1
|
Aguirre PAU, Martins KM, López CDD, Sánchez FO, Castaño AT, Velásquez CMR, Vidal AP. Effect of nanoformulation Azadirachta indica on some factors associated with the vectorial capacity and competence of Anopheles aquasalis experimentally infected with Plasmodium vivax. Acta Trop 2024; 255:107223. [PMID: 38642694 DOI: 10.1016/j.actatropica.2024.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Malaria remains a highly prevalent infectious disease worldwide, particularly in tropical and subtropical regions. Effectively controlling of mosquitoes transmitting of Plasmodium spp. is crucial in to control this disease. A promising strategy involves utilizing plant-derived products, such as the Neem tree (Azadirachta indica), known for its secondary metabolites with biological activity against various insect groups of agricultural and public health importance. This study investigated the effects of a nanoformulation prototype Neem on factors linked to the vector competence of Anopheles aquasalis, a malaria vector in Latin America. Different concentrations of the nanoformulation were supplied through sugar solution and blood feeding, assessing impacts on longevity, fecundity, fertility, and transgenerational survival from larvae to adults. Additionally, the effects of the Neem nanoformulation and NeemAZAL® formulation on the sporogonic cycle of P. vivax were evaluated. Overall, significant impacts were observed at 100 ppm and 1,000 ppm concentrations on adult survival patterns and on survival of the F1 generation. A trend of reduced oviposition and hatching rates was also noted in nanoformulation-consuming groups, with fertility and fecundity declining proportionally to the concentration. Additionally, a significant decrease in the infection rate and intensity of P. vivax was observed in the 1,000 ppm group, with a mean of 3 oocysts per female compared to the control's 27 oocysts per female. In the commercial formulation, the highest tested concentration of 3 ppm yielded 5.36 oocysts per female. Concerning sporozoite numbers, there was a reduction of 52 % and 87 % at the highest concentrations compared to the control group. In conclusion, these findings suggest that the A. indica nanoformulation is a potential as a tool for malaria control through reduction in the vector longevity and reproductive capacity, possibly leading to decreased vector population densities. Moreover, the nanoformulation interfered with the sporogonic development of P. vivax. However, further basic research on Neem formulations, their effects, and mechanisms of action is imperative to gain a more specific perspective for safe field implementation.
Collapse
Affiliation(s)
| | - Keillen Monick Martins
- Laboratório de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, FIOCRUZ Amazônia, Brazil
| | | | | | | | | | - Adriana Pabón Vidal
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Ravindran J, Eapen A. A comparative study on the vector competence of Anopheles stephensi from geographically distinct malarious and non-malarious urban areas in India to the malarial parasite, Plasmodium vivax. J Vector Borne Dis 2024; 61:413-419. [PMID: 38634456 DOI: 10.4103/jvbd.jvbd_7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND OBJECTIVES Anopheles stephensi is responsible for the transmission of malaria in urban areas. Vector competence of An. stephensi from a non-malarious (Coimbatore) and highly malarious (Chennai) urban area were investigated to find out the reason for the non-transmission of malaria in Coimbatore. METHODS Vector competence (Susceptibility/refractoriness) of An. stephensi mosquitoes from Chennai (Malarious) and Coimbatore (Non-malarious), Tamil Nadu, India to Plasmodium vivax (Chennai) were investigated. Bioassays were carried out concurrently in both these strains by artificial membrane feeding technique using the same malaria infected blood. An. stephensi were dissected to observe infection in the midgut and salivary glands. The parasite infection, oocyst and sporozoite positivity rate, the oocyst load, correlation between male-female gametocyte ratio and infection, and Survival Analysis of parasitic stages during sporogony were analyzed and compared. RESULTS The overall infection rate was 45.8 and 41.2 per cent in Chennai and Coimbatore. Oocyst count ranged from 1-80 and 1-208 respectively and not statistically significant. Oocyst positivity was high from Day 8-21in both strains. The Mean Survival Day (MSD) for oocyst was Day 14 in both strains. Sporozoite was observed in four experiments in each of the strains and the MSD for sporozoites was Day 20 and Day 17 in Chennai and Coimbatore. INTERPRETATION CONCLUSION An. stephensi of Chennai and Coimbatore are equally susceptible to P. vivax infection and the non-transmission of malaria in Coimbatore can be attributed to external factors such as the presence of preferential breeding habitat, vector density, vector survival, and weather. The only difference observed was the comparatively shortened oocyst maturation time in the Coimbatore strain which requires further investigation.
Collapse
Affiliation(s)
- John Ravindran
- ICMR-National Institute of Malaria Research, Field Unit, Chennai, India
| | | |
Collapse
|
3
|
Chaves LSM, Bergo ES, Bickersmith SA, Laporta GZ, Conn JE, Sallum MAM. Forest cover percentage drives the peak biting time of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon. Malar J 2024; 23:166. [PMID: 38807105 PMCID: PMC11131226 DOI: 10.1186/s12936-024-04984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Deforestation is an important driver of malaria dynamics, with a relevant impact on mosquito ecology, including larval habitat availability, blood-feeding behaviour, and peak biting time. The latter is one of several entomological metrics to evaluate vectorial capacity and effectiveness of disease control. This study aimed to test the effect of forest cover percentage on the peak biting time of Plasmodium-uninfected and infected Nyssorhynchus darlingi females. METHODS Mosquitoes were captured utilizing human landing catch (HLC) in the peridomestic habitat in field collections carried out in the wet, wet-dry transition, and dry seasons from 2014 to 2017 in areas with active malaria transmission in Amazonian Brazil. The study locations were in rural settlements in areas with the mean annual malaria parasite incidence (Annual Parasite Incidence, API ≥ 30). All Ny. darlingi females were tested for Plasmodium spp. infection using real time PCR technique. Forest cover percentage was calculated for each collection site using QGIS v. 2.8 and was categorized in three distinct deforestation scenarios: (1) degraded, < 30% forest cover, (2) intermediate, 30-70% forest cover, and (3) preserved, > 70% forest cover. RESULTS The highest number of uninfected female Ny. darlingi was found in degraded landscape-sites with forest cover < 30% in any peak biting time between 18:00 and 0:00. Partially degraded landscape-sites, with (30-70%) forest cover, showed the highest number of vivax-infected females, with a peak biting time of 21:00-23:00. The number of P. falciparum-infected mosquitoes was highest in preserved sites with > 70% forest cover, a peak biting at 19:00-20:00, and in sites with 30-70% forest cover at 22:00-23:00. CONCLUSIONS Results of this study show empirically that degraded landscapes favour uninfected Ny. darlingi with a peak biting time at dusk (18:00-19:00), whereas partially degraded landscapes affect the behaviour of Plasmodium-infected Ny. darlingi by shifting its peak biting time towards hours after dark (21:00-23:00). In preserved sites, Plasmodium-infected Ny. darlingi bite around dusk (18:00-19:00) and shortly after (19:00-20:00).
Collapse
Affiliation(s)
- Leonardo Suveges Moreira Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715 - Pacaembu, CEP, 01246-904, São Paulo, SP, Brasil
| | | | | | - Gabriel Z Laporta
- Graduate Program in Health Sciences, FMABC Medical School University Center, Santo André, SP, Brazil
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715 - Pacaembu, CEP, 01246-904, São Paulo, SP, Brasil.
| |
Collapse
|
4
|
Somé BM, Guissou E, Da DF, Richard Q, Choisy M, Yameogo KB, Hien DF, Yerbanga RS, Ouedraogo GA, Dabiré KR, Djidjou-Demasse R, Cohuet A, Lefèvre T. Mosquito ageing modulates the development, virulence and transmission potential of pathogens. Proc Biol Sci 2024; 291:20232097. [PMID: 38166422 PMCID: PMC10762442 DOI: 10.1098/rspb.2023.2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/04/2024] Open
Abstract
Host age variation is a striking source of heterogeneity that can shape the evolution and transmission dynamic of pathogens. Compared with vertebrate systems, our understanding of the impact of host age on invertebrate-pathogen interactions remains limited. We examined the influence of mosquito age on key life-history traits driving human malaria transmission. Females of Anopheles coluzzii, a major malaria vector, belonging to three age classes (4-, 8- and 12-day-old), were experimentally infected with Plasmodium falciparum field isolates. Our findings revealed reduced competence in 12-day-old mosquitoes, characterized by lower oocyst/sporozoite rates and intensities compared with younger mosquitoes. Despite shorter median longevities in older age classes, infected 12-day-old mosquitoes exhibited improved survival, suggesting that the infection might act as a fountain of youth for older mosquitoes specifically. The timing of sporozoite appearance in the salivary glands remained consistent across mosquito age classes, with an extrinsic incubation period of approximately 13 days. Integrating these results into an epidemiological model revealed a lower vectorial capacity for older mosquitoes compared with younger ones, albeit still substantial owing to extended longevity in the presence of infection. Considering age heterogeneity provides valuable insights for ecological and epidemiological studies, informing targeted control strategies to mitigate pathogen transmission.
Collapse
Affiliation(s)
- Bernard M. Somé
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
| | - Edwige Guissou
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
- Ecole Normale Supérieure, BP 376 Koudougou, Burkina Faso
| | - Dari F. Da
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
| | - Quentin Richard
- IMAG, Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Marc Choisy
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 700000, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Koudraogo B. Yameogo
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Domombabele FdS. Hien
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Rakiswende S. Yerbanga
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Georges A. Ouedraogo
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
| | - Kounbobr R. Dabiré
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
| | - Thierry Lefèvre
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
| |
Collapse
|
5
|
Owino EA. Kenya must wake up to the threat of cryptic Anopheles species and their impact on residual malaria transmission. J Vector Borne Dis 2024; 61:1-4. [PMID: 38648401 DOI: 10.4103/0972-9062.392264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/17/2023] [Indexed: 04/25/2024] Open
Abstract
Malaria remains a major health problem in Kenya despite the huge efforts put in place to control it. The non-relenting malaria threat has partly been attributed to residual malaria transmission driven by vectors that cannot effectively be controlled by the two popularly applied control methods: long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Reports indicate that residual transmission is widely spread in areas where malaria is endemic. This could mean that the World Health Organization's vision of a world free of malaria remains a mirage as elimination and prevention of re-establishment of malaria are rendered unachievable. Amongst the major contributors to residual malaria transmission are cryptic rare species, species of mosquitoes that are morphologically indistinguishable, but isolated genetically, that have not been the focus of malaria control programs. Recent studies have reported extensive new Anopheles cryptic species believed to be involved in malaria transmission in Kenya. This underscores the need to understand these malaria vector species, their distribution and bionomics and their impact on malaria transmission. This article discusses reports of these cryptic species, their importance to malaria transmission, especially in the arid and semi-arid areas, and what can be done to mitigate the situation.
Collapse
|
6
|
Ayele S, Wegayehu T, Eligo N, Tamiru G, Lindtjørn B, Massebo F. Maize pollen diet enhances malaria mosquito longevity and infectivity to Plasmodium parasites in Ethiopia. Sci Rep 2023; 13:14490. [PMID: 37660195 PMCID: PMC10475124 DOI: 10.1038/s41598-023-41826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Although larval diet quality may affect adult mosquito fitness, its impact on parasite development is scarce. Plant pollen from Zea mays, Typha latifolia, and Prosopis juliflora was ultraviolet-sterilized and examined for effects on larval development, pupation rate, adult mosquito longevity, survival and infectivity. The control larvae were fed Tetramin fish food as a comparator food. Four treatment and two control groups were used for each pollen diet, and each experimental tray had 25 larvae. Female An. arabiensis were starved overnight and exposed to infectious blood using a membrane-feeding system. The Kaplan-Meier curves and log-rank test were used for analysis. The Z. mays pollen diet increased malaria mosquito survival and pupation rate (91.3%) and adult emergence (85%). Zea mays and Tetramin fish food had comparable adulthood development times. Adults who emerged from larvae fed Z. mays pollen had the longest average wing length (3.72 mm) and were more permissive to P. vivax (45%) and P. falciparum (27.5%). They also survived longer after feeding on infectious blood and had the highest number of P. vivax oocysts. Zea mays pollen improved larval development, adult mosquito longevity, survival and infectivity to Plasmodium. Our findings suggest that malaria transmission in Z. mays growing villages should be monitored.
