1
|
Banga I, France K, Paul A, Prasad S. E.Co.Tech Breathalyzer: A Pilot Study of a Non-invasive COVID-19 Diagnostic Tool for Light and Non-smokers. ACS MEASUREMENT SCIENCE AU 2024; 4:496-503. [PMID: 39430966 PMCID: PMC11487758 DOI: 10.1021/acsmeasuresciau.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 10/22/2024]
Abstract
Analysis of exhaled breath offers a noninvasive approach to understanding the metabolic state of the body. This study focuses on the efficacy of an innovative Electrochemical Hand-held Breathalyzer COVID-19 Sensing Technology (E.Co.Tech) for predicting COVID-19 infection, specifically in populations of never or former light smokers. The electrochemical nose technology used in this device aims to discriminate changes in exhaled nitric oxide levels, which are associated with COVID-19-linked respiratory inflammation. The methodology combines the device with a machine learning-based algorithm trained on a diverse data set of breath profiles from both infected and noninfected individuals. A cohort of 46 participants, consisting of never or former light smokers, was recruited. Each participant was tested using the E.Co.Tech prototype device and an iHealth COVID-19 antigen rapid test. The performance of the device was assessed by calculating sensitivity, specificity, positive predictive value, and negative predictive value (NPV). The results demonstrated high specificity (91.11%) and NPV (97.62%) for the device in this demographic group. This case study underscores the potential of E.Co.Tech as a valuable tool for point-of-care COVID-19 diagnosis, particularly in populations with unique smoking histories. The technology's high sensitivity and specificity, along with its rapid results, make it a promising candidate for deployment in resource-limited settings and situations where timely detection is crucial for effective public health management. Further large-scale clinical trials and real-world validations are necessary to establish the device's utility across diverse population groups.
Collapse
Affiliation(s)
- Ivneet Banga
- Department
of Biomedical Engineering, University of
Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United States
| | - Kordel France
- Department
of Computer Science, University of Texas
at Dallas, 800 W Campbell
Road, Richardson, Texas 75080, United States
| | - Anirban Paul
- Department
of Biomedical Engineering, University of
Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United States
| | - Shalini Prasad
- Department
of Biomedical Engineering, University of
Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Ryu JK, Yan Z, Montano M, Sozmen EG, Dixit K, Suryawanshi RK, Matsui Y, Helmy E, Kaushal P, Makanani SK, Deerinck TJ, Meyer-Franke A, Rios Coronado PE, Trevino TN, Shin MG, Tognatta R, Liu Y, Schuck R, Le L, Miyajima H, Mendiola AS, Arun N, Guo B, Taha TY, Agrawal A, MacDonald E, Aries O, Yan A, Weaver O, Petersen MA, Meza Acevedo R, Alzamora MDPS, Thomas R, Traglia M, Kouznetsova VL, Tsigelny IF, Pico AR, Red-Horse K, Ellisman MH, Krogan NJ, Bouhaddou M, Ott M, Greene WC, Akassoglou K. Fibrin drives thromboinflammation and neuropathology in COVID-19. Nature 2024; 633:905-913. [PMID: 39198643 PMCID: PMC11424477 DOI: 10.1038/s41586-024-07873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection1-4. Despite the clinical evidence1,5-7, the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits1,5,8-10. Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well as from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.
Collapse
Affiliation(s)
- Jae Kyu Ryu
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Zhaoqi Yan
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Mauricio Montano
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Elif G Sozmen
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Karuna Dixit
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Yusuke Matsui
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Ekram Helmy
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Prashant Kaushal
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, CA, USA
| | - Sara K Makanani
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California San Diego, La Jolla, CA, USA
| | | | | | - Troy N Trevino
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Min-Gyoung Shin
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Reshmi Tognatta
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Yixin Liu
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Renaud Schuck
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Lucas Le
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Hisao Miyajima
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Andrew S Mendiola
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Nikhita Arun
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Brandon Guo
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Taha Y Taha
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Ayushi Agrawal
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Eilidh MacDonald
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Oliver Aries
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Aaron Yan
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Olivia Weaver
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Mark A Petersen
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Rosa Meza Acevedo
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Maria Del Pilar S Alzamora
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Michela Traglia
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
- CureScience Institute, San Diego, CA, USA
| | - Igor F Tsigelny
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
- CureScience Institute, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Alexander R Pico
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- COVID-19 Research Group (QCRG), University of California San Francisco, San Francisco, CA, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
- COVID-19 Research Group (QCRG), University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Warner C Greene
- Gladstone Institute of Virology, San Francisco, CA, USA.
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Katerina Akassoglou
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA.
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Develin A, Fuglestad B. Inositol Hexaphosphate as an Inhibitor and Potential Regulator of p47 phox Membrane Anchoring. Biochemistry 2024; 63:1097-1106. [PMID: 38669178 PMCID: PMC11080064 DOI: 10.1021/acs.biochem.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.
Collapse
Affiliation(s)
- Angela
M. Develin
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
| | - Brian Fuglestad
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
4
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
5
|
Gallo G, Savoia C. New Insights into Endothelial Dysfunction in Cardiometabolic Diseases: Potential Mechanisms and Clinical Implications. Int J Mol Sci 2024; 25:2973. [PMID: 38474219 DOI: 10.3390/ijms25052973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The endothelium is a monocellular layer covering the inner surface of blood vessels. It maintains vascular homeostasis regulating vascular tone and permeability and exerts anti-inflammatory, antioxidant, anti-proliferative, and anti-thrombotic functions. When the endothelium is exposed to detrimental stimuli including hyperglycemia, hyperlipidemia, and neurohormonal imbalance, different biological pathways are activated leading to oxidative stress, endothelial dysfunction, increased secretion of adipokines, cytokines, endothelin-1, and fibroblast growth factor, and reduced nitric oxide production, leading eventually to a loss of integrity. Endothelial dysfunction has emerged as a hallmark of dysmetabolic vascular impairment and contributes to detrimental effects on cardiac metabolism and diastolic dysfunction, and to the development of cardiovascular diseases including heart failure. Different biomarkers of endothelial dysfunction have been proposed to predict cardiovascular diseases in order to identify microvascular and macrovascular damage and the development of atherosclerosis, particularly in metabolic disorders. Endothelial dysfunction also plays an important role in the development of severe COVID-19 and cardiovascular complications in dysmetabolic patients after SARS-CoV-2 infection. In this review, we will discuss the biological mechanisms involved in endothelial dysregulation in the context of cardiometabolic diseases as well as the available and promising biomarkers of endothelial dysfunction in clinical practice.
Collapse
Affiliation(s)
- Giovanna Gallo
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Carmine Savoia
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| |
Collapse
|
6
|
Chowdhury B, Sahoo BM, Jena AP, Hiramani K, Behera A, Acharya B. NOX-2 Inhibitors may be Potential Drug Candidates for the Management of COVID-19 Complications. Curr Drug Res Rev 2024; 16:128-133. [PMID: 37415374 DOI: 10.2174/2589977515666230706114812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
COVID-19 is an RNA virus that attacks the targeting organs, which express angiotensin- converting enzyme-2 (ACE-2), such as the lungs, heart, renal system, and gastrointestinal tract. The virus that enters the cell by endocytosis triggers ROS production within the confines of endosomes via a NOX-2 containing NADPH-oxidase. Various isoforms of NADPH oxidase are expressed in airways and alveolar epithelial cells, endothelial and vascular smooth muscle cells, and inflammatory cells, such as alveolar macrophages, monocytes, neutrophils, and Tlymphocytes. The key NOX isoform expressed in macrophages and neutrophils is the NOX-2 oxidase, whereas, in airways and alveolar epithelial cells, it appears to be NOX-1 and NOX-2. The respiratory RNA viruses induce NOX-2-mediated ROS production in the endosomes of alveolar macrophages. The mitochondrial and NADPH oxidase (NOX) generated ROS can enhance TGF-β signaling to promote fibrosis of the lungs. The endothelium-derived ROS and platelet-derived ROS, due to activation of the NADPH-oxidase enzyme, play a crucial role in platelet activation. It has been observed that NOX-2 is generally activated in COVID-19 patients. The post-COVID complications like pulmonary fibrosis and platelet aggregation may be due to the activation of NOX-2. NOX-2 inhibitors may be a useful drug candidate to prevent COVID-19 complications like pulmonary fibrosis and platelet aggregation.
