1
|
Feng X, Yu JL, Sun YF, Du CY, Shen Y, Zhang L, Kong WZ, Han S, Cheng Y. Plasmodium yoelii surface-related antigen (PySRA) modulates the host pro-inflammatory responses via binding to CD68 on macrophage membrane. Infect Immun 2024; 92:e0011324. [PMID: 38624215 PMCID: PMC11075460 DOI: 10.1128/iai.00113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
Malaria, one of the major infectious diseases in the world, is caused by the Plasmodium parasite. Plasmodium antigens could modulate the inflammatory response by binding to macrophage membrane receptors. As an export protein on the infected erythrocyte membrane, Plasmodium surface-related antigen (SRA) participates in the erythrocyte invasion and regulates the immune response of the host. This study found that the F2 segment of P. yoelii SRA activated downstream MAPK and NF-κB signaling pathways by binding to CD68 on the surface of the macrophage membrane and regulating the inflammatory response. The anti-PySRA-F2 antibody can protect mice against P. yoelii, and the pro-inflammatory responses such as IL-1β, TNF-α, and IL-6 after infection with P. yoelii are attenuated. These findings will be helpful for understanding the involvement of the pathogenic mechanism of malaria with the exported protein SRA.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Cell Membrane/metabolism
- Cell Membrane/immunology
- Inflammation/immunology
- Inflammation/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/parasitology
- Malaria/immunology
- Malaria/parasitology
- NF-kappa B/metabolism
- NF-kappa B/immunology
- Plasmodium yoelii/immunology
- Protein Binding
- Signal Transduction
Collapse
Affiliation(s)
- Xin Feng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jia-Li Yu
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yi-Fan Sun
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chen-Yan Du
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yao Shen
- Department of Food Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lu Zhang
- Department of General Practice, Rongxiang Street Community Health Service Center, Binhu District, Wuxi, China
| | - Wei-Zhong Kong
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Su Han
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yang Cheng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Liang R, Rao H, Pang Q, Xu R, Jiao Z, Lin L, Li L, Zhong L, Zhang Y, Guo Y, Xiao N, Liu S, Chen XF, Su XZ, Li J. Human ApoE2 protects mice against Plasmodium berghei ANKA experimental cerebral malaria. mBio 2023; 14:e0234623. [PMID: 37874152 PMCID: PMC10746236 DOI: 10.1128/mbio.02346-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Cerebral malaria (CM) is the deadliest complication of malaria infection with an estimated 15%-25% mortality. Even with timely and effective treatment with antimalarial drugs such as quinine and artemisinin derivatives, survivors of CM may suffer long-term cognitive and neurological impairment. Here, we show that human apolipoprotein E variant 2 (hApoE2) protects mice from experimental CM (ECM) via suppression of CD8+ T cell activation and infiltration to the brain, enhanced cholesterol metabolism, and increased IFN-γ production, leading to reduced endothelial cell apoptosis, BBB disruption, and ECM symptoms. Our results suggest that hApoE can be an important factor for risk assessment and treatment of CM in humans.
Collapse
Affiliation(s)
- Rui Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hengjun Rao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qin Pang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ruixue Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhiwei Jiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lirong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Zhong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yixin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yazhen Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shengfa Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, China
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Santiago VF, Dombrowski JG, Kawahara R, Rosa-Fernandes L, Mule SN, Murillo O, Santana TV, Coutinho JVP, Macedo-da-Silva J, Lazari LC, Peixoto EPM, Ramirez MI, Larsen MR, Marinho CRF, Palmisano G. Complement System Activation Is a Plasma Biomarker Signature during Malaria in Pregnancy. Genes (Basel) 2023; 14:1624. [PMID: 37628675 PMCID: PMC10454407 DOI: 10.3390/genes14081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria in pregnancy (MiP) is a public health problem in malaria-endemic areas, contributing to detrimental outcomes for both mother and fetus. Primigravida and second-time mothers are most affected by severe anemia complications and babies with low birth weight compared to multigravida women. Infected erythrocytes (IE) reach the placenta, activating the immune response by placental monocyte infiltration and inflammation. However, specific markers of MiP result in poor outcomes, such as low birth weight, and intrauterine growth restriction for babies and maternal anemia in women infected with Plasmodium falciparum are limited. In this study, we identified the plasma proteome signature of a mouse model infected with Plasmodium berghei ANKA and pregnant women infected with Plasmodium falciparum infection using quantitative mass spectrometry-based proteomics. A total of 279 and 249 proteins were quantified in murine and human plasma samples, of which 28% and 30% were regulated proteins, respectively. Most of the regulated proteins in both organisms are involved in complement system activation during malaria in pregnancy. CBA anaphylatoxin assay confirmed the complement system activation by the increase in C3a and C4a anaphylatoxins in the infected plasma compared to non-infected plasma. Moreover, correlation analysis showed the association between complement system activation and reduced head circumference in newborns from Pf-infected mothers. The data obtained in this study highlight the correlation between the complement system and immune and newborn outcomes resulting from malaria in pregnancy.
Collapse
Affiliation(s)
- Veronica Feijoli Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jamille Gregorio Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Analytical Glycoimmunology Group, Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Oscar Murillo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center Science at Tyler, Tyler, TX 75708, USA
| | - Thais Viggiani Santana
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joao Victor Paccini Coutinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lucas Cardoso Lazari
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Erika Paula Machado Peixoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marcel Ivan Ramirez
- Cell Biology Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | | | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Analytical Glycoimmunology Group, Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
4
|
Herbert Mainero A, Spence PJ, Reece SE, Kamiya T. The impact of innate immunity on malaria parasite infection dynamics in rodent models. Front Immunol 2023; 14:1171176. [PMID: 37646037 PMCID: PMC10461630 DOI: 10.3389/fimmu.2023.1171176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 09/01/2023] Open
Abstract
Decades of research have probed the molecular and cellular mechanisms that control the immune response to malaria. Yet many studies offer conflicting results on the functional impact of innate immunity for controlling parasite replication early in infection. We conduct a meta-analysis to seek consensus on the effect of innate immunity on parasite replication, examining three different species of rodent malaria parasite. Screening published studies that span four decades of research we collate, curate, and statistically analyze infection dynamics in immune-deficient or -augmented mice to identify and quantify general trends and reveal sources of disagreement among studies. Additionally, we estimate whether host factors or experimental methodology shape the impact of immune perturbations on parasite burden. First, we detected meta-analytic mean effect sizes (absolute Cohen's h) for the difference in parasite burden between treatment and control groups ranging from 0.1475 to 0.2321 across parasite species. This range is considered a small effect size and translates to a modest change in parasitaemia of roughly 7-12% on average at the peak of infection. Second, we reveal that variation across studies using P. chabaudi or P. yoelii is best explained by stochasticity (due to small sample sizes) rather than by host factors or experimental design. Third, we find that for P. berghei the impact of immune perturbation is increased when young or female mice are used and is greatest when effector molecules (as opposed to upstream signalling molecules) are disrupted (up to an 18% difference in peak parasitaemia). Finally, we find little evidence of publication bias suggesting that our results are robust. The small effect sizes we observe, across three parasite species, following experimental perturbations of the innate immune system may be explained by redundancy in a complex biological system or by incomplete (or inappropriate) data reporting for meta-analysis. Alternatively, our findings might indicate a need to re-evaluate the efficiency with which innate immunity controls parasite replication early in infection. Testing these hypotheses is necessary to translate understanding from model systems to human malaria.
Collapse
Affiliation(s)
- Alejandra Herbert Mainero
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip J. Spence
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah E. Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tsukushi Kamiya
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France
- HRB, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
5
|
Nolasco-Pérez TDJ, Cervantes-Candelas LA, Buendía-González FO, Aguilar-Castro J, Fernández-Rivera O, Salazar-Castañón VH, Legorreta-Herrera M. Immunomodulatory effects of testosterone and letrozole during Plasmodium berghei ANKA infection. Front Cell Infect Microbiol 2023; 13:1146356. [PMID: 37384220 PMCID: PMC10296187 DOI: 10.3389/fcimb.2023.1146356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Malaria is one of the leading health problems globally. Plasmodium infection causes pronounced sexual dimorphism, and the lethality and severity are more remarkable in males than in females. To study the role of testosterone in the susceptibility and mortality of males in malaria, it is common to increase its concentration. However, this strategy does not consider the enzyme CYP19A1 aromatase, which can transform it into oestrogens. Methods To avoid the interference of oestrogens, we inhibited in vivo CYP19A1 aromatase with letrozole and increased the testosterone level by exogen administration before infection with Plasmodium berghei ANKA. We measured the impact on free testosterone, 17β-oestradiol and dehydroepiandrosterone levels in plasma; additionally, we evaluated parasitaemia, body temperature, body mass, glucose levels and haemoglobin concentration. Furthermore, we evaluated the effects of testosterone on the immune response; we quantified the CD3+/CD4+, CD3+/CD8+, CD19+, Mac-3+ and NK cells in the spleen and the plasma concentrations of the cytokines IL-2, IL-4, IL-6, IFN-, IL-10, TNF-α and IL-17A. Finally, we quantified the levels of antibodies. Results We found that mice treated with the combination of letrozole and testosterone and infected with Plasmodium berghei ANKA had increased concentrations of free testosterone and DHEA but decreased levels of 17β-oestradiol. As a result, parasitaemia increased, leading to severe anaemia. Interestingly, testosterone increased temperature and decreased glucose concentration as a possible testosterone-mediated regulatory mechanism. The severity of symptomatology was related to critical immunomodulatory effects generated by free testosterone; it selectively increased CD3+CD8+ T and CD19+ cells but decreased Mac-3+. Remarkably, it reduced IL-17A concentration and increased IL-4 and TNF-α. Finally, it increased IgG1 levels and the IgG1/IgG2a ratio. In conclusion, free testosterone plays an essential role in pathogenesis in male mice by increasing CD8+ and decreasing Mac3+ cells and mainly reducing IL-17A levels, which is critical in the development of anaemia. Our results are important for understanding the mechanisms that regulate the exacerbated inflammatory response in infectious diseases and would be useful for the future development of alternative therapies to reduce the mortality generated by inflammatory processes.
Collapse
Affiliation(s)
- Teresita de Jesús Nolasco-Pérez
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Antonio Cervantes-Candelas
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jesús Aguilar-Castro
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Fernández-Rivera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Víctor Hugo Salazar-Castañón
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
6
|
Preclinical Study of Plasmodium Immunotherapy Combined with Radiotherapy for Solid Tumors. Cells 2022; 11:cells11223600. [PMID: 36429033 PMCID: PMC9688403 DOI: 10.3390/cells11223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade therapy (ICB) is ineffective against cold tumors and, although it is effective against some hot tumors, drug resistance can occur. We have developed a Plasmodium immunotherapy (PI) that can overcome these shortcomings. However, the specific killing effect of PI on tumor cells is relatively weak. Radiotherapy (RT) is known to have strong specific lethality to tumor cells. Therefore, we hypothesized that PI combined with RT could produce synergistic antitumor effects. We tested our hypothesis using orthotopic and subcutaneous models of mouse glioma (GL261, a cold tumor) and a subcutaneous model of mouse non-small cell lung cancer (NSCLC, LLC, a hot tumor). Our results showed that, compared with each monotherapy, the combination therapy more significantly inhibited tumor growth and extended the life span of tumor-bearing mice. More importantly, the combination therapy could cure approximately 70 percent of glioma. By analyzing the immune profile of the tumor tissues, we found that the combination therapy was more effective in upregulating the perforin-expressing effector CD8+ T cells and downregulating the myeloid-derived suppressor cells (MDSCs), and was thus more effective in the treatment of cancer. The clinical transformation of PI combined with RT in the treatment of solid tumors, especially glioma, is worthy of expectation.