Collapse
Affiliation(s)
- Shilimat Ayele
- Department of Biology, Wachemo University, Hossana, Ethiopia
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Teklu Wegayehu
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Nigatu Eligo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Girum Tamiru
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Bernt Lindtjørn
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
- Centre for International Health, University of Bergen, Bergen, Norway
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia.
| |
Collapse
|
7
|
Hug DOH, Stegmayer RI, Blanckenhorn WU, Verhulst NO. Thermal preference of adult mosquitoes (Culicidae) and biting midges (Ceratopogonidae) at different altitudes in Switzerland. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:562-573. [PMID: 37052330 DOI: 10.1111/mve.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Mosquitoes (Diptera: Culicidae) and biting midges (Diptera: Ceratopogonidae) are among the most important vectors of human and veterinary pathogens. For modelling the distribution of these pathogens, entomological aspects are essential, which in turn are highly dependent on environmental factors, such as temperature. In this study, mosquitoes and biting midges were sampled in multiple microclimates at two low (360, 480 meters above sea level, m.a.s.l.) and two high (1250, 1530 m.a.s.l.) altitude locations in Switzerland. Sets of various traps (CO2 -baited CDC, LED-UV, resting boxes, oviposition cups) equipped with dataloggers were placed in transects at five sites with similar vegetation at each location. Only the CDC and the LED-UV traps collected enough insects for analyses. Taxonomic diversity was greater for mosquitoes but lower for biting midges at lower altitudes. Both mosquitoes and biting midges had a thermal preference. Culicoides preferred the traps with warmer microclimate, especially at lower altitudes, whereas mosquito preferences depended on the species, but not on altitude. Relative humidity had a significant positive impact on catches of biting midges but not mosquitoes. To obtain better data on thermal preferences of resting and ovipositing vectors in addition to host seeking individuals, new and improved collecting methods are needed.
Collapse
Affiliation(s)
- David O H Hug
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Raffael I Stegmayer
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Wilk-da-Silva R, Medeiros-Sousa AR, Mucci LF, Alonso DP, Alvarez MVN, Ribolla PEM, Marrelli MT. Genetic Structuring of One of the Main Vectors of Sylvatic Yellow Fever: Haemagogus ( Conopostegus) leucocelaenus (Diptera: Culicidae). Genes (Basel) 2023; 14:1671. [PMID: 37761811 PMCID: PMC10531017 DOI: 10.3390/genes14091671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Genetic diversity and population structuring for the species Haemogogus leucocelaenus, a sylvatic vector of yellow fever virus, were found to vary with the degree of agricultural land use and isolation of fragments of Atlantic Forest in municipalities in the state of São Paulo where specimens were collected. Genotyping of 115 mitochondrial SNPs showed that the populations with the highest indices of genetic diversity (polymorphic loci and mean pairwise differences between the sequences) are found in areas with high levels of agricultural land use (northeast of the State). Most populations exhibited statistically significant negative values for the Tajima D and Fu FS neutrality tests, suggesting recent expansion. The results show an association between genetic diversity in this species and the degree of agricultural land use in the sampled sites, as well as signs of population expansion of this species in most areas, particularly those with the highest forest edge densities. A clear association between population structuring and the distance between the sampled fragments (isolation by distance) was observed: samples from a large fragment of Atlantic Forest extending along the coast of the state of São Paulo exhibited greater similarity with each other than with populations in the northwest of the state.
Collapse
Affiliation(s)
- Ramon Wilk-da-Silva
- Institute of Tropical Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Antônio Ralph Medeiros-Sousa
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (A.R.M.-S.); (D.P.A.)
| | - Luis Filipe Mucci
- State Department of Health, Pasteur Institute, São Paulo 01027-000, Brazil;
| | - Diego Peres Alonso
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (A.R.M.-S.); (D.P.A.)
- UNESP—Biotechnology Institute and Biosciences Institute, Sao Paulo State University, Botucatu 18618-689, Brazil; (M.V.N.A.); (P.E.M.R.)
| | - Marcus Vinicius Niz Alvarez
- UNESP—Biotechnology Institute and Biosciences Institute, Sao Paulo State University, Botucatu 18618-689, Brazil; (M.V.N.A.); (P.E.M.R.)
| | - Paulo Eduardo Martins Ribolla
- UNESP—Biotechnology Institute and Biosciences Institute, Sao Paulo State University, Botucatu 18618-689, Brazil; (M.V.N.A.); (P.E.M.R.)
| | - Mauro Toledo Marrelli
- Institute of Tropical Medicine, University of São Paulo, São Paulo 05403-000, Brazil
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (A.R.M.-S.); (D.P.A.)
| |
Collapse
|
9
|
Suh PF, Elanga-Ndille E, Tchouakui M, Sandeu MM, Tagne D, Wondji C, Ndo C. Impact of insecticide resistance on malaria vector competence: a literature review. Malar J 2023; 22:19. [PMID: 36650503 PMCID: PMC9847052 DOI: 10.1186/s12936-023-04444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Since its first report in Anopheles mosquitoes in 1950s, insecticide resistance has spread very fast to most sub-Saharan African malaria-endemic countries, where it is predicted to seriously jeopardize the success of vector control efforts, leading to rebound of disease cases. Supported mainly by four mechanisms (metabolic resistance, target site resistance, cuticular resistance, and behavioural resistance), this phenomenon is associated with intrinsic changes in the resistant insect vectors that could influence development of invading Plasmodium parasites. A literature review was undertaken using Pubmed database to collect articles evaluating directly or indiretly the impact of insecticide resistance and the associated mechanisms on key determinants of malaria vector competence including sialome composition, anti-Plasmodium immunity, intestinal commensal microbiota, and mosquito longevity. Globally, the evidence gathered is contradictory even though the insecticide resistant vectors seem to be more permissive to Plasmodium infections. The actual body of knowledge on key factors to vectorial competence, such as the immunity and microbiota communities of the insecticide resistant vector is still very insufficient to definitively infer on the epidemiological importance of these vectors against the susceptible counterparts. More studies are needed to fill important knowledge gaps that could help predicting malaria epidemiology in a context where the selection and spread of insecticide resistant vectors is ongoing.
Collapse
Affiliation(s)
- Pierre Fongho Suh
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 837, Yaoundé, Cameroon
| | - Emmanuel Elanga-Ndille
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Darus Tagne
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Charles Wondji
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Cyrille Ndo
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.
| |
Collapse
|
10
|
Amazonian Anopheles with low numbers of oocysts transmit Plasmodium vivax sporozoites during a blood meal. Sci Rep 2022; 12:19442. [PMID: 36376491 PMCID: PMC9663451 DOI: 10.1038/s41598-022-24058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Anopheles darlingi is the main malarial vector in the Brazilian Amazon region. An. nuneztovari s.l., An. triannulatus s.l., An. evansae, and An. benarrochi s.l. do not have a defined role as malarial vectors, although they have been found to be naturally infected with Plasmodium vivax, and some develop oocysts. In this study, we evaluated the importance of low numbers of oocysts in sporozoite salivary gland invasion and transmission. Field-collected mosquitoes were experimentally infected with P. vivax. The infection rates and oocyst and sporozoite infection intensities were evaluated and compared with those of An. aquasalis. We found the highest number of oocysts in An. darlingi (mean = 39.47) and the lowest in An. nuneztovari s.l. (mean = 2). The highest number of sporozoites was observed in An. darlingi (mean = 610) and lowest in An. benarrochi s.l. (mean = 30). Plasmodium vivax DNA was detected in the saliva of all mosquito species after a blood meal. Regardless of the number of oocysts, all species transmitted sporozoites during blood meals. Considering the abundance of these mosquitoes and transmission of sporozoites, it is logical to assume that An. nuneztovari s.l. and An. triannulatus s.l. are involved in the transmission of P. vivax.
Collapse
|
11
|
Mugenzi LMJ, Akosah-Brempong G, Tchouakui M, Menze BD, Tekoh TA, Tchoupo M, Nkemngo FN, Wondji MJ, Nwaefuna EK, Osae M, Wondji CS. Escalating pyrethroid resistance in two major malaria vectors Anopheles funestus and Anopheles gambiae (s.l.) in Atatam, Southern Ghana. BMC Infect Dis 2022; 22:799. [PMID: 36284278 PMCID: PMC9597992 DOI: 10.1186/s12879-022-07795-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aggravation of insecticide resistance in malaria vectors is threatening the efforts to control malaria by reducing the efficacy of insecticide-based interventions hence needs to be closely monitored. This study investigated the intensity of insecticide resistance of two major malaria vectors An. funestus sensu stricto (s.s.) and An. gambiae sensu lato (s.l.) collected in southern Ghana and assessed the bio-efficacy of several long-lasting insecticidal nets (LLINs) against these mosquito populations. METHODS The insecticide susceptibility profiles of Anopheles funestus s.s. and Anopheles gambiae s.l. populations from Obuasi region (Atatam), southern Ghana were characterized and the bio-efficacy of some LLINs was assessed to determine the impact of insecticide resistance on the effectiveness of these tools. Furthermore, molecular markers associated with insecticide resistance in both species were characterized in the F0 and F1 populations using PCR and qPCR methods. RESULTS Anopheles funestus s.s. was the predominant species and was resistant to pyrethroids, organochlorine and carbamate insecticides, but fully susceptible to organophosphates. An. gambiae s.l. was resistant to all four insecticide classes. High intensity of resistance to 5 × and 10 × the discriminating concentration (DC) of pyrethroids was observed in both species inducing a considerable loss of efficacy of long-lasting insecticidal nets (LLINs). Temporal expression analysis revealed a massive 12-fold increase in expression of the CYP6P4a cytochrome P450 gene in An. funestus s.s., initially from a fold change of 41 (2014) to 500 (2021). For both species, the expression of candidate genes did not vary according to discriminating doses. An. gambiae s.l. exhibited high frequencies of target-site resistance including Vgsc-1014F (90%) and Ace-1 (50%) while these mutations were absent in An. funestus s.s. CONCLUSIONS The multiple and high intensity of resistance observed in both malaria vectors highlights the need to implement resistance management strategies and the introduction of new insecticide chemistries.
Collapse
Affiliation(s)
- Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
| | - Gabriel Akosah-Brempong
- African Regional Postgraduate Program in Insect Science, University of Ghana, Legon, Accra, Ghana
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Benjamin D Menze
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Theofelix A Tekoh
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Francis N Nkemngo
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ekene K Nwaefuna
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | - Michael Osae
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
12
|
Abstract
Population genetic diversity of Plasmodium falciparum antigenic loci is high despite large bottlenecks in population size during the parasite life cycle. The prevalence of genetically distinct haplotypes at these loci, while well characterized in humans, has not been thoroughly compared between human and mosquito hosts. We assessed parasite haplotype prevalence, diversity, and evenness using human and mosquito P. falciparum infections collected from the same households during a 14-month longitudinal cohort study using amplicon deep sequencing of two antigenic gene fragments (ama1 and csp). To a prior set of infected humans (n = 1,175/2,813; 86.2% sequencing success) and mosquito abdomens (n = 199/1,448; 95.5% sequencing success), we added sequences from infected mosquito heads (n = 134/1,448; 98.5% sequencing success). The overall and sample-level parasite populations were more diverse in mosquitoes than in humans. Additionally, haplotype prevalences were more even in the P. falciparum human population than in the mosquito population, consistent with balancing selection occurring at these loci in humans. In contrast, we observed that infections in humans were more likely to harbor a dominant haplotype than infections in mosquitoes, potentially due to removal of unfit strains by the human immune system. Finally, within a given mosquito, there was little overlap in genetic composition of abdomen and head infections, suggesting that infections may be cleared from the abdomen during a mosquito’s lifespan. Taken together, our observations provide evidence for the mosquito vector acting as a reservoir of sequence diversity in malaria parasite populations.