Collapse
Affiliation(s)
- Bimalendu Chowdhury
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Biswa Mohan Sahoo
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Akankshya Priyadarsani Jena
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Korikana Hiramani
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Amulyaratna Behera
- Department of Pharmacy, Centurion University of Technology and Management, Odisha, India
| | - Biswajeet Acharya
- Department of Pharmacy, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
7
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alexiou A, Batiha GES. The Potential Effect of Dapsone on the Inflammatory Reactions in COVID-19: Staggering View. Comb Chem High Throughput Screen 2024; 27:674-678. [PMID: 36999691 DOI: 10.2174/1386207326666230331121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
Severe SARS-CoV-2 infection is linked with an overstated immune response with the succeeding release of pro-inflammatory cytokines and progression of the cytokine storm. In addition, severe SARS-CoV-2 infection is associated with the development of oxidative stress and coagulopathy. Dapsone (DPS) is a bacteriostatic antibiotic that has a potent anti-inflammatory effect. Thus, this mini-review aimed to elucidate the potential role of DPS in mitigating inflammatory disorders in COVID-19 patients. DPS inhibits neutrophil myeloperoxidase, inflammation, and neutrophil chemotaxis. Therefore, DPS could be effective against neutrophilia-induced complications in COVID-19. In addition, DPS could be effective in mitigating inflammatory and oxidative stress disorders by suppressing the expression of inflammatory signaling pathways and the generation of reactive oxygen species (ROS) correspondingly. In conclusion, DPS might be effective in the management of COVID-19 through the attenuation of inflammatory disorders. Therefore, preclinical and clinical studies are reasonable in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
8
|
Yang L, Wu Y, Jin W, Mo N, Ye G, Su Z, Tang L, Wang Y, Li Y, Du J. The potential role of ferroptosis in COVID-19-related cardiovascular injury. Biomed Pharmacother 2023; 168:115637. [PMID: 37844358 DOI: 10.1016/j.biopha.2023.115637] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a global health threat in 2019. An important feature of the disease is that multiorgan symptoms of SARS-CoV-2 infection persist after recovery. Evidence indicates that people who recovered from COVID-19, even those under the age of 65 years without cardiovascular risk factors such as smoking, obesity, hypertension, and diabetes, had a significantly increased risk of cardiovascular disease for up to one year after diagnosis. Therefore, it is important to closely monitor individuals who have recovered from COVID-19 for potential cardiovascular damage that may manifest at a later stage. Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by the production of reactive oxygen species (ROS) and increased lipid peroxide levels. Several studies have demonstrated that ferroptosis plays an important role in cancer, ischemia/reperfusion injury (I/RI), and other cardiovascular diseases. Altered iron metabolism, upregulation of reactive oxygen species, and glutathione peroxidase 4 inactivation are striking features of COVID-19-related cardiovascular injury. SARS-CoV-2 can cause cardiovascular ferroptosis, leading to cardiovascular damage. Understanding the mechanism of ferroptosis in COVID-19-related cardiovascular injuries will contribute to the development of treatment regimens for preventing or reducing COVID-19-related cardiovascular complications. In this article, we go over the pathophysiological underpinnings of SARS-CoV-2-induced acute and chronic cardiovascular injury, the function of ferroptosis, and prospective treatment approaches.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Mo
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zixin Su
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med 2023; 21:633. [PMID: 37718435 PMCID: PMC10506247 DOI: 10.1186/s12967-023-04515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
10
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
11
|
Romero MJ, Yue Q, Singla B, Hamacher J, Sridhar S, Moseley AS, Song C, Mraheil MA, Fischer B, Zeitlinger M, Chakraborty T, Fulton D, Gan L, Annex BH, Csanyi G, Eaton DC, Lucas R. Direct endothelial ENaC activation mitigates vasculopathy induced by SARS-CoV2 spike protein. Front Immunol 2023; 14:1241448. [PMID: 37638055 PMCID: PMC10449264 DOI: 10.3389/fimmu.2023.1241448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Although both COVID-19 and non-COVID-19 ARDS can be accompanied by significantly increased levels of circulating cytokines, the former significantly differs from the latter by its higher vasculopathy, characterized by increased oxidative stress and coagulopathy in lung capillaries. This points towards the existence of SARS-CoV2-specific factors and mechanisms that can sensitize the endothelium towards becoming dysfunctional. Although the virus is rarely detected within endothelial cells or in the circulation, the S1 subunit of its spike protein, which contains the receptor binding domain (RBD) for human ACE2 (hACE2), can be detected in plasma from COVID-19 patients and its levels correlate with disease severity. It remains obscure how the SARS-CoV2 RBD exerts its deleterious actions in lung endothelium and whether there are mechanisms to mitigate this. Methods In this study, we use a combination of in vitro studies in RBD-treated human lung microvascular endothelial cells (HL-MVEC), including electrophysiology, barrier function, oxidative stress and human ACE2 (hACE2) surface protein expression measurements with in vivo studies in transgenic mice globally expressing human ACE2 and injected with RBD. Results We show that SARS-CoV2 RBD impairs endothelial ENaC activity, reduces surface hACE2 expression and increases reactive oxygen species (ROS) and tissue factor (TF) generation in monolayers of HL-MVEC, as such promoting barrier dysfunction and coagulopathy. The TNF-derived TIP peptide (a.k.a. solnatide, AP301) -which directly activates ENaC upon binding to its a subunit- can override RBD-induced impairment of ENaC function and hACE2 expression, mitigates ROS and TF generation and restores barrier function in HL-MVEC monolayers. In correlation with the increased mortality observed in COVID-19 patients co-infected with S. pneumoniae, compared to subjects solely infected with SARS-CoV2, we observe that prior intraperitoneal RBD treatment in transgenic mice globally expressing hACE2 significantly increases fibrin deposition and capillary leak upon intratracheal instillation of S. pneumoniae and that this is mitigated by TIP peptide treatment.
Collapse
Affiliation(s)
- Maritza J. Romero
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Qian Yue
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V—Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Auriel S. Moseley
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Chang Song
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Mobarak A. Mraheil
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | | | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Trinad Chakraborty
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Brian H. Annex
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
12
|
Santoro L, Zaccone V, Falsetti L, Ruggieri V, Danese M, Miro C, Di Giorgio A, Nesci A, D’Alessandro A, Moroncini G, Santoliquido A. Role of Endothelium in Cardiovascular Sequelae of Long COVID. Biomedicines 2023; 11:2239. [PMID: 37626735 PMCID: PMC10452509 DOI: 10.3390/biomedicines11082239] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The global action against coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 infection, shed light on endothelial dysfunction. Although SARS-CoV-2 primarily affects the pulmonary system, multiple studies have documented pan-vascular involvement in COVID-19. The virus is able to penetrate the endothelial barrier, damaging it directly or indirectly and causing endotheliitis and multi-organ injury. Several mechanisms cooperate to development of endothelial dysfunction, including endothelial cell injury and pyroptosis, hyperinflammation and cytokine storm syndrome, oxidative stress and reduced nitric oxide bioavailability, glycocalyx disruption, hypercoagulability, and thrombosis. After acute-phase infection, some patients reported signs and symptoms of a systemic disorder known as long COVID, in which a broad range of cardiovascular (CV) disorders emerged. To date, the exact pathophysiology of long COVID remains unclear: in addition to the persistence of acute-phase infection mechanisms, specific pathways of CV damage have been postulated, such as persistent viral reservoirs in the heart or an autoimmune response to cardiac antigens through molecular mimicry. The aim of this review is to provide an overview of the main molecular patterns of enduring endothelial activation following SARS-CoV-2 infection and to offer the latest summary of CV complications in long COVID.
Collapse
Affiliation(s)
- Luca Santoro
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (L.S.); (A.D.G.); (A.N.); (A.D.); (A.S.)
| | - Vincenzo Zaccone
- Department of Emergency Medicine, Internal and Sub-Intensive Medicine, Azienda Ospedaliero-Universitaria delle Marche, 60126 Ancona, Italy
| | - Lorenzo Falsetti
- Clinica Medica, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.F.); (G.M.)
| | - Vittorio Ruggieri
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.R.); (M.D.); (C.M.)
| | - Martina Danese
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.R.); (M.D.); (C.M.)
| | - Chiara Miro
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.R.); (M.D.); (C.M.)
| | - Angela Di Giorgio
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (L.S.); (A.D.G.); (A.N.); (A.D.); (A.S.)
| | - Antonio Nesci
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (L.S.); (A.D.G.); (A.N.); (A.D.); (A.S.)
| | - Alessia D’Alessandro
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (L.S.); (A.D.G.); (A.N.); (A.D.); (A.S.)
| | - Gianluca Moroncini
- Clinica Medica, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.F.); (G.M.)
| | - Angelo Santoliquido
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (L.S.); (A.D.G.); (A.N.); (A.D.); (A.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
13
|
Morawietz H, Brendel H, Diaba-Nuhoho P, Catar R, Perakakis N, Wolfrum C, Bornstein SR. Cross-Talk of NADPH Oxidases and Inflammation in Obesity. Antioxidants (Basel) 2023; 12:1589. [PMID: 37627585 PMCID: PMC10451527 DOI: 10.3390/antiox12081589] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity is a major risk factor for cardiovascular and metabolic diseases. Multiple experimental and clinical studies have shown increased oxidative stress and inflammation linked to obesity. NADPH oxidases are major sources of reactive oxygen species in the cardiovascular system and in metabolically active cells and organs. An impaired balance due to the increased formation of reactive oxygen species and a reduced antioxidative capacity contributes to the pathophysiology of cardiovascular and metabolic diseases and is linked to inflammation as a major pathomechanism in cardiometabolic diseases. Non-alcoholic fatty liver disease is particularly characterized by increased oxidative stress and inflammation. In recent years, COVID-19 infections have also increased oxidative stress and inflammation in infected cells and tissues. Increasing evidence supports the idea of an increased risk for severe clinical complications of cardiometabolic diseases after COVID-19. In this review, we discuss the role of oxidative stress and inflammation in experimental models and clinical studies of obesity, cardiovascular diseases, COVID-19 infections and potential therapeutic strategies.
Collapse
Affiliation(s)
- Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Rusan Catar
- Department of Nephrology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Nikolaos Perakakis
- Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (N.P.); (S.R.B.)
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zürich, Schorenstrasse, 8603 Schwerzenbach, Switzerland;
| | - Stefan R. Bornstein
- Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (N.P.); (S.R.B.)
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Diabetes and Nutritional Sciences, King’s College London, Strand, London WC2R 2LS, UK
| |
Collapse
|
14
|
Zhan Y, Chen Q, Song Y, Wei X, Zhao T, Chen B, Li C, Zhang W, Jiang Y, Tan Y, Du B, Xiao J, Wang K. Berbamine Hydrochloride inhibits lysosomal acidification by activating Nox2 to potentiate chemotherapy-induced apoptosis via the ROS-MAPK pathway in human lung carcinoma cells. Cell Biol Toxicol 2023; 39:1297-1317. [PMID: 36070022 DOI: 10.1007/s10565-022-09756-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is typically activated in cancer cells as a rescue strategy in response to cellular stress (e.g., chemotherapy). Herein, we found that Berbamine Hydrochloride (Ber) can act as an effective inhibitor of the late stage of autophagic flux, thereby potentiating the killing effect of chemotherapy agents. Lung carcinoma cells exposed to Ber exhibited increased autophagosomes, marked by LC3-II upregulation. The increased level of p62 after Ber treatment indicated that the autophagic flux was blocked at the late stage. The lysosome staining assay and cathepsin maturation detection indicated impaired lysosomal acidification. We found that Nox2 exhibited intensified co-localization with lysosomes in Ber-treated cells. Nox2 is a key enzyme for superoxide anion production capable of transferring electrons into the lysosomal lumen, thereby neutralizing the inner protons; this might explain the aberrant acidification. This hypothesis is further supported by the observed reversal of lysosomal cathepsin maturation by Nox2 inhibitors. Finally, Ber combined with cisplatin exhibited a synergistic killing effect on lung carcinoma cells. Further data suggested that lung carcinoma cells co-treated with Ber and cisplatin accumulated excessive reactive oxygen species (ROS), which typically activated MAPK-mediated mitochondria-dependent apoptosis. The enhanced anti-cancer effect of Ber combined with cisplatin was also confirmed in an in vivo xenograft mouse model. These findings indicate that Ber might be a promising adjuvant for enhancing the cancer cell killing effect of chemotherapy via the inhibition of autophagy. In this process, Nox2 might be a significant mediator of Ber-induced aberrant lysosomal acidification.