Collapse
|
7
|
Li Q, Yuan Q, Jiang N, Zhang Y, Su Z, Lv L, Sang X, Chen R, Feng Y, Chen Q. Dihydroartemisinin regulates immune cell heterogeneity by triggering a cascade reaction of CDK and MAPK phosphorylation. Signal Transduct Target Ther 2022; 7:222. [PMID: 35811310 PMCID: PMC9271464 DOI: 10.1038/s41392-022-01028-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 12/28/2022] Open
Abstract
Artemisinin (ART) and dihydroartemisinin (DHA), apart from their profound anti-malaria effect, can also beneficially modulate the host immune system; however, the underlying molecular mechanisms remain unclear. Here, we report that DHA selectively induced T-cell activation, with an increased proportion of Ki67+CD4+ T cells, CD25+CD4+ T cells, interferon (IFN)-γ-producing CD8+ T cells, Brdu+ CD8+ T cells and neutrophils, which was found to enhance cellular immunity to experimental malaria and overcome immunosuppression in mice. We further revealed that DHA upregulated the expression of cell proliferation-associated proteins by promoting the phosphorylation of mitogen-activated protein kinase (MAPK), cyclin-dependent kinases (CDKs), and activator protein 1 in the spleen. This study is the first to provide robust evidence that DHA selectively induced the expansion of subsets of splenic T cells through phosphorylated CDKs and MAPK to enhance cellular immune responses under non-pathological or pathological conditions. The data significantly deepened our knowledge in the mechanism underlying DHA-mediated immunomodulation.
Collapse
|
8
|
Zhang H, Shen F, Yu J, Ge J, Sun Y, Fu H, Cheng Y. Plasmodium vivax Protein PvTRAg23 Triggers Spleen Fibroblasts for Inflammatory Profile and Reduces Type I Collagen Secretion via NF-κBp65 Pathway. Front Immunol 2022; 13:877122. [PMID: 35769479 PMCID: PMC9235351 DOI: 10.3389/fimmu.2022.877122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/16/2022] [Indexed: 01/04/2023] Open
Abstract
Plasmodium vivax is the most widespread human malaria parasite. The spleen is one of the most significant immune organs in the course of Plasmodium infection, and it contains splenic fibroblasts (SFs), which supports immunologic function by secreting type I collagen (collagen I). Plasmodium proteins have rarely been found to be involved in collagen alterations in the spleen during infection. Here, we selected the protein P. vivax tryptophan-rich antigen 23 (PvTRAg23), which is expressed by the spleen-dependent gene Pv-fam-a and is a member of the PvTRAgs family of export proteins, suggesting that it might have an effect on SFs. The protein specifically reduced the level of collagen I in human splenic fibroblasts (HSFs) and bound to cells with vimentin as receptors. However, such collagen changes were not mediated by binding to vimentin, but rather activating the NF-κBp65 pathway to produce inflammatory cytokines. Collagen impaired synthesis accompanied by extracellular matrix-related changes occurred in the spleen of mice infected with P. yoelii 17XNL. Overall, this study is the first one to report and verify the role of Plasmodium proteins on collagen in HSF in vitro. Results will contribute to further understanding of host spleen structural changes and immune responses after Plasmodium infection.
Collapse
Affiliation(s)
- Hangye Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feihu Shen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Lianyungan Center for Disease Control and Prevention, Wuxi, China
| | - Jiali Yu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jieyun Ge
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yifan Sun
- Department of Clinical Laboratory, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Haitian Fu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Yang Cheng,
| |
Collapse
|
9
|
El-Sayed SAES, Rizk MA, Eldoumani H, Sorour SS, Terkawi MA, AbouLaila M, Igarashi I, Sayed-Ahmed MZ. Identification and Characterization of P0 Protein as a Vaccine Candidate Against Babesia divergens, Blood Parasite of Veterinary and Zoonotic Importance. Front Vet Sci 2022; 8:795906. [PMID: 35071386 PMCID: PMC8776984 DOI: 10.3389/fvets.2021.795906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
The molecular identification and antigenic characterization of P0 protein in Babesia divergens, a blood parasite of veterinary and zoonotic importance, were carried out in this study for use in developing subunit vaccines against B. divergens infection. Recombinant protein encoding P0 (BdP0) was developed in Escherichia coli, and its antiserum was generated in mice for further molecular characterization. Anti-rBdP0 serum had a specific interaction with the corresponding legitimate B. divergens protein, as confirmed by Western blotting and indirect fluorescent antibody tests. ELISA was used to assess the immunogenicity of BdP0 in a group of 68 bovine field samples, and significant immunological reactivity was found in 19 and 20 positive samples of rBdp0 and B. divergens lysate, respectively. The in vitro growth of B. divergens cultures treated with anti-rBdP0 serum was significantly inhibited (p < 0.05). Furthermore, after 6 h of incubation with 2 mg/ml anti-rBdP0 serum, the ability of pre-incubated free merozoites to invade bovine erythrocytes was reduced by 59.88%. The obtained data suggest the possible use of rBdP0 as diagnostic antigen and may serve as a vaccine candidate against babesiosis caused by B. divergens either in animal or human.
Collapse
Affiliation(s)
- Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Mohamed Abdo Rizk
| | - Haitham Eldoumani
- Department of Anatomy, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shimaa Sobhy Sorour
- Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mahmoud AbouLaila
- Department of Parasitology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Ikuo Igarashi
| | - Mohamed Z. Sayed-Ahmed
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
10
|
Fernandez-Becerra C, Aparici-Herraiz I, Del Portillo HA. Cryptic erythrocytic infections in Plasmodium vivax, another challenge to its elimination. Parasitol Int 2021; 87:102527. [PMID: 34896615 DOI: 10.1016/j.parint.2021.102527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022]
Abstract
Human malaria caused by Plasmodium vivax infection (vivax malaria) is a major global health issue. It is the most geographically widespread form of the disease, accounting for 7 million annual clinical cases, the majority of cases in America and Asia and an estimation of over 2.5 billion people living under risk of infection. The general perception towards vivax malaria has shifted recently, following a series of reports, from being viewed as a benign infection to the recognition of its potential for more severe manifestations including fatal cases. However, the underlying pathogenic mechanisms of vivax malaria remain largely unresolved. Asymptomatic carriers of malaria parasites are a major challenge for malaria elimination. In the case of P. vivax, it has been widely accepted that the only source of cryptic parasites is hypnozoite dormant stages. Here, we will review new evidence indicating that cryptic erythrocytic niches outside the liver, in particular in the spleen and bone marrow, can represent a major source of asymptomatic infections. The origin of such parasites is being controversial and many key gaps in the knowledge of such infections remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Last, we will glimpse into the role of reticulocyte-derived exosomes, extracellular vesicles of endocytic origin, as intercellular communicators likely involved in the formation of such cryptic erythrocytic infections.
Collapse
Affiliation(s)
- Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain.
| | | | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
11
|
De Niz M, Brás D, Ouarné M, Pedro M, Nascimento AM, Henao Misikova L, Franco CA, Figueiredo LM. Organotypic endothelial adhesion molecules are key for Trypanosoma brucei tropism and virulence. Cell Rep 2021; 36:109741. [PMID: 34551286 PMCID: PMC8480282 DOI: 10.1016/j.celrep.2021.109741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 08/28/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei is responsible for lethal diseases in humans and cattle in Sub-Saharan Africa. These extracellular parasites extravasate from the blood circulation into several tissues. The importance of the vasculature in tissue tropism is poorly understood. Using intravital imaging and bioluminescence, we observe that gonadal white adipose tissue and pancreas are the two main parasite reservoirs. We show that reservoir establishment happens before vascular permeability is compromised, suggesting that extravasation is an active mechanism. Blocking endothelial surface adhesion molecules (E-selectin, P-selectins, or ICAM2) significantly reduces extravascular parasite density in all organs and delays host lethality. Remarkably, blocking CD36 has a specific effect on adipose tissue tropism that is sufficient to delay lethality, suggesting that establishment of the adipose tissue reservoir is necessary for parasite virulence. This work demonstrates the importance of the vasculature in a T. brucei infection and identifies organ-specific adhesion molecules as key players for tissue tropism. Our study investigates the blood vasculature for T. brucei reservoir establishment We show the pancreas is a large extravascular reservoir We establish that T. brucei tropism is linked to organotypic adhesion molecules Interfering with adhesion molecules impacts parasite virulence and host survival
Collapse
Affiliation(s)
- Mariana De Niz
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Daniela Brás
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Marie Ouarné
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Mafalda Pedro
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal; Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2825-149, Portugal
| | - Ana M Nascimento
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal; Bioimaging Unit, Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Lenka Henao Misikova
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Claudio A Franco
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal.
| |
Collapse
|
12
|
Deroost K, Alder C, Hosking C, McLaughlin S, Lin JW, Lewis MD, Saavedra-Torres Y, Addy JWG, Levy P, Giorgalli M, Langhorne J. Tissue macrophages and interferon-gamma signalling control blood-stage Plasmodium chabaudi infections derived from mosquito-transmitted parasites. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:104-119. [PMID: 34532703 PMCID: PMC8428512 DOI: 10.1016/j.crimmu.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Natural infection with Plasmodium parasites, the causative agents of malaria, occurs via mosquito vectors. However, most of our knowledge of the immune response to the blood stages of Plasmodium is from infections initiated by injection of serially blood-passaged infected red blood cells, resulting in an incomplete life cycle in the mammalian host. Vector transmission of the rodent malaria parasite, Plasmodium chabaudi chabaudi AS has been shown to give rise to a more attenuated blood-stage infection in C57Bl/6J mice, when compared to infections initiated with serially blood-passaged P. chabaudi-infected red blood cells. In mouse models, the host immune response induced by parasites derived from natural mosquito transmission is likely to more closely resemble the immune responses to Plasmodium infections in humans. It is therefore important to determine how the host response differs between the two types of infections. As the spleen is considered to be a major contributor to the protective host response to P. chabaudi, we carried out a comparative transcriptomic analysis of the splenic response to recently mosquito-transmitted and serially blood-passaged parasites in C57Bl/6J mice. The attenuated infection arising from recently mosquito-transmitted parasites is characterised by an earlier and stronger myeloid- and IFNγ-related response. Analyses of spleen lysates from the two infections similarly showed stronger or earlier inflammatory cytokine and chemokine production in the recently mosquito-transmitted blood-stage infections. Furthermore, tissue macrophages, including red pulp macrophages, and IFNγ-signalling in myeloid cells, are required for the early control of P. chabaudi recently mosquito-transmitted parasites, thus contributing to the attenuation of mosquito-transmitted infections. The molecules responsible for this early activation response to recently-transmitted blood-stage parasites in mice would be important to identify, as they may help to elucidate the nature of the initial interactions between blood-stage parasites and the host immune system in naturally transmitted malaria. Attenuation of recently transmitted malaria happens at blood stage of infection. Stronger or earlier inflammatory cytokine and chemokine production. Tissue macrophages, including red pulp macrophages, contribute to attenuation. IFNγ-signalling in myeloid cells is required for early control of P. chabaudi AS.
Collapse
|
13
|
Shaw TN, Haley MJ, Dookie RS, Godfrey JJ, Cheeseman AJ, Strangward P, Zeef LAH, Villegas-Mendez A, Couper KN. Memory CD8 + T cells exhibit tissue imprinting and non-stable exposure-dependent reactivation characteristics following blood-stage Plasmodium berghei ANKA infections. Immunology 2021; 164:737-753. [PMID: 34407221 PMCID: PMC8561116 DOI: 10.1111/imm.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Experimental cerebral malaria (ECM) is a severe complication of Plasmodium berghei ANKA (PbA) infection in mice, characterized by CD8+ T‐cell accumulation within the brain. Whilst the dynamics of CD8+ T‐cell activation and migration during extant primary PbA infection have been extensively researched, the fate of the parasite‐specific CD8+ T cells upon resolution of ECM is not understood. In this study, we show that memory OT‐I cells persist systemically within the spleen, lung and brain following recovery from ECM after primary PbA‐OVA infection. Whereas memory OT‐I cells within the spleen and lung exhibited canonical central memory (Tcm) and effector memory (Tem) phenotypes, respectively, memory OT‐I cells within the brain post‐PbA‐OVA infection displayed an enriched CD69+CD103− profile and expressed low levels of T‐bet. OT‐I cells within the brain were excluded from short‐term intravascular antibody labelling but were targeted effectively by longer‐term systemically administered antibodies. Thus, the memory OT‐I cells were extravascular within the brain post‐ECM but were potentially not resident memory cells. Importantly, whilst memory OT‐I cells exhibited strong reactivation during secondary PbA‐OVA infection, preventing activation of new primary effector T cells, they had dampened reactivation during a fourth PbA‐OVA infection. Overall, our results demonstrate that memory CD8+ T cells are systemically distributed but exhibit a unique phenotype within the brain post‐ECM, and that their reactivation characteristics are shaped by infection history. Our results raise important questions regarding the role of distinct memory CD8+ T‐cell populations within the brain and other tissues during repeat Plasmodium infections.