Collapse
|
13
|
Sukkanon C, Masangkay FR, Mala W, Kotepui KU, Wilairatana P, Chareonviriyaphap T, Kotepui M. Prevalence of Plasmodium spp. in Anopheles mosquitoes in Thailand: a systematic review and meta-analysis. Parasit Vectors 2022; 15:285. [PMID: 35933389 PMCID: PMC9357324 DOI: 10.1186/s13071-022-05397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022] Open
Abstract
Background The entomological inoculation rate (EIR) is one of the key indices used to evaluate malaria transmission and vector control interventions. One of the components of the EIR is the sporozoite rate in Anopheles vectors. A systematic review and meta-analysis was performed to identify the prevalence of Plasmodium spp. in field-collected Anopheles species across Thailand. Methods This systematic review was registered under the PROSPERO number CRD42021297255. Studies that focused on the identification of Plasmodium spp. in Anopheles mosquitoes were identified from the electronic databases PubMed, Web of Science, and Scopus. The quality of the identified studies was determined using the Strengthening the Reporting of Observational Studies in Epidemiology approach. The proportion of Anopheles mosquitoes collected, Anopheles vectors for Plasmodium species, and specificity of Anopheles vectors for Plasmodium species were analyzed. The pooled prevalence of Plasmodium species among the primary vectors (Anopheles dirus, Anopheles minimus, and Anopheles maculatus) was estimated using the random-effects model. Results Of the 1113 studies identified, 31 were included in the syntheses. Of the 100,910 Anopheles mosquitoes identified for species and sibling species, An. minimus (40.16%), An. maculatus (16.59%), and Anopheles epiroticus (9.18%) were the most prevalent Anopheles species. Of the 123,286 Anopheles mosquitoes identified, 566 (0.46%) were positive for Plasmodium species. The highest proportions of Plasmodium species were identified in Anopheles hodgkini (2/6, 33.3%), Anopheles nigerrimus (2/24, 8.33%), Anopheles balabacensis (4/84, 4.76%), An. dirus (114/4956, 2.3%), Anopheles annularis (16/852, 1.88%), Anopheles kochi (8/519, 1.54%), Anopheles vagus (3/215, 1.4%), and Anopheles baimaii (1/86, 1.16%). The pooled prevalence of Plasmodium species identified in the main Anopheles vectors was 0.4% of that of Plasmodium species identified in An. dirus was 2.1%, that of Plasmodium species identified in An. minimus was 0.4%, and that of Plasmodium species identified in An. maculatus was 0.4%. Conclusions We found a low prevalence of Plasmodium infection in Anopheles mosquitoes across Thailand. Therefore, the use of EIR to determine the impact of vector control intervention on malaria parasite transmission and elimination in Thailand must be undertaken with caution, as a large number of Anopheles specimens may be required. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05397-2.
Collapse
Affiliation(s)
- Chutipong Sukkanon
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | | | - Wanida Mala
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.,Royal Society of Thailand, Sanam Suea Pa, Dusit, Bangkok, Thailand
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
14
|
Knaden M, Anderson P, Andersson MN, Hill SR, Sachse S, Sandgren M, Stensmyr MC, Löfstedt C, Ignell R, Hansson BS. Human Impacts on Insect Chemical Communication in the Anthropocene. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.791345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The planet is presently undergoing dramatic changes caused by human activities. We are living in the era of the Anthropocene, where our activities directly affect all living organisms on Earth. Insects constitute a major part of the world’s biodiversity and currently, we see dwindling insect biomass but also outbreaks of certain populations. Most insects rely on chemical communication to locate food, mates, and suitable oviposition sites, but also to avoid enemies and detrimental microbes. Emissions of, e.g., CO2, NOx, and ozone can all affect the chemical communication channel, as can a rising temperature. Here, we present a review of the present state of the art in the context of anthropogenic impact on insect chemical communication. We concentrate on present knowledge regarding fruit flies, mosquitoes, moths, and bark beetles, as well as presenting our views on future developments and needs in this emerging field of research. We include insights from chemical, physiological, ethological, and ecological directions and we briefly present a new international research project, the Max Planck Centre for Next Generation Insect Chemical Ecology (nGICE), launched to further increase our understanding of the impact of human activities on insect olfaction and chemical communication.
Collapse
|
15
|
Rapid age-grading and species identification of natural mosquitoes for malaria surveillance. Nat Commun 2022; 13:1501. [PMID: 35314683 PMCID: PMC8938457 DOI: 10.1038/s41467-022-28980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
The malaria parasite, which is transmitted by several Anopheles mosquito species, requires more time to reach its human-transmissible stage than the average lifespan of mosquito vectors. Monitoring the species-specific age structure of mosquito populations is critical to evaluating the impact of vector control interventions on malaria risk. We present a rapid, cost-effective surveillance method based on deep learning of mid-infrared spectra of mosquito cuticle that simultaneously identifies the species and age class of three main malaria vectors in natural populations. Using spectra from over 40, 000 ecologically and genetically diverse An. gambiae, An. arabiensis, and An. coluzzii females, we develop a deep transfer learning model that learns and predicts the age of new wild populations in Tanzania and Burkina Faso with minimal sampling effort. Additionally, the model is able to detect the impact of simulated control interventions on mosquito populations, measured as a shift in their age structures. In the future, we anticipate our method can be applied to other arthropod vector-borne diseases. Knowing the age of malaria-transmitting mosquitoes is important to understand transmission risk as only old mosquitoes can transmit the disease. Here, the authors develop a method based on mid-infrared spectra of mosquito cuticle that can rapidly identify the species and age class of main malaria vectors.
Collapse
|
16
|
Fitchett JM, Swatton DA. Exploring public awareness of the current and future malaria risk zones in South Africa under climate change: a pilot study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:301-311. [PMID: 33175213 PMCID: PMC7656892 DOI: 10.1007/s00484-020-02042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Although only a small proportion of the landmass of South Africa is classified as high risk for malaria, the country experiences on-going challenges relating to malaria outbreaks. Climate change poses a growing threat to this already dire situation. While considerable effort has been placed in public health campaigns in the highest-risk regions, and national malaria maps are updated to account for changing climate, malaria cases have increased. This pilot study considers the sub-population of South Africans who reside outside of the malaria area, yet have the means to travel into this high-risk region for vacation. Through the lens of the governmental "ABC of malaria prevention", we explore this sub-population's awareness of the current boundaries to the malaria area, perceptions of the future boundary under climate change, and their risk-taking behaviours relating to malaria transmission. Findings reveal that although respondents self-report a high level of awareness regarding malaria, and their boundary maps reveal the broad pattern of risk distribution, their specifics on details are lacking. This includes over-estimating both the current and future boundaries, beyond the realms of climate-topographic possibility. Despite over-estimating the region of malaria risk, the respondents reveal an alarming lack of caution when travelling to malaria areas. Despite being indicated for high-risk malaria areas, the majority of respondents did not use chemoprophylaxis, and many relied on far less-effective measures. This may in part be due to respondents relying on information from friends and family, rather than medical or governmental advice.
Collapse
Affiliation(s)
- Jennifer M Fitchett
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.
| | - Deryn-Anne Swatton
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Rashid I, Campos M, Collier T, Crepeau M, Weakley A, Gripkey H, Lee Y, Schmidt H, Lanzaro GC. Spontaneous mutation rate estimates for the principal malaria vectors Anopheles coluzzii and Anopheles stephensi. Sci Rep 2022; 12:226. [PMID: 34996998 PMCID: PMC8742016 DOI: 10.1038/s41598-021-03943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Using high-depth whole genome sequencing of F0 mating pairs and multiple individual F1 offspring, we estimated the nuclear mutation rate per generation in the malaria vectors Anopheles coluzzii and Anopheles stephensi by detecting de novo genetic mutations. A purpose-built computer program was employed to filter actual mutations from a deep background of superficially similar artifacts resulting from read misalignment. Performance of filtering parameters was determined using software-simulated mutations, and the resulting estimate of false negative rate was used to correct final mutation rate estimates. Spontaneous mutation rates by base substitution were estimated at 1.00 × 10−9 (95% confidence interval, 2.06 × 10−10—2.91 × 10−9) and 1.36 × 10−9 (95% confidence interval, 4.42 × 10−10—3.18 × 10−9) per site per generation in A. coluzzii and A. stephensi respectively. Although similar studies have been performed on other insect species including dipterans, this is the first study to empirically measure mutation rates in the important genus Anopheles, and thus provides an estimate of µ that will be of utility for comparative evolutionary genomics, as well as for population genetic analysis of malaria vector mosquito species.
Collapse
Affiliation(s)
- Iliyas Rashid
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.,Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Travis Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Allison Weakley
- Department of ChEM-H Operations, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Hans Gripkey
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St SE, Vero Beach, FL, 32962, USA
| | - Hanno Schmidt
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Saarstraße 21, 55122, Mainz, Germany
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA.
| |
Collapse
|
18
|
Wolie RZ, Koffi AA, Ahoua Alou LP, Sternberg ED, N'Nan-Alla O, Dahounto A, Yapo FHA, Kanh KMH, Camara S, Oumbouke WA, Tia IZ, Nguetta SPA, Thomas MB, NGuessan R. Evaluation of the interaction between insecticide resistance-associated genes and malaria transmission in Anopheles gambiae sensu lato in central Côte d'Ivoire. Parasit Vectors 2021; 14:581. [PMID: 34801086 PMCID: PMC8605510 DOI: 10.1186/s13071-021-05079-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background There is evidence that the knockdown resistance gene (Kdr) L1014F and acetylcholinesterase-1 gene (Ace-1R) G119S mutations involved in pyrethroid and carbamate resistance in Anopheles gambiae influence malaria transmission in sub-Saharan Africa. This is likely due to changes in the behaviour, life history and vector competence and capacity of An. gambiae. In the present study, performed as part of a two-arm cluster randomized controlled trial evaluating the impact of household screening plus a novel insecticide delivery system (In2Care Eave Tubes), we investigated the distribution of insecticide target site mutations and their association with infection status in wild An. gambiae sensu lato (s.l.) populations. Methods Mosquitoes were captured in 40 villages around Bouaké by human landing catch from May 2017 to April 2019. Randomly selected samples of An. gambiae s.l. that were infected or not infected with Plasmodium sp. were identified to species and then genotyped for Kdr L1014F and Ace-1R G119S mutations using quantitative polymerase chain reaction assays. The frequencies of the two alleles were compared between Anopheles coluzzii and Anopheles gambiae and then between infected and uninfected groups for each species. Results The presence of An. gambiae (49%) and An. coluzzii (51%) was confirmed in Bouaké. Individuals of both species infected with Plasmodium parasites were found. Over the study period, the average frequency of the Kdr L1014F and Ace-1R G119S mutations did not vary significantly between study arms. However, the frequencies of the Kdr L1014F and Ace-1R G119S resistance alleles were significantly higher in An. gambiae than in An. coluzzii [odds ratio (95% confidence interval): 59.64 (30.81–131.63) for Kdr, and 2.79 (2.17–3.60) for Ace-1R]. For both species, there were no significant differences in Kdr L1014F or Ace-1R G119S genotypic and allelic frequency distributions between infected and uninfected specimens (P > 0.05). Conclusions Either alone or in combination, Kdr L1014F and Ace-1R G119S showed no significant association with Plasmodium infection in wild An. gambiae and An. coluzzii, demonstrating the similar competence of these species for Plasmodium transmission in Bouaké. Additional factors including behavioural and environmental ones that influence vector competence in natural populations, and those other than allele measurements (metabolic resistance factors) that contribute to resistance, should be considered when establishing the existence of a link between insecticide resistance and vector competence. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Rosine Z Wolie
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire. .,Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire. .,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
| | - Alphonsine A Koffi
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Ludovic P Ahoua Alou
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Eleanore D Sternberg
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Oulo N'Nan-Alla
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire
| | - Amal Dahounto
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire
| | - Florent H A Yapo
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire
| | - Kpahe M H Kanh
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire
| | - Soromane Camara
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Welbeck A Oumbouke
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Innovative Vector Control Consortium, IVCC, Liverpool, UK
| | - Innocent Z Tia
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.,Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Simon-Pierre A Nguetta
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire
| | - Matthew B Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Raphael NGuessan
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.,Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
19
|
Jared Owiti Y. Efficacy of a simply resting box baited with crude fruit and leaf ethanol extracts of Phytolaccadodecandra (L' Herit) in capturing and killing of indoor mosquitoes (Diptera: Culicidae) at Korando, Western Kenya. Saudi J Biol Sci 2021; 28:5221-5228. [PMID: 34466100 PMCID: PMC8380997 DOI: 10.1016/j.sjbs.2021.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Effective capture and elimination of indoor resting mosquito population is important in the fight against mosquito borne diseases. This study aimed at evaluating the efficacy of a simply resting box baited with crude fruit and leaf ethanol extracts of Phytolacca dodecandra in attracting and killing indoor mosquitoes at Korando, Western Kenya. The study was conducted in three phases: pre-intervention, intervention and post intervention. Simple resting boxes made from galvanized wire frame measuring 30 cm × 30 cm × 30 cm, covered in blue and black tunic in and out and lined with carton boards were used. The boxes were baited with socks with strong human odour and 80 ml/100mls (e/w) solution of either crude ethanol fruit or leaf extracts of P. dodecandra, ethanol leaf extracts of Azadiracta indica or Deltamethrin. Deltamethrin and Azadiracta indica were used as positive and water as negative control. The treatments were applied at the intervention phase only. The boxes were left overnight in the houses and mosquitoes collected by 6.30 h. It was observed that more Culicines than Anopheline were captured irrespective of phase or treatment used. Mosquito densities reduced with phase of activity. P. dodecandra leaf extracts killed more mosquitoes than fruit or A. indica leaf extracts though the number were less than that of Deltamethrin or WHO threshold of >80% mortality. In conclusion, the simple resting boxes were effective in collecting and killing indoor mosquitoes though lethality did not matched the WHO threshold. With improved structural set up and use of pure extracts of P. dodecandra, the resting boxes can serve as effective tools for capture, elimination and management of mosquito borne diseases.