Collapse
Affiliation(s)
- Yujuan Zhan
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiugu Chen
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Song
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xianli Wei
- Department of Medical Instruments, Guangdong Food and Drug Vocational College, Guangzhou, 510520, People's Republic of China
| | - Tingxiu Zhao
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Chengxi Li
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenbo Zhang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Yuhui Tan
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Biaoyan Du
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianyong Xiao
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Kun Wang
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Zhang J, He L, Huang R, Alvarez JF, Yang DH, Sun Q, Wang F, Peng Z, Jiang N, Su L. Synergistic effect of elevated glucose levels with SARS-CoV-2 spike protein induced NOX-dependent ROS production in endothelial cells. Mol Biol Rep 2023:10.1007/s11033-023-08504-3. [PMID: 37289363 DOI: 10.1007/s11033-023-08504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetic patients infected with coronavirus disease 2019 (COVID-19) often have a higher probability of organ failure and mortality. The potential cellular mechanisms through which blood glucose exacerbates tissue damage due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still unclear. METHODS AND RESULTS We cultured endothelial cells within differing glucose mediums with an increasing concentration gradient of SARS-CoV-2 Spike protein (S protein). S protein can cause the reduction of ACE2 and TMPRSS2, and activation of NOX2 and NOX4. A high glucose medium was shown to aggravate the decrease of ACE2 and activation of NOX2 and NOX4 in cultured cells, but had no effect on TMPRSS2. S protein mediated activation of the ACE2-NOX axis induced oxidative stress and apoptosis within endothelial cells, leading to cellular dysfunction via the reduction of NO and tight junction proteins which may collectively be exacerbated by elevated glucose. In addition, the glucose variability model demonstrated activation of the ACE2-NOX axis in a similar manner observed in the high glucose model in vitro. CONCLUSIONS Our present study provides evidence for a mechanism through which hyperglycemia aggravates endothelial cell injury resulting from S protein mediated activation of the ACE2-NOX axis. Our research thus highlights the importance of strict monitoring and control of blood glucose levels within the context of COVID-19 treatment to potentially improve clinical outcomes.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Hubei Province, Wuhan 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Critical Care Medicine, Zhongnan Hospital of Wuhan University, Hubei, 430000, China
| | - Li He
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Hubei Province, Wuhan 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Rong Huang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Hubei Province, Wuhan 430071, China
| | - Juan Felipe Alvarez
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David H Yang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Qihao Sun
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Fengqin Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Hubei Province, Wuhan 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Hubei Province, Wuhan 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Nanhui Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Hubei Province, Wuhan 430071, China.
- Critical Care Medicine, Zhongnan Hospital of Wuhan University, Hubei, 430000, China.
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Hubei Province, Wuhan 430071, China.
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China.
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Ciacci P, Paraninfi A, Orlando F, Rella S, Maggio E, Oliva A, Cangemi R, Carnevale R, Bartimoccia S, Cammisotto V, D'Amico A, Magna A, Nocella C, Mastroianni CM, Pignatelli P, Violi F, Loffredo L. Endothelial dysfunction, oxidative stress and low-grade endotoxemia in COVID-19 patients hospitalised in medical wards. Microvasc Res 2023:104557. [PMID: 37268038 DOI: 10.1016/j.mvr.2023.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Endothelial dysfunction, assessed by flow-mediated dilation (FMD), is related to poor prognosis in patients with COVID-19 pneumonia (CP). In this study, we explored the interplay among FMD, NADPH oxidase type 2 (NOX-2) and lipopolysaccharides (LPS) in hospitalised patients with CP, community acquired pneumonia (CAP) and controls (CT). METHODS We enrolled 20 consecutive patients with CP, 20 hospitalised patients with CAP and 20 CT matched for sex, age, and main cardiovascular risk factors. In all subjects we performed FMD and collected blood samples to analyse markers of oxidative stress (soluble Nox2-derived peptide (sNOX2-dp), hydrogen peroxide breakdown activity (HBA), nitric oxide (NO), hydrogen peroxide (H2O2)), inflammation (TNF-α and IL-6), LPS and zonulin levels. RESULTS Compared with controls, CP had significant higher values of LPS, sNOX-2-dp, H2O2,TNF-α, IL-6 and zonulin; conversely FMD, HBA and NO bioavailability were significantly lower in CP. Compared to CAP patients, CP had significantly higher levels of sNOX2-dp, H2O2, TNF-α, IL-6, LPS, zonulin and lower HBA. Simple linear regression analysis showed that FMD inversely correlated with sNOX2-dp, H2O2, TNF-α, IL-6, LPS and zonulin; conversely FMD was directly correlated with NO bioavailability and HBA. Multiple linear regression analysis highlighted LPS as the only predictor of FMD. CONCLUSION This study shows that patients with COVID-19 have low-grade endotoxemia that could activate NOX-2, generating increased oxidative stress and endothelial dysfunction.
Collapse
Affiliation(s)
- Paolo Ciacci
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Aurora Paraninfi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Federica Orlando
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Silvia Rella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Enrico Maggio
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, 00162 Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Alessandra D'Amico
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Arianna Magna
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Francesco Violi
- Mediterranea Cardiocentro, Naples, Italy; Sapienza University of Rome, Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy.
| |
Collapse
|
17
|
Li Q, Chen Z, Zhou X, Li G, Zhang C, Yang Y. Ferroptosis and multi-organ complications in COVID-19: mechanisms and potential therapies. Front Genet 2023; 14:1187985. [PMID: 37303950 PMCID: PMC10250669 DOI: 10.3389/fgene.2023.1187985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2, with respiratory symptoms as primary manifestations. It can progress to severe illness, leading to respiratory failure and multiple organ dysfunction. Recovered patients may experience persistent neurological, respiratory, or cardiovascular symptoms. Mitigating the multi-organ complications of COVID-19 has been highlighted as a crucial part of fighting the epidemic. Ferroptosis is a type of cell death linked to altered iron metabolism, glutathione depletion, glutathione peroxidase 4 (GPX4) inactivation, and increased oxidative stress. Cell death can prevent virus replication, but uncontrolled cell death can also harm the body. COVID-19 patients with multi-organ complications often exhibit factors related to ferroptosis, suggesting a possible connection. Ferroptosis inhibitors can resist SARS-CoV-2 infection from damaging vital organs and potentially reduce COVID-19 complications. In this paper, we outline the molecular mechanisms of ferroptosis and, based on this, discuss multi-organ complications in COVID-19, then explore the potential of ferroptosis inhibitors as a supplementary intervention for COVID-19. This paper will provide a reference for the possible treatment of SARS-CoV-2 infected disease to reduce the severity of COVID-19 and its subsequent impact.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zeyuan Chen
- Department of Pharmacy, Luxian People’s Hospital, Luzhou, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Rust P, Ekmekcioglu C. The Role of Diet and Specific Nutrients during the COVID-19 Pandemic: What Have We Learned over the Last Three Years? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5400. [PMID: 37048015 PMCID: PMC10093865 DOI: 10.3390/ijerph20075400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nutrients and diets have an important impact on our immune system and infection risk and a huge number of papers have been published dealing with various aspects of nutrition in relation to SARS-CoV-2 infection risk or COVID-19 severity. This narrative review aims to give an update on this association and tries to summarize some of the most important findings after three years of pandemic. The analysis of major studies and systematic reviews leads to the conclusion that a healthy plant-based diet reduces the risks for SARS-CoV-2 infection and especially COVID-19 severity. Regarding micronutrients, vitamin D is to the fore, but also zinc, vitamin C and, to some extent, selenium may play a role in COVID-19. Furthermore, omega-3-fatty acids with their anti-inflammatory effects also deserve attention. Therefore, a major aim of societal nutritional efforts in future should be to foster a high quality plant-based diet, which not only exerts beneficial effects on the immune system but also reduces the risk for non-communicable diseases such as type 2 diabetes or obesity which are also primary risk factors for worse COVID-19 outcomes. Another aim should be to focus on a good supply of critical immune-effective nutrients, such as vitamin D and zinc.
Collapse
Affiliation(s)
- Petra Rust
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
19
|
Almeida CR, Lima JF, Machado MR, Alves JV, Couto AES, Campos LCB, Avila-Mesquita CD, Auxiliadora-Martins M, Becari C, Louzada-Júnior P, Tostes RC, Lobato NS, Costa RM. Inhibition of IL-6 signaling prevents serum-induced umbilical cord artery dysfunction from patients with severe COVID-19. Am J Physiol Regul Integr Comp Physiol 2023; 324:R435-R445. [PMID: 36737252 PMCID: PMC10026982 DOI: 10.1152/ajpregu.00154.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) infection has a negative impact on the cytokine profile of pregnant women. Increased levels of proinflammatory cytokines seem to be correlated with the severity of the disease, in addition to predisposing to miscarriage or premature birth. Proinflammatory cytokines increase the generation of reactive oxygen species (ROS). It is unclear how interleukin-6 (IL-6) found in the circulation of patients with severe COVID-19 might affect gestational health, particularly concerning umbilical cord function. This study tested the hypothesis that IL-6 present in the circulation of women with severe COVID-19 causes umbilical cord artery dysfunction by increasing ROS generation and activating redox-sensitive proteins. Umbilical cord arteries were incubated with serum from healthy women and women with severe COVID-19. Vascular function was assessed using concentration-effect curves to serotonin in the presence or absence of pharmacological agents, such as tocilizumab (antibody against the IL-6 receptor), tiron (ROS scavenger), ML171 (Nox1 inhibitor), and Y27632 (Rho kinase inhibitor). ROS generation was assessed by the dihydroethidine probe and Rho kinase activity by an enzymatic assay. Umbilical arteries exposed to serum from women with severe COVID-19 were hyperreactive to serotonin. This effect was abolished in the presence of tocilizumab, tiron, ML171, and Y27632. In addition, serum from women with severe COVID-19 increased Nox1-dependent ROS generation and Rho kinase activity. Increased Rho kinase activity was abolished by tocilizumab and tiron. Serum cytokines in women with severe COVID-19 promote umbilical artery dysfunction. IL-6 is key to Nox-linked vascular oxidative stress and activation of the Rho kinase pathway.
Collapse
Affiliation(s)
- Cellyne R Almeida
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Goias, Brazil
| | - Júlia F Lima
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Goias, Brazil
| | - Mirele R Machado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Juliano V Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ariel E S Couto
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ligia C B Campos
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carolina D Avila-Mesquita
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Maria Auxiliadora-Martins
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Christiane Becari
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Paulo Louzada-Júnior
- Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Núbia S Lobato
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Goias, Brazil
| | - Rafael M Costa
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Goias, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
20
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
21
|
How the Competition for Cysteine May Promote Infection of SARS-CoV-2 by Triggering Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020483. [PMID: 36830041 PMCID: PMC9952211 DOI: 10.3390/antiox12020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
SARS-CoV-2 induces a broad range of clinical manifestations. Besides the main receptor, ACE2, other putative receptors and co-receptors have been described and could become genuinely relevant to explain the different tropism manifested by new variants. In this study, we propose a biochemical model envisaging the competition for cysteine as a key mechanism promoting the infection and the selection of host receptors. The SARS-CoV-2 infection produces ROS and triggers a massive biosynthesis of proteins rich in cysteine; if this amino acid becomes limiting, glutathione levels are depleted and cannot control oxidative stress. Hence, infection succeeds. A receptor should be recognized as a marker of suitable intracellular conditions, namely the full availability of amino acids except for low cysteine. First, we carried out a comparative investigation of SARS-CoV-2 proteins and human ACE2. Then, using hierarchical cluster protein analysis, we searched for similarities between all human proteins and spike produced by the latest variant, Omicron BA.1. We found 32 human proteins very close to spike in terms of amino acid content. Most of these potential SARS-CoV-2 receptors have less cysteine than spike. We suggest that these proteins could signal an intracellular shortage of cysteine, predicting a burst of oxidative stress when used as viral entry mediators.