Collapse
Affiliation(s)
- Tovah N Shaw
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,School of Biological Sciences, Institute of Immunology and Infection, University of Edinburgh, Edinburgh, UK
| | - Michael J Haley
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Rebecca S Dookie
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Jenna J Godfrey
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Antonn J Cheeseman
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Patrick Strangward
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Leo A H Zeef
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ana Villegas-Mendez
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Kevin N Couper
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Rani GF, Ashwin H, Brown N, Hitchcock IS, Kaye PM. Hematological consequences of malaria in mice previously treated for visceral leishmaniasis. Wellcome Open Res 2021; 6:83. [PMID: 34286101 PMCID: PMC8276186 DOI: 10.12688/wellcomeopenres.16629.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Polyparasitism is commonplace in countries where endemicity for multiple parasites exists, and studies in animal models of coinfection have made significant inroads into understanding the impact of often competing demands on the immune system. However, few studies have addressed how previous exposure to and treatment for one infection impacts a subsequent heterologous infection. Methods: We used a C57BL/6 mouse model of drug-treated Leishmania donovani infection followed by experimental Plasmodium chabaudi AS malaria, focusing on hematological dysfunction as a common attribute of both infections. We measured parasite burden, blood parameters associated with anemia and thrombocytopenia, and serum thrombopoietin. In addition, we quantified macrophage iNOS expression through immunohistological analysis of the liver and spleen. Results: We found that the thrombocytopenia and anemia that accompanies primary L. donovani infection was rapidly reversed following single dose AmBisome® treatment, along with multiple other markers associated with immune activation (including restoration of tissue microarchitecture and reduced macrophage iNOS expression). Compared to naive mice, mice cured of previous L. donovani infection showed comparable albeit delayed clinical responses (including peak parasitemia and anemia) to P. chabaudi AS infection. Thrombocytopenia was also evident in these sequentially infected mice, consistent with a decrease in circulating levels of thrombopoietin. Architectural changes to the spleen were also comparable in sequentially infected mice compared to those with Plasmodium infection alone. Conclusions: Our data suggest that in this sequential infection model, previously-treated L. donovani infection has limited impact on the subsequent development of Plasmodium infection, but this issue deserves further attention in models of more severe disease or through longitudinal population studies in humans.
Collapse
Affiliation(s)
- Gulab Fatima Rani
- Hull York Medical School, University of York, UK, York, N. Yorks, Yo10 5DD, UK
| | - Helen Ashwin
- Hull York Medical School, University of York, UK, York, N. Yorks, Yo10 5DD, UK
| | - Najmeeyah Brown
- Hull York Medical School, University of York, UK, York, N. Yorks, Yo10 5DD, UK
| | - Ian S. Hitchcock
- Department of Biology, University of York, UK, York, N. Yorks, Yo10 5DD, UK
| | - Paul M. Kaye
- Hull York Medical School, University of York, UK, York, N. Yorks, Yo10 5DD, UK
| |
Collapse
|
15
|
Peprah S, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Otim I, Legason ID, Ayers LW, Bhatia K, Goedert JJ, Pfeiffer RM, Mbulaiteye SM. Inverse association of falciparum positivity with endemic Burkitt lymphoma is robust in analyses adjusting for pre-enrollment malaria in the EMBLEM case-control study. Infect Agent Cancer 2021; 16:40. [PMID: 34099001 PMCID: PMC8186042 DOI: 10.1186/s13027-021-00377-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Falciparum and endemic Burkitt lymphoma (eBL) are co-endemic in Africa, but the malaria experience in eBL patients is unknown. A lower prevalence of falciparum has been reported in eBL patients, but those results are anecdotally attributed to pre-enrollment anti-malaria treatment. METHODS We studied 677 eBL patients and 2920 community controls aged 0-15 years enrolled in six regions in Uganda, Tanzania, and Kenya during 2010-2016. Falciparum was diagnosed using thick blood film microscopy (TFM) and antigen-capture rapid diagnostic tests (RDTs). Guardians of the children answered a 40-item structured questionnaire about their child's pre-enrollment lifetime malaria history and treatment, demographics, socioeconomics, animal exposures, fevers, and hospitalizations. We utilized exploratory factor analysis to reduce the 40 questionnaire variables into six factors, including Inpatient malaria and Outpatient malaria factors that were surrogates of pre-enrollment anti-malaria treatment. The six factors accounted for 83-90% of the variance in the questionnaire data. We calculated odds ratios and 95% confidence intervals (OR 95% CI) of association of eBL with falciparum positivity, defined as positive both on TFM or RDTs, or only RDTs (indicative of recent infection) or TFM (indicative of current falciparum infection) versus no infection, using multivariable logistic regression, controlling for group of age (0-2, 3-5, 6-8, 9-11 and 12-15 years), sex, and study site and the afore-mentioned pre-enrollment factors. RESULTS The prevalence of falciparum infection was 25.6% in the eBL cases and 45.7% in community controls (aOR = 0.43, 95% CI: 0.40, 0.47; P < 0.0001). The results were similar for recent falciparum infection (6.9% versus 13.5%, aOR = 0.44, 95% CI: 0.38, 0.50; P < 0.0001) and current falciparum infection (18.7% versus 32.1%, aOR = 0.47, 95% CI: 0.43, 0.51; P < 0.0001). These aORs for any, recent and current falciparum infection did not change when we adjusted for pre-enrollment factors (aORs = 0.46, =0.44, and = 0.51, respectively) were significantly lower in stratified analysis for any infection in children < 5 years (aOR = 0.46; 95% CI: 0.29, 0.75) or ≥ 10 years (aOR = 0.47; 95% CI: 0.32, 0.71). CONCLUSION Our study results reduce support for pre-enrollment antimalaria treatment as a sole explanation for the observed lower falciparum prevalence in eBL cases and open a space to consider alternative immunology-based hypotheses.
Collapse
Affiliation(s)
- Sally Peprah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Infections and Immunoepidemiology Branch, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - Martin D Ogwang
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, Kuluva Hospital, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance N Tenge
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
- Moi Teaching and Referral Hospital (MTRH), Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Pamela A Were
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
- Moi Teaching and Referral Hospital (MTRH), Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
- Moi Teaching and Referral Hospital (MTRH), Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Walter N Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
- Moi Teaching and Referral Hospital (MTRH), Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health and Educational Foundation, Shirati, Tanzania
| | - Isaac Otim
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, Kuluva Hospital, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Infections and Immunoepidemiology Branch, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Infections and Immunoepidemiology Branch, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Infections and Immunoepidemiology Branch, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Infections and Immunoepidemiology Branch, 9609 Medical Center Dr, Rm. 6E-118, MSC 3330, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Platelet α-granules contribute to organ-specific pathologies in a mouse model of severe malaria. Blood Adv 2021; 4:1-8. [PMID: 31891656 DOI: 10.1182/bloodadvances.2019000773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Key PointsNbeal2 deficiency leads to significantly reduced lung and brain pathology and enhanced survival in a mouse model of malaria. Both antibody-dependent and antibody-independent platelet depletion in mice recapitulate the findings observed in Nbeal2−/− mice.
Collapse
|
17
|
Rani GF, Ashwin H, Brown N, Hitchcock IS, Kaye PM. Hematological consequences of malaria infection in mice previously treated for visceral leishmaniasis. Wellcome Open Res 2021; 6:83. [PMID: 34286101 PMCID: PMC8276186 DOI: 10.12688/wellcomeopenres.16629.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 05/07/2024] Open
Abstract
Background: Polyparasitism is commonplace in countries where endemicity for multiple parasites exists, and studies in animal models of coinfection have made significant inroads into understanding the impact of often competing demands on the immune system. However, few studies have addressed how previous exposure to and treatment for one infection impacts a subsequent heterologous infection. Methods: We used a C57BL/6 mouse model of drug-treated Leishmania donovani infection followed by experimental Plasmodium chabaudi AS malaria, focusing on hematological dysfunction as a common attribute of both infections. We measured parasite burden, blood parameters associated with anemia and thrombocytopenia, and serum thrombopoietin. In addition, we quantified macrophage iNOS expression through immunohistological analysis of the liver and spleen. Results: We found that the thrombocytopenia and anemia that accompanies primary L. donovani infection was rapidly reversed following single dose AmBisome® treatment, along with multiple other markers associated with immune activation (including restoration of tissue microarchitecture and reduced macrophage iNOS expression). Compared to naive mice, mice cured of previous VL showed comparable albeit delayed clinical responses (including peak parasitemia and anemia) to P. chabaudi AS infection. Thrombocytopenia was also evident in these sequentially infected mice, consistent with a decrease in circulating levels of thrombopoietin. Architectural changes to the spleen were also comparable in sequentially infected mice compared to those with malaria alone. Conclusions: Our data suggest that in this sequential infection model, previously-treated VL has limited impact on the subsequent development of malaria, but this issue deserves further attention in models of more severe disease or through longitudinal population studies in humans.
Collapse
Affiliation(s)
- Gulab Fatima Rani
- Hull York Medical School, University of York, UK, York, N. Yorks, Yo10 5DD, UK
| | - Helen Ashwin
- Hull York Medical School, University of York, UK, York, N. Yorks, Yo10 5DD, UK
| | - Najmeeyah Brown
- Hull York Medical School, University of York, UK, York, N. Yorks, Yo10 5DD, UK
| | - Ian S. Hitchcock
- Department of Biology, University of York, UK, York, N. Yorks, Yo10 5DD, UK
| | - Paul M. Kaye
- Hull York Medical School, University of York, UK, York, N. Yorks, Yo10 5DD, UK
| |
Collapse
|
18
|
Arisue N, Chagaluka G, Palacpac NMQ, Johnston WT, Mutalima N, Peprah S, Bhatia K, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Goedert JJ, Molyneux EM, Newton R, Horii T, Mbulaiteye SM. Assessment of Mixed Plasmodium falciparum sera5 Infection in Endemic Burkitt Lymphoma: A Case-Control Study in Malawi. Cancers (Basel) 2021; 13:1692. [PMID: 33918470 PMCID: PMC8038222 DOI: 10.3390/cancers13071692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Endemic Burkitt lymphoma (eBL) is the most common childhood cancer in Africa and is linked to Plasmodium falciparum (Pf) malaria infection, one of the most common and deadly childhood infections in Africa; however, the role of Pf genetic diversity is unclear. A potential role of Pf genetic diversity in eBL has been suggested by a correlation of age-specific patterns of eBL with the complexity of Pf infection in Ghana, Uganda, and Tanzania, as well as a finding of significantly higher Pf genetic diversity, based on a sensitive molecular barcode assay, in eBL cases than matched controls in Malawi. We examined this hypothesis by measuring diversity in Pf-serine repeat antigen-5 (Pfsera5), an antigenic target of blood-stage immunity to malaria, among 200 eBL cases and 140 controls, all Pf polymerase chain reaction (PCR)-positive, in Malawi. METHODS We performed Pfsera5 PCR and sequencing (~3.3 kb over exons II-IV) to determine single or mixed PfSERA5 infection status. The patterns of Pfsera5 PCR positivity, mixed infection, sequence variants, and haplotypes among eBL cases, controls, and combined/pooled were analyzed using frequency tables. The association of mixed Pfsera5 infection with eBL was evaluated using logistic regression, controlling for age, sex, and previously measured Pf genetic diversity. RESULTS Pfsera5 PCR was positive in 108 eBL cases and 70 controls. Mixed PfSERA5 infection was detected in 41.7% of eBL cases versus 24.3% of controls; the odds ratio (OR) was 2.18, and the 95% confidence interval (CI) was 1.12-4.26, which remained significant in adjusted results (adjusted odds ratio [aOR] of 2.40, 95% CI of 1.11-5.17). A total of 29 nucleotide variations and 96 haplotypes were identified, but these were unrelated to eBL. CONCLUSIONS Our results increase the evidence supporting the hypothesis that infection with mixed Pf infection is increased with eBL and suggest that measuring Pf genetic diversity may provide new insights into the role of Pf infection in eBL.