Collapse
Affiliation(s)
- Yugi Jared Owiti
- School of Science and Technology, University of Kabianga, P. O. Box 20230-20300, Kericho, Kenya
| |
Collapse
|
20
|
Nunn CL, Vining AQ, Chakraborty D, Reiskind MH, Young HS. Effects of host extinction and vector preferences on vector-borne disease risk in phylogenetically structured host-hector communities. PLoS One 2021; 16:e0256456. [PMID: 34424937 PMCID: PMC8382198 DOI: 10.1371/journal.pone.0256456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022] Open
Abstract
Anthropogenic disturbance impacts the phylogenetic composition and diversity of ecological communities. While changes in diversity are known to dramatically change species interactions and alter disease dynamics, the effects of phylogenetic changes in host and vector communities on disease have been relatively poorly studied. Using a theoretical model, we investigated how phylogeny and extinction influence network structural characteristics relevant to disease transmission in disturbed environments. We modelled a multi-host, multi-vector community as a bipartite ecological network, where nodes represent host and vector species and edges represent connections among them through vector feeding, and we simulated vector preferences and threat status on host and parasite phylogenies. We then simulated loss of hosts, including phylogenetically clustered losses, to investigate how extinction influences network structure. We compared effects of phylogeny and extinction to those of host specificity, which we predicted to strongly increase network modularity and reduce disease prevalence. The simulations revealed that extinction often increased modularity, with higher modularity as species loss increased, although not as much as increasing host specificity did. These results suggest that extinction itself, all else being equal, may reduce disease prevalence in disturbed communities. However, in real communities, systematic patterns in species loss (e.g. favoring high competence species) or changes in abundance may counteract these effects. Unexpectedly, we found that effects of phylogenetic signal in host and vector traits were relatively weak, and only important when phylogenetic signal of host and vector traits were similar, or when these traits both varied.
Collapse
Affiliation(s)
- Charles L. Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Duke Global Health Institute, Durham, North Carolina, United States of America
| | - Alexander Q. Vining
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Graduate Program in Animal Behavior, UC Davis, Davis, California, United States of America
| | - Debapriyo Chakraborty
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- INRAE ENVT IHAP, National Veterinary School of Toulouse, Toulouse, France
| | - Michael H. Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Hillary S. Young
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| |
Collapse
|
21
|
Namias A, Jobe NB, Paaijmans KP, Huijben S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. eLife 2021; 10:e65655. [PMID: 34355693 PMCID: PMC8346280 DOI: 10.7554/elife.65655] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Monitoring local mosquito populations for insecticide resistance is critical for effective vector-borne disease control. However, widely used phenotypic assays, which are designed to monitor the emergence and spread of insecticide resistance (technical resistance), do not translate well to the efficacy of vector control products to suppress mosquito numbers in the field (practical resistance). This is because standard testing conditions such as environmental conditions, exposure dose, and type of substrate differ dramatically from those experienced by mosquitoes under field conditions. In addition, field mosquitoes have considerably different physiological characteristics such as age and blood-feeding status. Beyond this, indirect impacts of insecticide resistance and/or exposure on mosquito longevity, pathogen development, host-seeking behavior, and blood-feeding success impact disease transmission. Given the limited number of active ingredients currently available and the observed discordance between resistance and disease transmission, we conclude that additional testing guidelines are needed to determine practical resistance-the efficacy of vector control tools under relevant local conditions- in order to obtain programmatic impact.
Collapse
Affiliation(s)
- Alice Namias
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, Paris, France
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Ndey Bassin Jobe
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| | - Krijn Petrus Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Biodesign Institute, Tempe, United States
- ISGlobal, Carrer del Rosselló, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, Mozambique
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| |
Collapse
|
22
|
Beranek MD, Quaglia AI, Peralta GC, Flores FS, Stein M, Diaz LA, Almirón WR, Contigiani MS. Culex interfor and Culex saltanensis (Diptera: Culicidae) are susceptible and competent to transmit St. Louis encephalitis virus (Flavivirus: Flaviviridae) in central Argentina. Trans R Soc Trop Med Hyg 2021; 114:725-729. [PMID: 32722771 DOI: 10.1093/trstmh/traa058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/23/2020] [Accepted: 07/03/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND St. Louis encephalitis virus (SLEV) is endemic and autochthonous on the American continent. Culex pipiens quinquefasciatus is a vector of SLEV; however, Culex interfor and Culex saltanensis have also been found to be naturally infected with SLEV. The aim of this study was to determine the vector competence of C. interfor and C. saltanensis for SLEV from Argentina compared with C. p. quinquefasciatus. METHODS Female of the Culex species were orally infected by feeding on viraemic chicks that had been inoculated with SLEV. Abdomens, legs and saliva blood-fed mosquitoes were analysed by viral plaque assay. RESULTS Mosquitoes were susceptible to orally acquired infection, dissemination and transmission of SLEV in the saliva. CONCLUSIONS Our results demonstrate that C. saltanensis and C. interfor are susceptible to SLEV and competent for its transmission.
Collapse
Affiliation(s)
- Mauricio D Beranek
- Área Entomología, Instituto de Medicina Regional, CONICET, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina.,Laboratorio de Arbovirus y Arenavirus, Instituto de Virología "Dr J. M. Vanella", CONICET, Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agustín I Quaglia
- Laboratorio de Arbovirus y Arenavirus, Instituto de Virología "Dr J. M. Vanella", CONICET, Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Giovana C Peralta
- Instituto de Diversidad y Ecología Animal, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernando S Flores
- Laboratorio de Arbovirus y Arenavirus, Instituto de Virología "Dr J. M. Vanella", CONICET, Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina.,Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral, CONICET, Esperanza, Santa Fe, Argentina
| | - Marina Stein
- Área Entomología, Instituto de Medicina Regional, CONICET, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
| | - Luis A Diaz
- Laboratorio de Arbovirus y Arenavirus, Instituto de Virología "Dr J. M. Vanella", CONICET, Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Walter R Almirón
- Instituto de Investigaciones Biológicas y Tecnológicas, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marta S Contigiani
- Laboratorio de Arbovirus y Arenavirus, Instituto de Virología "Dr J. M. Vanella", CONICET, Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
23
|
Demarta-Gatsi C, Mécheri S. Vector saliva controlled inflammatory response of the host may represent the Achilles heel during pathogen transmission. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200155. [PMID: 34035796 PMCID: PMC8128132 DOI: 10.1590/1678-9199-jvatitd-2020-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with vector-borne pathogens starts with the inoculation of these pathogens during blood feeding. In endemic regions, the population is regularly bitten by naive vectors, implicating a permanent stimulation of the immune system by the vector saliva itself (pre-immune context). Comparatively, the number of bites received by exposed individuals from non-infected vectors is much higher than the bites from infected ones. Therefore, vector saliva and the immunological response in the skin may play an important role, so far underestimated, in the establishment of anti-pathogen immunity in endemic areas. Hence, the parasite biology and the disease pathogenesis in “saliva-primed” and “saliva-unprimed” individuals must be different. This integrated view on how the pathogen evolves within the host together with vector salivary components, which are known to be endowed with a variety of pharmacological and immunological properties, must remain the focus of any investigational study dealing with vector-borne diseases. Considering this three-way partnership, the host skin (immune system), the pathogen, and the vector saliva, the approach that consists in the validation of vector saliva as a source of molecular entities with anti-disease vaccine potential has been recently a subject of active and fruitful investigation. As an example, the vaccination with maxadilan, a potent vasodilator peptide extracted from the saliva of the sand fly Lutzomyia longipalpis, was able to protect against infection with various leishmanial parasites. More interestingly, a universal mosquito saliva vaccine that may potentially protect against a range of mosquito-borne infections including malaria, dengue, Zika, chikungunya and yellow fever. In this review, we highlight the key role played by the immunobiology of vector saliva in shaping the outcome of vector-borne diseases and discuss the value of studying diseases in the light of intimate cross talk among the pathogen, the vector saliva, and the host immune mechanisms.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France.,Medicines for Malaria Venture (MMV), Geneva, Switzerland.,Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Salah Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| |
Collapse
|
24
|
Torres-Cosme R, Rigg C, Santamaría AM, Vásquez V, Victoria C, Ramirez JL, Calzada JE, Cáceres Carrera L. Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Darién, Panama. PLoS One 2021; 16:e0250059. [PMID: 33939707 PMCID: PMC8092770 DOI: 10.1371/journal.pone.0250059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
Background More than 85% of the malaria cases in Panama occur in poor, rural and indigenous regions like Darien Province. Vector diversity, infection rate and spatial distribution are important entomological parameters of malaria transmission dynamics. Their understanding is crucial for the development of effective disease control strategies. The objective of this study was to determine the composition of Anopheles species, their natural infection rate and their geographic distribution to better understand the malaria transmission dynamics in Darién, Panama. Methods Anophelines mosquitoes were captured during the rainy and dry season of 2016. We selected five communities where adult anophelines were collected using CDC light-traps, and through protective human-baited traps. Detection of natural infection and Plasmodium genotype were detected via nested PCR through the amplification of ssrRNA and the circumsporozoite protein gene (csp), respectively. Results A total of 1,063 mosquitoes were collected mosquitoes were collected for the detection of natural infection with Plasmodium spp. Nine Anophelines species were identified, with the predominant species being: An. (Nys.) darlingi (45.0%) and An. (Nys.) albimanus (42.6%). Natural infection in An. (Nys.) albimanus with P. vivax was detected in one mosquito pool from the community Pueblo Tortuga (0.6%), three from Marraganti (1.7%), two from Bajo Chiquito (1.1%) and three pools from Alto Playona 3 (1.7%). For An. (Nys.) darlingi mosquitoes, we detected seven positive pools from the community Bajo Chiquito (4.0%), two pools from Marraganti (1.1%) and two pools from Alto Playona (1.1%). The P. vivax allelic variant VK210 was detected in infected mosquitoes. Conclusion The results from this study provide new information on the transmission dynamics associated with anophelines vectors in the Darién region. This is the first report of natural P. vivax infection in An. (Nys.) darlingi and its incrimination as a potential malaria vector in this region of Panama. Additional studies are necessary to expand our knowledge and determine crucial parameters in malaria transmission in Darién, which in turn will aid the National Malaria Program in attaining an adequate malaria control strategy towards malaria elimination.