Collapse
|
22
|
Carnevale R, Cammisotto V, Bartimoccia S, Nocella C, Castellani V, Bufano M, Loffredo L, Sciarretta S, Frati G, Coluccia A, Silvestri R, Ceccarelli G, Oliva A, Venditti M, Pugliese F, Maria Mastroianni C, Turriziani O, Leopizzi M, D'Amati G, Pignatelli P, Violi F. Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2 Infection. Circ Res 2023; 132:290-305. [PMID: 36636919 DOI: 10.1161/circresaha.122.321541] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND SARS-CoV-2 is associated with an increased risk of venous and arterial thrombosis, but the underlying mechanism is still unclear. METHODS We performed a cross-sectional analysis of platelet function in 25 SARS-CoV-2 and 10 healthy subjects by measuring Nox2 (NADPH oxidase 2)-derived oxidative stress and thromboxane B2, and investigated if administration of monoclonal antibodies against the S protein (Spike protein) of SARS-CoV-2 affects platelet activation. Furthermore, we investigated in vitro if the S protein of SARS-CoV-2 or plasma from SARS-CoV-2 enhanced platelet activation. RESULTS Ex vivo studies showed enhanced platelet Nox2-derived oxidative stress and thromboxane B2 biosynthesis and under laminar flow platelet-dependent thrombus growth in SARS-CoV-2 compared with controls; both effects were lowered by Nox2 and TLR4 (Toll-like receptor 4) inhibitors. Two hours after administration of monoclonal antibodies, a significant inhibition of platelet activation was observed in patients with SARS-CoV-2 compared with untreated ones. In vitro study showed that S protein per se did not elicit platelet activation but amplified the platelet response to subthreshold concentrations of agonists and functionally interacted with platelet TLR4. A docking simulation analysis suggested that TLR4 binds to S protein via three receptor-binding domains; furthermore, immunoprecipitation and immunofluorescence showed S protein-TLR4 colocalization in platelets from SARS-CoV-2. Plasma from patients with SARS-CoV-2 enhanced platelet activation and Nox2-related oxidative stress, an effect blunted by TNF (tumor necrosis factor) α inhibitor; this effect was recapitulated by an in vitro study documenting that TNFα alone promoted platelet activation and amplified the platelet response to S protein via p47phox (phagocyte oxidase) upregulation. CONCLUSIONS The study identifies 2 TLR4-dependent and independent pathways promoting platelet-dependent thrombus growth and suggests inhibition of TLR4. or p47phox as a tool to counteract thrombosis in SARS-CoV-2.
Collapse
Affiliation(s)
- Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.).,IRCCS Neuromed, Località Camerelle, Pozzilli (IS), Italy (R.C., S.S., G.F.)
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Valentina Castellani
- Department of General Surgery and Surgical Speciality (V. Castellani, F.P.), Sapienza University of Rome, Italy
| | - Marianna Bufano
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.).,IRCCS Neuromed, Località Camerelle, Pozzilli (IS), Italy (R.C., S.S., G.F.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.).,IRCCS Neuromed, Località Camerelle, Pozzilli (IS), Italy (R.C., S.S., G.F.)
| | - Antonio Coluccia
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Italy
| | - Romano Silvestri
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Francesco Pugliese
- Department of General Surgery and Surgical Speciality (V. Castellani, F.P.), Sapienza University of Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine (O.T.), Sapienza University of Rome, Italy
| | - Martina Leopizzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.)
| | - Giulia D'Amati
- Department of Radiological, Oncological and Pathological Sciences (G.D.), Sapienza University of Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy.,Mediterranea Cardiocentro- Napoli, Italy (P.P., F.V.)
| | | |
Collapse
|
23
|
Tavassolifar MJ, Aghdaei HA, Sadatpour O, Maleknia S, Fayazzadeh S, Mohebbi SR, Montazer F, Rabbani A, Zali MR, Izad M, Meyfour A. New insights into extracellular and intracellular redox status in COVID-19 patients. Redox Biol 2023; 59:102563. [PMID: 36493512 PMCID: PMC9715463 DOI: 10.1016/j.redox.2022.102563] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The imbalance of redox homeostasis induces hyper-inflammation in viral infections. In this study, we explored the redox system signature in response to SARS-COV-2 infection and examined the status of these extracellular and intracellular signatures in COVID-19 patients. METHOD The multi-level network was constructed using multi-level data of oxidative stress-related biological processes, protein-protein interactions, transcription factors, and co-expression coefficients obtained from GSE164805, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and healthy controls. Top genes were designated based on the degree and closeness centralities. The expression of high-ranked genes was evaluated in PBMCs and nasopharyngeal (NP) samples of 30 COVID-19 patients and 30 healthy controls. The intracellular levels of GSH and ROS/O2• - and extracellular oxidative stress markers were assayed in PBMCs and plasma samples by flow cytometry and ELISA. ELISA results were applied to construct a classification model using logistic regression to differentiate COVID-19 patients from healthy controls. RESULTS CAT, NFE2L2, SOD1, SOD2 and CYBB were 5 top genes in the network analysis. The expression of these genes and intracellular levels of ROS/O2• - were increased in PBMCs of COVID-19 patients while the GSH level decreased. The expression of high-ranked genes was lower in NP samples of COVID-19 patients compared to control group. The activity of extracellular enzymes CAT and SOD, and the total oxidant status (TOS) level were increased in plasma samples of COVID-19 patients. Also, the 2-marker panel of CAT and TOS and 3-marker panel showed the best performance. CONCLUSION SARS-COV-2 disrupts the redox equilibrium in immune cells and the upper respiratory tract, leading to exacerbated inflammation and increased replication and entrance of SARS-COV-2 into host cells. Furthermore, utilizing markers of oxidative stress as a complementary validation to discriminate COVID-19 from healthy controls, seems promising.
Collapse
Affiliation(s)
- Mohammad Javad Tavassolifar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Sadatpour
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Montazer
- Department of Pathology, Firoozabadi Hospital, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amirhassan Rabbani
- Department of Transplant & Hepatobiliary Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Shrivastava AK, Sahu PK, Cecchi T, Shrestha L, Shah SK, Gupta A, Palikhey A, Joshi B, Gupta PP, Upadhyaya J, Paudel M, Koirala N. An emerging natural antioxidant therapy for COVID‐19 infection patients: Current and future directions. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Amit Kumar Shrivastava
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Prafulla Kumar Sahu
- School of Pharmacy Centurion University of Technology and Management Bhubaneswar Odisha India
| | | | - Laxmi Shrestha
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Sanjay Kumar Shah
- Department of Reproductive MedicineJoint Inter‐national Research Laboratory of Reproduction and DevelopmentChongquing Medical University ChongqingPeople's Republic of China
| | - Anamika Gupta
- Sharjah Institute for Medical Sciences University of Sharjah Sharjah United Arab Emirates
| | - Anjan Palikhey
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Bishal Joshi
- Department of Physiology, Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Pramodkumar P. Gupta
- School of Biotechnology and Bioinformatics D. Y. Patil Deemed to be University, CBD Belapur Navi Mumbai India
| | - Jitendra Upadhyaya
- Institute of Agriculture and Animal Science Tribhuvan University Chitwan Nepal
| | - Mahendra Paudel
- Department of Agri‐Botany and Ecology Institute of Agriculture and Animal Science Tribhuvan University Mahendranagar Nepal
| | - Niranjan Koirala
- Natural Products Research FacilityGandaki Province Academy of Science and Technology Pokhara, Gandaki Province Nepal
| |
Collapse
|
25
|
Senkal N, Serin I, Pehlivan S, Pehlivan M, Medetalibeyoglu A, Cebeci T, Konyaoglu H, Oyacı Y, Sayın GY, Isoglu-Alkac U, Tukek T, Kose M. The effect of DNA repair gene variants on COVID-19 disease: susceptibility, severity, and clinical course. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023:1-15. [PMID: 36708261 DOI: 10.1080/15257770.2023.2172183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Oxidative stress (OS), which leads to DNA damage, plays a role in the pathogenesis of Coronavirus disease 2019 (COVID-19). We aimed to evaluate the role of DNA repair gene variants [X-ray repair cross complementing 4 (XRCC4) rs28360071, rs6869366, and X-ray cross-complementary gene 1 (XRCC1) rs25487] in susceptibility to COVID-19 in a Turkish population. We also evaluated its effect on the clinical course of the disease. A total of 300 subjects, including 200 COVID-19 patients and 100 healthy controls, were included in this study. These variants were genotyped using polymerase chain reaction (PCR) and/or PCR-restriction fragment length polymorphism (RFLP) methods. The patients were divided into three groups: those with a mild or severe infection; those who died or lived at the 28-day follow-up; those who required inpatient treatment or intensive care. There were 87 women (43.5%) and 113 men (56.5%) in the patient group. Hypertension was the most common comorbidity (26%). In the patient group, XRCC4 rs6869366 G/G genotype and G allele frequency were increased compared to controls, while XRCC4 rs6869366 G/T and T/T genotype frequencies were found to be higher in controls compared to patients. For XRCC1 rs25487, the A/A and A/G genotypes were significantly associated with COVID-19 disease. All of the patients hospitalized in the intensive care unit had the XRCC4 rs6869366 G/G genotype. In this study, we evaluated for the first time the impact of DNA repair gene variants on COVID-19 susceptibility. Results suggested that XRCC4 rs6869366 and XRCC1 rs25487 were associated with COVID-19 suspectibility and clinical course.
Collapse
Affiliation(s)
- Naci Senkal
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Istemi Serin
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Alpay Medetalibeyoglu
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Timurhan Cebeci
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hilal Konyaoglu
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yasemin Oyacı
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gozde Yesil Sayın
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ummuhan Isoglu-Alkac
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tufan Tukek
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kose
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
26
|
Mason H, Rai G, Kozyr A, De Jonge N, Gliniewicz E, Berg LJ, Wald G, Dorrier C, Henderson MJ, Zakharov A, Dyson T, Audley J, Pettinato AM, Padilha EC, Shah P, Xu X, Leto TL, Simeonov A, Zarember KA, McGavern DB, Gallin JI. Development of an improved and specific inhibitor of NADPH oxidase 2 to treat traumatic brain injury. Redox Biol 2023; 60:102611. [PMID: 36709665 PMCID: PMC9894920 DOI: 10.1016/j.redox.2023.102611] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
NADPH oxidases (NOX's), and the reactive oxygen species (ROS) they produce, play an important role in host defense, thyroid hormone synthesis, apoptosis, gene regulation, angiogenesis and other processes. However, overproduction of ROS by these enzymes is associated with cardiovascular disease, fibrosis, traumatic brain injury (TBI) and other diseases. Structural similarities between NOX's have complicated development of specific inhibitors. Here, we report development of NCATS-SM7270, a small molecule optimized from GSK2795039, that inhibited NOX2 in primary human and mouse granulocytes. NCATS-SM7270 specifically inhibited NOX2 and had reduced inhibitory activity against xanthine oxidase in vitro. We also studied the role of several NOX isoforms during mild TBI (mTBI) and demonstrated that NOX2 and, to a lesser extent, NOX1 deficient mice are protected from mTBI pathology, whereas injury is exacerbated in NOX4 knockouts. Given the pathogenic role played by NOX2 in mTBI, we treated mice transcranially with NCATS-SM7270 after injury and revealed a dose-dependent reduction in mTBI induced cortical cell death. This inhibitor also partially reversed cortical damage observed in NOX4 deficient mice following mTBI. These data demonstrate that NCATS-SM7270 is an improved and specific inhibitor of NOX2 capable of protecting mice from NOX2-dependent cell death associated with mTBI.