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (N.M.Q.P.); (T.H.)
| | - W. Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
- Cancer Epidemiology Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Sally Peprah
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Kishor Bhatia
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - George N. Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Collins Mitambo
- National Health Sciences Research Committee, Research Department, Ministry of Health, P.O. Box 30377, Capital City, Lilongwe 3, Malawi;
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Elizabeth M. Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (N.M.Q.P.); (T.H.)
| | - Sam M. Mbulaiteye
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| |
Collapse
|
19
|
Gualdrón-López M, Díaz-Varela M, Toda H, Aparici-Herraiz I, Pedró-Cos L, Lauzurica R, Lacerda MVG, Fernández-Sanmartín MA, Fernandez-Becerra C, Del Portillo HA. Multiparameter Flow Cytometry Analysis of the Human Spleen Applied to Studies of Plasma-Derived EVs From Plasmodium vivax Patients. Front Cell Infect Microbiol 2021; 11:596104. [PMID: 33732657 PMCID: PMC7957050 DOI: 10.3389/fcimb.2021.596104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The spleen is a secondary lymphoid organ with multiple functions including the removal of senescent red blood cells and the coordination of immune responses against blood-borne pathogens, such as malaria parasites. Despite the major role of the spleen, the study of its function in humans is limited by ethical implications to access human tissues. Here, we employed multiparameter flow cytometry combined with cell purification techniques to determine human spleen cell populations from transplantation donors. Spleen immuno-phenotyping showed that CD45+ cells included B (30%), CD4+ T (16%), CD8+ T (10%), NK (6%) and NKT (2%) lymphocytes. Myeloid cells comprised neutrophils (16%), monocytes (2%) and DCs (0.3%). Erythrocytes represented 70%, reticulocytes 0.7% and hematopoietic stem cells 0.02%. Extracellular vesicles (EVs) are membrane-bound nanoparticles involved in intercellular communication and secreted by almost all cell types. EVs play several roles in malaria that range from modulation of immune responses to vascular alterations. To investigate interactions of plasma-derived EVs from Plasmodium vivax infected patients (PvEVs) with human spleen cells, we used size-exclusion chromatography (SEC) to separate EVs from the bulk of soluble plasma proteins and stained isolated EVs with fluorescent lipophilic dyes. The integrated cellular analysis of the human spleen and the methodology employed here allowed in vitro interaction studies of human spleen cells and EVs that showed an increased proportion of T cells (CD4+ 3 fold and CD8+ 4 fold), monocytes (1.51 fold), B cells (2.3 fold) and erythrocytes (3 fold) interacting with PvEVs as compared to plasma-derived EVs from healthy volunteers (hEVs). Future functional studies of these interactions can contribute to unveil pathophysiological processes involving the spleen in vivax malaria.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain.,IGTP: Germans Trias i Pujol Research Institute, Barcelona, Spain
| | | | - Haruka Toda
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain
| | | | - Laura Pedró-Cos
- IGTP: Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Ricardo Lauzurica
- Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Marcus V G Lacerda
- Fundaçao de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Instituto Leônidas & Maria Deane (ILMD), Fiocruz, Manaus, Brazil
| | | | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain.,IGTP: Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Hernando A Del Portillo
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain.,IGTP: Germans Trias i Pujol Research Institute, Barcelona, Spain.,ICREA: Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
20
|
Tetrorchidium didymostemon leaf extract reduces Plasmodium berghei induced oxidative stress and hepatic injury in Swiss albino mice. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Monteiro W, Brito-Sousa JD, Elizalde-Torrent A, Bôtto-Menezes C, Melo GC, Fernandez-Becerra C, Lacerda M, Del Portillo HA. Cryptic Plasmodium chronic infections: was Maurizio Ascoli right? Malar J 2020; 19:440. [PMID: 33256745 PMCID: PMC7708240 DOI: 10.1186/s12936-020-03516-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
Cryptic Plasmodium niches outside the liver possibly represent a major source of hypnozoite-unrelated recrudescences in malaria. Maurizio Ascoli, an Italian physician and scientist, suggested that infection was maintained as a result of the persistence of endoerythrocytic parasites in the circulatory bed of some internal organs, mainly the spleen. This would explain a proportion of the recurrences in patients, regardless of the Plasmodium species. Ascoli proposed a method that included the co-administration of adrenaline, in order to induce splenic contraction, and quinine to clear expelled forms in major vessels. Driven by controversy regarding safety and effectiveness, along with the introduction of new drugs, the Ascoli method was abandoned and mostly forgotten by the malaria research community. To date, however, the existence of cryptic parasites outside the liver is gaining supportive data. This work is a historical retrospective of cryptic malaria infections and the Ascoli method, highlighting key knowledge gaps regarding these possible parasite reservoirs.
Collapse
Affiliation(s)
- Wuelton Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil. .,Universidade Do Estado Do Amazonas (UEA), Manaus, Amazonas, Brazil.
| | - José Diego Brito-Sousa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil.,Universidade Do Estado Do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Aleix Elizalde-Torrent
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institut D'Investigació Germans Trias I Pujol (IGTP), Badalona, Barcelona, Spain.,IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain
| | - Camila Bôtto-Menezes
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil.,Universidade Do Estado Do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Gisely Cardoso Melo
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil.,Universidade Do Estado Do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institut D'Investigació Germans Trias I Pujol (IGTP), Badalona, Barcelona, Spain
| | - Marcus Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil.,Instituto Leônidas & Maria Deane (ILMD), Fiocruz, Manaus, Amazonas, Brazil
| | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain. .,Institut D'Investigació Germans Trias I Pujol (IGTP), Badalona, Barcelona, Spain. .,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
22
|
Wu X, Thylur RP, Dayanand KK, Punnath K, Norbury CC, Gowda DC. IL-4 Treatment Mitigates Experimental Cerebral Malaria by Reducing Parasitemia, Dampening Inflammation, and Lessening the Cytotoxicity of T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 206:118-131. [PMID: 33239419 DOI: 10.4049/jimmunol.2000779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Cytokine responses to malaria play important roles in both protective immunity development and pathogenesis. Although the roles of cytokines such as TNF-α, IL-12, IFN-γ, and IL-10 in immunity and pathogenesis to the blood stage malaria are largely known, the role of IL-4 remains less understood. IL-4 targets many cell types and induces multiple effects, including cell proliferation, gene expression, protection from apoptosis, and immune regulation. Accordingly, IL-4 has been exploited as a therapeutic for several inflammatory diseases. Malaria caused by Plasmodium falciparum manifests in many organ-specific fatal pathologies, including cerebral malaria (CM), driven by a high parasite load, leading to parasite sequestration in organs and consequent excessive inflammatory responses and endothelial damage. We investigated the therapeutic potential of IL-4 against fatal malaria in Plasmodium berghei ANKA-infected C57BL/6J mice, an experimental CM model. IL-4 treatment significantly reduced parasitemia, CM pathology, and mortality. The therapeutic effect of IL-4 is mediated through multiple mechanisms, including enhanced parasite clearance mediated by upregulation of phagocytic receptors and increased IgM production, and decreased brain inflammatory responses, including reduced chemokine (CXCL10) production, reduced chemokine receptor (CXCR3) and adhesion molecule (LFA-1) expression by T cells, and downregulation of cytotoxic T cell lytic potential. IL-4 treatment markedly reduced the infiltration of CD8+ T cells and brain pathology. STAT6, PI3K-Akt-NF-κB, and Src signaling mediated the cellular and molecular events that contributed to the IL-4-dependent decrease in parasitemia. Overall, our results provide mechanistic insights into how IL-4 treatment mitigates experimental CM and have implications in developing treatment strategies for organ-specific fatal malaria.
Collapse
Affiliation(s)
- Xianzhu Wu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Ramesh P Thylur
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Kiran K Dayanand
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Kishore Punnath
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Christopher C Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| |
Collapse
|
23
|
Yui K, Inoue SI. Host-pathogen interaction in the tissue environment during Plasmodium blood-stage infection. Parasite Immunol 2020; 43:e12763. [PMID: 32497249 DOI: 10.1111/pim.12763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
Abstract
Human malarial infection occurs after an infectious Anopheles mosquito bites. Following the initial liver-stage infection, parasites transform into merozoites, infecting red blood cells (RBCs). Repeated RBC infection then occurs during the blood-stage infection, while patients experience various malarial symptoms. Protective immune responses are elicited by this systemic infection, but excessive responses are sometimes harmful for hosts. As parasites infect only RBCs and their immediate precursors during this stage, direct parasite-host interactions occur primarily in the environment surrounded by endothelial lining of blood vessels. The spleen is the major organ where the immune system encounters infected RBCs, causing immunological responses. Its tissue structure is markedly altered during malarial infection in mice and humans. Plasmodium falciparum parasites inside RBCs express proteins, such as PfEMP-1 and RIFIN, transported to the RBC surfaces in order to evade immunological attack by sequestering themselves in the peripheral vasculature avoiding spleen or by direct immune cell inhibition through inhibitory receptors. Host cell production of regulatory cytokines IL-10 and IL-27 limits excessive immune responses, avoiding tissue damage. The regulation of the protective and inhibitory immune responses through host-parasite interactions allows chronic Plasmodium infection. In this review, we discuss underlying interaction mechanisms relevant for developing effective strategies against malaria.
Collapse
Affiliation(s)
- Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
24
|
Plasmodium vivax spleen-dependent genes encode antigens associated with cytoadhesion and clinical protection. Proc Natl Acad Sci U S A 2020; 117:13056-13065. [PMID: 32439708 PMCID: PMC7293605 DOI: 10.1073/pnas.1920596117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In spite of low peripheral blood parasitemia, vivax malaria causes severe disease. This conundrum finds an explanation from reports suggesting that the spleen is a place for parasite sequestration. We performed a global transcriptional analysis of parasites that grew in the presence or absence of the spleen in a nonhuman primate model. We identified 67 spleen-dependent genes, including multigene variant families, and functionally demonstrated specific adherence to human spleen fibroblasts by a member of such families. Moreover, we further demonstrated that spleen-dependent Plasmodium vivax genes code for immunogenic proteins during natural infections. Our results indicate that this organ plays an important function in P. vivax malaria and call for deeper studies of the role of spleen in P. vivax infections. Plasmodium vivax, the most widely distributed human malaria parasite, causes severe clinical syndromes despite low peripheral blood parasitemia. This conundrum is further complicated as cytoadherence in the microvasculature is still a matter of investigations. Previous reports in Plasmodium knowlesi, another parasite species shown to infect humans, demonstrated that variant genes involved in cytoadherence were dependent on the spleen for their expression. Hence, using a global transcriptional analysis of parasites obtained from spleen-intact and splenectomized monkeys, we identified 67 P. vivax genes whose expression was spleen dependent. To determine their role in cytoadherence, two Plasmodium falciparum transgenic lines expressing two variant proteins pertaining to VIR and Pv-FAM-D multigene families were used. Cytoadherence assays demonstrated specific binding to human spleen but not lung fibroblasts of the transgenic line expressing the VIR14 protein. To gain more insights, we expressed five P. vivax spleen-dependent genes as recombinant proteins, including members of three different multigene families (VIR, Pv-FAM-A, Pv-FAM-D), one membrane transporter (SECY), and one hypothetical protein (HYP1), and determined their immunogenicity and association with clinical protection in a prospective study of 383 children in Papua New Guinea. Results demonstrated that spleen-dependent antigens are immunogenic in natural infections and that antibodies to HYP1 are associated with clinical protection. These results suggest that the spleen plays a major role in expression of parasite proteins involved in cytoadherence and can reveal antigens associated with clinical protection, thus prompting a paradigm shift in P. vivax biology toward deeper studies of the spleen during infections.