Collapse
Affiliation(s)
- Rolando Torres-Cosme
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
| | - Chystrie Rigg
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
| | - Ana María Santamaría
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
| | - Vanessa Vásquez
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
| | - Carlos Victoria
- Departamento de Control de Vectores, Ministerio de Salud (MINSA), Panam, Repblica de Panam
| | - José Luis Ramirez
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - José E. Calzada
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
| | - Lorenzo Cáceres Carrera
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
- * E-mail: ,
| |
Collapse
|
25
|
Rufalco-Moutinho P, Moura Kadri S, Peres Alonso D, Moreno M, Carrasco-Escobar G, Prussing C, Gamboa D, Vinetz JM, Mureb Sallum MA, Conn JE, Martins Ribolla PE. Ecology and larval population dynamics of the primary malaria vector Nyssorhynchus darlingi in a high transmission setting dominated by fish farming in western Amazonian Brazil. PLoS One 2021; 16:e0246215. [PMID: 33831004 PMCID: PMC8031405 DOI: 10.1371/journal.pone.0246215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Vale do Rio Juruá in western Acre, Brazil, is a persistent malaria transmission hotspot partly due to fish farming development that was encouraged to improve local standards of living. Fish ponds can be productive breeding sites for Amazonian malaria vector species, including Nyssorhynchus darlingi, which, combined with high human density and mobility, add to the local malaria burden.This study reports entomological profile of immature and adult Ny. darlingi at three sites in Mâncio Lima, Acre, during the rainy and dry season (February to September, 2017). From 63 fishponds, 10,859 larvae were collected, including 5,512 first-instar Anophelinae larvae and 4,927 second, third and fourth-instars, of which 8.5% (n = 420) were Ny. darlingi. This species was most abundant in not-abandoned fishponds and in the presence of emerging aquatic vegetation. Seasonal analysis of immatures in urban landscapes found no significant difference in the numbers of Ny. darlingi, corresponding to equivalent population density during the rainy to dry transition period. However, in the rural landscape, significantly higher numbers of Ny. darlingi larvae were collected in August (IRR = 5.80, p = 0.037) and September (IRR = 6.62, p = 0.023) (dry season), compared to February (rainy season), suggesting important role of fishponds for vector population maintenance during the seasonal transition in this landscape type. Adult sampling detected mainly Ny. darlingi (~93%), with similar outdoor feeding behavior, but different abundance according to landscape profile: urban site 1 showed higher peaks of human biting rate in May (46 bites/person/hour), than February (4) and September (15), while rural site 3 shows similar HBR during the same sampling period (22, 24 and 21, respectively). This study contributes to a better understanding of the larvae biology of the main malaria vector in the Vale do Rio Juruá region and, ultimately will support vector control efforts.
Collapse
Affiliation(s)
- Paulo Rufalco-Moutinho
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- * E-mail:
| | - Samir Moura Kadri
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Diego Peres Alonso
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, United States of America
- New York State Department of Health, Wadsworth Center, Albany, NY, United States of America
| | - Dionicia Gamboa
- Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States of America
| | - Maria Anice Mureb Sallum
- Faculdade de Saúde Pública, Departamento de Epidemiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, United States of America
- New York State Department of Health, Wadsworth Center, Albany, NY, United States of America
| | - Paulo Eduardo Martins Ribolla
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
26
|
Carvajal-Lago L, Ruiz-López MJ, Figuerola J, Martínez-de la Puente J. Implications of diet on mosquito life history traits and pathogen transmission. ENVIRONMENTAL RESEARCH 2021; 195:110893. [PMID: 33607093 DOI: 10.1016/j.envres.2021.110893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The environment, directly and indirectly, affects many mosquito traits in both the larval and adult stages. The availability of food resources is one of the key factors influencing these traits, although its role in mosquito fitness and pathogen transmission remains unclear. Larvae nutritional status determines their survivorship and growth, having also an impact on adult characteristics like longevity, body size, flight capacity or vector competence. During the adult stage, mosquito diet affects their survival rate, fecundity and host-seeking behaviour. It also affects mosquito susceptibility to infection, which may determine the vectorial capacity of mosquito populations. The aim of this review is to critically revise the current knowledge on the effects that both larval and adult quantity and quality of the diet have on mosquito life history traits, identifying the critical knowledge gaps and proposing future research lines. The quantity and quality of food available through their lifetime greatly determine adult body size, longevity or biting frequency, therefore affecting their competence for pathogen transmission. In addition, natural sugar sources for adult mosquitoes, i.e., specific plants providing high metabolic energy, might affect their host-seeking and vertebrate biting behaviour. However, most of the studies are carried out under laboratory conditions, highlighting the need for studies of feeding behaviour of mosquitoes under field conditions. This kind of studies will increase our knowledge of the impact of diets on pathogen transmission, helping to develop successful control plans for vector-borne diseases.
Collapse
Affiliation(s)
- Laura Carvajal-Lago
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain
| | - María José Ruiz-López
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain
| | - Jordi Figuerola
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Josué Martínez-de la Puente
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain; Departamento de Parasitología, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
27
|
Calzolari M, Desiato R, Albieri A, Bellavia V, Bertola M, Bonilauri P, Callegari E, Canziani S, Lelli D, Mosca A, Mulatti P, Peletto S, Ravagnan S, Roberto P, Torri D, Pombi M, Di Luca M, Montarsi F. Mosquitoes of the Maculipennis complex in Northern Italy. Sci Rep 2021; 11:6421. [PMID: 33742019 PMCID: PMC7979756 DOI: 10.1038/s41598-021-85442-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/01/2021] [Indexed: 01/30/2023] Open
Abstract
The correct identification of mosquito vectors is often hampered by the presence of morphologically indiscernible sibling species. The Maculipennis complex is one of these groups that include both malaria vectors of primary importance and species of low/negligible epidemiological relevance, of which distribution data in Italy are outdated. Our study was aimed at providing an updated distribution of Maculipennis complex in Northern Italy through the sampling and morphological/molecular identification of specimens from five regions. The most abundant species was Anopheles messeae (2032), followed by Anopheles maculipennis s.s. (418), Anopheles atroparvus (28) and Anopheles melanoon (13). Taking advantage of ITS2 barcoding, we were able to finely characterize tested mosquitoes, classifying all the Anopheles messeae specimens as Anopheles daciae, a taxon with debated rank to which we referred as species inquirenda (sp. inq.). The distribution of species was characterized by Ecological Niche Models (ENMs), fed by recorded points of presence. ENMs provided clues on the ecological preferences of the detected species, with An. daciae sp. inq. linked to stable breeding sites and An. maculipennis s.s. more associated to ephemeral breeding sites. We demonstrate that historical Anopheles malaria vectors are still present in Northern Italy.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Via Bianchi, 9, 25124, Brescia, Italy.
| | - Rosanna Desiato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Alessandro Albieri
- Centro Agricoltura Ambiente "Giorgio Nicoli" S.r.L. (CAA), Via Sant'Agata, 835, 40014, Crevalcore, BO, Italy
| | - Veronica Bellavia
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, PD, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Via Bianchi, 9, 25124, Brescia, Italy
| | - Emanuele Callegari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Via Bianchi, 9, 25124, Brescia, Italy
| | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Via Bianchi, 9, 25124, Brescia, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Via Bianchi, 9, 25124, Brescia, Italy
| | - Andrea Mosca
- Territory and Agriculture Technical Area, Istituto per le Piante da Legno e l'Ambiente - IPLA SpA, Corso Casale, 476, 10132, Turin, Italy
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, PD, Italy
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Silvia Ravagnan
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, PD, Italy
| | - Paolo Roberto
- Territory and Agriculture Technical Area, Istituto per le Piante da Legno e l'Ambiente - IPLA SpA, Corso Casale, 476, 10132, Turin, Italy
| | - Deborah Torri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Via Bianchi, 9, 25124, Brescia, Italy
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, PD, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
28
|
David MR, Dantas ES, Maciel-de-Freitas R, Codeço CT, Prast AE, Lourenço-de-Oliveira R. Influence of Larval Habitat Environmental Characteristics on Culicidae Immature Abundance and Body Size of Adult Aedes aegypti. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aedes aegypti is adapted to live in close association with human dwellings, where it lays eggs in several man-made container types with a broad range of size, shape, and material. Biotic and abiotic conditions of larval habitats determine the abundance and body size of emerging adult mosquitoes. Here, we estimated the predictive potential of physicochemical water variables for Culicidae immature abundance and Ae. aegypti adult body size in four neighborhoods with distinct urban landscapes in Rio de Janeiro, Brazil. Domestic water holding containers (N = 240) were inspected for the presence of Culicidae immatures and had several physiochemical parameters measured. Larvae and pupae were counted, and pupae were reared to the adult stage for taxonomic identification. Dry weight and wing size were measured for Ae. aegypti adult mosquitoes (N = 981). The association between larval habitat parameters with Culicidae abundance and Ae. aegypti body size data was estimated through linear mixed models and generalized linear mixed models, respectively, with the neighborhood as random effect. The abundance of immature Culicidae in larval habitats (from which >90% of adults emerging from field collected pupae were Ae. aegypti) was positively associated with container volume and the dissolved organic carbon concentration (DOC). Female average dry weight and male and female wing lengths were positively associated with larval habitat temperature whereas male average dry weight was positively related to water conductivity. Aedes aegypti originating from larval habitats with Ae. albopictus exhibited no differences in median wing length and dry body weight when compared with specimens collected in containers exclusively colonized by Ae. aegypti. These results demonstrate that container water volume (characteristic easily observed in the field) and DOC (often higher in unmanaged water holding recipients) is related to higher Ae. aegypti immature density. Estimating the effects of physicochemical water variables on immature abundance and adult body size can provide valuable information for predicting arbovirus transmission risk in endemic settings.
Collapse
|
29
|
Chakraborty M, Ramaiah A, Adolfi A, Halas P, Kaduskar B, Ngo LT, Jayaprasad S, Paul K, Whadgar S, Srinivasan S, Subramani S, Bier E, James AA, Emerson JJ. Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly. BMC Biol 2021; 19:28. [PMID: 33568145 PMCID: PMC7876825 DOI: 10.1186/s12915-021-00963-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The mosquito Anopheles stephensi is a vector of urban malaria in Asia that recently invaded Africa. Studying the genetic basis of vectorial capacity and engineering genetic interventions are both impeded by limitations of a vector's genome assembly. The existing assemblies of An. stephensi are draft-quality and contain thousands of sequence gaps, potentially missing genetic elements important for its biology and evolution. RESULTS To access previously intractable genomic regions, we generated a reference-grade genome assembly and full transcript annotations that achieve a new standard for reference genomes of disease vectors. Here, we report novel species-specific transposable element (TE) families and insertions in functional genetic elements, demonstrating the widespread role of TEs in genome evolution and phenotypic variation. We discovered 29 previously hidden members of insecticide resistance genes, uncovering new candidate genetic elements for the widespread insecticide resistance observed in An. stephensi. We identified 2.4 Mb of the Y chromosome and seven new male-linked gene candidates, representing the most extensive coverage of the Y chromosome in any mosquito. By tracking full-length mRNA for > 15 days following blood feeding, we discover distinct roles of previously uncharacterized genes in blood metabolism and female reproduction. The Y-linked heterochromatin landscape reveals extensive accumulation of long-terminal repeat retrotransposons throughout the evolution and degeneration of this chromosome. Finally, we identify a novel Y-linked putative transcription factor that is expressed constitutively throughout male development and adulthood, suggesting an important role. CONCLUSION Collectively, these results and resources underscore the significance of previously hidden genomic elements in the biology of malaria mosquitoes and will accelerate the development of genetic control strategies of malaria transmission.
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Arunachalam Ramaiah
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Adriana Adolfi
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
| | - Paige Halas
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
| | - Bhagyashree Kaduskar
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Luna Thanh Ngo
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Suvratha Jayaprasad
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Kiran Paul
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Saurabh Whadgar
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Subhashini Srinivasan
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Suresh Subramani
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093-0322, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
30
|
Adigo Shibeshi M, Fentahun Enyew E, Mequanint Adinew G, Jemere Aragaw T. Antimalarial Activity of Methanolic Extracts and Solvent Fractions of Combretum molle Leaves in Plasmodium berghei Infected Mice. J Exp Pharmacol 2021; 13:69-89. [PMID: 33574717 PMCID: PMC7872902 DOI: 10.2147/jep.s285117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Malaria is an infectious disease-causing mortality and morbidity in children and adults. Our study planned to measure the antimalarial activity of Combretum molle extract in vivo assays against Plasmodium berghei in Swiss albino mice. METHODS Plasmodium berghei was inoculated to healthy mice and methanolic crude extract and solvent fractions of C. molle at 100, 200, and 400mg/kg/day were administered. Percent parasitemia inhibition, percent change in weight, temperature, packed cell volume, and mean survival time were determined. Data were analyzed using one-way ANOVA followed by the post hoc Tukey HSD test with SPSS software version 24.0 and P < 0.05 considered as statistically significant. RESULTS Chemosuppresive effect exerted by the methanolic crude extract ranged between 27 and 68%, chloroform fraction 52.93-67.73%, hexane fraction 23.61-44.97%, and aqueous fraction 29.48-51.13%. The curative effect of the crude extract was within the range of 25-49%, chloroform fraction 42.78-69.22%, and prophylactic effect of the crude extract was within the range of 51-76.2%% and chloroform fraction 46.57-71.96%. The utmost effect in all tests on chemosuppresive, curative, prophylactic, prevention of weight loss, temperature and packed cell volume, and an increase in mean survival time was observed at higher doses of the crude extract. CONCLUSION From this study, it will be concluded that crude extract of C. molle leaves has been shown promising antimalarial activity. The findings of this study may support the normal use of leaf as a part of the plant for malaria treatment.