Collapse
Affiliation(s)
- Hannah Mason
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Arina Kozyr
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Nathaniel De Jonge
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Emily Gliniewicz
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Lars J. Berg
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Gal Wald
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Cayce Dorrier
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Tristan Dyson
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John Audley
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Anthony M. Pettinato
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Elias Carvalho Padilha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Thomas L. Leto
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Kol A. Zarember
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA,Corresponding author.
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA,Corresponding author.
| | - John I. Gallin
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA,Corresponding author.
| |
Collapse
|
27
|
Gain C, Song S, Angtuaco T, Satta S, Kelesidis T. The role of oxidative stress in the pathogenesis of infections with coronaviruses. Front Microbiol 2023; 13:1111930. [PMID: 36713204 PMCID: PMC9880066 DOI: 10.3389/fmicb.2022.1111930] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses can cause serious respiratory tract infections and may also impact other end organs such as the central nervous system, the lung and the heart. The coronavirus disease 2019 (COVID-19) has had a devastating impact on humanity. Understanding the mechanisms that contribute to the pathogenesis of coronavirus infections, will set the foundation for development of new treatments to attenuate the impact of infections with coronaviruses on host cells and tissues. During infection of host cells, coronaviruses trigger an imbalance between increased production of reactive oxygen species (ROS) and reduced antioxidant host responses that leads to increased redox stress. Subsequently, increased redox stress contributes to reduced antiviral host responses and increased virus-induced inflammation and apoptosis that ultimately drive cell and tissue damage and end organ disease. However, there is limited understanding how different coronaviruses including SARS-CoV-2, manipulate cellular machinery that drives redox responses. This review aims to elucidate the redox mechanisms involved in the replication of coronaviruses and associated inflammation, apoptotic pathways, autoimmunity, vascular dysfunction and tissue damage that collectively contribute to multiorgan damage.
Collapse
Affiliation(s)
| | | | | | | | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
28
|
Kerch G. Severe COVID-19-A Review of Suggested Mechanisms Based on the Role of Extracellular Matrix Stiffness. Int J Mol Sci 2023; 24:1187. [PMID: 36674700 PMCID: PMC9861790 DOI: 10.3390/ijms24021187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The severity of COVID-19 commonly depends on age-related tissue stiffness. The aim was to review publications that explain the effect of microenvironmental extracellular matrix stiffness on cellular processes. Platelets and endothelial cells are mechanosensitive. Increased tissue stiffness can trigger cytokine storm with the upregulated expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha and interleukin IL-6, and tissue integrity disruption, leading to enhanced virus entry and disease severity. Increased tissue stiffness in critically ill COVID-19 patients triggers platelet activation and initiates plague formation and thrombosis development. Cholesterol content in cell membrane increases with aging and further enhances tissue stiffness. Membrane cholesterol depletion decreases virus entry to host cells. Membrane cholesterol lowering drugs, such as statins or novel chitosan derivatives, have to be further developed for application in COVID-19 treatment. Statins are also known to decrease arterial stiffness mitigating cardiovascular diseases. Sulfated chitosan derivatives can be further developed for potential use in future as anticoagulants in prevention of severe COVID-19. Anti-TNF-α therapies as well as destiffening therapies have been suggested to combat severe COVID-19. The inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells pathway must be considered as a therapeutic target in the treatment of severe COVID-19 patients. The activation of mechanosensitive platelets by higher matrix stiffness increases their adhesion and the risk of thrombus formation, thus enhancing the severity of COVID-19.
Collapse
Affiliation(s)
- Garry Kerch
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, 1048 Riga, Latvia
| |
Collapse
|
29
|
Jiang Z, Wu L, van der Leeden B, van Rossum AC, Niessen HW, Krijnen PA. NOX2 and NOX5 are increased in cardiac microvascular endothelium of deceased COVID-19 patients. Int J Cardiol 2023; 370:454-462. [PMID: 36332749 PMCID: PMC9625847 DOI: 10.1016/j.ijcard.2022.10.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cardiac injury and inflammation are common findings in COVID-19 patients. Autopsy studies have revealed cardiac microvascular endothelial damage and thrombosis in COVID-19 patients, indicative of microvascular dysfunction in which reactive oxygen species (ROS) may play a role. We explored whether the ROS producing proteins NOX2, NOX4 and NOX5 are involved in COVID-19-induced cardio-microvascular endothelial dysfunction. METHODS Heart tissue were taken from the left (LV) and right (RV) ventricle of COVID-19 patients (n = 15) and the LV of controls (n = 14) at autopsy. The NOX2-, NOX4-, NOX5- and Nitrotyrosine (NT)-positive intramyocardial blood vessels fractions were quantitatively analyzed using immunohistochemistry. RESULTS The LV NOX2+, NOX5+ and NT+ blood vessels fractions in COVID-19 patients were significantly higher than in controls. The fraction of NOX4+ blood vessels in COVID-19 patients was comparable with controls. In COVID-19 patients, the fractions of NOX2+, NOX5+ and NT+ vessels did not differ significantly between the LV and RV, and correlated positively between LV and RV in case of NOX5 (r = 0.710; p = 0.006). A negative correlation between NOX5 and NOX2 (r = -0.591; p = 0.029) and between NOX5 and disease time (r = -0.576; p = 0.034) was noted in the LV of COVID-19 patients. CONCLUSION We show the induction of NOX2 and NOX5 in the cardiac microvascular endothelium in COVID-19 patients, which may contribute to the previously observed cardio-microvascular dysfunction in COVID-19 patients. The exact roles of these NOXes in pathogenesis of COVID-19 however remain to be elucidated.
Collapse
Affiliation(s)
- Zhu Jiang
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, the Netherlands,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands,Corresponding author at: Department of Pathology, Amsterdam University Medical Centre, Room number L2-111, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Linghe Wu
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, the Netherlands,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| | - Britt van der Leeden
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, the Netherlands,Amsterdam Institute for Infection and Immunity, AUMC, Location VUmc, Amsterdam, the Netherlands
| | - Albert C. van Rossum
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands,Department of Cardiology, AUMC, location VUmc, Amsterdam, the Netherlands
| | - Hans W.M. Niessen
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, the Netherlands,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands,Department of Cardiac Surgery, AUMC, Location AMC and VUmc, Amsterdam, the Netherlands
| | - Paul A.J. Krijnen
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, the Netherlands,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Chen Y, Qin Y, Fu Y, Gao Z, Deng Y. Integrated Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unravels the Influences of SARS-CoV-2 Infections to Cancer Patients. Int J Mol Sci 2022; 23:15698. [PMID: 36555339 PMCID: PMC9779348 DOI: 10.3390/ijms232415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious and pathogenic coronavirus that emerged in late 2019 and caused a pandemic of respiratory illness termed as coronavirus disease 2019 (COVID-19). Cancer patients are more susceptible to SARS-CoV-2 infection. The treatment of cancer patients infected with SARS-CoV-2 is more complicated, and the patients are at risk of poor prognosis compared to other populations. Patients infected with SARS-CoV-2 are prone to rapid development of acute respiratory distress syndrome (ARDS) of which pulmonary fibrosis (PF) is considered a sequelae. Both ARDS and PF are factors that contribute to poor prognosis in COVID-19 patients. However, the molecular mechanisms among COVID-19, ARDS and PF in COVID-19 patients with cancer are not well-understood. In this study, the common differentially expressed genes (DEGs) between COVID-19 patients with and without cancer were identified. Based on the common DEGs, a series of analyses were performed, including Gene Ontology (GO) and pathway analysis, protein-protein interaction (PPI) network construction and hub gene extraction, transcription factor (TF)-DEG regulatory network construction, TF-DEG-miRNA coregulatory network construction and drug molecule identification. The candidate drug molecules (e.g., Tamibarotene CTD 00002527) obtained by this study might be helpful for effective therapeutic targets in COVID-19 patients with cancer. In addition, the common DEGs among ARDS, PF and COVID-19 patients with and without cancer are TNFSF10 and IFITM2. These two genes may serve as potential therapeutic targets in the treatment of COVID-19 patients with cancer. Changes in the expression levels of TNFSF10 and IFITM2 in CD14+/CD16+ monocytes may affect the immune response of COVID-19 patients. Specifically, changes in the expression level of TNFSF10 in monocytes can be considered as an immune signature in COVID-19 patients with hematologic cancer. Targeting N6-methyladenosine (m6A) pathways (e.g., METTL3/SERPINA1 axis) to restrict SARS-CoV-2 reproduction has therapeutic potential for COVID-19 patients.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yujia Qin
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
31
|
Developing a Novel Immune-Related Seven-Gene Signature and Immune Infiltration Pattern in Patients with COVID-19 and Cardiovascular Disease. J Cardiovasc Dev Dis 2022; 9:jcdd9120450. [PMID: 36547446 PMCID: PMC9781048 DOI: 10.3390/jcdd9120450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND patients with pre-existence of cardiovascular disease (CVD) are vulnerable to coronavirus disease 2019 (COVID-19), and COVID-19 will cause long-term burden of CVD. However, the common pathogenic mechanisms are not fully elucidated. More detailed knowledge of linking biological molecules and the role of immune signature would allow more valuable and specific clinical management. METHODS the gene expression profiles of CVD and COVID-19 were retrieved from the GEO database. Common differentially expressed genes (DEGs) were screened with the Limma R package and the WGCNA algorithm, and then functional enrichment analysis, protein-protein interaction network, hub genes, and small therapeutic molecules analyses were performed. The hub immune-related genes (HIRGs) were intersected, and their associations with immune cells, expressional correlation, evaluated performance, and potential signal pathways were further investigated. RESULTS In total, 57 common DEGs were identified as a shared transcriptional signature between CVD and COVID-19, and 12 hub genes were screened using five topological algorithms. There are common altered immune responses in the response of these two diseases, and seven HIRGs, including C5AR1, MMP9, CYBB, FPR2, CSF1R, TLR2, and TLR4, were identified, with positive correlation to altered macrophages and neutrophils. Nine small molecular agents (SMAs) were detected as promising therapeutic drugs. These seven HIRGs mainly participated in the inflammatory immune response through activation of Il2 stat5 signaling and Tnfa signaling via nfκb pathways, and ROC curves confirmed their good discriminatory capacity in the two diseases. CONCLUSIONS this study established the co-expression network and identified a new immune-related seven-gene signature as therapeutic targets, which may provide new insights into pathogenic mechanisms and novel clinical management strategies.