Collapse
|
25
|
Efstratiou A, Galon EMS, Wang G, Umeda K, Kondoh D, Terkawi MA, Kume A, Liu M, Ringo AE, Guo H, Gao Y, Lee SH, Li J, Moumouni PFA, Nishikawa Y, Suzuki H, Igarashi I, Xuan X. Babesia microti Confers Macrophage-Based Cross-Protective Immunity Against Murine Malaria. Front Cell Infect Microbiol 2020; 10:193. [PMID: 32411624 PMCID: PMC7200999 DOI: 10.3389/fcimb.2020.00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Malaria and babesiosis, the two primary intraerythrocytic protozoan diseases of humans, have been reported in multiple cases of co-infection in endemic regions. As the geographic range and incidence of arthropod-borne infectious diseases is being affected by climate change, co-infection cases with Plasmodium and Babesia are likely to increase. The two parasites have been used in experimental settings, where prior infection with Babesia microti has been shown to protect against fatal malarial infections in mice and primates. However, the immunological mechanisms behind such phenomena of cross-protection remain unknown. Here, we investigated the effect of a primary B. microti infection on the outcome of a lethal P. chabaudi challenge infection using a murine model. Simultaneous infection with both pathogens led to high mortality rates in immunocompetent BALB/c mice, similar to control mice infected with P. chabaudi alone. On the other hand, mice with various stages of B. microti primary infection were thoroughly immune to a subsequent P. chabaudi challenge. Protected mice exhibited decreased levels of serum antibodies and pro-inflammatory cytokines during early stages of challenge infection. Mice repeatedly immunized with dead B. microti quickly succumbed to P. chabaudi infection, despite induction of high antibody responses. Notably, cross-protection was observed in mice lacking functional B and T lymphocytes. When the role of other innate immune effector cells was examined, NK cell-depleted mice with chronic B. microti infection were also found to be protected against P. chabaudi. Conversely, in vivo macrophage depletion rendered the mice vulnerable to P. chabaudi. The above results show that the mechanism of cross-protection conferred by B. microti against P. chabaudi is innate immunity-based, and suggest that it relies predominantly upon the function of macrophages. Further research is needed for elucidating the malaria-suppressing effects of babesiosis, with a vision toward development of novel tools to control malaria.
Collapse
Affiliation(s)
- Artemis Efstratiou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Eloiza May S Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Guanbo Wang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kousuke Umeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Kondoh
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Orthopedic Surgery, Hokkaido University, Sapporo, Japan
| | - Aiko Kume
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yang Gao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
26
|
Kuehlwein JM, Borsche M, Korir PJ, Risch F, Mueller A, Hübner MP, Hildner K, Hoerauf A, Dunay IR, Schumak B. Protection of Batf3-deficient mice from experimental cerebral malaria correlates with impaired cytotoxic T-cell responses and immune regulation. Immunology 2020; 159:193-204. [PMID: 31631339 PMCID: PMC6954726 DOI: 10.1111/imm.13137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Excessive inflammatory immune responses during infections with Plasmodium parasites are responsible for severe complications such as cerebral malaria (CM) that can be studied experimentally in mice. Dendritic cells (DCs) activate cytotoxic CD8+ T-cells and initiate immune responses against the parasites. Batf3-/- mice lack a DC subset, which efficiently induces strong CD8 T-cell responses by cross-presentation of exogenous antigens. Here we show that Batf3-/- mice infected with Plasmodium berghei ANKA (PbA) were protected from experimental CM (ECM), characterized by a stable blood-brain barrier (BBB) and significantly less infiltrated peripheral immune cells in the brain. Importantly, the absence of ECM in Batf3-/- mice correlated with attenuated responses of cytotoxic T-cells, as their parasite-specific lytic activity as well as the production of interferon gamma and granzyme B were significantly decreased. Remarkably, spleens of ECM-protected Batf3-/- mice had elevated levels of regulatory immune cells and interleukin 10. Thus, protection from ECM in PbA-infected Batf3-/- mice was associated with the absence of strong CD8+ T-cell activity and induction of immunoregulatory mediators and cells.
Collapse
MESH Headings
- Animals
- Basic-Leucine Zipper Transcription Factors/deficiency
- Basic-Leucine Zipper Transcription Factors/genetics
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/parasitology
- Brain/immunology
- Brain/metabolism
- Brain/parasitology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/parasitology
- Disease Models, Animal
- Female
- Granzymes/immunology
- Granzymes/metabolism
- Host-Parasite Interactions
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Malaria, Cerebral/immunology
- Malaria, Cerebral/metabolism
- Malaria, Cerebral/parasitology
- Malaria, Cerebral/prevention & control
- Mice, Inbred C57BL
- Mice, Knockout
- Plasmodium berghei/immunology
- Plasmodium berghei/pathogenicity
- Repressor Proteins/deficiency
- Repressor Proteins/genetics
- Spleen/immunology
- Spleen/metabolism
- Spleen/parasitology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/parasitology
Collapse
Affiliation(s)
- Janina M. Kuehlwein
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Max Borsche
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Patricia J. Korir
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Frederic Risch
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Ann‐Kristin Mueller
- Parasitology UnitCentre for Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- DZIF German Center for Infection ResearchPartner Site HeidelbergHeidelbergGermany
| | - Marc P. Hübner
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Kai Hildner
- Medical Department 1University Hospital ErlangenErlangenGermany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
- DZIF German Center for Infection ResearchPartner Site Bonn‐CologneBonnGermany
| | - Ildiko Rita Dunay
- Institute of Inflammation and NeurodegenerationUniversity of MagdeburgMagdeburgGermany
| | - Beatrix Schumak
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
27
|
Mannosylated liposomes formulated with whole parasite P. falciparum blood-stage antigens are highly immunogenic in mice. Vaccine 2020; 38:1494-1504. [DOI: 10.1016/j.vaccine.2019.11.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/03/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
|
28
|
Acuña SM, Floeter-Winter LM, Muxel SM. MicroRNAs: Biological Regulators in Pathogen-Host Interactions. Cells 2020; 9:E113. [PMID: 31906500 PMCID: PMC7016591 DOI: 10.3390/cells9010113] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen-host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.
Collapse
Affiliation(s)
| | | | - Sandra Marcia Muxel
- Department of Physiology, Universidade de São Paulo, 05508-090 São Paulo, Brazil; (S.M.A.); (L.M.F.-W.)
| |
Collapse
|
29
|
Dimorphic effect of 17β-oestradiol on pathology and oxidative stress in experimental malaria. Immunobiology 2019; 225:151873. [PMID: 31812344 DOI: 10.1016/j.imbio.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 02/08/2023]
Abstract
Malaria is the parasitic disease with the highest mortality worldwide; males exhibit higher mortality and more severe symptomatology than females, suggesting the participation of sexual hormones in protection and pathology. We have documented that gonadectomy modifies oxidative stress in Plasmodium berghei ANKA-infected mice in a dimorphic manner. However, gonadectomy decreases all sexual steroids levels, making it difficult to determine the contribution of each hormone to the results. This study aimed to explore the participation of 17β-oestradiol (E2) in oxidative stress in the blood, spleen, liver and brain of P. berghei-infected female and male mice. E2 was administered to intact or gonadectomized (GX) male and female mice to assess their effects on parasitaemia, body weight loss and hypothermia. We also measured the effect of E2 on the specific activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and on malondialdehyde (MDA) levels in the blood, spleen, liver and brain of CBA/Ca male and female mice infected with P. berghei ANKA. We detected the effects of E2 and sexual dimorphism on all tissues and variables analysed. Administration of E2 increased parasitaemia in intact mice. However, reconstitution of GX female mice with E2 decreased parasitaemia. E2 decreased body weight and differentially modulated oxidative stress depending on the sex, infection and tissue analysed. Low antioxidant activity was detected in the brain, suggesting additional protective antioxidant mechanisms in the brain independent of antioxidant enzymes. Our results explained, at least in part, the sexual dimorphism in this experimental model of malaria.
Collapse
|
30
|
De Niz M, Meehan GR, Tavares J. Intravital microscopy: Imaging host-parasite interactions in lymphoid organs. Cell Microbiol 2019; 21:e13117. [PMID: 31512335 DOI: 10.1111/cmi.13117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/25/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Intravital microscopy allows imaging of biological phenomena within living animals, including host-parasite interactions. This has advanced our understanding of both, the function of lymphoid organs during parasitic infections, and the effect of parasites on such organs to allow their survival. In parasitic research, recent developments in this technique have been crucial for the direct study of host-parasite interactions within organs at depths, speeds and resolution previously difficult to achieve. Lymphoid organs have gained more attention as we start to understand their function during parasitic infections and the effect of parasites on them. In this review, we summarise technical and biological findings achieved by intravital microscopy with respect to the interaction of various parasites with host lymphoid organs, namely the bone marrow, thymus, lymph nodes, spleen and the mucosa-associated lymphoid tissue, and present a view into possible future applications.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, Heussler Lab, University of Bern, Bern, Switzerland
| | - Gavin R Meehan
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Joana Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Imai T, Suzue K, Ngo-Thanh H, Ono S, Orita W, Suzuki H, Shimokawa C, Olia A, Obi S, Taniguchi T, Ishida H, Van Kaer L, Murata S, Tanaka K, Hisaeda H. Fluctuations of Spleen Cytokine and Blood Lactate, Importance of Cellular Immunity in Host Defense Against Blood Stage Malaria Plasmodium yoelii. Front Immunol 2019; 10:2207. [PMID: 31608052 PMCID: PMC6773889 DOI: 10.3389/fimmu.2019.02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
Our previous studies of protective immunity and pathology against blood stage malaria parasites have shown that not only CD4+ T cells, but also CD8+ T cells and macrophages, are important for host defense against blood stage malaria infection. Furthermore, we found that Plasmodium yoelii 17XNL (PyNL) parasitizes erythroblasts, the red blood cell (RBC) precursor cells, which then express MHC class I molecules. In the present study, we analyzed spleen cytokine production. In CD8+ T cell-depleted mice, IL-10 production in early stage infection was increased over two-fold relative to infected control animals and IL-10+ CD3- cells were increased, whereas IFN-γ production in the late stage of infection was decreased. At day 16 after PyNL infection, CD8+ T cells produced more IFN-γ than CD4+ T cells. We evaluated the involvement of the immunoproteasome in induction of immune CD8+ T cells, and the role of Fas in protection against PyNL both of which are downstream of IFN-γ. In cell transfer experiments, at least the single molecules LMP7, LMP2, and PA28 are not essential for CD8+ T cell induction. The Fas mutant LPR mouse was weaker in resistance to PyNL infection than WT mice, and 20% of the animals died. LPR-derived parasitized erythroid cells exhibited less externalization of phosphatidylserine (PS), and phagocytosis by macrophages was impaired. Furthermore, we tried to identify the cause of death in malaria infection. Blood lactate concentration was increased in the CD8+ T cell-depleted PyNL-infected group at day 19 (around peak parasitemia) to similar levels as day 7 after infection with a lethal strain of Py. When we injected mice with lactate at day 4 and 6 of PyNL infection, all mice died at day 8 despite demonstrating low parasitemia, suggesting that hyperlactatemia is one of the causes of death in CD8+ T cell-depleted PyNL-infected mice. We conclude that CD8+ T cells might control cytokine production to some extent and regulate hyperparasitemia and hyperlactatemia in protection against blood stage malaria parasites.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Suguri Ono
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Wakako Orita
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Haruka Suzuki
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chikako Shimokawa
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alex Olia
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiji Obi
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomoyo Taniguchi
- Center for Medical Education, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hidekazu Ishida
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
32
|
Immunogenic Evaluation of Ribosomal P-Protein Antigen P0, P1, and P2 and Pentameric Protein Complex P0-(P1-P2) 2 of Plasmodium falciparum in a Mouse Model. J Immunol Res 2019; 2019:9264217. [PMID: 31612155 PMCID: PMC6757288 DOI: 10.1155/2019/9264217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
Malaria remains one the most infectious and destructive protozoan diseases worldwide. Plasmodium falciparum, a protozoan parasite with a complex life cycle and high genetic variability responsible for the difficulties in vaccine development, is implicated in most malaria-related deaths. In the course of study, we prepared a set of antigens based on P-proteins from P. falciparum and determined their immunogenicity in an in vivo assay on a mouse model. The pentameric complex P0-(P1-P2)2 was prepared along with individual P1, P2, and P0 antigens. We determined the level of cellular- and humoral-type immunological response followed by development of specific immunological memory. We have shown that the number of Tc cells increased significantly after the first immunization with P2 and after the second immunization with P1 and P0-(P1-P2)2, which highly correlated with the number of Th1 cells. P0 appeared as a poor inducer of cellular response. After the third boost with P1, P2, or P0-(P1-P2)2, the initially high cellular response dropped to the control level accompanied by elevation of the number of activated Treg cells and a high level of suppressive TGF-β. Subsequently, the humoral response against the examined antigens was activated. Although the titers of specific IgG were increasing during the course of immunization for all antigens used, P2 and P0-(P1-P2)2 were found to be significantly stronger than P1 and P0. A positive correlation between the Th2 cell abundance and the level of IL-10 was observed exclusively after immunization with P0-(P1-P2)2. An in vitro exposure of spleen lymphocytes from the immunized mice especially to the P1, P2, and P0-(P1-P2)2 protein caused 2-3-fold higher cell proliferation than that in the case of lymphocytes from the nonimmunized animals, suggesting development of immune memory. Our results demonstrate for the first time that the native-like P-protein pentameric complex represents much stronger immune potential than individual P-antigens.