Collapse
Affiliation(s)
| | - Engdaw Fentahun Enyew
- Department of Human Anatomy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Getnet Mequanint Adinew
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tezera Jemere Aragaw
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
31
|
Abstract
Advances in genomics have led to an appreciation that introgression is common, but its evolutionary consequences are poorly understood. In recent species radiations the sharing of genetic variation across porous species boundaries can facilitate adaptation to new environments and generate novel phenotypes, which may contribute to further diversification. Most Anopheles mosquito species that are of major importance as human malaria vectors have evolved within recent and rapid radiations of largely nonvector species. Here, we focus on one of the most medically important yet understudied anopheline radiations, the Afrotropical Anopheles funestus complex (AFC), to investigate the role of introgression in its diversification and the possible link between introgression and vector potential. The AFC comprises at least seven morphologically similar species, yet only An. funestus sensu stricto is a highly efficient malaria vector with a pan-African distribution. Based on de novo genome assemblies and additional whole-genome resequencing, we use phylogenomic and population genomic analyses to establish species relationships. We show that extensive interspecific gene flow involving multiple species pairs has shaped the evolutionary history of the AFC since its diversification. The most recent introgression event involved a massive and asymmetrical movement of genes from a distantly related AFC lineage into An. funestus, an event that predated and plausibly facilitated its subsequent dramatic geographic range expansion across most of tropical Africa. We propose that introgression may be a common mechanism facilitating adaptation to new environments and enhancing vectorial capacity in Anopheles mosquitoes.
Collapse
|
32
|
Hajkazemian M, Bossé C, Mozūraitis R, Emami SN. Battleground midgut: The cost to the mosquito for hosting the malaria parasite. Biol Cell 2020; 113:79-94. [PMID: 33125724 DOI: 10.1111/boc.202000039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
In eco-evolutionary studies of parasite-host interactions, virulence is defined as a reduction in host fitness as a result of infection relative to an uninfected host. Pathogen virulence may either promote parasite transmission, when correlated with higher parasite replication rate, or decrease the transmission rate if the pathogen quickly kills the host. This evolutionary mechanism, referred to as 'trade-off' theory, proposes that pathogen virulence evolves towards a level that most benefits the transmission. It has been generally predicted that pathogens evolve towards low virulence in their insect vectors, mainly due to the high dependence of parasite transmission on their vector survival. Therefore, the degree of virulence which malaria parasites impose on mosquito vectors may depend on several external and internal factors. Here, we review briefly (i) the role of mosquito in parasite development, with a particular focus on mosquito midgut as the battleground between Plasmodium and the mosquito host. We aim to point out (ii) the histology of the mosquito midgut epithelium and its role in host defence against parasite's countermeasures in the three main battle sites, namely (a) the lumen (microbiota and biochemical environment), (b) the peritrophic membrane (physical barrier) and (c) the tubular epithelium including the basal membrane (physical and biochemical barrier). Lastly, (iii) we describe the impact which malaria parasite and its virulence factors have on mosquito fitness.
Collapse
Affiliation(s)
- Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Clément Bossé
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,François Rabelais University, Tours, France
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Molecular Attraction AB, Hägersten, Stockholm, Sweden.,Natural Resources Institute, FES, University of Greenwich, London, UK
| |
Collapse
|
33
|
Pinda PG, Eichenberger C, Ngowo HS, Msaky DS, Abbasi S, Kihonda J, Bwanaly H, Okumu FO. Comparative assessment of insecticide resistance phenotypes in two major malaria vectors, Anopheles funestus and Anopheles arabiensis in south-eastern Tanzania. Malar J 2020; 19:408. [PMID: 33176805 PMCID: PMC7661194 DOI: 10.1186/s12936-020-03483-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used. METHODS The study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-eastern Tanzania and included four insecticide classes. FINDINGS At baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility of An. arabiensis (> 98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after pre-exposure to PBO only exceeded 90% but not 98%. CONCLUSIONS In south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecticides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still susceptible.
Collapse
Affiliation(s)
- Polius G Pinda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania.
| | - Claudia Eichenberger
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Dickson S Msaky
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Said Abbasi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Japhet Kihonda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Hamis Bwanaly
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania. .,Nelson Mandela African Institution of Science and Technology, School of Life Sciences and Biotechnology, Arusha, United Republic of Tanzania. .,School of Public Health, University of the Witwatersrand, Parktown, South Africa. .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
34
|
McCann RS, Cohee LM, Goupeyou-Youmsi J, Laufer MK. Maximizing Impact: Can Interventions to Prevent Clinical Malaria Reduce Parasite Transmission? Trends Parasitol 2020; 36:906-913. [PMID: 32917511 PMCID: PMC7581555 DOI: 10.1016/j.pt.2020.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Malaria interventions may reduce the burden of clinical malaria disease, the transmission of malaria parasites, or both. As malaria interventions are developed and evaluated, including those interventions primarily targeted at reducing disease, they may also impact parasite transmission. Achieving global malaria eradication will require optimizing the transmission-reducing potential of all available interventions. Herein, we discuss the relationship between malaria parasite transmission and disease, including mechanisms by which disease-targeting interventions might also impact parasite transmission. We then focus on three malaria interventions with strong evidence for reducing the burden of clinical malaria disease and examine their potential for also reducing malaria parasite transmission.
Collapse
Affiliation(s)
- Robert S McCann
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessy Goupeyou-Youmsi
- MAC Communicable Diseases Action Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Impact of outdoor residual spraying on the biting rate of malaria vectors: A pilot study in four villages in Kayin state, Myanmar. PLoS One 2020; 15:e0240598. [PMID: 33119645 PMCID: PMC7595390 DOI: 10.1371/journal.pone.0240598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022] Open
Abstract
Outdoor and early mosquito biters challenge the efficacy of bed-nets and indoor residual spraying on the Thailand-Myanmar border. Outdoor residual spraying is proposed for the control of exophilic mosquito species. The objective of this study was to assess the impact of outdoor residual spraying on the biting rate of malaria vectors in Kayin state, Myanmar. Outdoor residual spraying using lambda-cyhalothrin was carried out in two villages in December 2016 (beginning of the dry season) and two villages were used as a control. Malaria mosquitoes were captured at baseline and monthly for four months after the intervention using human-landing catch and cow-baited trap collection methods. The impact of outdoor residual spraying on human-biting rate was estimated with propensity score adjusted generalized linear mixed-effect regressions. At baseline, mean indoor and outdoor human-biting rate estimates ranged between 2.12 and 29.16 bites /person /night, and between 0.20 and 1.72 bites /person /night in the intervention and control villages respectively. Using model output, we estimated that human-biting rate was reduced by 91% (95%CI = 88–96, P <0.0001) immediately after outdoor residual spraying. Human-biting rate remained low in all sprayed villages for 3 months after the intervention. Malaria vector populations rose at month 4 in the intervention villages but not in the controls. This coincided with the expected end of insecticide mist residual effects, thereby suggesting that residual effects are important determinants of intervention outcome. We conclude that outdoor residual spraying with a capsule suspension of lambda-cyhalothrin rapidly reduced the biting rate malaria vectors in this area where pyrethroid resistance has been documented.
Collapse
|
36
|
The Impact of Insecticide Pre-Exposure on Longevity, Feeding Succession, and Egg Batch Size of Wild Anopheles gambiae s.l. J Trop Med 2020; 2020:8017187. [PMID: 33061994 PMCID: PMC7539113 DOI: 10.1155/2020/8017187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022] Open
Abstract
Background Insecticide resistance among the vector population is the main threat to existing control tools available. The current vector control management options rely on applications of recommended public health insecticides, mainly pyrethroids through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Regular monitoring of insecticide resistance does not provide information on important factors that affect parasite transmission. Such factors include vector longevity, vector competence, feeding success, and fecundity. This study investigated the impacts of insecticide resistance on longevity, feeding behaviour, and egg batch size of Anopheles gambiae s.l. Method The larval sampling was conducted in rice fields using a standard dipper (350 ml) and reared to adults in field insectary. A WHO susceptibility test was conducted using standard treated permethrin (0.75%) and deltamethrin (0.05%) papers. The susceptible Kisumu strain was used for reference. Feeding succession and egg batch size were monitored for all survivors and control. Results The results revealed that mortality rates declined by 52.5 and 59.5% for permethrin and deltamethrin, respectively. The mortality rate for the Kisumu susceptible strain was 100%. The survival rates of wild An. gambiae s.l. was between 24 and 27 days. However, the Kisumu susceptible strain blood meal feeding was significantly higher than resistant colony (t = 2.789, df = 21, P=0.011). Additionally, the susceptible An. gambiae s.s. laid more eggs than the resistant An.gambiae s.l. colony (Χ2 = 1366, df = 1, P ≤ 0.05). Conclusion It can, therefore, be concluded that the wild An. gambiae s.l. had increased longevity, blood feeding, and small egg batch size compared to Kisumu susceptible colonies.
Collapse
|
37
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
do Bomfim MR, Araújo JSC, Macêdo WJDC, Santos CBRD, Leite FHA. Identification of potential modulator of Anopheles gambiae odorant binding protein 1 by hierarchical virtual screening and molecular dynamics. J Biomol Struct Dyn 2020; 39:6031-6043. [PMID: 32696721 DOI: 10.1080/07391102.2020.1796807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Malaria is a protozoan infection transmitted by the bite of the infected female mosquito belonging to the genus Anopheles spp., which causes more than 445 million annual deaths worldwide. Available drugs have serious adverse effects (e.g. blurred vision, hypotension and headache) and species-dependent efficacy. An alternative to overcome these problems involve the use of molecules with affinity to the Anopheles gambiae mosquito odor receptors, minimizing the reinfection process as well as reducing the problems related to pharmacological therapy. The vector control can interrupt the epidemiological cycle and, therefore, control the malaria incidence. In the olfactory pathway, odorant binding protein 1 acts on the first level of odor recognition on malarial vector and thus can be used to modulate mosquito behavior and development of new attracts or repellents. Thus, this study applied ligand-based (2D-chemical similarity) and structure-based (docking and molecular dynamics) computational approaches to prioritize potential olfactory modulators on natural products catalogs at ZINC15 database (n = 98,379). Hierarchical virtual screening prioritized a potential olfactory modulator (Z8217) against Anopheles gambiae odorant binding protein 1 (AgOBP1). Next, it was submitted to molecular dynamics routine to identify structural requirements and the interactions profile required for binding-site affinity. This promising natural compound can interact like experimental ligand and will be used in repellency assay to confirm its sensorial behavior.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mayra Ramos do Bomfim
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Williams Jorge da Cruz Macêdo
- Laboratorio de Modelagem Molecular e simulação de sistemas, Universidade Federal Rural da Amazônia, Capanema, Brazil
| | | | - Franco Henrique Andrade Leite
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
39
|
Dittmer J, Gabrieli P. Transstadial metabolic priming mediated by larval nutrition in female Aedes albopictus mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104053. [PMID: 32251651 DOI: 10.1016/j.jinsphys.2020.104053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes are important vectors of human pathogens, which are transmitted by female mosquitoes via blood-feeding. Larval nutrition can have an important impact on the number of blood meals taken by adult females shortly after emergence, as nutritional deficiencies during the larval stage may result in pre-vitellogenic blood meals, which are not invested into egg development but into the endogenous nutrient reserves of the female. Here, we investigated the impact of nutrient deprivation during the larval stage on adult nutrient metabolism, longevity and blood-seeking behaviour in females of the invasive Asian tiger mosquito Aedes albopictus. We demonstrate that Ae. albopictus females are able to compensate for nutrient deprivation during the larval stage by increasing their development time until sufficient nutrients are acquired. Nonetheless, nutrient-poor larval conditions had a long-lasting priming effect on adult female metabolism, since these females accumulated lower nutrient reserves from carbohydrates and survived longer compared to females reared in nutrient-rich larval conditions. Moreover, nutrient and ATP levels of females from nutrient-poor larval conditions remained stable over a longer timespan without access to additional carbohydrates. This suggests differences in adult female metabolism in response to larval nutrition, with potential impact on the vectorial capacity of female mosquitoes.