Collapse
|
32
|
Izquierdo-Alonso JL, Pérez-Rial S, Rivera CG, Peces-Barba G. N-acetylcysteine for prevention and treatment of COVID-19: Current state of evidence and future directions. J Infect Public Health 2022; 15:1477-1483. [PMID: 36410267 PMCID: PMC9651994 DOI: 10.1016/j.jiph.2022.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19) and can be associated with serious complications, including acute respiratory distress syndrome. This condition is accompanied by a massive release of cytokines, also denominated cytokine storm, development of systemic oxidative stress and a prothrombotic state. In this context, it has been proposed a role for acetylcysteine (NAC) in the management of patients with COVID-19. NAC is a molecule classically known for its mucolytic effect, but it also has direct and indirect antioxidant activity as a precursor of reduced glutathione. Other effects of NAC have also been described, such as modulating the immune and inflammatory response, counteracting the thrombotic state, and having an antiviral effect. The pharmacological activities of NAC and its effects on the mechanisms of disease progression make it a potential therapeutic agent for COVID-19. NAC is safe, tolerable, affordable, and easily available. Moreover, the antioxidant effects of the molecule may even prevent infection and play an important role as a complement to vaccination. Although the clinical efficacy and dosing regimens of NAC have been evaluated in the clinical setting with small series of patients, the results are promising. In this article, we review the pathogenesis of SARS-CoV-2 infection and the current knowledge of the mechanisms of action of NAC across disease stages. We also propose NAC posology strategies to manage COVID-19 patients in different clinical scenarios.
Collapse
Affiliation(s)
- José Luis Izquierdo-Alonso
- Servicio de Neumología, Gerencia de Atención Integrada de Guadalajara, Spain,Correspondence to: Gerencia de Atención Integrada de Guadalajara, C/Donante de sangre, s/n, 19002 Guadalajara, Spain
| | | | | | | |
Collapse
|
33
|
Lobato TB, Gennari-Felipe M, Pauferro JRB, Correa IS, Santos BF, Dias BB, de Oliveira Borges JC, dos Santos CS, de Sousa Santos ES, de Araújo MJL, Ferreira LA, Pereira SA, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges L, Cury-Boaventura MF, Vinolo MAR, Pithon-Curi TC, Masi LN, Curi R, Hirabara SM, Gorjão R. Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Front Microbiol 2022; 13:1037469. [PMID: 36406408 PMCID: PMC9670542 DOI: 10.3389/fmicb.2022.1037469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 03/27/2024] Open
Abstract
Recent studies show that the metabolic characteristics of different leukocytes, such as, lymphocytes, neutrophils, and macrophages, undergo changes both in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes mellitus (DM2) condition. Thus, the objective of this review is to establish a correlation between the metabolic changes caused in leukocytes in DM2 and obesity that may favor a worse prognosis during SARS-Cov-2 infection. Chronic inflammation and hyperglycemia, specific and usual characteristics of obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic disturbances in different leukocytes, favoring the proinflammatory response of these cells. Thus, obesity and DM2 are important risk factors for pro-inflammatory response and metabolic dysregulation that can favor the occurrence of the cytokine storm, implicated in the severity and high mortality risk of the COVID-19 in these patients.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Matheus Gennari-Felipe
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Ilana Souza Correa
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Ferreira Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Belmiro Dias
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - João Carlos de Oliveira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Camila Soares dos Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Maria Janaína Leite de Araújo
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Liliane Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Sara Araujo Pereira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Leandro Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Renata Gorjão
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| |
Collapse
|
34
|
Miao R, Wang L, Chen Z, Ge S, Li L, Zhang K, Chen Y, Guo W, Duan X, Zhu M, Zhao G, Lin F. Advances in the study of nicotinamide adenine dinucleotide phosphate oxidase in myocardial remodeling. Front Cardiovasc Med 2022; 9:1000578. [PMID: 36407440 PMCID: PMC9669076 DOI: 10.3389/fcvm.2022.1000578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Myocardial remodeling is a key pathophysiological basis of heart failure, which seriously threatens human health and causes a severe economic burden worldwide. During chronic stress, the heart undergoes myocardial remodeling, mainly manifested by cardiomyocyte hypertrophy, apoptosis, interstitial fibrosis, chamber enlargement, and cardiac dysfunction. The NADPH oxidase family (NOXs) are multisubunit transmembrane enzyme complexes involved in the generation of redox signals. Studies have shown that NOXs are highly expressed in the heart and are involved in the pathological development process of myocardial remodeling, which influences the development of heart failure. This review summarizes the progress of research on the pathophysiological processes related to the regulation of myocardial remodeling by NOXs, suggesting that NOXs-dependent regulatory mechanisms of myocardial remodeling are promising new therapeutic targets for the treatment of heart failure.
Collapse
Affiliation(s)
- Runran Miao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Libo Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhigang Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- Cardiovascular Repair Engineering Technology Research Center, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
- International Joint Laboratory of Cardiovascular Injury and Repair, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqi Ge
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Li Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Kai Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Yingen Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Wenjing Guo
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Xulei Duan
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Mingyang Zhu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- Cardiovascular Repair Engineering Technology Research Center, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
- International Joint Laboratory of Cardiovascular Injury and Repair, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fei Lin
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- Cardiovascular Repair Engineering Technology Research Center, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
- International Joint Laboratory of Cardiovascular Injury and Repair, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
35
|
Captur G, Moon JC, Topriceanu CC, Joy G, Swadling L, Hallqvist J, Doykov I, Patel N, Spiewak J, Baldwin T, Hamblin M, Menacho K, Fontana M, Treibel TA, Manisty C, O'Brien B, Gibbons JM, Pade C, Brooks T, Altmann DM, Boyton RJ, McKnight Á, Maini MK, Noursadeghi M, Mills K, Heywood WE. Plasma proteomic signature predicts who will get persistent symptoms following SARS-CoV-2 infection. EBioMedicine 2022; 85:104293. [PMID: 36182629 PMCID: PMC9515404 DOI: 10.1016/j.ebiom.2022.104293] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The majority of those infected by ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the UK first wave (starting March 2020) did not require hospitalisation. Most had a short-lived mild or asymptomatic infection, while others had symptoms that persisted for weeks or months. We hypothesized that the plasma proteome at the time of first infection would reflect differences in the inflammatory response that linked to symptom severity and duration. METHODS We performed a nested longitudinal case-control study and targeted analysis of the plasma proteome of 156 healthcare workers (HCW) with and without lab confirmed SARS-CoV-2 infection. Targeted proteomic multiple-reaction monitoring analysis of 91 pre-selected proteins was undertaken in uninfected healthcare workers at baseline, and in infected healthcare workers serially, from 1 week prior to 6 weeks after their first confirmed SARS-CoV-2 infection. Symptom severity and antibody responses were also tracked. Questionnaires at 6 and 12 months collected data on persistent symptoms. FINDINGS Within this cohort (median age 39 years, interquartile range 30-47 years), 54 healthcare workers (44% male) had PCR or antibody confirmed infection, with the remaining 102 (38% male) serving as uninfected controls. Following the first confirmed SARS-CoV-2 infection, perturbation of the plasma proteome persisted for up to 6 weeks, tracking symptom severity and antibody responses. Differentially abundant proteins were mostly coordinated around lipid, atherosclerosis and cholesterol metabolism pathways, complement and coagulation cascades, autophagy, and lysosomal function. The proteomic profile at the time of seroconversion associated with persistent symptoms out to 12 months. Data are available via ProteomeXchange with identifier PXD036590. INTERPRETATION Our findings show that non-severe SARS-CoV-2 infection perturbs the plasma proteome for at least 6 weeks. The plasma proteomic signature at the time of seroconversion has the potential to identify which individuals are more likely to suffer from persistent symptoms related to SARS-CoV-2 infection. FUNDING INFORMATION The COVIDsortium is supported by funding donated by individuals, charitable Trusts, and corporations including Goldman Sachs, Citadel and Citadel Securities, The Guy Foundation, GW Pharmaceuticals, Kusuma Trust, and Jagclif Charitable Trust, and enabled by Barts Charity with support from University College London Hospitals (UCLH) Charity. This work was additionally supported by the Translational Mass Spectrometry Research Group and the Biomedical Research Center (BRC) at Great Ormond Street Hospital.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, London WC1B 5JU, UK; Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; The Royal Free Hospital, Center for Inherited Heart Muscle Conditions, Cardiology Department, Pond Street, Hampstead, London NW3 2QG, UK
| | - James C Moon
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Constantin-Cristian Topriceanu
- UCL MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, London WC1B 5JU, UK; Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK
| | - George Joy
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Jenny Hallqvist
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Ivan Doykov
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Nina Patel
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Justyna Spiewak
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Tomas Baldwin
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Matt Hamblin
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Katia Menacho
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Marianna Fontana
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; The Royal Free Hospital, Cardiac MRI Unit, Pond Street, Hampstead, London NW3 2QG, UK
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Ben O'Brien
- Department of Perioperative Medicine, St. Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK; Department of Cardiac Anesthesiology and Intensive Care Medicine, German Heart Center, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Outcomes Research Consortium, Department of Outcomes Research, The Cleveland Clinic, 9500 Euclid Ave P77, Cleveland, OH 44195, USA
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Corrina Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Tim Brooks
- National Infection Service, Public Health England, Porton Down, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK; Lung Division, Royal Brompton Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
36
|
Denaro CA, Haloush YI, Hsiao SY, Orgera JJ, Osorio T, Riggs LM, Sassaman JW, Williams SA, Monte Carlo A, Da Costa RT, Grigoriev A, Solesio ME. COVID-19 and neurodegeneration: The mitochondrial connection. Aging Cell 2022; 21:e13727. [PMID: 36219531 PMCID: PMC9649608 DOI: 10.1111/acel.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 01/25/2023] Open
Abstract
There is still a significant lack of knowledge regarding many aspects of the etiopathology and consequences of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans. For example, the variety of molecular mechanisms mediating this infection, and the long-term consequences of the disease remain poorly understood. It first seemed like the SARS-CoV-2 infection primarily caused a serious respiratory syndrome. However, over the last years, an increasing number of studies also pointed towards the damaging effects of this infection has on the central nervous system (CNS). In fact, evidence suggests a possible disruption of the blood-brain barrier and deleterious effects on the CNS, especially in patients who already suffer from other pathologies, such as neurodegenerative disorders. The molecular mechanisms behind these effects on the CNS could involve the dysregulation of mitochondrial physiology, a well-known early marker of neurodegeneration and a hallmark of aging. Moreover, mitochondria are involved in the activation of the inflammatory response, which has also been broadly described in the CNS in COVID-19. Here, we critically review the current bibliography regarding the presence of neurodegenerative symptoms in COVID-19 patients, with a special emphasis on the mitochondrial mechanisms of these disorders.