Collapse
|
33
|
Coco D, Leanza S. Indications for Surgery in Non-Traumatic Spleen Disease. Open Access Maced J Med Sci 2019; 7:2958-2960. [PMID: 31844464 PMCID: PMC6901870 DOI: 10.3889/oamjms.2019.568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023] Open
Abstract
The spleen is the largest lymphatic organ that acts as a site for filtration of foreign particles from the blood, erythropoiesis and hematopoiesis. Splenectomy represents the first line of treatment for spontaneous splenic rupture, abscesses, cysts, tumours. It is also used to control hereditary, autoimmune, and myeloproliferative disorders alternatively. Numerous diseases have been indicated for surgery in non-traumatic spleen diseases such as non-traumatic spleen rupture, immune thrombocytopenic purpura (ITP), haemolytic anaemias, Felty’s syndrome, Hodgkin’s and non-Hodgkin’s lymphoma among others. This result because the spleen is the most affected lymphoid organ following its overactivity that occurs during sequestration of dead or disrupted RBCs and lymphocytes. Abdominal pain is one of the major manifestations of splenomegaly, and can also designate other associated complications such as liver cirrhosis or bacterial endocarditis. As a secondary lymphoid organ, the spleen is more often an organ for lymphomas. Although splenectomy is a curative alternative in a few diseases, it is a complementary means of treating several other diseases. Splenectomy is a salvage therapy used when other therapeutic alternatives fail. Despite its indication in numerous diseases, controversies are still inbound of its use.
Collapse
Affiliation(s)
- Danilo Coco
- Ospedali Riuniti Marche Nord, Pesaro, Italy.,Ospedale Augusto Murri - Fermo, Fermo, Italy
| | | |
Collapse
|
34
|
Sickle Cell Disease and Infections in High- and Low-Income Countries. Mediterr J Hematol Infect Dis 2019; 11:e2019042. [PMID: 31308918 PMCID: PMC6613623 DOI: 10.4084/mjhid.2019.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/21/2019] [Indexed: 01/17/2023] Open
Abstract
Infections, especially pneumococcal septicemia, meningitis, and Salmonella osteomyelitis, are a major cause of morbidity and mortality in patients with sickle cell disease (SCD). SCD increased susceptibility to infection, while infection leads to SCD-specific pathophysiological changes. The risk of infectious complications is highest in children with a palpable spleen before six months of age. Functional splenectomy, the results of repeated splenic infarctions, appears to be a severe host-defense defect. Infection is the leading cause of death, particularly in less developed countries. Defective host-defense mechanisms enhance the risk of pneumococcal complications. Susceptibility to Salmonella infections can be explained at least in part by a similar mechanism. In high-income countries, the efficacy of the pneumococcal vaccine has been demonstrated in this disease. A decreased in infection incidence has been noted in SCD patients treated prophylactically with daily oral penicillin. Studies in low-income countries suggest the involvement of a different spectrum of etiological agents.
Collapse
|
35
|
Park MK, Ko EJ, Jeon KY, Kim H, Jo JO, Baek KW, Kang YJ, Choi YH, Hong Y, Ock MS, Cha HJ. Induction of Angiogenesis by Malarial Infection through Hypoxia Dependent Manner. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:117-125. [PMID: 31104403 PMCID: PMC6526210 DOI: 10.3347/kjp.2019.57.2.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
Abstract
Malarial infection induces tissue hypoxia in the host through destruction of red blood cells. Tissue hypoxia in malarial infection may increase the activity of HIF1α through an intracellular oxygen-sensing pathway. Activation of HIF1α may also induce vascular endothelial growth factor (VEGF) to trigger angiogenesis. To investigate whether malarial infection actually generates hypoxia-induced angiogenesis, we analyzed severity of hypoxia, the expression of hypoxia-related angiogenic factors, and numbers of blood vessels in various tissues infected with Plasmodium berghei. Infection in mice was performed by intraperitoneal injection of 2×106 parasitized red blood cells. After infection, we studied parasitemia and survival. We analyzed hypoxia, numbers of blood vessels, and expression of hypoxia-related angiogenic factors including VEGF and HIF1α. We used Western blot, immunofluorescence, and immunohistochemistry to analyze various tissues from Plasmodium berghei-infected mice. In malaria-infected mice, parasitemia was increased over the duration of infection and directly associated with mortality rate. Expression of VEGF and HIF1α increased with the parasitemia in various tissues. Additionally, numbers of blood vessels significantly increased in each tissue type of the malaria-infected group compared to the uninfected control group. These results suggest that malarial infection in mice activates hypoxia-induced angiogenesis by stimulation of HIF1α and VEGF in various tissues.
Collapse
Affiliation(s)
- Mi-Kyung Park
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
- Department of Biological Science, Pusan National University, Busan 46241, Korea
| | - Kyung-Yoon Jeon
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Hyunsu Kim
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
- Department of Biological Science, Pusan National University, Busan 46241, Korea
| | - Jin-Ok Jo
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Kyung-Wan Baek
- Department of Parasitology, College of Medicine, Pusan National University, Busan 50612, Korea
| | - Yun-Jeong Kang
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| |
Collapse
|
36
|
Berretta F, Piccirillo CA, Stevenson MM. Plasmodium chabaudi AS Infection Induces CD4 + Th1 Cells and Foxp3 +T-bet + Regulatory T Cells That Express CXCR3 and Migrate to CXCR3 Ligands. Front Immunol 2019; 10:425. [PMID: 30915078 PMCID: PMC6422055 DOI: 10.3389/fimmu.2019.00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
Control and elimination of blood-stage Plasmodium chabaudi AS infection requires CD4+ Th1 cells that secrete IFN-γ and T follicular help (Tfh) cells together with B cell production of antibody. Foxp3+ regulatory T cells (Tregs) are also crucial to protect the host from immunopathology and severe disease, but these cells can suppress protective immune responses to malaria. The chemokine receptor CXCR3 expressed by activated T cells is important for trafficking of CD4+ Th1 cells to sites of inflammation and infection. Previous studies demonstrated CXCR3 is expressed on CD4+ T cells in the spleen during malaria, but the phenotype was not defined. We identified the phenotype of CD4+ T cells that expressed CXCR3 in C57BL/6 (B6) mice during acute P. chabaudi AS infection by analyzing expression of the transcription factors T-bet and Foxp3. We also investigated if CXCR3 contributes to control of parasite replication and survival. The frequency and number of CD4+CXCR3+ T cells increased dramatically in the spleen of infected B6 mice coincident with increased CD4+IFN-γ+ T cells. CXCR3 was up-regulated on effector CD4+Foxp3− T cells as well as Foxp3+ Tregs. Consistent with our previous observations, CD4+T-bet+Foxp3− T cells increased in B6 mice during acute infection. T-bet+Foxp3+ Tregs also increased significantly and a high frequency of these cells expressed CXCR3 supporting the notion that these cells may be Th1-like Tregs. Despite this, the percentage of CD4+Foxp3+ Tregs from infected B6 mice that migrated in vitro to the CXCR3 ligands CXCL9 and CXCL10 was significantly less than naïve mice. To investigate the in vivo contribution of CXCR3 to control of acute blood-stage malaria, we compared the course and outcome of P. chabaudi AS infection in wild-type (WT) B6 and CXCR3-deficient mice. Parasitemia levels were significantly higher around the time of peak parasitemia in CXCR3−/− compared to WT mice but survival was similar suggesting a role for CXCR3 in controlling parasite replication during acute P. chabaudi AS infection. Together, our findings indicate Th1-like CD4+T-bet+Foxp3+ Tregs that express CXCR3 are induced during acute blood-stage malaria and suggest CXCR3 expression on CD4+ Th1 cells may contribute to their migration to the spleen.
Collapse
Affiliation(s)
- Floriana Berretta
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Ciriaco A Piccirillo
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Program in Infectious Disease and Immunity in Global Health and Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mary M Stevenson
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste-Anne de Bellevue, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Kho S, Andries B, Poespoprodjo JR, Commons RJ, Shanti PAI, Kenangalem E, Douglas NM, Simpson JA, Sugiarto P, Anstey NM, Price RN. High Risk of Plasmodium vivax Malaria Following Splenectomy in Papua, Indonesia. Clin Infect Dis 2019; 68:51-60. [PMID: 29771281 PMCID: PMC6128403 DOI: 10.1093/cid/ciy403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/07/2018] [Indexed: 01/12/2023] Open
Abstract
Background Splenectomy increases the risk of severe and fatal infections; however, the risk of Plasmodium vivax malaria is unknown. We quantified the Plasmodium species-specific risks of malaria and other outcomes following splenectomy in patients attending a hospital in Papua, Indonesia. Methods Records of all patients attending Mitra-Masyarakat Hospital 2004-2013 were reviewed, identifying those who underwent splenectomy. Subsequent risks of specific clinical outcomes within 12 months for splenectomized patients were compared to nonsplenectomized patients from their first recorded hospital admission. In addition, patients splenectomized for trauma 2015-2016 were followed prospectively for 14 months. Results Of the 10774 patients hospitalized during 2004-2013, 67 underwent splenectomy. Compared to nonsplenectomized inpatients, patients undergoing splenectomy had a 5-fold higher rate of malaria presentation within 12 months (adjusted hazard ratio [AHR] = 5.0 [95% confidence interval (CI): 3.4-7.3], P < .001). The AHR was 7.8 (95% CI: 5.0-12.3) for P. vivax and 3.0 (95% CI: 1.7-5.4) for P. falciparum (both P < .001). Splenectomized patients had greater risk of being hospitalized for any cause (AHR = 1.8 [95% CI: 1.0-3.0], P = .037) and diarrheal (AHR = 3.5 [95% CI: 1.3-9.6], P = .016). In the 14-month prospective cohort, 12 episodes of P. vivax and 6 episodes of P. falciparum were observed in 11 splenectomised patients. Conclusions Splenectomy is associated with a high risk of malaria, greater for P. vivax than P. falciparum. Eradication of P. vivax hypnozoites using primaquine (radical cure) and subsequent malaria prophylaxis is warranted following splenectomy in malaria-endemic areas.
