between schizophrenia and co-morbid sleep disorders, implicating the circadian system, dopamine and histamine metabolism and signal transduction pathways.
Collapse
|
32
|
Olliac B, Ouss L, Charrier A. Suicide attempts in children and adolescents: The place of clock genes and early rhythm dysfunction. ACTA ACUST UNITED AC 2017; 110:461-466. [PMID: 29154930 DOI: 10.1016/j.jphysparis.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 02/01/2023]
Abstract
Suicide remains one of the leading causes of death among young people, and suicidal ideation and behavior are relatively common in healthy and clinical populations. Suicide risk in childhood and adolescence is often approached from the perspective of nosographic categories to which predictive variables for suicidal acts are often linked. The cascading effects resulting from altered clock genes in a pediatric population could participate in biological rhythm abnormalities and the emergence of suicide attempts through impaired regulation of circadian rhythms and emotional states with neurodevelopmental effects. Also, early trauma and stressful life events can alter the expression of clock genes and contribute to the emergence of suicide attempts. Alteration of clock genes might lead to desynchronized and abnormal circadian rhythms impairing in turn the synchronization between external and internal rhythms and therefore the adaptation of the individual to his/her internal and external environment with the development of psychiatric disorders associated with increased risk for suicide attempts.
Collapse
Affiliation(s)
- Bertrand Olliac
- Pôle Universitaire de Psychiatrie de l'enfant et de l'adolescent, Centre Hospitalier Esquirol, 15 rue du docteur Marcland, 87025 Limoges, France; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1094, Tropical Neuroepidemiology, Université de Limoges, Limoges, France.
| | - Lisa Ouss
- Department of Child and Adolescent Psychiatry, Necker-Enfants-Malades Hospital, APHP, Université Paris Descartes, 149 rue de Sèvres, 75015 Paris, France.
| | - Annaëlle Charrier
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), Université de Rennes 1, Centre Hospitalier Guillaume-Régnier, 154 Rue de Châtillon, 35000 Rennes, France.
| |
Collapse
|
33
|
Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders. Int J Mol Sci 2017; 18:ijms18050938. [PMID: 28468274 PMCID: PMC5454851 DOI: 10.3390/ijms18050938] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.
Collapse
|
34
|
Pillinger T, Beck K, Gobjila C, Donocik J, Jauhar S, Howes O. Impaired Glucose Homeostasis in First-Episode Schizophrenia: A Systematic Review and Meta-analysis. JAMA Psychiatry 2017; 74:261-269. [PMID: 28097367 PMCID: PMC6352957 DOI: 10.1001/jamapsychiatry.2016.3803] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Schizophrenia is associated with an increased risk of type 2 diabetes. However, it is not clear whether schizophrenia confers an inherent risk for glucose dysregulation in the absence of the effects of chronic illness and long-term treatment. OBJECTIVE To conduct a meta-analysis examining whether individuals with first-episode schizophrenia already exhibit alterations in glucose homeostasis compared with controls. DATA SOURCES The EMBASE, MEDLINE, and PsycINFO databases were systematically searched for studies examining measures of glucose homeostasis in antipsychotic-naive individuals with first-episode schizophrenia compared with individuals serving as controls. STUDY SELECTION Case-control studies reporting on fasting plasma glucose levels, plasma glucose levels after an oral glucose tolerance test, fasting plasma insulin levels, insulin resistance, and hemoglobin A1c (HbA1c) levels in first-episode antipsychotic-naive individuals with first-episode schizophrenia compared with healthy individuals serving as controls. Two independent investigators selected the studies. DATA EXTRACTION Two independent investigators extracted study-level data for a random-effects meta-analysis. Standardized mean differences in fasting plasma glucose levels, plasma glucose levels after an oral glucose tolerance test, fasting plasma insulin levels, insulin resistance, and HbA1c levels were calculated. Sensitivity analyses examining the effect of body mass index, diet and exercise, race/ethnicity, and minimal (≤2 weeks) antipsychotic exposure were performed. DATA SYNTHESIS Of 3660 citations retrieved, 16 case-control studies comprising 15 samples met inclusion criteria. The overall sample included 731 patients and 614 controls. Fasting plasma glucose levels (Hedges g = 0.20; 95% CI, 0.02 to 0.38; P = .03), plasma glucose levels after an oral glucose tolerance test (Hedges g = 0.61; 95% CI, 0.16 to 1.05; P = .007), fasting plasma insulin levels (Hedges g = 0.41; 95% CI, 0.09 to 0.72; P = .01), and insulin resistance (homeostatic model assessment of insulin resistance) (Hedges g = 0.35; 95% CI, 0.14 to 0.55; P = .001) were all significantly elevated in patients compared with controls. However, HbA1c levels (Hedges g = -0.08; CI, -0.34 to 0.18; P = .55) were not altered in patients compared with controls. CONCLUSIONS AND RELEVANCE These findings show that glucose homeostasis is altered from illness onset in schizophrenia, indicating that patients are at increased risk of diabetes as a result. This finding has implications for the monitoring and treatment choice for patients with schizophrenia.
Collapse
Affiliation(s)
- Toby Pillinger
- IoPPN, King’s College London, De Crespigny Park, London, SE5 8AF, UK
| | - Katherine Beck
- IoPPN, King’s College London, De Crespigny Park, London, SE5 8AF, UK
| | - Cristian Gobjila
- IoPPN, King’s College London, De Crespigny Park, London, SE5 8AF, UK
| | - Jacek Donocik
- IoPPN, King’s College London, De Crespigny Park, London, SE5 8AF, UK
| | - Sameer Jauhar
- IoPPN, King’s College London, De Crespigny Park, London, SE5 8AF, UK
| | - Oliver Howes
- IoPPN, King’s College London, De Crespigny Park, London, SE5 8AF, UK,MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN
| |
Collapse
|
35
|
Schiavone S, Trabace L. Inflammation, Stress Response, and Redox Dysregulation Biomarkers: Clinical Outcomes and Pharmacological Implications for Psychosis. Front Psychiatry 2017; 8:203. [PMID: 29118723 PMCID: PMC5660996 DOI: 10.3389/fpsyt.2017.00203] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022] Open
Abstract
In recent years, several studies claiming the finding of a specific biomarker for the identification of the "high-risk state" to develop psychosis, first psychotic episode, as well as the prediction of the individual response to antipsychotics have been published. Together with genetic reports, numerous publications in this field have been focused on inflammation and stress response blood biomarkers, as well as on indicators of redox dysregulation. In this review, we focus on human studies found in PubMed from January 1st 2010 to January 31st 2017, describing the clinical use of these biomarkers to detect the "premorbid" psychotic state and early phases of the disease. Their pharmacological implications in predicting and monitoring the individual response to antipsychotic medication is also discussed.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|