Collapse
Affiliation(s)
- Christopher A. Denaro
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Yara I. Haloush
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Samuel Y. Hsiao
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - John J. Orgera
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Teresa Osorio
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Lindsey M. Riggs
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Joshua W. Sassaman
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Sarah A. Williams
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Anthony R. Monte Carlo
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Renata T. Da Costa
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Andrey Grigoriev
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Maria E. Solesio
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| |
Collapse
|
37
|
Redox Status Is the Mainstay of SARS-CoV-2 and Host for Producing Therapeutic Opportunities. Antioxidants (Basel) 2022; 11:antiox11102061. [PMID: 36290783 PMCID: PMC9598460 DOI: 10.3390/antiox11102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
Over hundreds of years, humans have faced multiple pandemics and have overcome many of them with scientific advancements. However, the recent coronavirus disease (COVID-19) has challenged the physical, mental, and socioeconomic aspects of human life, which has introduced a general sense of uncertainty among everyone. Although several risk profiles, such as the severity of the disease, infection rate, and treatment strategy, have been investigated, new variants from different parts of the world put humans at risk and require multiple strategies simultaneously to control the spread. Understanding the entire system with respect to the commonly involved or essential mechanisms may be an effective strategy for successful treatment, particularly for COVID-19. Any treatment for COVID-19 may alter the redox profile, which can be an effective complementary method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and further replication. Indeed, redox profiles are one of the main barriers that suddenly shift the immune response in favor of COVID-19. Fortunately, several redox components exhibit antiviral and anti-inflammatory activities. However, access to these components as support elements against COVID-19 is limited. Therefore, understanding redox-derived species and their nodes as a common interactome in the system will facilitate the treatment of COVID-19. This review discusses the redox-based perspectives of the entire system during COVID-19 infection, including how redox-based molecules impact the accessibility of SARS-CoV-2 to the host and further replication. Additionally, to demonstrate its feasibility as a viable approach, we discuss the current challenges in redox-based treatment options for COVID-19.
Collapse
|
38
|
Lorkiewicz P, Waszkiewicz N. Is SARS-CoV-2 a Risk Factor of Bipolar Disorder?-A Narrative Review. J Clin Med 2022; 11:6060. [PMID: 36294388 PMCID: PMC9604904 DOI: 10.3390/jcm11206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
For 2.5 years we have been facing the coronavirus disease (COVID-19) and its health, social and economic effects. One of its known consequences is the development of neuropsychiatric diseases such as anxiety and depression. However, reports of manic episodes related to COVID-19 have emerged. Mania is an integral part of the debilitating illness-bipolar disorder (BD). Due to its devastating effects, it is therefore important to establish whether SARS-CoV-2 infection is a causative agent of this severe mental disorder. In this narrative review, we discuss the similarities between the disorders caused by SARS-CoV-2 and those found in patients with BD, and we also try to answer the question of whether SARS-CoV-2 infection may be a risk factor for the development of this affective disorder. Our observation shows that disorders in COVID-19 showing the greatest similarity to those in BD are cytokine disorders, tryptophan metabolism, sleep disorders and structural changes in the central nervous system (CNS). These changes, especially intensified in severe infections, may be a trigger for the development of BD in particularly vulnerable people, e.g., with family history, or cause an acute episode in patients with a pre-existing BD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Wołodyjowskiego 2, 15-272 Białystok, Poland
| | | |
Collapse
|
39
|
Contreras-Briceño F, Espinosa-Ramírez M, Rozenberg D, Reid WD. Eccentric Training in Pulmonary Rehabilitation of Post-COVID-19 Patients: An Alternative for Improving the Functional Capacity, Inflammation, and Oxidative Stress. BIOLOGY 2022; 11:biology11101446. [PMID: 36290350 PMCID: PMC9598133 DOI: 10.3390/biology11101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 01/08/2023]
Abstract
The purpose of this narrative review is to highlight the oxidative stress induced in COVID-19 patients (SARS-CoV-2 infection), describe longstanding functional impairments, and provide the pathophysiologic rationale that supports aerobic eccentric (ECC) exercise as a novel alternative to conventional concentric (CONC) exercise for post-COVID-19 patients. Patients who recovered from moderate-to-severe COVID-19 respiratory distress demonstrate long-term functional impairment. During the acute phase, SARS-CoV-2 induces the generation of reactive oxygen species that can be amplified to a "cytokine storm". The resultant inflammatory and oxidative stress process causes organ damage, particularly in the respiratory system, with the lungs as the tissues most susceptible to injury. The acute illness often requires a long-term hospital stay and consequent sarcopenia. Upon discharge, muscle weakness compounded by limited lung and cardiac function is often accompanied by dyspnea, myalgia, anxiety, depression, and sleep disturbance. Consequently, these patients could benefit from pulmonary rehabilitation (PR), with exercise as a critical intervention (including sessions of strength and endurance or aerobic exercises). Unfortunately, conventional CONC exercises induce significant cardiopulmonary stress and increase inflammatory and oxidative stress (OS) when performed at moderate/high intensity, which can exacerbate debilitating dyspnoea and muscle fatigue post-COVID-19. Eccentric training (ECC) is a well-tolerated alternative that improves muscle mass while mitigating cardiopulmonary stress in patients with COPD and other chronic diseases. Similar benefits could be realized in post-COVID-19 patients. Consequently, these patients could benefit from PR with exercise as a critical intervention.
Collapse
Affiliation(s)
- Felipe Contreras-Briceño
- Laboratory of Exercise Physiology, Department of Health Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Advanced Center for Chronic Diseases (ACCDiS), Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta #367, Santiago 8380000, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
- Correspondence: ; Tel.: +56-9-82288153
| | - Maximiliano Espinosa-Ramírez
- Laboratory of Exercise Physiology, Department of Health Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
| | - Dmitry Rozenberg
- Department of Medicine, Respirology, University of Toronto, Toronto, ON M5G 2C4, Canada
- Toronto General Hospital, Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - W. Darlene Reid
- Department of Physical Therapy and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| |
Collapse
|
40
|
Lu LW, Gao Y, Quek SY, Foster M, Eason CT, Liu M, Wang M, Chen JH, Chen F. The landscape of potential health benefits of carotenoids as natural supportive therapeutics in protecting against Coronavirus infection. Biomed Pharmacother 2022; 154:113625. [PMID: 36058151 PMCID: PMC9428603 DOI: 10.1016/j.biopha.2022.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease-2019 (COVID-19) pandemic urges researching possibilities for prevention and management of the effects of the virus. Carotenoids are natural phytochemicals of anti-oxidant, anti-inflammatory and immunomodulatory properties and may exert potential in aiding in combatting the pandemic. This review presents the direct and indirect evidence of the health benefits of carotenoids and derivatives based on in vitro and in vivo studies, human clinical trials and epidemiological studies and proposes possible mechanisms of action via which carotenoids may have the capacity to protect against COVID-19 effects. The current evidence provides a rationale for considering carotenoids as natural supportive nutrients via antioxidant activities, including scavenging lipid-soluble radicals, reducing hypoxia-associated superoxide by activating antioxidant enzymes, or suppressing enzymes that produce reactive oxygen species (ROS). Carotenoids may regulate COVID-19 induced over-production of pro-inflammatory cytokines, chemokines, pro-inflammatory enzymes and adhesion molecules by nuclear factor kappa B (NF-κB), renin-angiotensin-aldosterone system (RAS) and interleukins-6- Janus kinase-signal transducer and activator of transcription (IL-6-JAK/STAT) pathways and suppress the polarization of pro-inflammatory M1 macrophage. Moreover, carotenoids may modulate the peroxisome proliferator-activated receptors γ by acting as agonists to alleviate COVID-19 symptoms. They also may potentially block the cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human angiotensin-converting enzyme 2 (ACE2). These activities may reduce the severity of COVID-19 and flu-like diseases. Thus, carotenoid supplementation may aid in combatting the pandemic, as well as seasonal flu. However, further in vitro, in vivo and in particular long-term clinical trials in COVID-19 patients are needed to evaluate this hypothesis.
Collapse
|
41
|
Damle VG, Wu K, Arouri DJ, Schirhagl R. Detecting free radicals post viral infections. Free Radic Biol Med 2022; 191:8-23. [PMID: 36002131 DOI: 10.1016/j.freeradbiomed.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Free radical generation plays a key role in viral infections. While free radicals have an antimicrobial effect on bacteria or fungi, their interplay with viruses is complicated and varies greatly for different types of viruses as well as different radical species. In some cases, radical generation contributes to the defense against the viruses and thus reduces the viral load. In other cases, radical generation induces mutations or damages the host tissue and can increase the viral load. This has led to antioxidants being used to treat viral infections. Here we discuss the roles that radicals play in virus pathology. Furthermore, we critically review methods that facilitate the detection of free radicals in vivo or in vitro in viral infections.
Collapse
Affiliation(s)
- V G Damle
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - K Wu
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - D J Arouri
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - R Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
42
|
Rana M, Setia M, Suvas PK, Chakraborty A, Suvas S. Diphenyleneiodonium Treatment Inhibits the Development of Severe Herpes Stromal Keratitis Lesions. J Virol 2022; 96:e0101422. [PMID: 35946937 PMCID: PMC9472634 DOI: 10.1128/jvi.01014-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in tissue inflammation. In this study, we measured the intracellular level of ROS in herpes stromal keratitis (HSK) corneas and determined the outcome of manipulating ROS level on HSK severity. Our results showed the predominance of ROS generation in neutrophils but not CD4 T cells in HSK corneas. NADPH oxidase 2 (NOX2) enzyme is known to generate ROS in myeloid cells. Our results showed baseline expression of different NOX2 subunits in uninfected corneas. After corneal herpes simplex virus-1 (HSV-1) infection, an enhanced expression of NOX2 subunits was detected in infected corneas. Furthermore, flow cytometry results showed a higher level of gp91 (Nox2 subunit) protein in neutrophils from HSK corneas, suggesting the involvement of NOX2 in generating ROS. However, no significant decrease in ROS level was noticed in neutrophils from HSV-1-infected gp91-/- mice than in C57BL/6J (B6) mice, suggesting NOX2 is not the major contributor in generating ROS in neutrophils. Next, we used diphenyleneiodonium (DPI), a flavoenzyme inhibitor, to pharmacologically manipulate the ROS levels in HSV-1-infected mice. Surprisingly, the neutrophils from peripheral blood and corneas of the DPI-treated group exhibited an increased level of ROS than the vehicle-treated group of infected B6 mice. Excessive ROS is known to cause cell death. Accordingly, DPI treatment resulted in a significant decrease in neutrophil frequency in peripheral blood and corneas of infected mice and was associated with reduced corneal pathology. Together, our results suggest that regulating ROS levels in neutrophils can ameliorate HSK severity. IMPORTANCE Neutrophils are one of the primary immune cell types involved in causing tissue damage after corneal HSV-1 infection. This study demonstrates that intracellular ROS production in the neutrophils in HSK lesions is not NOX2 dependent. Furthermore, manipulating ROS levels in neutrophils ameliorates the severity of HSK lesions. Our findings suggest that excessive intracellular ROS in neutrophils disrupt redox homeostasis and affect their survival, resulting in a decrease in HSK lesion severity.