Collapse
Affiliation(s)
- Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Benediktus Andries
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua
| | - Jeanne R Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua,Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua,Pediatric Research Office, Department of Pediatrics, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Robert J Commons
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua,Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua
| | - Nicholas M Douglas
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia,Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom,Correspondence: R. N. Price, Global and Tropical Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, Darwin 0811, Northern Territory, Australia ()
| |
Collapse
|
38
|
Frame L, Brewer J, Lee R, Faulds K, Graham D. Development of a label-free Raman imaging technique for differentiation of malaria parasite infected from non-infected tissue. Analyst 2018; 143:157-163. [PMID: 29143837 DOI: 10.1039/c7an01760j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During malarial infection, the host uses the spleen to clear the malaria parasites, however, the parasites have evolved the ability to bind to endothelial receptors in blood vessels of tissues to avoid removal, known as sequestration, and this is largely responsible for the symptoms and severity of infection. So a technique which could non-invasively diagnose tissue burden could be utilised as an aid for localised malaria diagnosis within tissue. Raman spectroscopy is a label-free imaging technique and can provide unique and chemically specific Raman 'fingerprint' spectrum of biological samples such as tissue. Within this study, Raman imaging was used to observe the changes to the molecular composition of mice spleen tissue under malarial infection, compared with non-infected samples. From analysis of the Raman imaging data, both tissue types showed very similar spectral profiles, which highlighted that their biochemical compositions were closely linked. Principal component analysis showed very clear separation of the two sample groups, with an associated increase in concentration of heme-based Raman vibrations within the infected dataset. This was indicative of the presence of hemozoin, the malaria pigment, being detected within the infected spleen. Separation also showed that as the hemozoin content within the tissue increased, there was a corresponding change to hemoglobin and some lipid/nucleic acid vibrations. These results demonstrate that Raman spectroscopy can be used to easily discriminate the subtle changes in tissue burden upon malarial infection.
Collapse
Affiliation(s)
- Laura Frame
- Centre of Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD, UK.
| | | | | | | | | |
Collapse
|
39
|
Suzuki H, Kume A, Herbas MS. Potential of Vitamin E Deficiency, Induced by Inhibition of α-Tocopherol Efflux, in Murine Malaria Infection. Int J Mol Sci 2018; 20:ijms20010064. [PMID: 30586912 PMCID: PMC6337606 DOI: 10.3390/ijms20010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023] Open
Abstract
Although epidemiological and experimental studies have suggested beneficial effects of vitamin E deficiency on malaria infection, it has not been clinically applicable for the treatment of malaria owing to the significant content of vitamin E in our daily food. However, since α-tocopherol transfer protein (α-TTP) has been shown to be a determinant of vitamin E level in circulation, manipulation of α-tocopherol levels by α-TTP inhibition was considered as a potential therapeutic strategy for malaria. Knockout studies in mice indicated that inhibition of α-TTP confers resistance against malaria infections in murines, accompanied by oxidative stress-induced DNA damage in the parasite, arising from vitamin E deficiency. Combination therapy with chloroquine and α-TTP inhibition significantly improved the survival rates in murines with malaria. Thus, clinical application of α-tocopherol deficiency could be possible, provided that α-tocopherol concentration in circulation is reduced. Probucol, a recently found drug, induced α-tocopherol deficiency in circulation and was effective against murine malaria. Currently, treatment of malaria relies on the artemisinin-based combination therapy (ACT); however, when mice infected with malarial parasites were treated with probucol and dihydroartemisinin, the beneficial effect of ACT was pronounced. Protective effects of vitamin E deficiency might be extended to manage other parasites in future.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.
| | - Aiko Kume
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
| | - Maria Shirely Herbas
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
| |
Collapse
|
40
|
Introini V, Carciati A, Tomaiuolo G, Cicuta P, Guido S. Endothelial glycocalyx regulates cytoadherence in Plasmodium falciparum malaria. J R Soc Interface 2018; 15:20180773. [PMID: 30958233 PMCID: PMC6303788 DOI: 10.1098/rsif.2018.0773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Malaria is associated with significant microcirculation disorders, especially when the infection reaches its severe stage. This can lead to a range of fatal conditions, from cerebral malaria to multiple organ failure, of not fully understood pathogenesis. It has recently been proposed that a breakdown of the glycocalyx, the carbohydrate-rich layer lining the vascular endothelium, plays a key role in severe malaria, but direct evidence supporting this hypothesis is still lacking. Here, the interactions between Plasmodium falciparum infected red blood cells ( PfRBCs) and endothelial glycocalyx are investigated by developing an in vitro, physiologically relevant model of human microcirculation based on microfluidics. Impairment of the glycocalyx is obtained by enzymatic removal of sialic acid residues, which, due to their terminal location and net negative charge, are implicated in the initial interactions with contacting cells. We show a more than twofold increase of PfRBC adhesion to endothelial cells upon enzymatic treatment, relative to untreated endothelial cells. As a control, no effect of enzymatic treatment on healthy red blood cell adhesion is found. The increased adhesion of PfRBCs is also associated with cell flipping and reduced velocity as compared to the untreated endothelium. Altogether, these results provide a compelling evidence of the increased cytoadherence of PfRBCs to glycocalyx-impaired vascular endothelium, thus supporting the advocated role of glycocalyx disruption in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Viola Introini
- Biological and Soft Systems, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Antonio Carciati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
| | - Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Pietro Cicuta
- Biological and Soft Systems, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
41
|
Yan Z, Huang X, Sun W, Yang Q, Shi H, Jiang T, Li S, Wang P, Gun S. Analyses of long non-coding RNA and mRNA profiling in the spleen of diarrheic piglets caused by Clostridium perfringens type C. PeerJ 2018; 6:e5997. [PMID: 30533301 PMCID: PMC6276591 DOI: 10.7717/peerj.5997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background Clostridium perfringens (C. perfringens) type C is the most common bacteria causing piglet diarrheal disease and it greatly affects the economy of the global pig industry. The spleen is an important immune organ in mammals; it plays an irreplaceable role in resisting and eradicating pathogenic microorganisms. Based on different immune capacity in piglets, individuals display the resistance and susceptibility to diarrhea caused by C. perfringens type C. Recently, long non-coding RNA (lncRNA) and mRNA have been found to be involved in host immune and inflammatory responses to pathogenic infections. However, little is known about spleen transcriptome information in piglet diarrhea caused by C. perfringens type C. Methods Hence, we infected 7-day-old piglets with C. perfringens type C to lead to diarrhea. Then, we investigated lncRNA and mRNA expression profiles in spleens of piglets, including control (SC), susceptible (SS), and resistant (SR) groups. Results As a result, 2,056 novel lncRNAs and 2,417 differentially expressed genes were found. These lncRNAs shared the same characteristics of fewer exons and shorter length. Bioinformatics analysis identified that two lncRNAs (ALDBSSCT0000006918 and ALDBSSCT0000007366) may be involved in five immune/inflammation-related pathways (such as Toll-like receptor signaling pathway, MAPK signaling pathway, and Jak-STAT signaling pathway), which were associated with resistance and susceptibility to C. perfringens type C infection. This study contributes to the understanding of potential mechanisms involved in the immune response of piglets infected with C. perfringens type C.
Collapse
Affiliation(s)
- Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenyang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Hairen Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Tiantuan Jiang
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, Gansu, China
| | - Shenggui Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China.,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, Gansu, China
| |
Collapse
|
42
|
Febrile Temperature Elevates the Expression of Phosphatidylserine on Plasmodium falciparum (FCR3CSA) Infected Red Blood Cell Surface Leading to Increased Cytoadhesion. Sci Rep 2018; 8:15022. [PMID: 30302009 PMCID: PMC6177484 DOI: 10.1038/s41598-018-33358-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
During the asexual intra-erythrocytic cycle, Plasmodium (P.) falciparum exports parasitic proteins to the surface of infected red blood cells (iRBCs) facilitating its cytoadhesion to various endothelial host receptors. This adhesive behavior is a critical contributor towards disease manifestation. However, little is known about the influence of recurring elevated temperature – a common symptom of the malaria infection – on the adhesive properties of iRBCs to endothelial receptors. To address this, we performed dual-micropipette step-pressure technique between P. falciparum (strain FCR3CSA) iRBCs and Chinese Hamster Ovary cells expressing Chondroitin sulfate A (CHO-CSA) after transient iRBCs incubation at febrile temperatures which revealed increase in adhesion parameters. Furthermore, flow cytometry analysis revealed an increase in phosphatidylserine (PS) expression on the iRBC surface following exposure to febrile temperature. The adhesion between iRBCs and CHO-CSA cells was remarkably reduced in presence of soluble Annexin V, indicating the mediation of PS on the adhesion events. Our results suggest that elevated PS recruitment on iRBC under thermally stressed conditions contributes to the increased adhesive behavior of iRBCs CSA-binding phenotype to CHO-CSA.
Collapse
|
43
|
Fernandes P, Howland SW, Heiss K, Hoffmann A, Hernández-Castañeda MA, Obrová K, Frank R, Wiedemann P, Bendzus M, Rénia L, Mueller AK. A Plasmodium Cross-Stage Antigen Contributes to the Development of Experimental Cerebral Malaria. Front Immunol 2018; 9:1875. [PMID: 30154793 PMCID: PMC6102508 DOI: 10.3389/fimmu.2018.01875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023] Open
Abstract
Cerebral malaria is a complex neurological syndrome caused by an infection with Plasmodium falciparum parasites and is exclusively attributed to a series of host–parasite interactions at the pathological blood-stage of infection. In contrast, the preceding intra-hepatic phase of replication is generally considered clinically silent and thereby excluded from playing any role in the development of neurological symptoms. In this study, however, we present an antigen PbmaLS_05 that is presented to the host immune system by both pre-erythrocytic and intra-erythrocytic stages and contributes to the development of cerebral malaria in mice. Although deletion of the endogenous PbmaLS_05 prevented the development of experimental cerebral malaria (ECM) in susceptible mice after both sporozoite and infected red blood cell (iRBC) infections, we observed significant differences in contribution of the host immune response between both modes of inoculation. Moreover, PbmaLS_05-specific CD8+ T cells contributed to the development of ECM after sporozoite but not iRBC-infection, suggesting that pre-erythrocytic antigens like PbmaLS_05 can also contribute to the development of cerebral symptoms. Our data thus highlight the importance of the natural route of infection in the study of ECM, with potential implications for vaccine and therapeutic strategies against malaria.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Klára Obrová
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Frank
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Wiedemann
- Department of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Martin Bendzus
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Laurent Rénia
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
44
|
Yam XY, Preiser PR. Host immune evasion strategies of malaria blood stage parasite. MOLECULAR BIOSYSTEMS 2018; 13:2498-2508. [PMID: 29091093 DOI: 10.1039/c7mb00502d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Host immune evasion is a key strategy for the continual survival of many microbial pathogens including Apicomplexan protozoan: Plasmodium spp., the causative agent of Malaria. The malaria parasite has evolved a variety of mechanisms to evade the host immune responses within its two hosts: the female Anopheles mosquito vector and vertebrate host. In this review, we will focus on the molecular mechanisms of the immune evasion strategies used by the Plasmodium parasite at the blood stage which is responsible for the clinical manifestations of human malaria. We also aim to provide some insights on the potential targets for malaria interventions through the recent advancement in understanding the molecular biology of the parasite.