Collapse
Affiliation(s)
- Jessica Dittmer
- Department of Biology & Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| | - Paolo Gabrieli
- Department of Biology & Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
40
|
Fontenille D, Powell JR. From Anonymous to Public Enemy: How Does a Mosquito Become a Feared Arbovirus Vector? Pathogens 2020; 9:E265. [PMID: 32260491 PMCID: PMC7238163 DOI: 10.3390/pathogens9040265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/17/2023] Open
Abstract
The past few decades have seen the emergence of several worldwide arbovirus epidemics (chikungunya, Zika), the expansion or recrudescence of historical arboviruses (dengue, yellow fever), and the modification of the distribution area of major vector mosquitoes such as Aedes aegypti and Ae. albopictus, raising questions about the risk of appearance of new vectors and new epidemics. In this opinion piece, we review the factors that led to the emergence of yellow fever in the Americas, define the conditions for a mosquito to become a vector, analyse the recent example of the new status of Aedes albopictus from neglected mosquito to major vector, and propose some scenarios for the future.
Collapse
Affiliation(s)
- Didier Fontenille
- MIVEGEC unit, Université de Montpellier, Institut de Recherche pour le Développement (IRD), CNRS, BP 64501, 34394 Montpellier, France
| | - Jeffrey R. Powell
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511-8934, USA;
| |
Collapse
|
41
|
Cansado-Utrilla C, Jeffries CL, Kristan M, Brugman VA, Heard P, Camara G, Sylla M, Beavogui AH, Messenger LA, Irish SR, Walker T. An assessment of adult mosquito collection techniques for studying species abundance and diversity in Maferinyah, Guinea. Parasit Vectors 2020; 13:150. [PMID: 32209116 PMCID: PMC7092564 DOI: 10.1186/s13071-020-04023-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/16/2020] [Indexed: 01/10/2024] Open
Abstract
Background Several mosquito collection methods are routinely used in vector control programmes. However, they target different behaviours causing bias in estimation of species diversity and abundance. Given the paucity of mosquito trap data in West Africa, we compared the performance of five trap-lure combinations and Human Landing Catches (HLCs) in Guinea. Methods CDC light traps (LT), BG sentinel 2 traps (BG2T), gravid traps (GT) and Stealth traps (ST) were compared in a 5 × 5 Latin Square design in three villages in Guinea between June and July 2018. The ST, a portable trap which performs similarly to a LT but incorporates LEDs and incandescent light, was included since it has not been widely tested. BG2T were used with BG and MB5 lures instead of CO2 to test the efficacy of these attractants. HLCs were performed for 5 nights, but not as part of the Latin Square. A Generalised Linear Mixed Model was applied to compare the effect of the traps, sites and collection times on mosquito abundance. Species identification was confirmed using PCR-based analysis and Sanger sequencing. Results A total of 10,610 mosquitoes were captured across five traps. ST collected significantly more mosquitoes (7096) than the rest of the traps, but resulted in a higher number of damaged specimens. ST and BG2T collected the highest numbers of Anopheles gambiae (s.l.) and Aedes aegypti mosquitoes, respectively. HLCs captured predominantly An. coluzzii (41%) and hybrids of An. gambiae and An. coluzzii (36%) in contrast to the five traps, which captured predominantly An. melas (83%). The rural site (Senguelen) presented the highest abundance of mosquitoes and overall diversity in comparison with Fandie (semi-rural) and Maferinyah Centre I (semi-urban). Our results confirm the presence of four species for the first time in Guinea. Conclusions ST collected the highest number of mosquitoes suggesting this trap may play an important role for mosquito surveillance in Guinea and similar sites in West Africa. We recommend the incorporation of molecular tools in entomological studies since they have helped to identify 25 mosquito species in this area.![]()
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Claire L Jeffries
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mojca Kristan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Victor A Brugman
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Patrick Heard
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Gnepou Camara
- Centre de Formation et de Recherche en Sante Rurale de Maferinyah, Conakry, Republic of Guinea
| | - Moussa Sylla
- Centre de Formation et de Recherche en Sante Rurale de Maferinyah, Conakry, Republic of Guinea
| | - Abdoul H Beavogui
- Centre de Formation et de Recherche en Sante Rurale de Maferinyah, Conakry, Republic of Guinea
| | - Louisa A Messenger
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329-4027, USA.,American Society for Microbiology, 1752 N Street, NW, Washington, DC, 20036, USA
| | - Seth R Irish
- Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329-4027, USA.,The US President's Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329-4027, USA
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
42
|
Mitri C, Bischoff E, Eiglmeier K, Holm I, Dieme C, Brito-Fravallo E, Raz A, Zakeri S, Nejad MIK, Djadid ND, Vernick KD, Riehle MM. Gene copy number and function of the APL1 immune factor changed during Anopheles evolution. Parasit Vectors 2020; 13:18. [PMID: 31931885 PMCID: PMC6958605 DOI: 10.1186/s13071-019-3868-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/19/2019] [Indexed: 12/02/2022] Open
Abstract
Background The recent reference genome assembly and annotation of the Asian malaria vector Anopheles stephensi detected only one gene encoding the leucine-rich repeat immune factor APL1, while in the Anopheles gambiae and sibling Anopheles coluzzii, APL1 factors are encoded by a family of three paralogs. The phylogeny and biological function of the unique APL1 gene in An. stephensi have not yet been specifically examined. Methods The APL1 locus was manually annotated to confirm the computationally predicted single APL1 gene in An. stephensi. APL1 evolution within Anopheles was explored by phylogenomic analysis. The single or paralogous APL1 genes were silenced in An. stephensi and An. coluzzii, respectively, followed by mosquito survival analysis, experimental infection with Plasmodium and expression analysis. Results APL1 is present as a single ancestral gene in most Anopheles including An. stephensi but has expanded to three paralogs in an African lineage that includes only the Anopheles gambiae species complex and Anopheles christyi. Silencing of the unique APL1 copy in An. stephensi results in significant mosquito mortality. Elevated mortality of APL1-depleted An. stephensi is rescued by antibiotic treatment, suggesting that pathology due to bacteria is the cause of mortality, and indicating that the unique APL1 gene is essential for host survival. Successful Plasmodium development in An. stephensi depends upon APL1 activity for protection from high host mortality due to bacteria. In contrast, silencing of all three APL1 paralogs in An. coluzzii does not result in elevated mortality, either with or without Plasmodium infection. Expression of the single An. stephensi APL1 gene is regulated by both the Imd and Toll immune pathways, while the two signaling pathways regulate different APL1 paralogs in the expanded APL1 locus. Conclusions APL1 underwent loss and gain of functions concomitant with expansion from a single ancestral gene to three paralogs in one lineage of African Anopheles. We infer that activity of the unique APL1 gene promotes longevity in An. stephensi by conferring protection from or tolerance to an effect of bacterial pathology. The evolution of an expanded APL1 gene family could be a factor contributing to the exceptional levels of malaria transmission mediated by human-feeding members of the An. gambiae species complex in Africa.![]()
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France
| | - Constentin Dieme
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France.,Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Emma Brito-Fravallo
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Institut Pasteur of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Institut Pasteur of Iran, Tehran, Iran
| | - Mahdokht I K Nejad
- Malaria and Vector Research Group, Biotechnology Research Center, Institut Pasteur of Iran, Tehran, Iran
| | - Navid D Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Institut Pasteur of Iran, Tehran, Iran
| | - Kenneth D Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France. .,CNRS Unit of Evolutionary Genomics, Modeling and Health (UMR2000), Institut Pasteur, Paris, France.
| | - Michelle M Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
43
|
de Abreu FVS, dos Santos E, Mello ARL, Gomes LR, de Alvarenga DAM, Gomes MQ, Vargas WP, Bianco-Júnior C, de Pina-Costa A, Teixeira DS, Romano APM, Manso PPDA, Pelajo-Machado M, Brasil P, Daniel-Ribeiro CT, de Brito CFA, Ferreira-da-Cruz MDF, Lourenço-de-Oliveira R. Howler monkeys are the reservoir of malarial parasites causing zoonotic infections in the Atlantic forest of Rio de Janeiro. PLoS Negl Trop Dis 2019; 13:e0007906. [PMID: 31815937 PMCID: PMC6922453 DOI: 10.1371/journal.pntd.0007906] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although malaria cases have substantially decreased in Southeast Brazil, a significant increase in the number of Plasmodium vivax-like autochthonous human cases has been reported in remote areas of the Atlantic Forest in the past few decades in Rio de Janeiro (RJ) state, including an outbreak during 2015-2016. The singular clinical and epidemiological aspects in several human cases, and collectively with molecular and genetic data, revealed that they were due to the non-human primate (NHP) parasite Plasmodium simium; however, the understanding of the autochthonous malarial epidemiology in Southeast Brazil can only be acquired by assessing the circulation of NHP Plasmodium in the foci and determining its hosts. METHODOLOGY A large sampling effort was carried out in the Atlantic forest of RJ and its bordering states (Minas Gerais, São Paulo, Espírito Santo) for collecting and examining free-living NHPs. Blood and/or viscera were analyzed for Plasmodium infections via molecular and microscopic techniques. PRINCIPAL FINDINGS In total, 146 NHPs of six species, from 30 counties in four states, were tested, of which majority were collected from RJ. Howler monkeys (Alouatta clamitans) were the only species found infected. In RJ, 26% of these monkeys tested positive, of which 17% were found to be infected with P. simium. Importantly, specific single nucleotide polymorphisms-the only available genetic markers that differentiate P. simium from P. vivax-were detected in all P. simium infected A. clamitans despite their geographical origin of malarial foci. Interestingly, 71% of P. simium infected NHPs were from the coastal slope of a mountain chain (Serra do Mar), where majority of the human cases were found. Plasmodium brasilianum/malariae was initially detected in 14% and 25% free-living howler monkeys in RJ and in the Espírito Santo (ES) state, respectively. Moreover, the malarial pigment was detected in the spleen fragments of 50% of a subsample comprising dead howler monkeys in both RJ and ES. All NHPs were negative for Plasmodium falciparum. CONCLUSIONS/SIGNIFICANCE Our data indicate that howler monkeys act as the main reservoir for the Atlantic forest human malarial parasites in RJ and other sites in Southeast Brazil and reinforce its zoonotic characteristics.
Collapse
Affiliation(s)
- Filipe Vieira Santos de Abreu
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Laboratório de comportamento de insetos, Instituto Federal do Norte de Minas Gerais, Salinas, MG, Brazil
| | - Edmilson dos Santos
- Divisão de Vigilância Ambiental em Saúde, Secretaria de Saúde do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Rosa Lavigne Mello
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Larissa Rodrigues Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Marcelo Quintela Gomes
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Waldemir Paixão Vargas
- Grupo de Pesquisa e Epidemiologia Espacial, Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública Sergio Arouca, Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Cesare Bianco-Júnior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Anielle de Pina-Costa
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, Brazil
- Faculdade de Medicina de Teresópolis, Centro Universitário Serra dos Órgãos, UNIFESO, Teresópolis, RJ, Brazil
| | - Danilo Simonini Teixeira
- Núcleo de Atendimento e Pesquisa de Animais Silvestres, Universidade Estadual de Santa Cruz, UESC, Ilhéus, BA, Brazil
| | | | | | | | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Ricardo Lourenço-de-Oliveira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
44
|
Dharmarajan G, Walker KD, Lehmann T. Variation in Tolerance to Parasites Affects Vectorial Capacity of Natural Asian Tiger Mosquito Populations. Curr Biol 2019; 29:3946-3952.e5. [PMID: 31679930 PMCID: PMC6956842 DOI: 10.1016/j.cub.2019.09.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/10/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Globally, diseases transmitted by arthropod vectors, such as mosquitoes, remain a major cause of morbidity and mortality [1]. The defense responses of mosquito and other arthropod vectors against parasites are important for understanding disease transmission dynamics and for the development of novel disease-control strategies. Consequently, the mechanisms by which mosquitoes resist parasitic infection (e.g., immune-mediated killing) have long been studied [2, 3]. However, the ability of mosquitoes to ameliorate the negative fitness consequences of infection through tolerance mechanisms (e.g., tissue repair) has been virtually ignored (but see [4, 5]). Ignoring parasite tolerance is especially taxing in vector biology because unlike resistance, which typically reduces vectorial capacity, tolerance is expected to increase vectorial capacity by reducing parasite-mediated mortality without killing parasites [6], contributing to the recurrent emergence of vector-borne diseases and its stabilization and exacerbation. Despite its importance, there is currently no evidence for the evolution of tolerance in natural mosquito populations. Here, we use a common-garden experimental framework to measure variation in resistance and tolerance to dog heartworm (Dirofilaria immitis) between eight natural Aedes albopictus mosquito populations representing areas of low and high transmission intensity. We find significant inter-population variation in tolerance and elevated tolerance where transmission intensity is high. Additionally, as expected, we find that increased tolerance is associated with higher vectorial capacity. Consequently, our results indicate that high transmission intensity can lead to the evolution of more competent disease vectors, which can feed back to impact disease risk.