Collapse
Affiliation(s)
- Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pratima K. Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
43
|
Yi J, Miao J, Zuo Q, Owusu F, Dong Q, Lin P, Wang Q, Gao R, Kong X, Yang L. COVID-19 pandemic: A multidisciplinary perspective on the pathogenesis of a novel coronavirus from infection, immunity and pathological responses. Front Immunol 2022; 13:978619. [PMID: 36091053 PMCID: PMC9459044 DOI: 10.3389/fimmu.2022.978619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus2 (SARS-CoV-2), has spread to more than 200 countries and regions, having a huge impact on human health, hygiene, and economic activities. The epidemiological and clinical phenotypes of COVID-19 have increased since the onset of the epidemic era, and studies into its pathogenic mechanisms have played an essential role in clinical treatment, drug development, and prognosis prevention. This paper reviews the research progress on the pathogenesis of the novel coronavirus (SARS-CoV-2), focusing on the pathogenic characteristics, loci of action, and pathogenic mechanisms leading to immune response malfunction of SARS-CoV-2, as well as summarizing the pathological damage and pathological manifestations it causes. This will update researchers on the latest SARS-CoV-2 research and provide directions for future therapeutic drug development.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiameng Miao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingwei Zuo
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiutong Dong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peizhe Lin
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
44
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
45
|
Hosseinzadeh A, Bagherifard A, Koosha F, Amiri S, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin effect on platelets and coagulation: Implications for a prophylactic indication in COVID-19. Life Sci 2022; 307:120866. [PMID: 35944663 PMCID: PMC9356576 DOI: 10.1016/j.lfs.2022.120866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
Severe COVID-19 is associated with the dynamic changes in coagulation parameters. Coagulopathy is considered as a major extra-pulmonary risk factor for severity and mortality of COVID-19; patients with elevated levels of coagulation biomarkers have poorer in-hospital outcomes. Oxidative stress, alterations in the activity of cytochrome P450 enzymes, development of the cytokine storm and inflammation, endothelial dysfunction, angiotensin-converting enzyme 2 (ACE2) enzyme malfunction and renin–angiotensin system (RAS) imbalance are among other mechanisms suggested to be involved in the coagulopathy induced by severe acute respiratory syndrome coronavirus (SARS-CoV-2). The activity and function of coagulation factors are reported to have a circadian component. Melatonin, a multipotential neurohormone secreted by the pineal gland exclusively at night, regulates the cytokine system and the coagulation cascade in infections such as those caused by coronaviruses. Herein, we review the mechanisms and beneficial effects of melatonin against coagulopathy induced by SARS-CoV-2 infection.
Collapse
|
46
|
Kundura L, Gimenez S, Cezar R, André S, Younas M, Lin YL, Portales P, Lozano C, Boulle C, Reynes J, Thierry V, Mettling C, Pasero P, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Loubet P, Sotto A, Tran TA, Estaquier J, Corbeau P. Angiotensin II induces reactive oxygen species, DNA damage, and T cell apoptosis in severe COVID-19. J Allergy Clin Immunol 2022; 150:594-603.e2. [PMID: 35841981 PMCID: PMC9278992 DOI: 10.1016/j.jaci.2022.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/24/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Background Lymphopenia is predictive of survival in patients with coronavirus disease 2019 (COVID-19). Objective The aim of this study was to understand the cause of the lymphocyte count drop in severe forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Methods Monocytic production of reactive oxygen species (ROSs) and T-cell apoptosis were measured by flow cytometry, DNA damage in PBMCs was measured by immunofluorescence, and angiotensin II (AngII) was measured by ELISA in patients infected with SARS-CoV-2 at admission to an intensive care unit (ICU) (n = 29) or not admitted to an ICU (n = 29) and in age- and sex-matched healthy controls. Results We showed that the monocytes of certain patients with COVID-19 spontaneously released ROSs able to induce DNA damage and apoptosis in neighboring cells. Of note, high ROS production was predictive of death in ICU patients. Accordingly, in most patients, we observed the presence of DNA damage in up to 50% of their PBMCs and T-cell apoptosis. Moreover, the intensity of this DNA damage was linked to lymphopenia. SARS-CoV-2 is known to induce the internalization of its receptor, angiotensin-converting enzyme 2, which is a protease capable of catabolizing AngII. Accordingly, in certain patients with COVID-19 we observed high plasma levels of AngII. When looking for the stimulus responsible for their monocytic ROS production, we revealed that AngII triggers ROS production by monocytes via angiotensin receptor I. ROSs released by AngII-activated monocytes induced DNA damage and apoptosis in neighboring lymphocytes. Conclusion We conclude that T-cell apoptosis provoked via DNA damage due to the release of monocytic ROSs could play a major role in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Lucy Kundura
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Sandrine Gimenez
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Renaud Cezar
- Immunology Department, Nîmes University Hospital; Nîmes, France
| | - Sonia André
- INSERM U1124, Université de Paris; Paris, France
| | - Mehwish Younas
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Pierre Portales
- Immunology Department, Montpellier University Hospital; Montpellier, France
| | - Claire Lozano
- Immunology Department, Montpellier University Hospital; Montpellier, France
| | - Charlotte Boulle
- Infectious diseases Department, Montpellier University Hospital; Montpellier, France
| | - Jacques Reynes
- Infectious diseases Department, Montpellier University Hospital; Montpellier, France
| | - Vincent Thierry
- Immunology Department, Montpellier University Hospital; Montpellier, France
| | - Clément Mettling
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Philippe Pasero
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Laurent Muller
- Surgical Intensive Care Department, Nîmes University Hospital; Nîmes, France
| | - Jean-Yves Lefrant
- Surgical Intensive Care Department, Nîmes University Hospital; Nîmes, France
| | - Claire Roger
- Surgical Intensive Care Department, Nîmes University Hospital; Nîmes, France
| | - Pierre-Géraud Claret
- Medical and Surgical Emergency Department, Nîmes University Hospital; Nîmes, France
| | - Sandra Duvnjak
- Gerontology Department, Nîmes University Hospital; Nîmes, France
| | - Paul Loubet
- Infectious diseases Department, Nîmes University Hospital; Nîmes, France
| | - Albert Sotto
- Infectious diseases Department, Nîmes University Hospital; Nîmes, France
| | - Tu-Anh Tran
- Pediatrics Department, Nîmes University Hospital; Nîmes, France
| | - Jérôme Estaquier
- INSERM U1124, Université de Paris; Paris, France; Laval University Research Center; Quebec City, Quebec, Canada
| | - Pierre Corbeau
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Immunology Department, Nîmes University Hospital; Nîmes, France
| |
Collapse
|
47
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a global pandemic impacting 254 million people in 190 countries. Comorbidities, particularly cardiovascular disease, diabetes, and hypertension, increase the risk of infection and poor outcomes. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme-2 receptor, generating inflammation and cytokine storm, often resulting in multiorgan failure. The mechanisms and effects of COVID-19 on patients with high-risk diabetes are not yet completely understood. In this review, we discuss the variety of coronaviruses, structure of SARS-CoV-2, mutations in SARS-CoV-2 spike proteins, receptors associated with viral host entry, and disease progression. Furthermore, we focus on possible mechanisms of SARS-CoV-2 in diabetes, leading to inflammation and heart failure. Finally, we discuss existing therapeutic approaches, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
48
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
49
|
Zhang L, Zhang Y, Qin X, Jiang X, Zhang J, Mao L, Jiang Z, Jiang Y, Liu G, Qiu J, Chen C, Qiu F, Zou Z. Recombinant ACE2 protein protects against acute lung injury induced by SARS-CoV-2 spike RBD protein. Crit Care 2022; 26:171. [PMID: 35681221 PMCID: PMC9178547 DOI: 10.1186/s13054-022-04034-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/27/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SARS-CoV-2 infection leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Both clinical data and animal experiments suggest that the renin-angiotensin system (RAS) is involved in the pathogenesis of SARS-CoV-2-induced ALI. Angiotensin-converting enzyme 2 (ACE2) is the functional receptor for SARS-CoV-2 and a crucial negative regulator of RAS. Recombinant ACE2 protein (rACE2) has been demonstrated to play protective role against SARS-CoV and avian influenza-induced ALI, and more relevant, rACE2 inhibits SARS-CoV-2 proliferation in vitro. However, whether rACE2 protects against SARS-CoV-2-induced ALI in animal models and the underlying mechanisms have yet to be elucidated. METHODS AND RESULTS Here, we demonstrated that the SARS-CoV-2 spike receptor-binding domain (RBD) protein aggravated lipopolysaccharide (LPS)-induced ALI in mice. SARS-CoV-2 spike RBD protein directly binds and downregulated ACE2, leading to an elevation in angiotensin (Ang) II. AngII further increased the NOX1/2 through AT1R, subsequently causing oxidative stress and uncontrolled inflammation and eventually resulting in ALI/ARDS. Importantly, rACE2 remarkably reversed SARS-CoV-2 spike RBD protein-induced ALI by directly binding SARS-CoV-2 spike RBD protein, cleaving AngI or cleaving AngII. CONCLUSION This study is the first to prove that rACE2 plays a protective role against SARS-CoV-2 spike RBD protein-aggravated LPS-induced ALI in an animal model and illustrate the mechanism by which the ACE2-AngII-AT1R-NOX1/2 axis might contribute to SARS-CoV-2-induced ALI.
Collapse
Affiliation(s)
- Lingbing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yandan Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ziqi Jiang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yu Jiang
- Department of Respiratory Medicine, The University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Gang Liu
- Department of Emergency, The University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Feng Qiu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
50
|
Gu SX, Dayal S. Redox Mechanisms of Platelet Activation in Aging. Antioxidants (Basel) 2022; 11:995. [PMID: 35624860 PMCID: PMC9137594 DOI: 10.3390/antiox11050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is intrinsically linked with physiologic decline and is a major risk factor for a broad range of diseases. The deleterious effects of advancing age on the vascular system are evidenced by the high incidence and prevalence of cardiovascular disease in the elderly. Reactive oxygen species are critical mediators of normal vascular physiology and have been shown to gradually increase in the vasculature with age. There is a growing appreciation for the complexity of oxidant and antioxidant systems at the cellular and molecular levels, and accumulating evidence indicates a causal association between oxidative stress and age-related vascular disease. Herein, we review the current understanding of mechanistic links between oxidative stress and thrombotic vascular disease and the changes that occur with aging. While several vascular cells are key contributors, we focus on oxidative changes that occur in platelets and their mediation in disease progression. Additionally, we discuss the impact of comorbid conditions (i.e., diabetes, atherosclerosis, obesity, cancer, etc.) that have been associated with platelet redox dysregulation and vascular disease pathogenesis. As we continue to unravel the fundamental redox mechanisms of the vascular system, we will be able to develop more targeted therapeutic strategies for the prevention and management of age-associated vascular disease.
Collapse
Affiliation(s)
- Sean X. Gu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06511, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|