Collapse
Affiliation(s)
- Xue Yan Yam
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| | | |
Collapse
|
45
|
Salazar-Castañón VH, Juárez-Avelar I, Legorreta-Herrera M, Govezensky T, Rodriguez-Sosa M. Co-infection: the outcome of Plasmodium infection differs according to the time of pre-existing helminth infection. Parasitol Res 2018; 117:2767-2784. [PMID: 29938323 DOI: 10.1007/s00436-018-5965-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
Abstract
Although helminth-Plasmodium coinfections are common in tropical regions, the implications of this co-existence for the host immune response are poorly understood. In order to understand the effect of helminth infection at different times of coinfection on the immune response against Plasmodium infection, BALB/c mice were intraperitoneally infected with Taenia crassiceps (Tc). At 2 (Tc2) or 8 (Tc8) weeks post-infection, mice were intravenously infected with 1 × 103 Plasmodium yoelii (Py) 17XL-parasitized red blood cells. Py 17XL-single-infected mice developed cachexia, splenomegaly, and anemia, and died at 11 days post-infection. Importantly, Tc2 + Py-coinfected mice showed increased survival of 58% on day 11, but developed pathology (cachexia and splenomegaly) and succumbed on day 18 post-coinfection, this latter associated with high levels of IL-1β and IL-12, and reduced IFN-γ in serum compared with Py 17XL-single-infected mice. Interestingly, Tc8 + Py-coinfected mice showed increased survival up to 80% on day 11 and succumbed on day 30 post-coinfection. This increased survival rate conferred by chronic helminth infection was associated with a decreased pathology and mixed inflammatory-type 1/anti-inflammatory-type 2 immune profile as evidenced by the production of high levels of IL-12 and IL-10, and reduced TNF-α from macrophages, high levels of IL-4 and IL-10, and low levels of IFN-γ from spleen cells. Also high serum levels of IL-1β, TNF-α, IL-12, IL-4, and IL-10, but a significant reduction of IFN-γ were observed. Together, these data indicate that polarization of the cell-mediated response modulated by a pre-existing helminth infection differentially impacts on the host immune response to Py 17XL in a time-dependent manner.
Collapse
Affiliation(s)
- Víctor H Salazar-Castañón
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Batalla 5 de mayo s/n, Col. Ejército de Oriente, Iztapalapa, C.P. 09230, Ciudad de México, Mexico
| | - Tzipe Govezensky
- Departamento de Biología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autònoma de México (UNAM), Ciudad de México, Mexico
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.
| |
Collapse
|
46
|
Lee RS, Waters AP, Brewer JM. A cryptic cycle in haematopoietic niches promotes initiation of malaria transmission and evasion of chemotherapy. Nat Commun 2018; 9:1689. [PMID: 29703959 PMCID: PMC5924373 DOI: 10.1038/s41467-018-04108-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/28/2018] [Indexed: 12/04/2022] Open
Abstract
Blood stage human malaria parasites may exploit erythropoietic tissue niches and colonise erythroid progenitors; however, the precise influence of the erythropoietic environment on fundamental parasite biology remains unknown. Here we use quantitative approaches to enumerate Plasmodium infected erythropoietic precursor cells using an in vivo rodent model of Plasmodium berghei. We show that parasitised early reticulocytes (ER) in the major sites of haematopoiesis establish a cryptic asexual cycle. Moreover, this cycle is characterised by early preferential commitment to gametocytogenesis, which occurs in sufficient numbers to generate almost all of the initial population of circulating, mature gametocytes. In addition, we show that P. berghei is less sensitive to artemisinin in splenic ER than in blood, which suggests that haematopoietic tissues may enable origins of recrudescent infection and emerging resistance to antimalarials. Continuous propagation in these sites may also provide a mechanism for continuous transmission and infection in malaria endemic regions.
Collapse
Affiliation(s)
- Rebecca S Lee
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, Sir Graham Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Andrew P Waters
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, Sir Graham Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK.
| | - James M Brewer
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, Sir Graham Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK.
| |
Collapse
|
47
|
Al-Quraishy S, Dkhil MA, Abdel-Baki AAS, Delic D, Wunderlich F. Protective vaccination alters gene expression of the liver of Balb/c mice in response to early prepatent blood-stage malaria of Plasmodium chabaudi. Parasitol Res 2018; 117:1115-1129. [DOI: 10.1007/s00436-018-5789-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/25/2018] [Indexed: 12/19/2022]
|
48
|
Ng SS, Souza-Fonseca-Guimaraes F, Rivera FDL, Amante FH, Kumar R, Gao Y, Sheel M, Beattie L, Montes de Oca M, Guillerey C, Edwards CL, Faleiro RJ, Frame T, Bunn PT, Vivier E, Godfrey DI, Pellicci DG, Lopez JA, Andrews KT, Huntington ND, Smyth MJ, McCarthy J, Engwerda CR. Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection. Clin Transl Immunology 2018; 7:e1003. [PMID: 29484181 PMCID: PMC5822408 DOI: 10.1002/cti2.1003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/09/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives Innate lymphoid cells (ILCs) share many characteristics with CD4+ T cells, and group 1 ILCs share a requirement for T‐bet and the ability to produce IFNγ with T helper 1 (Th1) cells. Given this similarity, and the importance of Th1 cells for protection against intracellular protozoan parasites, we aimed to characterise the role of group 1 ILCs during Plasmodium infection. Methods We quantified group 1 ILCs in peripheral blood collected from subjects infected with with Plasmodium falciparum 3D7 as part of a controlled human malaria infection study, and in the liver and spleens of PcAS‐infected mice. We used genetically‐modified mouse models, as well as cell‐depletion methods in mice to characterise the role of group 1 ILCs during PcAS infection. Results In a controlled human malaria infection study, we found that the frequencies of circulating ILC1s and NK cells decreased as infection progressed but recovered after volunteers were treated with antiparasitic drug. A similar observation was made for liver and splenic ILC1s in P. chabaudi chabaudi AS (PcAS)‐infected mice. The decrease in mouse liver ILC1 frequencies was associated with increased apoptosis. We also identified a population of cells within the liver and spleen that expressed both ILC1 and NK cell markers, indicative of plasticity between these two cell lineages. Studies using genetic and cell‐depletion approaches indicated that group 1 ILCs have a limited role in antiparasitic immunity during PcAS infection in mice. Discussion Our results are consistent with a previous study indicating a limited role for natural killer (NK) cells during Plasmodium chabaudi infection in mice. Additionally, a recent study reported the redundancy of ILCs in humans with competent B and T cells. Nonetheless, our results do not rule out a role for group 1 ILCs in human malaria in endemic settings given that blood stage infection was initiated intravenously in our experimental models, and thus bypassed the liver stage of infection, which may influence the immune response during the blood stage. Conclusion Our results show that ILC1s are lost early during mouse and human malaria, and this observation may help to explain the limited role for these cells in controlling blood stage infection.
Collapse
Affiliation(s)
- Susanna S Ng
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia.,School of Natural Sciences Griffith University Nathan QLD Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Melbourne VIC Australia.,Molecular Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | | | - Fiona H Amante
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Rajiv Kumar
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia.,Department of Biochemistry Banaras Hindu University Varanasi India
| | - Yulong Gao
- Immunology in Cancer and Infection QIMR Berghofer Medical Research Institute Herston QLD Australia.,School of Medicine University of Queensland Herston QLD Australia
| | - Meru Sheel
- National Centre for Immunisation Research and Surveillance Westmead NSW Australia
| | - Lynette Beattie
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Marcela Montes de Oca
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Camille Guillerey
- Immunology in Cancer and Infection QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Chelsea L Edwards
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia.,School of Medicine University of Queensland Herston QLD Australia
| | - Rebecca J Faleiro
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Teija Frame
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Patrick T Bunn
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, CIML Marseille France.,Service d'Immunologie APHM, Hôpital de la Conception Marseille France
| | - Dale I Godfrey
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity University of Melbourne Melbourne VIC Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging University of Melbourne Melbourne VIC Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity University of Melbourne Melbourne VIC Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging University of Melbourne Melbourne VIC Australia
| | | | | | - Nicholas D Huntington
- Molecular Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - James McCarthy
- Clinical Tropical Medicine QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Christian R Engwerda
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| |
Collapse
|
49
|
Ueffing K, Abberger H, Westendorf AM, Matuschewski K, Buer J, Hansen W. Conventional CD11c high Dendritic Cells Are Important for T Cell Priming during the Initial Phase of Plasmodium yoelii Infection, but Are Dispensable at Later Time Points. Front Immunol 2017; 8:1333. [PMID: 29085373 PMCID: PMC5650681 DOI: 10.3389/fimmu.2017.01333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized antigen-presenting cells that orchestrate adaptive immune responses to pathogens. During malaria infection pro- and anti-inflammatory T cell responses have to be tightly balanced to ensure parasite clearance without induction of severe immune pathologies. However, the precise role of CD11chigh DCs in this process is still discussed controversially. Here, we demonstrate that long-term depletion of conventional CD11chigh DCs in Plasmodium yoelii (P. yoelii)-infected diphtheria toxin (DT)-treated RosaiDTR/CD11c-cre mice interferes with the activation of CD8+ and CD4+ T cells as well as CD4+Foxp3+ regulatory T cells at early time points during infection. Moreover, systemic levels of the pro-inflammatory cytokines IFN-γ and TNF-α were decreased in P. yoelii-infected mice deficient for CD11chigh DCs compared to infected RosaiDTR controls. To further elucidate the importance of CD11chigh DCs during the later phase of infection, we treated RosaiDTR/CD11c-cre and control mice with DT only from day 4 of P. yoelii infection onward. Strikingly, this approach had no impact on the activation and IFN-γ production of CD4+ and CD8+ effector T cells. These results indicate that CD11chigh DCs play a crucial role in eliciting effector T cell responses during the initial phase, but are dispensable during ongoing infection with P. yoelii.
Collapse
Affiliation(s)
- Kristina Ueffing
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kai Matuschewski
- Molecular Parasitology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
50
|
Ebel ER, Telis N, Venkataram S, Petrov DA, Enard D. High rate of adaptation of mammalian proteins that interact with Plasmodium and related parasites. PLoS Genet 2017; 13:e1007023. [PMID: 28957326 PMCID: PMC5634635 DOI: 10.1371/journal.pgen.1007023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/10/2017] [Accepted: 09/15/2017] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites, along with their Piroplasm relatives, have caused malaria-like illnesses in terrestrial mammals for millions of years. Several Plasmodium-protective alleles have recently evolved in human populations, but little is known about host adaptation to blood parasites over deeper evolutionary timescales. In this work, we analyze mammalian adaptation in ~500 Plasmodium- or Piroplasm- interacting proteins (PPIPs) manually curated from the scientific literature. We show that (i) PPIPs are enriched for both immune functions and pleiotropy with other pathogens, and (ii) the rate of adaptation across mammals is significantly elevated in PPIPs, compared to carefully matched control proteins. PPIPs with high pathogen pleiotropy show the strongest signatures of adaptation, but this pattern is fully explained by their immune enrichment. Several pieces of evidence suggest that blood parasites specifically have imposed selection on PPIPs. First, even non-immune PPIPs that lack interactions with other pathogens have adapted at twice the rate of matched controls. Second, PPIP adaptation is linked to high expression in the liver, a critical organ in the parasite life cycle. Finally, our detailed investigation of alpha-spectrin, a major red blood cell membrane protein, shows that domains with particularly high rates of adaptation are those known to interact specifically with P. falciparum. Overall, we show that host proteins that interact with Plasmodium and Piroplasm parasites have experienced elevated rates of adaptation across mammals, and provide evidence that some of this adaptation has likely been driven by blood parasites.
Collapse
Affiliation(s)
- Emily R. Ebel
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (ERE); (DE)
| | - Natalie Telis
- Program in Biomedical Informatics, Stanford University, Stanford, California, United States of America
| | - Sandeep Venkataram
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - David Enard
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (ERE); (DE)
| |
Collapse
|