Collapse
Affiliation(s)
- Guha Dharmarajan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA; University of Georgia, Savannah River Ecology Lab, Savannah River Site, Building 737-A, Aiken, SC 29808, USA.
| | - Kathryne D Walker
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA; Walter Reed Army Institute of Research, Department of Vector and Parasite Biology, 503 Robert Grant Road, Silver Spring, MD 20910, USA
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| |
Collapse
|
45
|
Teem JL, Ambali A, Glover B, Ouedraogo J, Makinde D, Roberts A. Problem formulation for gene drive mosquitoes designed to reduce malaria transmission in Africa: results from four regional consultations 2016-2018. Malar J 2019; 18:347. [PMID: 31615576 PMCID: PMC6794889 DOI: 10.1186/s12936-019-2978-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Background Gene drive mosquitoes have been proposed as a possible means to reduce the transmission of malaria in Africa. Because this technology has no prior use-history at this time, environmental risk assessments for gene drive mosquitoes will benefit from problem formulation—an organized and ordered process to identify protection goals and potential pathways to harm to the environment, or animal or human health. Recognizing this need, the New Partnership for Africa’s Development (NEPAD), with support from African and international partners, organized four regional consultative workshops in Africa to initiate this process. Methods The workshops were attended by a diverse set of participants and stakeholders, including scientists, ethicists, health professionals, government regulators in the fields of environment health and biosafety as well government policymakers, who met for 4 days to deliberate on protection goals and pathways relevant to the use of gene drive mosquitoes for malaria control. The goal of the workshops was not to produce a comprehensive and detailed environmental risk assessment of gene drive mosquitoes, but rather to introduce problem formulation as a tool to the stakeholder community, and to serve as a starting point for conducting systematic environmental risk assessments in the future, identifying protection goals related to gene drive mosquitoes that are particular to African stakeholders. Results Participants in the workshops frequently identified human health and biodiversity as being relevant broad protection goals. Results of the deliberations provide insight into the concerns of African participants at an early stage in the development of gene drive organism/products that should be instructive to developers using this technology. Conclusions In general, the African participants of the consultations had a precautionary perspective with regard to environmental risk assessment of gene drive technology. As gene drive technology develops, protection goals will become further refined and candidate products will be further defined. These workshops represent only the beginning of a continuing process that will ultimately inform environmental risk assessment for gene drive mosquitoes to control malaria in Africa.
Collapse
Affiliation(s)
- John L Teem
- ILSI Research Foundation, 740 Fifteenth Street NW, Suite 600, Washington, DC, 20005, USA
| | - Aggrey Ambali
- NEPAD Agency, Industrialization, Science, Technology and Innovation Hub, 230 15th Road, Midrand, South Africa
| | - Barbara Glover
- NEPAD Agency, Industrialization, Science, Technology and Innovation Hub, 230 15th Road, Midrand, South Africa
| | - Jeremy Ouedraogo
- ABNE, NEPAD Regional Office West Africa, Hann Maristes 2, Rue HB 350, BP 17204, Dakar, Senegal
| | - Diran Makinde
- NEPAD Agency, Industrialization, Science, Technology and Innovation Hub, 230 15th Road, Midrand, South Africa
| | - Andrew Roberts
- ILSI Research Foundation, 740 Fifteenth Street NW, Suite 600, Washington, DC, 20005, USA.
| |
Collapse
|
46
|
Barrón MG, Paupy C, Rahola N, Akone-Ella O, Ngangue MF, Wilson-Bahun TA, Pombi M, Kengne P, Costantini C, Simard F, González J, Ayala D. A new species in the major malaria vector complex sheds light on reticulated species evolution. Sci Rep 2019; 9:14753. [PMID: 31611571 PMCID: PMC6791875 DOI: 10.1038/s41598-019-49065-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
Complexes of closely related species provide key insights into the rapid and independent evolution of adaptive traits. Here, we described and studied Anopheles fontenillei sp.n., a new species in the Anopheles gambiae complex that we recently discovered in the forested areas of Gabon, Central Africa. Our analysis placed the new taxon in the phylogenetic tree of the An. gambiae complex, revealing important introgression events with other members of the complex. Particularly, we detected recent introgression, with Anopheles gambiae and Anopheles coluzzii, of genes directly involved in vectorial capacity. Moreover, genome analysis of the new species allowed us to clarify the evolutionary history of the 3La inversion. Overall, An. fontenillei sp.n. analysis improved our understanding of the relationship between species within the An. gambiae complex, and provided insight into the evolution of vectorial capacity traits that are relevant for the successful control of malaria in Africa.
Collapse
Affiliation(s)
| | | | - Nil Rahola
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France.,CIRMF, Franceville, Gabon
| | | | | | | | | | - Pierre Kengne
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | | | | | | | - Diego Ayala
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France. .,CIRMF, Franceville, Gabon.
| |
Collapse
|
47
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
48
|
McLaughlin K, Russell TL, Apairamo A, Bugoro H, Oscar J, Cooper RD, Beebe NW, Ritchie SA, Burkot TR. Smallest Anopheles farauti occur during the peak transmission season in the Solomon Islands. Malar J 2019; 18:208. [PMID: 31234876 PMCID: PMC6591980 DOI: 10.1186/s12936-019-2847-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Malaria transmission varies in intensity amongst Solomon Island villages where Anopheles farauti is the only vector. This variation in transmission intensity might be explained by density-dependent processes during An. farauti larval development, as density dependence can impact adult size with associated fitness costs and daily survivorship. METHODS Adult anophelines were sampled from six villages in Western and Central Provinces, Solomon Islands between March 2014 and February 2017. The size of females was estimated by measuring wing lengths, and then analysed for associations with biting densities and rainfall. RESULTS In the Solomon Islands, three anopheline species, An. farauti, Anopheles hinesorum and Anopheles lungae, differed in size. The primary malaria vector, An. farauti, varied significantly in size among villages. Greater rainfall was directly associated with higher densities of An. farauti biting rates, but inversely associated with body size with the smallest mean sized mosquitoes present during the peak transmission period. A measurable association between body size and survivorship was not found. CONCLUSIONS Density dependent effects are likely impacting the size of adult An. farauti emerging from a range of larval habitats. The data suggest that rainfall increases An. farauti numbers and that these more abundant mosquitoes are significantly smaller in size, but without any reduced survivorship being associated with smaller size. The higher malaria transmission rate in a high malaria focus village appears to be determined more by vector numbers than size or survivorship of the vectors.
Collapse
Affiliation(s)
- Kimberley McLaughlin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Tanya L Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Allan Apairamo
- National Vector Borne Disease Control Programme, Ministry of Health and Medical Services, Honiara, Solomon Islands
| | - Hugo Bugoro
- Research Department, Solomon Islands National University, Honiara, Solomon Islands
| | - Jance Oscar
- Western Province Malaria Control, Gizo, Western Province, Solomon Islands
| | - Robert D Cooper
- Australian Defense Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, 4052, Australia
| | - Nigel W Beebe
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4068, Australia.,CSIRO, Dutton Park, Brisbane, QLD, 4001, Australia
| | - Scott A Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia.
| |
Collapse
|
49
|
Gutiérrez-López R, Martínez-de la Puente J, Gangoso L, Yan J, Soriguer R, Figuerola J. Experimental reduction of host Plasmodium infection load affects mosquito survival. Sci Rep 2019; 9:8782. [PMID: 31217438 PMCID: PMC6584735 DOI: 10.1038/s41598-019-45143-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium transmission success depends upon the trade-off between the use of host resources to favour parasite reproduction and the negative effects on host health, which can be mediated by infection intensity. Despite its potential influence on parasite dynamics, the effects of infection intensity on both, birds and vectors, and on Plasmodium transmission success are still poorly understood. Here, we experimentally reduced the Plasmodium load in naturally infected wild house sparrows with the antimalarial primaquine to assess the effects of intensity of infection in the vertebrate hosts on Plasmodium transmission to and by mosquitoes. We monitored the survival of Culex pipiens mosquitoes throughout the development of the parasite and the infection status of the mosquitoes by analysing the head-thorax and saliva at 13 days post-exposure to birds. The proportion of mosquitoes infected by Plasmodium and the presence of Plasmodium in saliva were not associated with the medication treatment of birds. However, the experimental treatment affected vector survival with mosquitoes fed on medicated birds showing a higher survival rate than those fed on control individuals. These results provide strong experimental evidence of the impact of parasite load of vertebrate hosts on the survival probability of malaria vectors.
Collapse
Affiliation(s)
- Rafael Gutiérrez-López
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.
| | - Josué Martínez-de la Puente
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - Laura Gangoso
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park, 904 1098 XH, Amsterdam, The Netherlands
| | - Jiayue Yan
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,Illinois Natural History Survey, University of Illinois, 1816 S Oak St., Champaign 61820, Illinois, USA
| | - Ramón Soriguer
- Department of Ethology & Biodiversity Conservation, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Sevilla, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| |
Collapse
|
50
|
Mulatier M, Camara S, Koffi A, Carrasco D, Porciani A, Chandre F, Moiroux N, Lefevre T, Dabiré R, Assi S, Ahoua Alou LP, Dormont L, Pennetier C, Cohuet A. Efficacy of vector control tools against malaria-infected mosquitoes. Sci Rep 2019; 9:6664. [PMID: 31040349 PMCID: PMC6491600 DOI: 10.1038/s41598-019-43195-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/17/2019] [Indexed: 12/02/2022] Open
Abstract
Within mosquito vector populations, infectious mosquitoes are the ones completing the transmission of pathogens to susceptible hosts and they are, consequently, of great epidemiological interest. Mosquito infection by malaria parasites has been shown to affect several traits of mosquito physiology and behavior, and could interplay with the efficacy of control tools. In this study, we evaluated, in pyrethroid resistant Anopheles gambiae, the effect of mosquito infection with the human malaria parasite Plasmodium falciparum on the efficacy of nets treated with either the insecticide deltamethrin or the repellent DEET, measuring (i) mosquito success to pass through the net, (ii) blood-feeding on a host and (iii) chemicals-induced mortality. Infection of mosquitoes at non-infectious stage did not affect their success to pass through the net, to blood-feed, nor chemicals-induced mortality. At infectious stage, depending on replicates, infected mosquitoes had higher mortality rates than uninfected mosquitoes, with stronger effect in presence of DEET. This data evidenced a cost of infection on mosquito survival at transmissible stages of infection, which could have significant consequences for both malaria epidemiology and vector control. This stresses the need for understanding the combined effects of insecticide resistance and infection on the efficacy on control tools.
Collapse
Affiliation(s)
- Margaux Mulatier
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France.
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Soromane Camara
- Institut Pierre Richet/Institut National de Santé Publique, Bouake, Côte d'Ivoire
| | - Alphonsine Koffi
- Institut Pierre Richet/Institut National de Santé Publique, Bouake, Côte d'Ivoire
| | - David Carrasco
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | | | | | - Nicolas Moiroux
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
- Institut de Recherches en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefevre
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
- Institut de Recherches en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Roch Dabiré
- Institut de Recherches en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Serge Assi
- Institut Pierre Richet/Institut National de Santé Publique, Bouake, Côte d'Ivoire
| | | | - Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Cédric Pennetier
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
- Institut Pierre Richet/Institut National de Santé Publique, Bouake, Côte d'Ivoire
| | - Anna Cohuet
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| |
Collapse
|